
The New Software Engineering

This book is licensed under a Creative Commons Attribution 3.0 License

The New Software
Engineering

Sue Conger

Copyright © 2008 by Sue Conger

For any questions about this text, please email: drexel@uga.edu

The Global Text Project is funded by the Jacobs Foundation, Zurich, Switzerland

This book is licensed under a Creative Commons Attribution 3.0 License

This edition was scanned and converted to text using Optical Character Recognition. We are in the process of

converting this edition into the Global Text Project standard format. When this is complete, a new edition will be

posted on the Global Text Project website and will be available in a variety of formats upon request.

The New Software Engineering 2 A Global Text

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:drexel@uga.edu?subject=Basic%20Political%20Concepts

____ - THE NEW ____________ -

SOFTWARE ----- ---------------
____ - ENGINEERING __________ -

CONTENTS ____________ ~ ____ --

CHAPTER 1 ____________________ _
OVERVIEW OF _________ _
SOFTWARE ENGINEERING 1 ____ _

Introduction 1
Software Engineering 2
Applications 5

Application Characteristics 5
Application Responsiveness 13
Types of Applications 17
Applications in Business 22

Project Life Cycles 23
Sequential Project Life Cycle 23
Iterative Project Life Cycle 29
Learn-as-You-Go Project Life Cycle 31

Methodologies 34
Process Methodology 34
Data Methodology 34
Object-Oriented Methodology 35
Semantic Methodologies 37
No Methodology 38

User Involvement in Application Development 39
Overview of the Book 40

Applications 40
Project Life Cycles 40
Part I: Preparation for Software Engineering 40
Part II: Project Initiation 40
Part III: Analysis and Design 41
Part IV: Implementation and Operations 41

Summary 41

PART 1 ____________________________________ _
PREPARATION FOR SOFTWARE ENGINEERING 45 ____ _

CHAPTER 2 ___________ _
LEARNING APPLICATION ______ _
DEVELOPMENT 46 ________ _

Introduction 46
How We Develop Knowledge and Expertise 46

Learning 46
Use of Learned Information 48
Expert/Novice Differences in Problem

Solving 48
How to Ease Your Learning Process 50

Application Development Case 50
History of the Video Rental Business 51
ABC Video Order Processing Task 51
Discussion 53

Summary 54

CHAPTER 3 ____________ _
PROJECT MANAGEMENT 57 ____ _

Introduction 57
Complementary Activities 58

Project Planning 58
Assigning Staff to Tasks 62
Selecting from Among Different

Alternatives 64
Liaison 67

Project Sponsor 67
User 67
IS Management 69
Technical Staff 69
Operations 69
Vendors 69

v

vi Contents

Other Project Teams and Departments 70
Personnel Management 70

Hiring 70
Firing 71
Motivating 71
Career Path Planning 72
Training 72
Evaluating 72

Monitor and Control 74
Status Monitoring and Reporting 74

Automated Support Tools for Project
Management 79

Summary 80

CHAPTER 4 ____________________ __
DATA GATHERING FOR ___________ _
APPLICATION DEVELOPMENT 83 ____ _

Introduction 83
Data Types 83

Time Orientation 84
Structure 84

Completeness 86
Ambiguity 86
Semantics 86
Volume 86

Data Collection Techniques 87
Single Interview 87
Meetings 92
Observation 94
Temporary Job Assignment 95
Questionnaire 95
Document Review 97
Software Review 98

Data Collection and Application Type 98
Data Collection Technique and Data Type 98
Data Type and Application Type 99
Data Collection Technique and Application

Type 101
Professionalism and Ethics 102

Ethical Project Behavior 103
Ethical Reasoning 106

Summary 107

I ____ PARTII __________________________________ _

I ____ PROJECT INITIATION 111 ____________________________ __

CHAPTER 5 ___________________ __
ORGANIZATIONAL ________________ _
REENGINEERING
AND ENTERPRISE ________ _
PLANNING 113 ________ __

Introduction 113
Conceptual Foundations of Enterprise

Reengineering 113
Planning Reengineering Projects 117
Reengineering Methodology 119

Identify Project Sponsor 120
Assign Staff 121
Scope the Project 122
Create a Schedule 123
Identify Mission Statement 124
Gather Information 124

Summary of the Architectures 125
Translating Information into Architecture 128
Architecture Analysis and Redesign 133
Implementation Planning 140

Enterprise Analysis Without Organization
Design 143

Automated Support Tools for Organizational
Reengineering and Enterprise Analysis 143

Summary 143

CHAPTER 6 ____________________ _
APPLICATION FEASIBILITY __________ _
ANALYSIS AND PLANNING 148 ____ __

Introduction 148
Definition of Feasibility Terms 148

Feasibility Activities 150
Gather Information 150
Develop Alternative Solutions 159
Evaluate Alternative Solutions 170
Plan the Implementation 17'2

Contents vii

Evaluate Financial Feasibility 187
Document the Recommendations 193

Automated Support Tools for Feasibility
Analysis 194

Summary 195

PART III _______________ -
ANALYSIS AND DESIGN 199 ___________ _

Introduction 199
Application Development as a Translation

Activity 202
Organizational and Autom.ated Support 209

Joint Application Development 210
User-Managed Application Development 216
Structured Walk-Throughs 217
Data Administration 218
CASE Tools 222

Summary 225

CHAPTER7 ____________________ __

PROCESS-ORIENTED ___________ _
ANALYSIS 227 _______________ __

Introduction 227
Conceptual Foundations 227
Sum.mary of Structured Syst~ms Analysis

Terms 228
Structured Systems Analysis Activities 231

Develop Context Diagrarp. 234
Develop Data Flow Diagram 241
Develop Data Dictionary 261

Automated S"!lpport Tools 270
Summary 270

CHAPTER 8 ____________ _
PROCESS-ORIENTED DESIGN 279 __ _

Introduction 279
Conceptual Foundations 279
Definition of Structured Design Terms 280
Process Design Activities 293

Transaction Analysis 294

Transform Analysis 295
Complete the Structure Chart 303
Design the Physical Database 310
Design Program Packages 312
Specify Programs 317

Automated Support Tools for Process-Oriented
Design 319

Strengths and Weaknesses of Process Analysis
and Design Methodologies 322

Summary 324

CHAPTER 9 __________ _
DATA-ORIENTED ANALYSIS 328 __ _

Introduction 328
Conceptual Foundations 329
Definition of Business Area Analysis Terms 329
Business Area Analysis Activities 339

Develop Entity-Relationsl1ip Diagram 339
Decompose Business Functions 356
Develop Process Depen<~ency Diagram 363
Develop process Data Flow Diagram 372
Develop and Analyz,e Entity /process

Matrix 381
Software Support for Data-Oriented Analysis 387
Summary 387

CHAPTER 10 ________________ __
DATA-ORIENTED DESIGN 391 ___ _

Introduction 391
Conceptual Foundations 391
Definition of Information Engineerfng Design

Terms 392

viii Contents

Information Engineering Design 401
Analyze Data Use and Distribution 401
Define Security, Recovery, and Audit

Controls 410
Develop Action Diagram 424
Define Menu Structure and Dialogue Flow 438
Plan Hardware and Software Installation

and Testing 445
Automated Support Tools for Data-Oriented

Design 453
Summary 456

CHAPTER11 _________ __

OBJECT-ORIENTED ANALYSIS 459 __ __

Introduction 459
Conceptual Foundations of Object-Oriented

Analysis 459
Definition of Object-Oriented Terms 461
Object-Oriented Analysis Activities 463

Develop Summary Paragraph 464
Identify Objects of Interest 468
Identify Processes 473
Define Attributes of Objects 479
Define Attributes of Processes 483
Perform Class Analysis 486
Draw State-Transition Diagram 492

Automated Support Tools for Object-Oriented
Analysis 497

Summary 497

CHAPTER 12 _________ __

OBJECT-ORIENTED DESIGN 501 __ _

Introduction 501
Conceptual Foundations 501
Definition of Object-Oriented Design Terms 502
Object-Oriented Design Activities 508

Allocate Objects to Four Sub domains 509
Draw Time-Order Event Diagram 512
Determine Service Objects 517
Develop Booch Diagram 521
Define Message Communications 525
Develop Process Diagram 529
Develop Package Specifications and

Prototype 533

What We Know and Don't Know from OOA
and OOD 534

Automated Support Tools for Object-Oriented
Design 534

Summary 535
Appendix: Unix/C++ Design of ABC Rental 539

CHAPTER13_~ _______ __
SUMMARY AND FUTURE _____ __
OF SYSTEMS ANALYSIS, ______ _
DESIGN, AND __________ _
METHODOLOGIES 554 ______ _

Introduction 554
Comparison of Methodologies 554

Information Systems Methodologies Framework
for Understanding 555

Humphrey's Maturity Framework 562
Comparison of Automated Support

Environments 565
Research Relating to Analysis, Design, and

Methodologies 568
Business and Technology Trends that Impact

Application Development 569
Legacy Systems; 570
Repositories and Data Warehouses 570
Client/Server 571
Multimedia 572
Globalization 572

Summary 574

CHAPTER 14 _________ __

FORGOTIEN ACTIVITIES 579 ___ _

Introduction 579
Human Interface Design 579

Conceptual Foundations of Interface
Design 579

Develop a Task Profile 580
Option Selection 590
Functional Screen Design 601
Presentation Format Design 605
Field Format Design 620

Conversion 625
Identify Current and Future Data

Locations 626

Define Attribute Edit and Validate Criteria 627
Define Data Conversion Activities and

Timing 627
Select and Plan an Application Conversion

Strategy 627
ABC Conversion Strategy 629

User Documentation 631
Mix of On-Line and Manual

Documentation 631

Contents ix

Automated Support Tools for Forgotten
Activities 632

Summary 633

PARTIV ________________________________ __
IMPLEMENTATION AND MAINTENANCE 637 _____ _

Introduction 637

CHAPTER15 __________________ __
CHOOSING AN _________ _
IMPLEMENTATION _______________ _
LANGUAGE 640 _______________ _

Introduction 640
Characteristics of Languages 640

Data Types 640
Data Type Checking 641
Language Constructs 642
Modularization and Memory Management
Exception Handling 646
Multiuser Support 646

Nontechnical Language Characteristics 647
Comparison of Languages 650

SQL 650
Focus 656
BASIC 656
COBOL 656
Fortran 657
C 657
Pascal 657
PROLOG 658
Smalltalk 659
Ada 659

645

Programming Language Evaluation 660
Language Matched to Application Type 660
Language Matched to Methodology 661

Automated Support for Program Development
662

Summary 662

CHAPTER16 ______________ ~----
PURCHASING _____________ _
HARDWARE __________ _

AND SOFTWARE 666 _______ _

Introduction 666
Request for Proposal Process 667

Develop and Prioritize Requirements 667
Develop Schedule and Cost 667
Develop Request for Proposal 668
Manage Proposal Process 669
Evaluate Proposals and Select Alternatives

Informal Procurement 670
Contents of RFP 670

Vendor Summary 670
Required Information 671
Schedule of RFP Process 674
Description of Selection Processes 674
Vendor Response Requirements 675
Standard Contract Terms 677

Hardware 677
Functionality 677
Operational Environment 678
Performance 678

Software 678
Needs 679
Resources 679
Performance 680
Flexibility 680
Operating Characteristics 680

RFP Evaluation 681
General Evaluation Guidelines 681

Automated Support Tools for Evaluation 687
Summary 687

670

x Contents

CHAPTER17~------------------
TESTING AND· __________ _

QUALITY ASSURANCE

Introduction 690
Testing Terminology 690
Testing Strategies 694

Black-Box Testing 695
White-Box Testing 697
Top-Down Testing 699
Bottom-Up Testing 702
Test Cases 702

690 ____ _

Matching the Test Level to the Strategy 704
Test Plan for ABC Video Order Processing 706

Test Strategy 706
Unit Testing 710
Subsystem or Integration Testing 718
System and Quality Assurance Testing 723

Automated Support Tools for Testing 729
Summary 732

CHAPTER 18 _________________ __

CHANGE MANAGEMENT 735 ___ _

Introduction' 735
Designing for Maintenance 735

Reusability 735
Methodology Design Effects 738
Role of CASE 740

Application Change Management 741
Importance 741
Change Management Procedures 742
Historical Decision Logging 744
Documentation Change Management 744

Software Management 749
Introduction 749
Types of Maintenance 749
Reengineering 751

Configuration Management 751
Introduction 751
Types of Code Management 752
Configuration Management Procedures 755

Automated Tools for Change Management 756
Collaborative Work Tools 756
Documentation Tools 758
Tools for Reverse Engineering of

Software 759
Tools for Configuration Management 759

Summary 759

CHAPTER 19-------------------
SOFTWARE ENGINEERING _____ _
AS A CAREER 764 _______ __

Introduction 764
Emerging Career Paths 764
Careers in Information Systems 765

Level of Experience 765
Job Type 767

Planning a Career 772
Decide on Your Objective 773
Define Duties You Like to Perform 773
Define Features of the Job 773
Define Features of the Organization 775
Define GeographiC Location 777
Define Future-Oriented Job Components 777
Search for Companies That Fit Your

Profile 778
Assess the Reality of Your Ideal Job and

Adjust 778
Maintaining Professional Status 780

Education 781
Professional Organizations 781
User Organizations 783
Accreditation 785
Read the Literature 785

Automated Support Tools for Job Search 786
Summary 787

APPENDIX ___________ _

CASES FOR ASSIGNMENTS 790 ____ __

Abacus Printing Company 790
AOS Tracking System 791
The Center fot Child Development 792
Cohrse Registration System 794
Dr. Patel's Dental Practice System 795
The Eagle Rock Golf League 796
Georgia Bank Automated Teller Machine System

796
Summer's Inc. Sales Tracking System 797
Technical Contracting, Inc. 798
XY University Medical Tracking System 799

Glossary 801
Index 811

PREFACE -----------------------------,-----

As we move toward the 21st century, the techniques,
tools, technologies, and subject matter of appli­
cations development are changing radically. Glob­
alization of the work place is impacting IS
development as well, by pressuring organizations to
strive for competitive advantage through auto­
mation, among other methods. Strategic IS, reusable
designs, downsizing, right-sizing, multimedia data­
bases, and reusable code are all discussed in the
same breath. Methodologies are being successfully
coupled to computer-aided software engineering en­
vironments (CASE); yet object-oriented methodolo­
gies, which are being touted as the panacea for all
problems, have not yet been fully automated ... or
even fully articulated. Few if any tools, methods or
techniques address the needs of artificial intelligence
and expert system development, which are currently
driven by the program language being used for
development. New technologies for true distribu­
tion of processing are maturing, and integration
across hardware and software platforms is the ma­
jor IS concern in multiple industries [Computer­
world, 10/15/90].

IS professionals must be jacks-of-all-trades as
never before, but there is also increased demand for
domain experts who are intimately familiar with all
aspects of a particular business area, such as money
transfer in banking. It is difficult for anyone person
to be both expert and generalist. But there are many
systems developers-I call them software engi­
neers-who do possess these attributes. Today's
ideal software engineer is familiar with the alterna­
tives, trade-offs and pitfalls of methodologies (notice
the plural form), technologies, domains, project life
cycles, techniques, tools, CASE environments, hard­
ware, operating systems, databases, data architec­
tures, methods for user involvement in application
development, software, design trade-offs for the
problem domain, and project personnel skills. Few
professionals acquire all these skills without years of
experience including both continuing education and

variations in project assignments, company type, and
problem type. This book attempts to discuss much of
what should be the ideal software engineer's project­
related knowledge and theoretical background in
order to facilitate and speed the process by which
novices become experts.

The goal of this book, then, is to discuss project
planning, project life cycles, methodologies, tech­
nologies, techniques, tools, languages, testing,
ancillary technologies (e.g., database), and com­
puter-aided software engineering (CASE). For each
topic, alternatives, benefits and disadvantages are
discussed.

For methodologies, one major problem is that
most writing on methods of development concen­
trates on what the analyst does. It is up to the indi­
vidual instructor and/or student to develop the how
knowledge. Yet, the what knowledge is easy and
takes very little time to learn. If I say, "The first step
in object-oriented methodology is to make a list of
objects," that sounds like a simple step. I may
understand what I'm to do, but not how to do it. This
book is intended to shed some light on the how
information. One technique used to facilitate the
learning process is to develop the same case problem
in each methodology, highlighting the similarities,
differences, conceptual activities, decision pro­
cesses, and physical representations. Another tech­
nique is to provide cases in the appendix that can be
used throughout the text for many assignments, thus
allowing the student to develop a detailed-problem
understanding and an understanding of how the
problem is expressed in different methodologies and
using different techniques.

A related problem in software engineering texts
is that little information is available on current
research and future directions. Information systems
development is a 30-year old activity that is begin­
ning to show some signs of maturity, but is also con­
stantly changing because the type of systems we
automate is constantly changing. Research in every

xi

xii Preface

area of software development, from enterprise analy­
sis through reengineering 20-year-old systems, is
taking place at an unprecedented rate. Moreover,
the landscape of system development will change
radically in the next 20 years based on the research
taking place today. This text attempts to highlight
and synthesize current research to identify future
directions.

Many software engineering texts never discuss
problems attendant with methodologies. This text
attempts to discuss methodologies in the context of
their development and how they have evolved to
keep pace with new knowledge about system devel­
opment. Both useful and not-so-useful representa­
tion techniques will be identified. The book may be
controversial in this regard, but at least the knowl­
edge that there are problems with methods should
remove some of the prevailing attitudes that there are
right and wrong ways to complete everything.
Unfortunately, no methodology is complete enough
to guarantee the same results from two different
analysts working independently, so interpretations
differ. I try to identify my interpretations and gener­
alizations throughout the text.

The book is case-oriented in several ways. First, a
sample project is described, designed, and imple­
mented using each of the techniques discussed. Sec­
ond, cases for in-class development are provided.
Third, cases for homework assignments are also pro­
vided. Research on learning has revealed that we
learn best through practice, analysis of examples,
and more practice. For each topic, an example of
both acceptable and unacceptable deliverables is
provided, with discussion of the relative merits and
demerits of each. Through repeated use of different
cases, students will learn both the IS topics and
something about problem domains that will carry
over into their professional lives.

Finally, this text has a bias toward planning,
analysis, and design activities even though the
entire life cycle is discussed. This bias is partly due
to practical and space limitations; however, it is also
because of the realities of changing software engi­
neering work. CASE promises to remove much of
the programming from business application devel­
opment by automating the code generation process.
Although languages are discussed, the discussion

focuses on how to choose the correct language for an
application based on language characteristics, rather
than on how to program in the language.

The audience for this text includes business, com­
puter information systems, and computer science
students. The courses for which this text is appro­
priate include software engineering, advanced sys­
tem analysis, advanced topics in information
systems, and IS project development. Computer
software engineering is moving away from a con­
centration on developing the perfect program to a
realization that even perfect programs never work
in isolation. Program connections are significantly
more important than individual program code. Thus,
even computer scientists are recognizing a need for
methodologies, techniques for system representa­
tion, and language selection.

The text was originally planned to accommodate
either quarter or semester classes. I have taught this
material in both. While the written material is longer
than anticipated, I believe the book can be covered in
one quarter because there are usually more contact
hours with students. One of my goals was a book
that did not require much additional outside mater­
ial to supplement the text; I hope this goal was met.
Much of the bulk is explaining the how processes in
Chapters 7-12, and these should be covered in class
to discuss alternatives, possible flaws in my think­
ing, and so on. If programming is also included in
the course, I suggest development of a two-quarter
(or semester) sequence that includes software engi­
neering through system design in the first course and
the remaining subjects in the second course.

Every school seems to offer courses on "Ad­
vanced Topics in Systems Development" or Ad­
vanced Systems Analysis" or "IS Development
Project" that frequently use no book because nothing
covers all the desired topics. This book attempts to
provide for these courses. Advanced systems analy­
sis and development courses all tend to concentrate
on alternatives during the design process from which
decisions must be made. The typical systems analy­
sis course might discuss one technique for each
major topic area: enterprise modeling, data model­
ing, process modeling, program design. That alter­
natives are available is certainly mentioned, but
there is simply not enough time to teach all topics,

nor are students able to assimilate much informa­
tion about alternatives without becoming hopelessly
confused. Advanced courses try to broaden the
knowledge base of students with discussions of
alternatives in each area. Even in these courses,
without a hands-on orientation and concrete exam­
ples to use for reference, the number of topics and
alternatives is necessarily limited. The use of a sin­
gle case throughout the text, together with cases for
home/school work practice, should broaden the
number of topic areas that can be covered adequately
in a one-semester course.

ACKNOWLEDGMENTS ____ _
No textbook is published without the involvement of
many people and I would like to acknowledge those
who have helped bring this book to fruition. I am
grateful, first, to my husband Dave and my daughter
Katie, who have put up with haphazard meals and an
absent-minded wife and mother for a long time.
Baby-sitters were especially important when I com­
muted four hours a day. I thank Elaine Black, Lis
Nielsen, Sarah Cropley, Louise Shipman, Jacquie
Draycott, Ellen Crawford, and Angela Moore.

Also, I wish especially to thank Peter Keen for his
unfailingly good advice and uplifting moral support.
I have never before worked with someone so free
with great ideas. Frank Ruggirello, who actually got
me moving and enlisted the supportive and helpful
reviewers, played a special part in the project. I want
to thank the reviewers, who put up with my typos
and grammar long enough to read about the ideas I
am attempting to convey. Their comments have ma­
terially enhanced the final quality of this book. These
reviewers include: Donald R. Chand, Bentley Col­
lege; Dale D. Gust, Central Michigan University;
Lavette Teague, California State Polytechnic Uni­
versity-Pomona; Jon A. Turner, New York Univer-

Preface xiii

sity; Douglas Vogel, University of Arizona; Connie
E. Wells, Georgia State University; J. Christopher
Westland, University of Southern California; and
Susan J. Wilkins, California Polytechnic Univer­
sity-Pomona. My thanks for the helpful and sup­
portive comments.

Next, the Wadsworth "family" has been support­
ive throughout the work, including Kathy Shields,
Rhonda Gray, Tamara Huggins, Peggy Mehan, Greg
Hubit, and Janet Hansen. Martha Ghent, the copy
editor, deserves special mention. Having never
worked through the copy process before, I ~ad no
idea what was done. Martha was easy to work with
and taught me how to improve both my writing and
my punctuation.

Friends and colleagues, who have given me anec­
dotes, support, ideas, and comments, were invalu­
able. The friends who have materially contributed
to this project include Peter Keen, Connie Wells,
Judy Wynekoop, Irene Auerbach, Chung Pin
Chuang, Karen Loch, Kuldeep Kumar, Scott Owen,
Iris Vessey, Nancy Russo, Alex Heslin, Paul Halde­
man, Marty Fraser, Eph McLean, Ross Gagliano,
Jim Senn, Mike Palley, Dorothy Dologite, Ronnie
Wilkes, Jong Kim, Seok Jung Yoon, Dennis Strou­
ble, Mary Alexander, Ted Stohr, and the many stu­
dent 'guinea pigs' (mine and others) from Georgia
State University, Baruch College (CUNY), Univer­
sity of Texas-Arlington, University of Dallas, and
New York University. Thank you all.

Finally, I would like to thank you, the reader, for
buying this book and taking the trouble to read even
a portion of it. If you should disagree with my rea­
soning or find errors or omissions that should be cor­
rected, I would be grateful for suggestions and
correspondence.

Sue Conger
Dallas, Texas

CHAPT ERI

OVERVIEW
------------------------------------~-----OFSOFTWARE

----------------------~ -------
ENGINEERING ----------------------__________ r-----

INTRODUCTION ____ _

Businesses around the world depend more and more
on software in the very basics of their operations.
U.S. firms alone have 100 billion lines of program
code in use today. This code cost $2 trillion to cre­
ate and costs $30 billion a year to maintain. The typ­
ical Fortune 1000 company maintains 35 million
lines of code. Quality of software design and qual­
ity of business service are increasingly linked. We
take for granted the everyday convenience we gain
from reservation, telephone, automated teller, and
credit card authorization applications. We can take
these conveniences for granted until they 'crash' or
have a 'bug.' Software engineers (SEs) developed
those systems. The engineering skills they apply to
developing applications go far beyond the writing
of good programs. The skills SEs need are to deploy
and manage the data, software, hardware, and com­
munications business assets of a corporation. These
computer-related assets now account for almost half
of all U.S. business investment.

Software engineers are skilled professionals who
can make a real difference to business profitability.
The word professional is key here. Software devel­
opment is notoriously difficult to manage; software
projects are routinely over budget and behind sched­
ule. Computer programmers are legendary for their
lack of understanding of, or interest in, business. SEs
who are professionals are more likely to manage and

deliver a quality project on time and within budget.
One goal of this text is to challenge you to set high
startdards for personal excellence: to beconie a pro­
fessional and to make a difference.

This chapter introduces you to the book and
the topics to be covered in more detail in later
chapters. The objectives ofthis chapter are to: (1) re­
view what you might already know, (2) give you a
vocabulary for discussing applications, and (3) in­
troduce the topics of thi~ text. Use this chapter to
learn basic definitions and to begin building a mental
picture of how different approaches to software en­
girleering work. You will learn the details in later
chapters.

Software engineering is the systematic develop­
ment, operation, mairttehance; and retirement of
software. Software engineers (SEs) have a mental
'tool kit' of techniques to use in developing appli­
cations. As students of information systems, you
know bits and pieces of the tool kit. This text will
show you how to use the tools together, and will add
to what you already know. For instance, you should
already know data flow diagrams (DFDs). DFDs are
one of many tools, induding new diagrams such
as process hierarchies, process dependencies, and
object diagrams. No one tool is ideal or complete.
The SE knows how to select the tools, understanding
their strengths and weaknesses. Most of all, an
SE is not limited to a single tool he or she tries to
force-fit to all situations.

2 CHAPTER 1 Overview of Software Engineering

Software engineering is important because it
gives you a foun4ation on which to develop a career
as an information systems development profes­
sional. At the end of the course, you will understand
a variety of approaches to analyzing, designing, pro­
gramming, testing, and maintaining information sys­
tems in organizations. You will know the alternatives
for developing applications, and you will know
how and when to select from among them. You will
be able to compare and contrast methodology dif­
ferences and will know the major computer-aided
software engineering (CASE) tools that support each
methodology. Finally, you will have an appreciation
of the roles of software engineers and how they work
with project managers in application development.

In the next section, you will learn what it means
to be a software engineer. Then, a framework for
discussing applications will help you categorize
characteristics, technologies, and types of applica­
tions in business organizations. The next several
sections guide you through alternatives for overall
management of the application development pro­
cess. The last section briefly outlines the remaining
chapters of the book. Along the way, major terms are
highlighted in bold print and defined so you can
begin to form a mental picture of the alternative
approaches to software engineering work.

SOFTWARE ____________ _
ENGINEERING __________ _

This conversation might be overheard in a man­
ager's office:

Consultant Manager: "All right, Mary, tomorrow
you start work on the rental proces~ing applica~
tion we are developing for ABC's Video Com­
pany. Mary, you are the ptoject manager. Are
you ready?" . .

Mary: "Yes, our first job is to find out more about
the application. Then, Sam and I will decide
our approach to development and the documen­
tation that is needed. ABC's manager, Vic, is
willing to provide us with whatever we need.
Then, we will complete a feasibility anal~sis
and ... "

Mary is describing the first steps used by a modem
software engineer in the development of a computer­
based application. Software is the sequences of
instructions in one or more programming languages
that comprise a computer application to automate
some business function. Engineering is the use of
tools and techniques in problem solving. Putting the
two words together, software engineering is the
systematic application of tools and techniques in the
development of computer-based applications.

A software engfneer is a person who applies a
broad range of application development knowledge
to the systematic development of application sys­
tems for organizations. Software engineers used to
think of their job as conscientious development of
well-structured computer programs. But, as the field
evolved, systems analysis as a task appeared along
with systems analysts, the people who perform that
task. Now, there is a proliferation of techniques,
tools, and technologies to develop applications. Soft­
ware engineers' jobs have ~volved to now include
evaluation, selection, and use of specific systematic
approaches to the development, operation, mainte­
nance, and retirement of software. Development
begins with the decision to develop a software prod­
uct and ends when the product is delivered. Opera­
tions is the daily processing that takes place.
Maintenance encompasses the changes made to the
logic of the system and programs to fix errors, pro­
vide for business changes, or make the software
more efficient. Retirement is the replacement of the
current application with some other method of pro­
viding the work, usually a new application.

Fundamental skills of software engineers include

1. How to identify,evaluate, choose, and imple­
ment an appropriate methodology! and
CASE tools

2. How and when to use prototyping
3. How and when to select hardware, software,

and languages

1 Techni·cally, the tenn methodology means 'the study of meth­
ods.' In infonnation systems work, the tenn is colloquially ac­
cepted to mean a collection of tools and techniques used to
represent an application's requirements. We use the Infonna­
tion Systems (IS) fonn of the tenn meaning 'collections of
tools and techniques.' CASE software automates the use of
the tools and techniques.

NEW YORK BANK
In 1970, NY Bank wanted to be first in the
New York market with an automated teller
machine (ATM) system. The bank contracted
with a large computer vendor to build
custom ATM software using the vendor's
equipment. Because telecommunications
technology was in its infancy at the time, and
distributed processing did not exist when the
system was installed in 1971, the two ATM lo­
cations used small, local computers to record
transactions. The computers did not commu­
nicate with each other. Nor could they
check customer balances to verify availabil­
ity of funds for transactions.

4. How to manage activities associated with
configuration management, planning, and
control of the development process

5. How to select computer languages and de­
velop computer programs

6. How and which project testing techniques to
apply

7. How to choose and use software maintenance
techniques

8. How to evaluate and decide when to retire
applications

The goals of a software engineer are to pro­
duce a high quality product and to enjoy a high
quality development process. The product of a soft­
ware engineering effort is a delivered, working com­
puter system, some examples of which include:

• Accounts receivable processing
• Order processing
• Inventory monitoring and maintenance
• Decision support for overnight funds

investment
• Collateralized mortgage obligatien cost

determination
• Insurance reimbursement processing
• Funds transfer processing
• Early warning system for problems with criti­

cal success factors

Software Engineering 3

Within one month of the opening of the
ATMs, one customer had, in one 24-hour
period, withdrawn $200,000 from the two
machines. The customer's balance in his
checking account was $50. One month, and
one similar user later, NY Bank shut its ATM
offices, canceled the contract with the ven­
dor, and wrote off $30 million in development
costs. Shortly after, NY Bank began another
project to develop a "second-generation"
ATM system in which balances were checked
via communications with a centralized data­
base application.

• Query processing for a customer information
database

A quality SE product is

• on time
• within budget
• functional, i.e., does what it is supposed

to do
• friendly to users
• error free
• flexible
• adaptable

In addition to a quality product, quality of process
is desirable. The software engineering process
describes the steps it takes to develop the system. We
begin a development project with the notion that
there is a problem to be solved via automation. The
process is how you get from problem recognition to
a working solution. A quality process is desirable
because it is more likely to lead to a quality prod­
uct. The process followed by a project team during
the development life cycle of an application should
be orderly, goal-oriented, enjoyable, and a learning
experience.

That we try to apply engineering discipline to
software development does not mean that we have
all the answers about how to build applications. On

4 CHAPTER 1 Overview of Software Engineering

TUV INSURANCE COMPANY
In 1991, TUV Insurance Company began a
restructuring project for an annuity premium
processing application. The project team
consisted of a manager who had been with
the company 20 years and two analysts
who were new hires in 1991. The two new
people, Jacquie and Ted, both wanted to
apply information engineering techniques to
the work. They discussed the methodology
with the project manager and clients who
agreed to try a modified form of the new
methodology.

During the first phase of development, an
entity-relationship diagram was developed
with accompanying data dictionary and
process decomposition descriptions. The proj-

the contrary, we still build systems that are not use­
ful and thus are not used. For example, New York
Bank lost millions of dollars (see Example 1-1)
because they used the wrong technology. Part of the
reason for continuing problems in application
development, like those of NY Bank, is that we are
constantly trying to hit a moving target. Both the
technology and the type of applications needed by
businesses are constantly changing and becoming
more complex. Our ability to develop and dissemi­
nate knowledge about how to successfully build sys­
tems for new technologies and new application types
seriously lags behind technological and business
changes. This book discusses where the field is now,
and where it is likely to be in the 21st century. One
thing is certain: The way we build systems in 10
years will be vastly different from the way we build
systems today. The existing techniques that we ex­
pect to be using into the next century are discussed in
this text. There will be other techniques yet to be
developed, and you will have to learn to use them,
too. One purpose of this text is to provide a founda­
tion for learning to learn software engineering.

Another reason for continuing problems in appli­
cation development is that we aren't always free to

ect team and users were pleased with the
results.

When the schedule for development was
presented to the user, it was estimated that
the entire project would take 18 months
using information engineering. The client
balked. He said, "The history of this company
is that any project over one year never gets
done. Therefore, I won't approve this. Just
design me a file, like we have always done,
and then add on the processing to create
and maintain the file. When you revise the
schedule to use this approach-file design
and its processing-make sure it is under
a year."

apply the techniques we know work best. Why? you
might ask. Organizations may know the right things
to do, but it is hard to change habits and cultures
from the old way of doing things, as well as get users
to agree with a new sequence of events or an unfa­
miliar format for documentation. As Example 1-2
shows, compromise is possible. The example illus­
trates some problems with revolutionary change and
how revolution can be pared down to evolution and
made acceptable.

You might ask then, if many organizations don't
use good software engineering practices, why should
I bother learning them? There are two good answers
to this question. First, if you never know the
right thing to do, you have no chance of ever using it.
Second, organizations will frequently accept
evolutionary, small steps of change instead of
revolutionary, massive change. You can learn indi­
vidual techniques that can be applied without
complete devotion to one way of developing sys­
tems. In this way, software engineers can speed
change in their organizations by demonstrating
how the tools and techniques enhance the quality
of both the product and the process of building
a system.

ApPLICATIONS ____ _

Software engineering is the building of applications.
An application is the set of programs2 that automate
some business task. Businesses are made up offunc­
tions such as marketing, accounting, manufactur­
ing, and personnel. Each function can be divided
into work processes for which it is responsible. For
instance, marketing is responsible for sales, ,adver­
tising, and new product development. Each process
can be separated into its specific tasks. Sales, for
instance, requires maintaining customer relations,
order processing, and customer service. Applications
could support each task individually. Conversely,
one marketing application could perform all tasks,
integrating the information they have in common.

All applications have some common and some
unique features. One problem is that there is no
agreed upon way to discuss these similarities and
differences. In this book, we present three dimen­
sions of applications to simplify and clarify this
discussion. The dimensions of applications are char­
acteristics, responsiveness, and type. Characteris­
tics are common to all applications and include data,
processes, constraints, and interfaces. The section on
application characteristics is first and should be a
review. Responsiveness defines the underlying time
orientation of the application as batch, on-line, or
real-time. By knowing the time orientation of an
application, we can define minimal technology
required to support the application. Type defines the
business orientation of the application as transac­
tional, query, decision, or intelligent.

Application Characteristics
This section is about shared characteristics of appli­
cations: data, processes, constraints, and interfaces
(see Figure 1-1). All applications: (1) act on data and
require data input, output, storage and retrieval;
(2) imbed commands that transform data from one
state to another state based on and constrained by

2 A program is composed of instructions that perform some
well-defined task. Sometimes there are many tasks, composed
of millions of instructions in an application. When there are
many tasks, they are split into programs. This decomposition
into subtasks which relate to programs is one topic in the
chapters on application design.

Applications 5

business rules; and (3) have some human interfaces
and may have one or more computer interfaces.
Application types vary in the extent to which these
characteristics are known, defined, and understood.
Each of the characteristics is discussed below. Since
this is review, if you can define the terms in bold
print, you might skip to the next section: Application
Responsiveness.

Data

Data are the raw material (numbers and letters) that
relate to each other to form fields (attributes), which
define entities (see Figure 1-2). An entity is some
definable class of people, concrete things, concepts,
or events about which an application must maintain
data. Examples of each entity type are customers,
warehouses, departments, or orders, respectively.
Data and entities can be described independently of
their processing rules. Examples of data definition
aids are entity relationship diagrams (see Figure
1-3) and third normal form linkage diagrams (see
Figure 1-4).

Data requirements in applications include input,
output, storage, and retrieval.

INPUT. Data inputs are data that are outside the
computer and must be entered using some input de­
vice. Devices used for getting data into the computer
include, for example, keyboard,3 scanner, and trans­
mission from another computer.

OUTPUT. Output is the opposite of input; that
is, outputs are data generated to some media that is
outside the computer. Common output devices in­
clude printers, video display screens, other comput­
ers, and microform equipment (e.g., microfiche,
microfilm).

STORAGE AND RETRIEVAL. Data storage
describes a physical, machine-readable data format
for data, while data retrieval describes the means
you use to access the data from its storage format.
Storage and retrieval go together both conceptually
and in software. Storage format and retrieval access

3 Attached to video display or maybe some typewriter-like
terminal, touch-tone phone, etc.

6 CHAPTER 1 Overview of Software Engineering

Data Input and Output

Using Human Inte) Application Processes
with Constraints Built-in.

Data Output;
Manua/lnterface

Application Processes:
Edit, Update,
Report, Query

FIGURE 1-1 Application Characteristics

may be defined by your use of purchased software
(such as a database management system's method,
e.g., Oracle, DB2, or Adabas4), or may be defined by
an access method provided by a hardware vendor
(e.g., IBM's virtual sequential access method­
VSAM).

Data storage require two types of data definition:
logical and physical. The logical definition of data
describes the way a user thinks about data, that is,
the logical data model. These definitions might be

4 Oracle is a trademark of the Oracle Corporation. DB2 is a
trademark of the IBM Corporation. Adabas is a trademark of
Software AG, Inc.

)
Data Output;

Manua/lnterface

Data Storage:
Computer Interface

)

To
Accounting
Applications

relational, hierarchic networked, or object-oriented.
Relational logical data models are arranged in
tables of rows and columns. Hierarchic logical data
models define one-to-many relationships in a tree­
shaped model that resembles an organization chart.
Network logical data models define many-to-many
relationships.

Object-oriented logical data models
(OOLDMs) combine hierarchic and network log­
ical models to form a lattice-structured hierarchy.
OOLDMs are more specific in identifying classes
and subclasses of objects in a hierarchy. A class is a
set of data entities that share the defining character­
istic. For instance, the class customer might have

Applications 7

123426789SandraJaniceJones21 NorthfieidRoadFreeportGA442404042214960
is less meaningful than if it is split into related fields of information:

ENTITY: Person

ATTRIBUTES:

Social Security Number:
Name:

Address Line:
City:

State:
Zip Code:

(Area Code) Telephone:

FIGURE 1-2 Attribute-Entity Example

INSTANCE of Person

123-42-6789
Sandra Janice Jones
21 Northfield Road
Freeport
GA
44240
(404) 221-4960

subclasses for cash and credit customers. The lat­
tice network arrangement allows relationships to
remain unconstrained by a data management soft­
ware conceptualization.

Figures 1-5, 1-6, 1-7, and 1-8 show logical data
structured in each of the four ways for vendor-parts
information. Notice that the network and relational
diagrams are somewhat similar. The relational model
uses logical data connections to reflect relationships,
while the network model uses physical address
pointers imbedded in the data structure to maintain
the relationships. For the hierarchic model, you must
make a decision about which information is more
important within the data context. If both vendors
and parts are equally important, then complete re­
dundancy with two hierarchies is required as shown
in the diagram.

Vendor

Supplies

Parts

FIGURE 1-3 Entity-Relationship Example

The physical definition of data, or physical data
model, describes its layout for a particular hardware
device. Physical layout is constrained by intended
data use, access method, logical model, and storage
device. External storage devices for data include
magnetic disk, magnetic diskette, optical disk, com­
pact disk, laser disk, digitally applied tape, and mag­
netic tape, to name a few. The major differences in
devices are the number of times a device can be writ­
ten to [e.g., as in write-once-read-many (WORM)
technology], the cost, the amount of data that can be
stored, the portability of devices, and the type of
retrievals that can be done on data (e.g., magnetic
tape requires front-to-back sequential processing
versus direct accessibility to any data).

8 CHAPTER 1 Overview of Software Engineering

VENDOR Relation I V-No I Vendor-Name I Vendor-Address I City I State I Zip I

~~
VENDOR-PART Relation l V-No I P-No I Quantity J

PART Relation I P-No I Part-Name I Price Units

FIGURE 1-4 Third Normal Form Example

VENDOR Relation

V-No Vendor-Name Vendor-Address City State Zip

01 ABC Hardware 123 Main St. Morristown NJ 07950
03 XYZ Hardware 425 Center St. Akron OH 44311
02 QBE Hardware 7290 4th St. New York NY 10010

VENDOR-PART Relation PART Relation

V-No P-No Quantity P-No Part-Name Price Units

01 001 750 001 Screwdrivers 700 Each
01 002 2000 002 Nails, #1 125 Gross
02 004 1200 004 Nails #3 120 Gross
01 004 1000 ...
....

FIGURE 1-5 Relational Logical Data Model

VENDOR Segment
V-No
Vendor-Name
Address
City
State
Zip

1
PART Segment
P-No
Part-Name
Price
Units
Quantity-on-hand r-

f-

01 ABC Hardware 123 Main St.

PART Segment
P-No
Part-Name
Price
Units
Quantity-on-hand

1
VENDOR Segment
V-No
Vendor-Name
Address
City
State
Zip

Morristown NJ

r-
f-

07950 012401

Applications 9

Physical
Address
Pointer

001 Screwdrivers 700 Each 012402

High Values­
End of Chain

002 Nails, #1

004 Nails #3 120 Gross FFFFFF

FIGURE 1-6 Hierarchic Logical Data Model

Processes age of new facts or rules inferred about a situation

A process is the sequence of instructions or con­
junction of events that operate on data. The results
of processing include chaI1ges to data in a data­
base, identification of data for display at a ter­
minal or printing on paper, generated commands to
equipment, generated program commands, or stor-

or entity.

Constraints

Processing is subject to constraints, which are lim­
itations on the behavior and/or processiI1g of entities.

10 CHAPTER 1 Overview of Software Engineering

VENDOR Segment
V-NO
Vendor-Name
Address
City
State
Zip

t
V-NO P-NO, Qty l Linkage Segment

1
PART Segment
P-No
Part-Name
Price
Units

01 ABC Hardware 123 Main St. Morristown NJ 07950 012401

02 004 1200
01 004 1000

/
/

/

Linkage Set

Nails #3 120 Gross FFFFFF

FIGURE 1-7 Network Logical Data Model

Office Supply
Vendors

Vendors

Manufacturing
Vendors

FIGURE 1-8 Object-Oriented Logical Data Model

Parts

If accounts receivable balance = zero
and prerequisite classes are taken }
and course section is available Prerequisites

then register student
else write appropriate message to

student.

FIGURE 1-9 Prerequisite Constraint Example

Constraint types are prerequisite, postrequisite, time,
structure, control, or inferential.

PREREQUISITES. Prerequisite constraints are
preconditions that must be met for processing to
occur. They usually take the form of 'if ... then ...
else' logic in a program (see Figure 1-9).

POSTREQUISITES. Postrequisite constraints
are conditions that must be met for the process to
complete successfully. They also take the form of
'if ... then ... else' logic, but the logic is applied
after processing is supposedly complete.

TIME. Time constraints may relate to one or
more of the following:

Applications 11

1. Timing of processing, for instance, all money
transfers in New York must be processed by
3 P.M. to meet the New York Federal Reserve
Bank closing deadline.

2. Time allotted for a process, for instance,
time-out of the database when remote site A's
expected response is not received within ten
seconds.

3. External time requirements, for instance,
reports must be delivered to the Controller's
office by noon.

4. Synchronous processing, for instance, loca­
tions A and B must both have completed their
respective actions successfully for location
C to perform action X.

5. Response time for external interface process­
ing, for instance, the system must respond to
the user terminal within two seconds after
the enter key is pressed.

STRUCTURE. Structural constraints describe
the relationships between data, meta-data (knowl­
edge about data), knowledge and meta-knowledge
(system generated knowledge) in applications (see
Figure 1-10). Customers, for example, might have
different processing if they pay by credit or cash. So,
there would be a general class customer and two
subclasses, credit-customer and cash-customer.
Meta-data about customers includes, for example,
the definition of the domain of allowable values for
customer identification.

DATA: CON100

META-DATA: Field=Customer-ID
Size=6
Type=xxx999
Validation= Occurs once per customer

KNOWLEDGE: CON001 must pay cash for sales

META-KNOWLEDGE: If Customer-ID > ???050
and accounts receivable balance> 1 000
cash sales only

else
OK credit sales up to 1000.

FIGURE 1-10 Structural Constraint Example

12 CHAPTER 1 Overview of Software Engineering

Structural constraints determine what type of
inputs and outputs may be allowed, how process­
ing is done, and the relationships of processes to
each other.

CONTROL. Control constraints relate to auto­
mated maintenance of data relationships (e.g., the
batch total must equal the sum of the transaction
amounts).

INFERENCES. The word infer means to con­
clude by reasoning, or to derive from evidence.
Inferential constraints are limits on the reasoning
ability of the application and its ability to generate
new facts from previous facts and relationships.
These constraints come in several varieties. First,
inferential constraints may relate to the applica­
tion. For example, you might not want a medical
expert system to build itself new knowledge based
on new user information unless the "user" is an
approved expert who understands what he or she
is doing.

Second, inferential constraints may relate to the
type of knowledge in the system and limits on that
knowledge. For example, CASE tools cannot help
you decide what information to actually enter into
the system (yet). Rather, you as the user must
already know what you want to describe and how to
describe it when you use a CASE tool. What CASE
can do is reason whether the information you
entered conforms to its rules for how to represent
information.

Third, inferential constraints may relate to the
language in which the system is developed. For in­
stance, you might be required to build an expert sys­
tem in Prolog because that is the only language
available. Prolog is a goal-oriented, declarative lan­
guage with constructs for facts and rules that re­
quires its knowledge (i.e., the data) to be imbedded
in the program. Large programs in Prolog are hard to
understand and may be ambiguous. Therefore, pro­
grammers write smaller, limited reasoning programs.
If you have a large, complex knowledge base, you
may want to separate the data from the program
logic. But the language choice can constrain your
ability to do such separation.

Interfaces

There are three types of interfaces: human, manual,
and computerized. There are few guidelines in any
methodologies for designing any of these interfaces.
Each type of interface is discussed briefly in this sec­
tion, and in more detail later in the text.

HUMAN. Human interfaces are the means by
which an application communicates to its human
users. Human interfaces are arguably the most
important of the three types because they are the
hardest to design and the most subject to new tech­
nologies and fads.

Most often, a human interface is via a video dis­
play which might have options for color, size of
screen, windows, and so on. Many application de­
velopers are tempted to design elaborate screens
with the assumption that more is better: more color,
more information, and so forth. But a growing body
of research combined with graphic qesign ideas
show that this is not the case. Figure 1-11 shows the
same information on a well designed screep and on a
poorly designed screen. A screen shoulq be orga­
nized to enhance readability, to facilitate under..,
standing, and to minimize extraneous information.
Few colors, standardized design of top and bottom
lines, standardized use of programmable function
keys, and easy access to help facilities are the keys to
good screen design.

MANU AL. Manual interfaces are reports or
other human-readable media that show information
from the computer. You use manual interfaces when­
ever you pay electric, telephone, or water bills. Some
simple standards for manual interfaces are to mirror
screen designs when possible to enhance under­
standing, to fully identify the interface contents with
headers, notes, apd footers when needed, and to fol­
low many of the same human interface "rules" for
formatting information.

AUTOMATED. An automated interface is data
that is maintained on computer-readable media for
use by another application. Application interfaces
tend to be nonstandardized and are defined by th~
data-sharing organizations. Guidelines for applica-

FIGURE 1-11

Program: ABC001 XYZ System Date: mm/dd/yy
Name: xxxxxxxxxxxxxxxxxx

Address: xxxxxxxxxxxxxxxxxx
City: xxxxxxxx St: xx
Zip: xxxxx-xxxx

Ship via Tax? Salesman Terms
xxxxxxxx Yes xxx xxxxxxxx
Item Qty Description Unit Price Extension
xx xx xxxxxxxxxx 9999.99 99999.99
xx xx xxxxxxxxxx 9999.99 99999.99

Well-Designed Screen

Name: xxxxxxxxxxxxx Address: xxxxxxxxxxxxx
City: xxxxxxxxx St: xx Zip: xxxxx-xxxx Tax? Y
Salesman: xxx Terms: xxxxxxxxxx Ship Via:xxxx
Item: xx Qty: xx Description: xxxxxxxxxxxx
Unit Price: 9999.99 Extension: 99999.99
Iterm: xx Qty: xx Description: xxxxxxxxxxxx
Unit Price: 9999.99 Extension: 99999.99

Poorly-Designed Screen

Good versus Bad Screen Design

Applications 13

tion file interfaces have evolved over the last fifty
years to include, for instance, placement of identi­
fying information first and placement of variable
length information last. Other interfaces are gov­
erned by numerous formal standards, for instance,
local area network interface standards are defined by
the Institute of Electrical and Electronic Engineers
(IEEE) and the open system interface (OSI) standard
for inter-computer communication is governed by
the International Standards Organization (ISO). Few
such standards are currently relevant to an individual

business application. Lack of standards, such as for
graphics user interfaces (GUIs) slows business
acceptance of new innovations. Uncertainty over
which 'look' will become the standard, in the case
of GUIs, leads to business caution in using new
technology.

Application Responsiveness
In this book, application responsiveness is how long
it takes the system to act on and respond to user

14 CHAPTER 1 Overview of Software Engineering

100% -,-_--==---------::- _______ _

Newly
Developed
Applications

50%

On-Line Applications

Batch Applications

1950 1960

FIGURE 1-12 Application Type Transition

actions. Responsiveness of an application reflects the
fundamental design approach as batch-oriented,
on-line, or real-time. Each of these approaches is
defined in this section. Of course, in the real world,
any combination or permutation of these approaches
are used in building applications. Most applications
designed in the 1990s are on-line with some batch
processing. In the 21st century, on-line applications
will give way to more real-time applications. Figure
1-12 shows the transitio.l from batch to on-line to
real-time processing in the last half of this century.
Table 1-1 compares application responsiveness on
several categories.

Batch Applications

Batch applications are applications in which trans­
actions are processed in groups. Transactions are
gathered over time and stored together. At some pre­
defined time, the batch is closed and processing on
the complete batch is done. Transactions are pro­
cessed in sequence one after the other. A system flow
diagram of a typical batch application is shown in
Figure 1-13. The batch of transactions is edited and

1970 1980 1990 2000

applied to a master file to create a new master file
and a printed log of processing. In batch applications
the requirements relating to the average age and
maximum possible age of the master file data deter­
mine the timing of processing~ 5 In addition to pro­
cessing transactions, other programs in batch
applications use the master file as their major input
and process in a specific fixed sequence.

On-Line Applications

On-line applications provide interactive process­
ing with or without immediate file update. Interac­
tive processing means there is a two-way dialogue
between the user and the application that takes place
during the processing. This definition of on-line dif­
fers somewhat from the use of on-line terminology
in other texts which assume that on-line systems are

5 See Davis, G. and Olson, M., Management Information Sys­
tems: Conceptual Foundations, Structure, and Development,
New York: McGraw-Hill, 1985, for a detailed discussion of
batch systems.

Applications 15

TABLE 1-1 Comparison of Application Technologies

Batch
Category Applications

Amount of data Large

Visual review of No
inputs

Ratio of updates to High
stored data

Inquiry Batch

Reports Long, formal

BackuplRecover Copy files to tape

Cost to build* Low

Cost to operate* Low

Efficient use of Computer resources

Difficulty to build* Simple

Speed of processing Fast
all transactions

Speed of processing Slow
one transaction

Uses DBMS and Mayor may not
data communications

Function integration Low

*Relative measure

also real-time (see the next section). In this text,
on-line processing means that programs may be
resident in memory and used sequentially by numer­
ous transactions/events without reloading.

Figure 1-14 shows the difference between an
on-line application and a batch application. In an
on-line application, small modules perform the func­
tion and communicate directly via data passed
between them. In the batch application, disjoint pro­
grams perform the function and indirectly communi­
cate via permanent changes to file contents created

On-Line Real-Time
Applications Applications

Small-Large Medium

Yes Yes

Low-High High

On-line On-line

Short, informal Short, informal

One or more of the One or more of the
following: following:
Copy files to tape Copy files to tape
transaction log, transaction log,
preimage log, postimage pre image log, postimage
log, mirror image files log, mirror image files

Medium High

Medium-High High

People time People time

Medium Complex

Slow Medium

Medium Fast

Probably Yes

Medium High

by one program and interpreted by the next pro­
gram(s). The on-line programs keep a log oftransac­
tions to provide recovery in case of error; this
prevents re-entry of data.

On-line programs' dialogue with the user is to
ensure entry of syntactically correct data. The error
correction dialogue replaces the error portion of the
update log. The remainder of the update log to doc­
ument updates becomes optional and, instead, an
acknowledgement of successful processing is dis­
played to the user.

16 CHAPTER 1 OveNiew of Software Engineering

anual
Transaction
Data Entry

Transaction
Edit

Program

Master
Update

Program

FIGURE 1-13 Batch Application System Flow Diagram

Completion
Acknowledgment

Interactive
Data Entry

Module'

Update
Module

FIGURE 1-14 On-Line Application System Flow Diagram

Real-Time Applications

Real-time applications process transactions and/or
events during the actual time that the related physi­
cal (real world) process takes pl&ce. The results of
the computer operation are then available (in real
time) to influence or control the physical process
(see Figure 1-15). Changes resulting from a real­
time process can be refreshed to users viewing
prechange data when the change is completed. Real­
time programs can process multiple transactions
concurrently. In parallel processes, concurrency
literally· means that many transactions are being
worked on at the same time. In sequential processes,
concurrency means many transactions are in process
but only one is actively executing at anyone
moment.

Database processing is more sophisticated in real­
time systems. If an update to a data item takes place,
all current users of the item may have their screens
refreshed with the new data. Examples of real-time
applications include automated teller machine

Applications 17

(ATM), stock market ticker, and airline reserv&tion
processing.

Types of Applications
There are four types of business applications: trans­
action, data analysis, decision support, and expert
applications. Today, all four types are usually on­
line although the application may use any (or all)
of the responsiveness types, even on a single appli­
cation. In addition, a fifth type of application: em­
bedded, is defined briefly to distinguish computer
science-software engineering from IS-software
engineering.

Transaction -Oriented Applications

Transaction-oriented applications, also known as
transaction processing systems (TPS), support the
day-to-day operation of a business and include
order processing, inventory management, budgeting,

Interactive
Data Entry

Module

Updated
Data to

All Current
Users

Edited
Transaction

Update
Module

Updated
Data

Refresh
Module

FIGURE 1-15 Real-Time Application System Flow Diagram

18 CHAPTER 1 OveNiew of Software Engineering

Maintain
Customers Customer

File

Maintain
Orders

Create
Shipping

Papers/Invoices

* Maintain here includes add, change, delete, and query processing.

FIGURE 1-16 Order Processing Applications

purchasing, payables, accounting, receivables, pay­
roll, and personnel. They are characterized as appli­
cations for which the requirements, the data, and
the processing are generally known and well­
structured.6 By known, we mean that the function is
repetitious, familiar and unambiguous. By well-

6 An infonnative text on transaction processing systems is
On-line Business Computer Applications, 2nd ed., by
Alan Eliaison. Chicago: Science Research Associates,
Inc., 1987.

structured, we mean that the problem is able to
be defined completely and without ambiguity. The
requirements are identifiable by a development
team.

A transaction application example is order pro­
cessing (see Figure 1-16). Order processing requires
an order file, customer file, and inventory file. The
contents of the files differ depending on the level of
integration of order processing with accounts receiv­
able, manufacturing, purchasing, and inventory pro­
cessing. Processing of orders requires add, change,

EFFECTIVE INSURANCE COMPANY
In the early 1980s, Effective Insurance realized
they were generating 22 feet of paper each
month in accounting reports that were sent to
about 80 different parts of the organization.
Yet, for all this paper, the number of legitimate
requests for access to data was mushrooming
and had reached about 200.

Rather than try to produce reports for
each specific user, the company decided to
automate the information and allow users to
access their own data to generate their own
reports. That way, paper could be reduced
and each person would have the data they
wanted, formatted the way they wanted it.

The company never anticipated the im­
mense savings in time, money, and, more

delete, and inquiry functions for all files, pricing of
items, and creation of shipping papers and invoices.
Inquiry functions should allow retrieval of informa­
tion about orders by date, order number, customer
ID, or customer name. The software engineer uses
his or her understanding of general order processing
to customize the application for a given organiza­
tion and implementation environment.

Data Analysis Applications

Data analysis applications support problem solving
using data that are accessible only in read-only
mode. Data analysis applications are also known as
query applications. A query is some question asked
of the data. SQL, the standard query language for
database access, poses questions in such a way that
the user asks what is desired but need not know how
to get it. The computer software figures out the op­
timal access and processing methods, and performs
the operations it selects. An example of a query ask­
ing for the sum of all sales for customers in New
York State for the first yearly quarter might look like
the following:

Applications 19

importantly, the increases in productivity and
morale, that this move would produce. By
1989, there were over 2,000 users accessing
some or all of the accounting information.
Each user had his own terminal and the use of
a fourth generation language,* to generate
customized information interactively. Reports
were created by each user as needed.

* A fourth-generation language is one in which a
query language, statistical routines, and data base
are integrated for application development by
both IS and by non-IS professionals.

SELECT CUST_NAME, CUST_ID, AND
SUM(CUST_SALES)

FROM CUSTOMER
WHERE CUST STATE = 'NY' AND
MONTH IN (1, 2, 3);

A language, such as SQL, is a declarative lan­
guage, because you 'declare' what to do, not how to
do it. Declarative languages are relatively easy to
learn and use, and are designed for use by noninfor­
mation systems professionals.

Queries are one of three varieties:

1. Interactive, one-of-a-kind. These are
assumed to be thrown away after use.

2. Stored and named for future modification and
re-execution.

3. Stored and named for frequent unchanging
execution.

The third type of query frequently replaces re­
ports in transaction applications (see Example 1-3).
The data for all query processing must be known in
advance and tend to come from transaction applica­
tions. Query outputs may use program language for-

20 CHAPTER 1 Overview of Software Engineering

matting defaults (as in SQL), or may be formatted
for formal visual presentation or fed into other soft­
ware (e.g., graphical software) for summarizing.

Query applications support an evolving concept
called data warehouse, a storage scheme based on
the notion that most data should be retained on-line
for query access. A warehouse stores past versions
of major database entries, transaction logs, and his­
torical records.

Decision Support Applications

Decision support applications (DSS) seek to iden­
tify and solve problems. The difference between de­
cision support and query applications is that query
applications are used by professionals and managers
to select and summarize historical data like the
example above, while DSSs are used by profession­
als and managers to perform what-if analysis, iden­
tify trends, or perform mathematical/statistical
analysis of data to solve unstructured problems.
Data for DSSs usually are generated by transaction
applications.

Unstructured problems are ones for which not
all information is known, and if it is known, the users
may not know all of the relationships between data.
An example of a structured problem is to answer the
question: "What is the cost of a 5% salary increase?"
An example of an unstructured problem is "What
product mix should we manufacture next year?" The
difference between these two kinds of questions is
that the structured problem requires one query of
known data to develop an estimate, while the prod­
uct mix question requires economic, competitive,
historical, and product development information to
develop an estimate. Because the information may
not all be known, DSS development uses an iterative
problem-solving approach, applying mathematical
and statistical modeling to the decision process. Cor­
rected and/or supplemental data are fed back into the
modeling processes to refine the analysis.

Executive information systems (EIS) are a spin­
off from DSS. EIS applications support executive
decision m&king and provide automated environ­
mental scanning capabilities. Top executives deal
with future-oriented, partial, inaccurate, and ambigu­
ous information. They scan the economy, industry,
and organizational environments to identify and

monitor key indicators of business activity that affect
their organization. EIS integrate information from
external information databases and internal applica­
tions to provide an automated scanning and model­
ing capability. The major difference in EIS from
DSS then, is the incompleteness, potential inaccu­
racy, and ambiguity of the data.

Group decision support systems (GDSS) are a
special type of DSS applications. GDSS provide an
historical memory of the decision process in sup­
port of groups of decision makers who might be geo­
graphically dispersed. GDSS focus more on the
group interaction processes with little or no data
modeling or statistical analyses. Data analysis soft­
ware in GDSS tend to be less elaborate than DSS
software, but may include a spreadsheet and routines
to present summaries of participant votes on issues
in either numerical or graphical formats. GDSS typ­
ically provide such functions as

1. Anonymous recording of ideas
2. Democratic selection of group leaders
3. Progressive rounds of discussion and voting

to build group consensus

For all DSS, application development is more for­
mal than query applications, and less formal than
transaction applications. The development life
cycle tends to be iterative with continuous identifi­
cation of requirements. DSS software environments
are sophisticated and typically include software tools
for communications support, statistical modeling,
knowledge-base maintenance, and decision process
support.

Expert Systems

Expert systems applications (ES) are computer
applications that automate the knowledge and rea­
soning capabilities of one or more experts in a spe­
cific domain. ESs analyze characteristics of a
situation to give advice, recommend actions, or draw
conclusions by following automated reasoning
processes. The four major components of an ES are
knowledge acquisition subsystem, the knowledge
base, the inference engine (or rule base as it is some­
times called), and explanation subsystem. Each of
these components are briefly explained here.

MEDICAL ES ETHICAL DILEMMA
A doctor who is not a specialist in rare dis­
eases sees a patient in the emergency room
who appears to be in respiratory distress. After
a preliminary exam, he consults with an ex­
pert system that diagnoses many diseases
and recommends a course of treatment. The
ES requests all of the symptoms from the doc­
tor who answers the questions to the best of
his ability. The ES diagnoses the problem as
advanced Legionnaires' disease with a prob­
ability of 80%. The ES suggests no other possi­
ble diseases. The doctor prescribes the ES' s
recommended treatment. The patient dies.
On investigation, it turns out that the ES con­
tains errors in its rules and that the correct
diagnosis, following the exact same set of
symptoms, would have led to a different
diagnosis with different treatment.

There are ethical issues in every aspect of
this problem. Who is responsible for ES accu-

The knowledge acquisition subsystem is the
means by which the knowledge base is built. In gen­
eral, the more knowledge, the 'smarter' the system
can be. The knowledge acquisition subsystem must
provide for initial loading of facts and heuristic rules
of thumb, and be easy to use in adding knowledge
to the knowledge base.

Frequently, we reason without knowing how we
arrive at a solution. In fact, reflect how you yourself
think when analyzing a problem to develop an appli­
cation. How do you decide what the processes are?
You follow an elaborate, highly internalized process
that is difficult to talk about. You are not alone in
having this difficulty. Eliciting the information about
reasoning processes from experts is a major diffi­
culty in building effective ES applications.

The knowledge base is the codified automated
version of the expert user's knowledge and the rules
of thumb (also called heuristics) for applying that
knowledge. Designing the knowledge base is as dif­
ficult as eliciting the information because no matter
how it is designed, it will be limited by the software

Applications 21

racy? Is the knowledge engineer who built
the ES responsible for ensuring accuracy of
information in the system? Or, does his or her
responsibility only mean translating the rea­
soning processes correctly? What is the
responsibility of the "expert" who supplies the
information in ensuring it is correctly entered
into an ES to supply correct reasoning? If a
medical ES contains information on thou­
sands of diseases, is it even possible to test it
completely? How is consistency of diagnoses
checked? What happens when symptoms
are entered in different sequences? Is the
doctor who uses the ES suggestion ethical?
There is no consensus on answers to these
questions at present. The lack of consensus
highlights the need for discussion of ethical
issues in IT applications.

in which it is implemented. Therefore, special ES
programming languages have been designed to al­
low the most flexibility in defining connections be­
tween pieces of information and the way the pieces
are used in reasoning.

Just as people reason to develop a most probable
outcome to a situation, ESs use reasoning and infer­
ence to develop multiple, probable outcomes for a
given situation. Several solutions may be generated
when there is incomplete information or partial rea­
soning. Probabilities of accuracy of the solution(s)
are frequently developed to assist the human in judg;..
ing the usefulness of a system-generated outcome.
Ethical and moral issues may be more apparent
in ESs than the other application types. Example
1-4 describes an ethical dilemma relating to a
medical ES.

The last major component of ES is the ability to
explain its reasoning to the user. The explanation
subsystem provides the ability to trace the ES's rea­
soning. Tracing is important so the user can learn
from the experience of using the system, and so he or

22 CHAPTER 1 Overview of Software Engineering

she may determine his or her degree of confidence in
the ES's results.

These four application types-transaction, query,
DSS, and ES-will be referenced throughout the
text to tie topics together and to discuss the useful­
ness of methodologies, languages and approaches
to testing, quality assurance, and maintenance for
each.

Embedded Systems

Embedded systems are applications that are part of
a larger system. For example, a missile guidance
application works in conjunction with sensors,
explosives, and other equipment within a single mis­
sile unit. The application, by itself, is minor; its com­
plexity derives from its analog interfaces, need for
complete accuracy, and real-time properties within
the missile's limited life span once it is released.
Embedded applications development has been
the province of computer science educated develop­
ers rather than information systems (IS) educated
developers.

As business deploys ever more complex equip­
ment in the context of computing environments, the
need for embedded systems skills will increase. This
implies that IS education must also address real­
time, embedded system requirements, and that com­
puter scientists will continue to move into business
for application development.

Applications in Business
Applications are most successful when they match
the organizations' needs for information. Most in­
formation in organizations is generated to allow the
managers to control the activities of the organiza­
tion to reach the company's goals. Goals may be
short-term or long-term. Control of activities implies
information evaluation and decision making. There
are three levels of organizational decision making:
operational, managerial, and strategic. Each level
has different information needs and, therefore, dif­
ferent application needs.

At the operational level, the organization requires
information about the conduct of its business. Deci-

sions deal with daily operations. For instance, the
operational level in a retail organization is concerned
with sales of products. The main operational level
applications would be order processing, inventory
control, and accounts receivable. In a manufactur­
ing business, the operational level is concerned with
sales and manufacturing. The main operational level
applications would be manufacturing planning, man­
ufacturing control, inventory management, order
processing, and shipping.

The information at the operational level is cur­
rent, accurate, detailed, available as generated, and
relates to the business of the organization. Opera­
tional information is critical to the organization
remaining in business. As a critical resource, the data
requires careful management and maintenance. The
types of applications that support operational level
decisions and information are transaction processing
applications (see Figure 1-17). Query applications
for current operational data are other applications
that support operational level decisions.

The information needs for managerial control are
mostly internal information, can be detailed or sum­
mary, and should be accurate. Decisions made for
managerial control concentrate on improving the ex­
isting ways of doing business, finding and solving
problems, and take a medium-range (e.g., quarter or
year) view of the company's business. The types of
issues dealt with concern reduction of

• costs by comparing suppliers' prices
• the time to process a single order
• the errors in a process

Operational Control

FIGURE 1-17 Application Types and
Decision Types

• the number of manual interactions with an
order, and so on

The types of applications that support these data
needs are data analysis applications, DSS, and
GDSS (see Figure 1-17). Each of these application
types serves a different role in supporting manager­
ial control decision needs. Data analysis applications
can be used to find and solve problems. DSSs can
be used to identify trends, analyze critical relation­
ships, or compare different work processes for pos­
sible improvements. GDSSs facilitate meetings of
people with different motivations and organizational
goals, providing a means to reach consensus with a
frank discussion of the issues.

At the strategic level, the types of decisions take a
broad· view of the business and ask, for instance,
what businesses should we be in? What products
should we produce? How can we improve market
share? These questions require external information
from many sources to reach a decision. The infor­
mation is ambiguous, that is, able to be interpreted in
many different ways. Because the information is
future-oriented, it is likely to be incomplete and only
able to be digested at a summary level.

The types of applications that support incomplete,
ambiguous, external information needs best are ex­
ecutive information systems (EIS) (see Figure 1-17).
EISs are specifically designed to accommodate
incomplete, ambiguous information. GDSSs also
might be used at the executive level to facilitate dis­
cussion of alternative courses for the organization.

PROJECT ______ _
LIFE CYCLES _____ _

There are several different ways to divide the work
that takes place in the development of an application.
The work breakdown in general comprises the pro­
ject's life cycle. If you asked five SEs to describe the
life cycle of a typical computer application, you
would get five overlapping but different answers.
Life cycles discussed here are the most common
ones: sequential, iterative, and learn-as-you-go.7

7 Future developments in life cycles are discussed in
Chapter 18.

Project Life Cycles 23

Sequential Project Life Cycle
You should remember from systems analysis that a
sequential project life cycle (SPLC) starts when a
software product is conceived and ends when
the product is no longer in use. Phases in a SPLC
include

• initiation
• problem definition
• feasibility
• requirements analysis
• conceptual design
• design
• code/unit test
• testing
• installation and checkout
• operations and maintenance
• retirement

These SPLC phases are more appropriate to busi­
ness than to military/government applications
because, in the government, the first four phases (ini­
tiation' definition, feasibility, and functional re­
quirements definition) are usually completed
by a different organization than that of the imple­
menters. Government projects are subject to con­
gressional review, approval, and budgeting. So,
a government project requiring congressional ap­
propriation is usually defined as beginning at
the conceptual design phase and ending with
deployment of the system with operational status
according to Department of Defense standard
#2167a [DOD, 1985]. In contrast, business IS are
typically initiated by a user department requesting
that a system be built by an MIS department. The
need for an IS is typically motivated by some busi­
ness situation: a change in the method of business, in
the legal environment, in the staffing/support envi­
ronment, or in a strategic goal such as improving
market competitiveness.

We call these SPLC phases a 'Waterfall' ap­
proach to applications because the output of each
phase feeds into the next phase, while phases are
modified via feedback produced during the verifica­
tion and validation processes8 (see Figure 1-18).

8 Boehm, Barry W., Software Engineering Economics. Engle­
wood Cliffs, NJ: Prentice-Hall, 1981.

24 CHAPTER 1 Overview of Software Engineering

L-~In_it_ia_tio_n_----,~

~ Feasibility

Analysis '\

~R
\1 Design 1
~ p~ra}

Unit Test '\

~I Te~ 1\
"- Implement ~
'-- ~

Operate
and

Maintain

<----..Ret----lire IJ
FIGURE 1-18 Sequential Project Life-Cycle Model

Phases in the waterfall definition are defined as dis­
crete even though, in practice, the information is
obtained in a nonlinear manner and the phase begin­
nings and endings are difficult to distinguish. To
identify discrete beginnings and endings, most com­
panies use the completion of the major product (i.e.,
program or document) produced during each phase
as signaling the phase end. So, completion of a fea­
sibility report, for instance, identifies the end of the

feasibility analysis phase. In the following subsec­
tions, each phase of the project life cycle (SPLC) is
defined,9 with the main activities and documents
identified.

9 This definition is adapted from work conducted during The
Assessment and Development of Software Engineering Tools
project sponsored by the U.S. Army Institute for Research in
Management Information, Communications, and Computer
Sciences (AIRMICS), contract DAKFll-89-C-0014.

SPLC Phases

INITIATION. Project initiation is the period of
time during which the need for an application is
identified and the problem is sufficiently defined
to assemble a team to begin problem evaluation.
The people and organizations affected by the appli­
cation, that is, the stakeholders, are identified. Par­
ticipants from each stakeholder organization for the
development team are solicited. The outcome of
initiation is a memo or formal document requesting
automation support and defining the problem and
participants.

FEASIBILITY. Feasibility is the analysis of risks,
costs and benefits relating to economics, technology,
and user organizations. The problem to be automated
is analyzed in sufficient detail to ensure that all
aspects of feasibility are evaluated.

Economic feasibility analysis elaborates
costs of special hardware, software, personnel,
office space, and so forth for each implementation
alternative.

In technical feasibility analysis, alternatives for
hardware, software, and general design approach
are determined to be available, appropriate, and
functional. The benefits and risks of alternatives are
identified.

Organizational feasibility is an analysis of both
the developing and using organizatiop.s' readiness
for the application. Particular emphasis is placed on
skills and training needed in both groups to ensure
successful development and use of the application.
The decision whether or not to use consultants and
the type of role they would play during development
is made during organizational feasibility analysis.
Organizational decisions include effectiveness of the
organization structure and definition of roles of
individual jobs in the organization as they will be
with the new application.

The feasibility report summarizes

• the problem
• the economic, technical and organizational

feasibility
• risks and contingency plans related to the

application

Project Life Cycles 25

• preferred concept for the software product and
an explanation of its superiority to alternative
concepts

• training needs and tentative schedules
• estimates of project staffing by phase and level

of expertise

After feasibility is established, the Software De­
velopment Life Cycle (SDLC), a subcycle of the
SPLC, begins. This subcycle typically includes
phases for analysis, conceptual design, design, im­
plementation, testing, and installation and checkout.
SDLC end is signaled by delivery of an operational
application.

ANALYSIS. The analysis phase has many syn­
onyms: Functional Analysis, Requirements Defini­
tion, and Software Requirements Analysis. All
of these names represent the time during which
the business requirements for a software product
are defined and documented. Analysis activities
define

1. Functional requirements-"what" the system
is supposed to do. The format of the func­
tional requirements definitions depends on
the methodology followed during the analy­
sis phase.

2. Performance requirements-terminal, mes­
sage, or network response time, input/output
volumes, process timing requirements (e.g.,
reports must be available by 10 A.M.).

3. Interface(s) requirements-what data come
from and go to other using applications and
organizations. The definition includes timing,
media, and format of exchanged data.

4. Design requirements-information learned
during analysis that may impact design activ­
ities. Examples of design requirements are
data storage, hardware, testing constraints,
conversion requirements, and human­
machine interaction requirements (e.g., the
application must use pull-down menus).

5. Development standards-the form, format,
timing, and general contents of documenta­
tion to be produced during the develop­
ment. Development standards include rules
about allowable graphical representations,

26 CHAPTER 1 Overview of Software Engineering

documentation, tools, techniques, and aids
such as computer-aided software engineering
(CASE) tools, or project management sched­
uling software. Format information includes
the content of a data dictionary/repository for
design objects, project report contents, and
other standards to be followed by the project
team when reporting project accomplish­
ments, problems, status and design.

6. The plan for application development is
refined.

Analysis documentation summarizes the current
method of work, details the proposed system, and
how it meets the needs of the required functions.
Requirements from the work activities are described
in graphics, text, tables, structured English, or some
other representation form prescribed by the method­
ology being used.

CONCEPTUAL DESIGN. Once the proposed
logical system is understood and agreed to by the
user, conceptual design begins. Other names for con­
ceptual design activity include preliminary design,
logical design, external design, or software require­
ments specifications. The major activity of concep­
tual design is the detailed functional definition of all
external elements of the application, including
screens, reports, data entry messages, and/or forms.
Both contents and layout are included at this level. In
addition, the logical data model is transformed into a
logical database schema and user views. If distribu­
tion or decentralization of the database is antici­
pated' the analysis and decision are made during
conceptual design. The outputs of conceptual de­
sign include the detailed definition of the external
items described above, plus the normalized and opti­
mized logical database schema.

Not all organizations treat conceptual design sep­
arately. Outputs of conceptual design may be in a
conceptual design document or might be part of the
functional requirements document developed dur­
ing analysis. Depending on the project manager's
personal taste and experience, the conceptual design
might be partially completed during logical design
and fully completed during physical design. In this
text, the two phases, design and conceptual design,
are treated as one.

DESIGN. Design maps "what" the system is sup­
posed to do into "how" the system will do it in a par­
ticular hardware/software configuration. lO The other
terms used to describe design activities include
detailed design, physical design, internal design,
and/or product design.

During the design phase, the software engineer­
ing team creates, documents, and verifies:

1. Software architecture-identifies and defines
programs, modules, functions, rules, objects,
and their relationships. The exact nature of
the software architecture depends on the
methodology followed during the design
phase.

2. Software components and modules-defines
detailed contents and functions of software
components, including, but not limited to,
inputs, outputs, screens, reports, data, files,
constraints, and processes.

3. Interfaces-details contents, timing, respon­
sibilities, and design of data exchanged with
other applications or organizations.

4. Testing-defines the strategy, responsibili­
ties, and timing for each type of testing to be
performed.

5. Data-physically maps "what" to "how" for
data. In database terms, this is the definition
of the physical layout of data on the devices
used, and of the requirements, timing, and
responsibility for distribution, replication,
and/or duplication of data.

SUBSYSTEM/PROGRAM DESIGN. Subsys­
tem and/or program designs are sometimes treated
as subphases of the design phase. Whether they are
separate phases or not, the software engineering
team creates, documents, and verifies the following:

1. Application control structure-defines how
each program/module is activated and where
it returns upon completion.

10 Anyone who has designed a system will tell you that you
cannot perform the conceptual design without some knowl­
edge and attention to the implementation environment. So,
the "what" and "how" distinctions are generally, but not
completely, accurate when described as discrete activities.

2. Data structure and physical implementation
scheme-defines physical data layouts with
device mapping and data access methods to
be used. In a database environment, this
activity may include definition of a central­
ized library of data definitions, calling rou­
tines, and buffer definitions for use with a
particular DBMS.

3. Sizing-defines any programs and buffers
which are expected to be memory-resident
for on-line and/or real-time processes.

4. Key algorithms-specifies mathe~atically
correct notation to allow independent verifi­
cation of formula accuracy~

5. Program component (routine with approxi­
mately 100 source procedure instructions)­
identifies, names, and lists assumptions of
program component design and usage.
Assumptions include expectations of, for
instance, resident routines and/or data,
other routines/modules to be called in the
course of processing this module, size
of queues, buffers, and so on required
for processing.

CODE AND UNIT TEST. During coding, the
low-level program elements of the software product
are created from design documentation and de­
bugged. Unit testing is the verification that the pro­
gram does what it is supposed to do and nothing
more. In systems using reusable code, the code is
customized for the current application, and checked
to ensure that it works accurately in the current
environment.

TEST. During testing-sometimes called Com­
puter Software Component (CSC) Integration and
Testingll-the components of a software product are
evaluated for correctness of integrated processing.
Quality assurance testing may be conducted in the
testing phase or may be treated as a separate activity.
During quality assurance tests, the software prod­
uct (i.e., software or documentation) is evaluated
by a nonmember of the project team to deter­
mine whether or not the analysis requirements are
satisfied.

11 This is a term used by DOD standard #2167a, 1985.

Project Life Cycles 27

IMPLEMENTATION. Also called Installation
and Checkout, implementation is that period of
time during which a software product is integrated
into its operational environment and is phased
into production use. Implementation includes the
completion of data conversion, installation, and
training.

At this point in the project life cycle, the software
development cycle ends, and the maintenance phase
begins. Maintenance and operations continue until
the project is retired.

OPERATIONS AND MAINTENANCE. Opera­
tions and maintenance is the period in the software
life cycle during which a software product is em­
ployed in its operational environment, monitored
for satisfactory performance, and modified as nec­
essary. Three types of maintenance12 are

1. Perfective-to improve the performance of
the application (e.g., make all table indexes
binary to minimize translations, change an
algorithm to make the software run faster,
and so on.)

2. Corrective-to remove software defects
(i.e., to fix bugs)

3. Adaptive-to incorporate any changes in the
business or related laws in the system (e.g.,
changes for new IRS rules)

Each type of maintenance requires a mini­
analysis and mini-design to determine social, techni­
cal, and functional aspects of the change. The current
operational versions of software and documentation
must be managed to allow identification of errors
and to ensure that the correct copy of software is run.
One aspect of change management specifically ad­
dresses configuration management of application
programs in support of maintenance activities.

RETIREMENT. Retirement is the period of time
in the software life cycle during which support for a
software product is terminated. Usually, the func­
tions performed by the product are transferred to a
successor system. Another name for this activity is
phaseout.

12 A detailed discussion of maintenance topics is presented in
Lientz and Swanson, 1980.

28 CHAPTER 1 Overview of Software Engineering

UNIVERSAL ACTIVITIES. There are two uni­
versal activities which are performed during each
life-cycle phase: verification and validation, and
configuration management.

An integral part of each life-cycle phase is the
verification and validation that the phase products
satisfy their objectives. Verification establishes the
correctness of correspondence between a software
product and its specification. Validation establishes
the fitness or quality of a software product for its
operational purpose.

For instance, the individual code module specifi­
cations from design are verified to ensure that they
contain accurate and complete information about the
functions they perform. The modules are validated
against the analysis phase specification to ensure that
all required functions have corresponding designs
that accurately reflect the requirements.

Configuration management refers to the man­
agement of change after an application is opera­
tional. A designated project librarian maintains the
official version of each product. The project librarian
is able at any time to provide a definitive version (or
baseline) of a document or software module. These
baselines allow the project manager to control both
the software maintenance process and the software
products.

History

The sequential life cycle was originally developed
and documented in the 1960s to provide defense
contractors a life-cycle documentation standard for
Department of Defense (DOD) projects. The cur­
rent DOD Standard #2167a lists all activities and
details all documentation required for software
development as fulfillment of military contracts. As
industry recognized that their own application
development projects were out of control, over bud­
get, and unsatisfactory when complete, they modi­
fied the standard to eliminate defense/aerospace
terminology and replace it with industry specific ter­
minology. Organizations modified the standard to
incorporate elements of methodologies, such as
structured development, data flow diagrams, and
walk-throughs, that were becoming known at the
same time. In the late 1960s and early 1970s the
waterfall and 2167 documentation standard were

used throughout most Fortune 500 companies as
cast-in-concrete requirements for building and docu­
menting systems.

Problems

As nonnegotiable documentation requirements, pro­
jects frequently produced thousands of pages of doc­
umentation that no one except the authors ever read.
Information about applications was rarely in anyone
person's head and communication overhead became
a major problem to completing systems successfully.
User/management approval to continue with each
phase was not based on their knowledge of what
the system would do, but on some other criteria.
Published studies showed that the typical written
application requirements document contained, on
average, one-half to one error per page. The conclu­
sion that paper prose is not a good medium for
conveying the complex variety of application
requirements led to the development of more graph­
ical representation forms.

Eventually, IS managers realized that the water­
fall, when applied too stringently, not only did not
solve the problems of bad systems, it contributed to
a new generation of overdocumented bad systems.
The result has been a scaling back on required doc­
umentation. Standards have become 'guidelines' for
experienced project managers to consider and to pro­
vide new project managers with review lists of
activities whose relevance they should consider.
Each project team customizes the documentation
and development activities in addition to the tools
and techniques they use.

Even with relaxation of required documentation,
a sequential life cycle does not recognize the itera­
tive, nonlinear nature of application development,
and cannot easily accommodate overlap of phases.
Many organizations now use a variant of the water­
fall by performing the activities in an overlapped
manner, sometimes called the 'pipeline' approach.
Finally, the waterfall approach does not recognize
that the level of detail necessary to adequately doc­
ument application functions is significantly different
with the use of automated tools, use of diagrams
(e.g., DFDs) to replace text, and use of high level,
fourth-generation languages (e.g., SQL).

Current Use

The sequential life cycle is still used but rarely in full
detail, and mostly for transaction applications. The
sequential life cycle and its terminology will be
around for many decades to come, but two diver­
gent trends will occur. On the one hand, demarcation
of phases will be more relaxed. Three trends lead­
ing to phase relaxation are:

• increasing maturity of computer-aided soft­
ware engineering (CASE) tools

• increasing use of high-level languages
• availability of reusable electronically stored

application information

On the other hand, further alteration and cus­
tomization to accommodate the need for more
detail in systems using new, more complex, or other­
wise novel hardware/software components will also
take place. It is from these novel, groundbreaking
applications that our industry frequently develops
new techniques to better communicate application
characteristics.

Iterative Project Life Cycle
Iterative PLC Description

An iterative project life cycle is a cyclic repetition
of analysis and design events. Iterative PLC is some­
times called prototyping or a spiral approach to
development.

Prototyping is the development of a system or
system component in a short period of time without
formal written specifications. Originally thought of
as helpful for proving the usefulness of new tech­
nologies, prototyping caught on in the early 1970s as
a way to circumvent the overload of documentation
from the sequential life cycle. Frequently, prototyp­
ing was wrongfully used and led to bad systems.
But, as experience with prototyping has grown, there
are three specific uses for which proto typing can be
very beneficial:

1. Complete iterative development of an appli­
cation when requirements are not well-under­
stood, e.g., DSS

2. Proof of utility, availability, or appropriate­
ness for technology, software, or hardware

Project Life Cycles 29

3. Rapid development of part of the system
to ease a critical work situation for users,
e.g., order entry without edit/validation to
ease paper backlog

Some authors describe a completely different life
cycle for prototyped applications. The notion that the
life cycle is completely different is not entirely cor­
rect. The life cycle depends on the nature of the pro­
totype. If a complete application is built, then the
model of the life cycle mirrors that of the waterfall
with iteration between analysis-design-program­
ming-testing-implementation as requirements be­
come known (see Figure 1-19). The difference is the
level of detail to which analysis and design are per­
formed. Requirements of iteratively-developed
applications are generally not well known or under­
stood. They might be ambiguous or incomplete for
some time. The prototype provides a base from
which users and developers together discover the
requirements for the application.

One use of proto typing tests proof of utility,
availability, or appropriateness of the hardware, soft­
ware, or design concept. The prototype development
process is a subphase of development that may par­
allel either feasibility, analysis, or design. There is no
significant testing of a 'proof' prototype because it is
being used to verify that an activity can be auto­
mated in a certain way, or that hardware (or soft­
ware) can be used as planned. An example of a
proof-of-concept prototype is shown in Figure 1-20
as taking place at the same time as the feasibility
study. By the end of feasibility analysis, the useful­
ness of the prototype is decided, and the feasibility
report recommends that the tested product (or idea)
be abandoned or used.

A third type of prototype is a partial application
developed as a stopgap measure for a particular
problem until the complete system is available. A
partial prototype might be built with its complete life
cycle paralleling one phase of the development life
cycle as shown in Figure 1-21. The phases of the
prototype development cycle mirror those of a nor­
mal development life cycle; they differ in that only
a small portion of the entire application is developed.
These prototypes can omit processing details. For
instance, an on-line data entry might not fully vali­
date data. Feedback to the design team would detail

30 CHAPTER 1 OveNiew of Software Engineering

Analyze and
Gather
Requirements

Design

Build
Prototype

FIGURE 1-19 Full System Prototype Life Cycle

what is and is not in the prototype so that its design
and development are completed during the regular
application development.

Problems

There are two major problems with prototyping:
misuse to circumvent proper analysis and design,
and never completing prototypes as proper applica­
tions. Prototyping has been used as one way to cir­
cumvent rigidities in the sequential life cycle when it
is treated as a set of nonnegotiable activities. In this
misuse, some authors refer to 'quick analysis' and
'quick design' as if less work is done during those
phases. In fact, if done properly, the activities and
work are identical to those done in the life cycle, and
the effort normally placed on documentation is di­
verted to building software.

The other major problem with development
of a prototype is that the system might never get

Evaluate and
Refine
Requirements

Engineer product
to ensure complete
documentation
development

formalized. Details of processing, for instance,
data validation and audit requirements, might be
forgotten in the push to get a working prototype
into production. While this problem is easily
solved, it requires user and management com­
mitment to a completed project. The problems
with ensuring this commitment are political,
not technical.

Current Use

Although still misused in the development of undoc­
umented, incomplete applications, proto typing for
the above intended purposes is also alive and
healthy. All forms of query and DSS applications are
candidates for iterative life cycles. Some languages
(such as Focus, Rbase, Oracle) have easy to learn,
short, very high-level programming languages that
are naturally amenable to prototyping. A database
can be defined, populated with data, and queried in

Project Life Cycles 31

Feasibility \ r-- Analysis

Prototype

Activftles: ~

c=J\ c::J\
c::J\ \c::J

Evaluate and
Refine
Requirements

Unit Test

Implement

FIGURE 1-20 Proof of Concept Prototype Application Development Activities

under an hour to show capabilities of the languages
or discuss requirements of a system. This kind of
prototyping builds morale in the IS staff and confi­
dence in the users, and is a great selling tool for in­
house application development.

Future Use

Prototyping is appropriate to validate designs, to
prove use of new hardware and/or software, or to
quickly assist users while building a larger applica­
tion. For these uses, prototyping is expected to be
employed with increasing use of high-level lan­
guages to facilitate prototype development. Though
there are few automated prototyping tools that also
interface to CASE for full application definition,
more such integrated tools are becoming available.

Learn-as-You-Go
Project Life Cycle
Learn-as-You-Go PLC Description

With all the good news about developments in life
cycles, there is a disturbing statistic that about 75%
of all companies in the United States do not use any
life cycle and/or methodology to guide their devel­
opment work. 13 The title learn-as-you-go could
equally well be called trial-and-error, or individual
problem solving. The life cycle for the no-life cycle

13 Necco, Charles R., Carl L. Gordon, and Nancy W. Tsai,
"Systems analysis and design: Current practices," MIS Quar­
terly, December 1987, pp. 461-476.

32 CHAPTER 1 Overview of Software Engineering

Feasibility

'--__ D_e_Si_gn __ ---' '\

Program/ i\
Unit Test

'-------'

Implement
Prototype

FIGURE 1-21 Partial System Prototype

approach is shown in Figure 1-22, which shows a
generic life cycle. The problem is defined. The SE
develops the application, which enters operation and
maintenance. This approach is not suited to group
work, so projects are limited to one person develop­
ing small applications. There are two different types
of development groups that are in this category: de­
velopers of truly unique applications, and developers
who do not want too much control or structure in
their work.

The first developer view that the problem is
unique and cannot easily be molded into a formal
life cycle because of its nature is appropriate to
applications using emerging technologies and tech­
niques, such as expert systems and artificial intelli-

I Implement

gence. There is no life cycle that describes building
of expert systems, although with a feedback loop
between maintenance and definition to indicate iter­
ation, Figure 1-22 is appropriate to these systems.
There is no methodology of knowledge engineer­
ing; rather, there are several techniques that one
might use depending on the nature of the expertise,
the personality of the expert, and the complexity of
the problem domain. This life-cycle approach is
appropriate for such emerging application domains
as long as it is a disciplined experimentation loop
that includes feedback and documentation.

The second view that all problems are unique,
and if understood, do not require significant model­
ing, documentation, or sequences to the analysis and

Define

Problem f\
,-------,I \

\

FIGURE 1-22
Development

Develop

~.------'-------
Maintain

Generic View of Life-Cycle

development events. Since each problem is unique,
there is no point in trying to repeat the analysis and
design experience. Development is viewed as a cre­
ative activity that should be unconstrained. There
should be no formal analysis, design, programming,
or testing, even though each of these activities must
be performed during the process. This approach
denies the need for professional SEs or a profession
of software engineering. In fact, it is frequently a
cover for ignorance, or an excuse for laziness. This is
a hacker's view of the world that is not appropriate
to business organizations.

Problems

If building small systems (e.g., less than 2,000 lines
of code in a 3GL, like Cobol, less than 400 lines of
code in a 4GL), the developers, managers, and users
may not have problems. Many financial analysis
models and small systems in brokerage firms are

Project Life Cycles 33

developed using no life cycle and no methodology.
But anything other than small applications are un­
likely to perform exactly as desired, may not be
completely tested when placed into production, and
cannot be integrated easily into existing applications.

A less obvious problem is that this technique
relies on individual problem-solving capabilities
and knowledge. Studies by IBM and others show
individual programmer differences of as much as
16 times in productivity and more than that in accu­
racy. If the firm using this technique has only
the best, top 5% of programmers on its staff, there
is little risk. But how many firms actually have these
people?

The view that we do not need a disciplined ap­
proach to developing applications implies that just
anyone can design and build good applications. Yet
daily we hear of users who have built complex
spreadsheet DSSs only to leave a company with no
documentation and no procedures for the next user.
We also hear of users (and, regrettably, people with
the title software engineer) who are leaders of proj­
ects that are canceled after spending millions of dol­
lars, because the pieces just do not work together.
For each type of application, there is a price with this
view: DSSs without an architecture cannot be ex­
tended; ESs without a plan are unreliable and un­
maintainable; TPSs without architectures and plans
can only ever support one small piece of business;
integration across subject data areas is impossible.
Even though ES and AI problem solving both use
the learn-as-you-go technique, both require a differ­
ent kind of discipline and rigor.

Current Use

As related above, about 75% of all companies in the
United States do not use any life cycle or methodol­
ogy to guide their application development work.
With this statistic, it is no wonder that most applica­
tions do not perform as intended, are delivered late,
overrun the budget, and have unsatisfied users.

Future Use

For emerging technologies, techniques, or concep­
tualizations of applications, this approach is an
effective way to nurture development of a field of

34 CHAPTER 1 Overview of Software Engineering

knowledge. For these uses, it will remain. Unfortu­
nately, it will also remain for companies who believe
that discipline and order cost too much, and who will
continue to suffer the risks involved with relying
solely on one person's skill and integrity.

In summary, life cycles define a global break­
down of activities in the life of an application. No
life cycle prescribes how to actually do the work
within the phases of a PLC. For that definition, we
turn to methodologies.

METHODOLOGIES ___ _

Methodologies are procedures, techniques, and pro­
cesses used to direct the activities of each phase
of a software life cycle. There are five classes of
methodologies: process, data, object, semantic, or
none. Each has its own unique view of an application
that relates to its historical context, its own short­
comings, problems, and futures. In this section, a
brief overview of the classes of methodologies is
given with a general list of documents produced by
the analysis phase, problems with the methodology,
and short analysis of the methodology's current and
future use. Much of this material should be review. If
it is not review, don't panic. Use this material to
learn the terminology for discussing the methods in
detail later.

In addition to the methodologies prescribing how
to do an analysis and design, a special class of meth­
ods advises how to bring users into the process. That
class, sometimes called social methodologies, is the
last part of this section.

Process Methodology
History

Process methodologies take a structured, top-down
approach to evaluating problem processes and the
data flows with which they are connected. Process
methods developed during the 1970s in response to
increasing complexity of application processing,
increased complexity of operating system environ­
ments (e.g., the IBM 360 generation of hardware),
and the introduction of disk file processing with
sequential, indexed, and direct access methods. The

documentation produced by the process approach 14
includes, for example, context diagrams, data flow
diagrams, data store definitions, and structured
English process descriptions. In the course of a com­
plete application development, many other types of
analysis and design documentations are developed.
These additional documents are discussed in the
chapters on analysis and design.

Current Use

Individual techniques such as context and data flow
diagrams· are widely used and also supported in
CASE environments. Other techniques have been
replaced by newer methods, for example, paper­
based data dictionaries have been replaced by CASE
repositories or active data dictionaries, file design
has been augmented by normalization, entity rela­
tionship diagramming, and so on.

Future Use

Process methods as attributed to DeMarco and
others will ~ade as a distinguishable methodology
with context and DFDs melded into a collection of
techniques that will he used to support methodol­
ogy customization.

Data Methodology
History

Data methodologies begin analysis activities by
first evaluating data and their relationships to deter­
mine the underlying data architecture. When the data
architecture is defined, outputs are mapped onto
inputs to determine processing requirements. The
most used data methodology is information engi­
neering (IE) which was described by Finkelstein and
Martin.15 Documentation produced by the data

14 The architects of process methods were Yourdon and Con­
stantine, 1978; DeMarco, 1979; Gane and Sarson, 1979.

15 See Martin, James, Information Engineering, Book 1: Intro­
duction, Book 2: Planning and Analysis, Book 3: Design and
Implementation, Englewood Cliffs, NJ: Prentice-Hall, 1990;
and Finkelstein, C., Information Engineering, 1991.

approach discussed in this text is that of informa­
tion engineering.

As the use of DBMS software became pervasive
during the late 1970s and early 1980s, software
engineers recognized a need for improved ways of
designing data structures. Many methodologies were
developed that concentrated strictly on the data
aspects of applications with the processing added as
an afterthought [cf. Warnier, 1981]. As an attempt
to address the entire application development life
cycle, Martin and Finkelstein borrowed techniques,
packaged them in a new methodology, and inte­
grated them to provide the first 'womb to tomb'
methodology. Information engineering, the result­
ing methodology, begins with enterprise level analy­
sis and proceeds through identification of
applications and individual project life cycles. The
methodology was not the work of one person; rather
it integrates concepts that were thought of as the best
at the time including entity-relationship modeling,
normalization and other techniques relating to DB
design. The enterprise level techniques are adapted
and widely used in organizational reengineering.

An example of analysis documentation developed
using information engineering includes entity rela­
tionship diagrams (ERD), entity hierarchy diagrams,
process dependency diagrams, process hierarchy
diagrams, and third normal form logical database
definition.

Current Use

Information engineering is gaining acceptance in
some of the largest U.S. corporations (e.g., Mobil,
Texaco) and is used in Australia (where Finkelstein
lives) but is not widely used otherwise. Other 'data'
methods enjoy regional popularity.16

Future Use

Some of information engineering's appeal is its
position as the only methodology that represents all
levels of organizational analysis from enterprise

16 Michael Jackson's Jackson Structured Development (JSD) is
used in England. Warnier-Orr techniques are used in compa­
nies such as AT&T. Chen's entity-relationship approach is
used in isolation in many corporations but is also part of in­
formation engineering.

Methodologies 35

through application. IE cannot easily be altered, at
this time, to accommodate object orientation or
knowledge engineering. But it will be around for
some time with parts of the methodology replaced in
a customizing process. Individual techniques such as
ERD will gain even more acceptance in the future
as data administration increases.

Object-Oriented Methodology
History

Object-oriented methodology is an approach to
system life-cycle development that takes a top-down
view of data objects, their allowable actions, and the
underlying communication requirement to define a
system architecture. The data and action components
are encapsulated, that is, they are combined together,
to form abstract data types. Encapsulation means
that if I know what data I want, I also know the
allowable processes against that data. Data are
designed as lattice hierarchies of relationships to
ensure that top-down, hierarchic inheritance and
sideways relationships are accommodated. Encapsu­
lated objects are constrained only to communicate
via messages. At a minimum, messages indicate the
receiver and action requested. Messages may be
more elaborate, including the sender and data to be
acted upon.

Object orientation developed during the 1980s
and 1990s as producing desirable software attrib­
utes (for instance, minimal coupling) espoused since
the 1960s. Object-oriented designs can result in soft­
ware with desirable properties: modularity, infor­
mation hiding, functional cohesion, and minimal
coupling. Like the other methodologies, bad designs
lead to bad applications.

Object orientation appears able to support the ab­
stract concepts needed to automate meta-data and
meta-meta-data needed for expert, intelligent, and
multimedia applications. Meta-data gives meaning
to data and is information about data. For instance,
a name or data type is information about the data in
the example (see Figure 1-23). Meta-meta-data is
information about the meta-data that describes its
allowable use to the application. These types of
definitions allow you to plug-in any hardware

36 CHAPTER 1 Overview of Software Engineering

Data Cathrine Ratliff

Meta-Data Name, Alpha, 16 Characters

Meta-Meta-Data Type=Data Field,
Logical Link = Process,
Physical Link, Process,
DBMS (EMPL DB)

Data D01

Meta-Data Drive Address, Alphanumeric, 3 Characters

Meta-Meta-Data Type=Disk,
Logical Link = I/O Driver
Physical Link = SCSI Channel 0

Data SC01

Meta-Data Screen ID, 80x20 Alphanumeric Characters

Meta-Meta-Data Type=3270 BlacklWhite Terminal,
Logical Link = I/O Driver, Process
Physical Link = SCSI Channel 0

FIGURE 1-23 Object-Oriented Example

device, software, or data to create an application
environment.

Object orientation is still an immature discipline,
undergoing almost daily evolution and change. As
such, the details presented for object orientation
in this text may be considerably different in five
years.

The documentation produced by one object
approach for analysis/design includes, for example,
a succinct paragraph describing the system, an object
list, an object attribute list, an action list, an action
attribute list, a message list, and several optional
diagrams.

Current Use

Object orientation is the usual approach to devel­
oping applications in aerospace and defense organi-

zations, and experiments with its use are occurring in
most large companies. Object design appears to be
the best suited method for real-time applications, and
is useful for on-line applications. It is one of the IS
buzzwords of the 1990s and appears often in every
trade periodical, research journal, and booklist.

Future Use

Keeping in mind that it is neither a complete nor a
mature methodology, the current high level of activ­
ity implies a future full of object-oriented applica­
tions, databases, and CASE tools. When done
properly, object orientation appears capable of sup­
porting many complex environments, including:
intelligent applications, multimedia applications,
and reusable code and reusable design objects. Look
for object ori-entation to be around for a long time.

If you only learn one new methodology, this will be
a profitable one to learn for the future.

Semantic Methodologies
History

Semantic methodologies are used in the automation
of artificial intelligence (AI) applications. AI, like
object orientation, is in its infancy. By definition,
AI methodologies are also in their infancy.

AI applications cover a broad range of intellectual
difficulty, ranging from recognizing to reasoning to
learning (see Figure 1-24). Most AI applications in
business are on the lower end of the AI spectrum,
and provide limited reasoning in applications. Busi­
nesses are experimenting with more complex uses
of AI.

This discussion is about AI applications that
reason through problems to achieve expert level
competence in a specific area of expertise. These
applications are usually called knowledge-based
systems (KBS) or expert systems (ES) applications.
Most ES contain the reasoning processes of one or
more human experts.

Semantic approaches to system life-cycle devel­
opment automate the meaning of objects in the
application. For example, a knowledge object might
be composed of objects describing a 'legal' hard­
ware configuration. The reasoning process in the ES
first asks characteristics of hardware objects that are
required for a system (e.g., speed of disk drive, size
of disk drive). Then, using the required characteris-

Percent of
Companies
Using AI

50%

25%

Methodologies 37

tics as constraints, the ES determines 'legal' config­
urations that meet the constraints.

At present, data and rules for evaluating data in
semantic applications are defined together within the
application and not separated as in traditional appli­
cations. There is no separation of analysis and design
activities per se for semantic applications either.
Rather, the task of knowledge engineering encom­
passes three general tasks: eliciting knowledge from
an expert, analyzing it to define the heuristics and
data, and automating the information in some logic­
based language, such as Prolog.

Current Use

Knowledge-based systems are a growing segment of
the applications portfolio in organizations today.
This is another class of methodology, along with
object orientation, that is in its infancy. Semantic
methods are somewhat more well-defined for busi­
ness use than object methods. But, the extent of spe­
cial training and expertise required to implement
intelligent applications make the knowledge inac­
cessible to most practicing SEs.

Future Use

There is a significant amount and diversity of
research that will result in mature semantic method­
ologies over the next decade. One major activity in
the future will be the addition of expert intelligence
to current transaction, query, data analysis, and DSS
systems. Semantic method use will continue to be a
growth area in IS for the foreseeable future.

/
/

/

Recognizing

/ Reasoning

_/ _ Learning

---­~- - - - - - -~---0% _--

1970 1980 1990 2000 2010

FIGURE 1-24 Range of Artificial Intelligence Applications

38 CHAPTER 1 Overview of Software Engineering

STOCK MARKET SELLERS, INC.
Stock Market Sellers, Inc. (SMSI) is a brokerage
firm that had a reputation for slow, steady
growth and low aggression relative to its
industry. In 1988, SMSI embarked on a new,
more aggressive position and began intro­
ducing new products practically overnight to
keep up with its competition.

Automated support for SMSls new prod­
ucts was the responsibility of Alec Ranier, a
young Brit who was a whiz-kid programmer.
Alec was promoted several times until, in
1991, he managed a staff of twenty pro­
grammers who developed applications to
support new products.

When asked about his use of life cycles
and methodologies, Alec said, "No, we don't
use any of those methodologies or CASE
technologies. We don't have time. A broker
wants a new product or a new analysis the
day after they ask for it, basically."

"Don't programmers have to talk to each
other to coordinate their work?" I asked.

He replied, "Not usually. That's how we get
away with being so informal."

No Methodology
History

When you develop an application using no method­
ology, you rely on your own experience and prob­
lem-solving ability to automate a solution to a
problem. The use of no methodology is implied by
the discussion of the learn-as-you-go life cycle.
There are no general activities because what is
done and how it is done are left strictly to the
individual.

Current Use

Most organizations in the United States currently
use no methodology. Example 1-5 illustrates the

"What happens when you do need to
have programmers talk to each other?"

Alec answered, "It is a mess! (laughing) I'll
grant that. We redesign, rewrite, and do a lot
of code. Another side effect is we reinvent
the wheel a lot. We probably have twenty
programs that calculate collateralized mort­
gage obligations and their returns."

I was astonished. "How do you verify their
accuracy?"

"WelL we don't because we can't. That is
a problem. We're actually trying to design
a few key modules to be reusable, but it's
a problem because the potential-using
programs are all going to need to be
rewritten. "

I asked, "Do you know any methodologies
to help you do that design?"

Alec was honest. "Not really. I'm a good
programmer who got promoted. Some day I
might learn one but now I just want to 'get
product out the door.' "

box companies get themselves into when they do
not use a methodology. As in the example, compa­
nies generally do not recognize any problems. On
probing, they realize they have problems but have
no idea for getting out of the situation short of
rewriting all applications ... a solution they consider
too costly.

Future Use

There are two major reasons why use of no method­
ology will begin to disappear as a strategy for
designing applications. First, trial-and-error is not a
productive problem-solving strategy when the
requirements for an application can be identified.
Rather, a lack of methodology indicates laziness,

shoddy work practices, and lack of rigor, usually
where it is most needed. Hopefully in the future,
more organizations will recognize the need for rigor
in developing applications ... their company's
future might well depend on that recognition. Sec­
ond, in order to use CASE tools and gain any of their
productivity improvements, some methodology is
required.

User Involvement in
Application Development
Each of the previous methodology discussions
approaches the problem of application development
as if it were done only by technically oriented per­
sonnel. Where in this picture is the user of the
application? Ultimately, users must supply informa­
tion about the business functions and accompany­
ing data that are being automated. In this section,
we discuss user involvement in application devel­
opment so you do not think SEs work only with each
other. Although early applications were frequently
built without discussions with users, isolation of SEs
from users resulted in systems that might work tech­
nically, but often did not meet user needs, and fre­
quently disrupted the workplace.

In the early 1960s, Scandinavians began to voice
concerns over the social side effects of applications.
Early systems frequently des killed workers. Socially
oriented methodologies of application development
were created in response to the concerns about the
effects of computerization. Social methodologies
describe an approach to SDLC that attends to social
and job-related needs of individuals who supply,
receive, or use data from the application being built.
Social methodologies are not really methodologies;
rather, they are user involvement techniques. These
techniques ignore technology completely and as­
sume that some other approach to the technical
aspects of application development is used along
with user involvement.

The three main user-involvement techniques are
joint application design (JAD), socio-technical
systems (STS), and Ethics. The most practical and
popular method is joint application design (JAD)

Methodologies 39

which requires an off-site meeting of all involved
users and systems people, who meet for five to ten
days to develop a detailed functional description of
application requirements. Daytime meetings are
used for new analysis; nighttime meetings document
daytime results for review and further refinement the
next day.

There are many benefits from user involvement in
application development. First, it builds commit­
ment by users who automatically assume ownership
of the system. Second, users, who are the real ex­
perts at the jobs being automated, are fully repre­
sented throughout development. Third, many tasks
are performed by users, including design of screens,
forms, and reports, development of user docu­
mentation, and development and conduct of accep­
tance tests.

We assume that user involvement is not
only desirable, but mandatory to truly effective
application development product and process.
This does not imply that such design will result,
only that it can. Using a social approach assumes
that job enlargement isa desirable by-product of
automation.

The most important aspect of user involvement
is that it must be meaningful. The users must be de­
cision makers and staff who fully understand the im­
pact of their decisions, and who are interested in
participating in the development process. Using low­
level staff, or assigning 'expendable' managers is
not the way to have users participate in developing
applications. Neither is co-optation of users desired.
Co-opting means that you get people to agree with
the outcome because they 'participated' in the deci­
sion process even though the alternatives are all de­
fined by the application developers.

The goal of user participation is for IS and non-IS
people to work together as business partners rather
than as adversaries. When users participate, they
make all nontechnical decisions. The SEs explain
and shepherd users to make semi technical decisions,
for instance, design of screens. The SEs explain both
the impact and reasoning of major technical deci­
sions. If this discussion implies that users call the
shots, that is what is meant. User involvement means
that users run the project, making the majority of

40 CHAPTER 1 Overview of Software Engineering

decisions and having final say on all major deci­
sions. The SEs and other Management Information
Systems (MIS) staff act as service-oriented techni­
cians, as they are.

In many organizations, the social aspects of work
are specifically felt not to be within the scope of re­
sponsibility of software developers. If the develop­
ment staff are only technical in their orientation, this
is probably true. Then it is the responsibility of the
project manager to educate user and IS management
about the need to design the organization and jobs
as well as the system.

In the United States, high levels of user involve­
ment are still unlikely and usually at the discretion of
the project manager. In many cases of 'user involve­
ment', the reality is that users are not involved. Even
in companies that have user project managers, IS
staff can ignore user desires and build the systems
they want to build.

SEs and users who have participated in user­
involved application development tend to be fully
committed to user involvement as a requirement in
application development. Hopefully, the days of ap­
plication development by technicians who never
consult with users are gone, or soon will be. Future
generations of computer-literate users will demand a
say in how their systems are developed. The progno­
sis, then, is for user involvement to continue slow
growth of use in the United States.

OVERVIEW ______ _
OF THE BOOK _________ _
In this chapter so far, we have prefaced and intro­
duced the major topics of the book. In addition
to identifying specifically how the above topics
will be used later in the book, there are many more
topics that you will also learn that we briefly out­
line here.

Applications
Applications are the underlying topic of all we dis­
cuss in this text. You should already have a fairly
good understanding of what an application is. We
will not discuss that topic further.

What we will discuss throughout the text is how
application types relate to each of the topics. You
will get answers to questions such as: Which life
cycles and methods are most appropriate to which
application types? When do application characteris­
tics and technologies affect the choice of life cycle
and/or methodology?

Project Life Cycles
Project life cycles should also have been mostly re­
view. PLCs, per se, are not mentioned again. Rather,
the phases of feasibility, analysis, design, testing,
language selection, and testing each have their own
chapters. One difference between this text and most
other texts is that multiple methodologies and devi­
ations from the standard PLC are discussed in the
context of each phase.

Part I: Preparation for
Software Engineering
Part I prepares you for the tasks of developing and
implementing an application. The chapters in this
section introduce you to

• research on learning and software engineering
to highlight an effective means of studying
and practicing this work

• the ABC Video case used throughout the text
• the roles of project manager and software

engineers
• methods of gathering information about the

task to be automated
• proper behavior during application de­

velopment

Part II: Project Initiation
Mter you know how to elicit information, we begin
talking about project development. Part II first
discusses organizational level re-engineering, a
method to developing application plans. Then, feasi­
bility analysis is detailed in the next chapter. These
discussions are separated from those about the
methodologies because these tasks are assumed by
most methodologies. For each chapter, the theories

underlying the concepts are introduced, a method of
performing the tasks is described, and examples are
provided from ABC to help make the information
concrete.

Part III: Analysis and Design
Part III is devoted to analysis and design activities
that each take about 20% of application development
time. During analysis, the SE concentrates on defin­
ing what the application will do. During design, the
requirements are translated to define how the appli­
cation will operate in its specific hardware and soft­
ware environment. One representative methodology
from each broad class of methodologies is discussed
in detail in Chapters 7 through 12. Chapters 7 and 8
discuss analysis and design, respectively, for process
methodologies. Chapters 9 and 10 relate to data­
oriented methodologies. Chapters 11 and 12 present
object-oriented methodologies. Based on ABC's
rental processing application, we will discuss what
each methodology can and cannot do for you during
logical definition of application requirements. For
each methodology, the theories underlying its de­
velopment are described and representative CASE
tools available to support application development
are provided.

At the conclusion of the methodology discussion,
Chapter 13 recaps the graphical representations and
thinking processes used in each methodology. The
methodologies are compared and contrasted on sev­
eral sets of criteria. In addition, future developments
in technology and applications and their impact on
methodologies are developed.

Some tasks are performed during analysis and de­
sign, but are not addressed by most methodologies.
These forgotten activities are included in this section
and discussed in Chapter 14.

Part IV: Implementation
and Operations
Many tasks remain to complete an application de­
velopment, including programming, testing, main­
tenance, and change management. Each of these
topics is related to application and methodology
types in Chapters 15 through 18. For every chapter,

Overview of the Book 41

applicable automated support tools are identified.
Chapter 15 discusses the selection of a target lan­
guage for an application. Code for applications will
be increasingly generated by the CASE tool. As
CASE use increases, the need to code, then, is
replaced with a need to choose an appropriate
language.

Similarly, many applications now use purchased
software rather than customized code. Chapter 16
discusses the selection and purchasing of hardware,
software, or consulting services for application
development.

Testing is required of all applications developers
at present whether a machine generates the code or
not. Chapter 17 discusses different types of testing,
testing techniques, and the development of test plans
for an application.

Change is a way of life in application develop­
ment. Chapter 18 deals with the management of
change for documents and software. The section on
software maintenance describes re-engineering as
it applies to deciding whether or not to replace
or maintain code. Several replacement options
are presented.

Finally, the last chapter discusses careers in soft­
ware engineering. Keeping current in a profession
that constantly changes is a daunting task. In Chap­
ter 19, you will receive tips on the type of reading
you should do and the types of professional organi­
zations you might join to enhance your ability to stay
current. In addition, you will learn the types of jobs
available to you as a novice software engineer and an
approach for deciding on a starting job.

SUMMARY ________ ~ __ _
This chapter prefaces and summarizes the contents
of the text. Software engineering was defined as a
systematic approach to the development, operation,
maintenance, and retirement of software. A software
engineer is a person who has a broad knowledge of
methodologies, life cycles, languages, and all as­
pects of software development, and who applies that
knowledge to the systematic development of appli­
cation systems. The two main goals of software en­
gineering are to build a quality product through a
quality process.

42 CHAPTER 1 OveNiew of Software Engineering

N ext we defined applications characteristics, re­
sponsiveness, and types. An application is a set
of related programs that perform some business
function. The characteristics that all applications
have in common are data, processes, and constraints.
Application responsiveness reflects whether the
application is batch, on-line, or real-time. Finally,
application types include transaction processing,
query, DSS, and expert systems.

Project life cycle is the breakdown of work for
initiation, development, maintenance, and retire­
ment of an application. Alternative project life
cycles include sequential, iterative, and the learn­
as-you-go. The sequential life cycle includes a series
of phases for initiation, feasibility, analysis, concep­
tual design, design, programming/unit testing, test­
ing, implementation and checkout, maintenance, and
retirement.

Methodologies are policies, techniques, and tools
that guide the activities of each phase of a software
project life cycle. The five classes of methodologies
in this text are process, data, object, social, and se­
mantic. Process and data methodologies are fairly
mature guidelines for developing applications.
Object and semantic are emerging methodologies
that help us build systems using artificial intelligence
and new technologies. Social methods are really
techniques for involving users and assume the use of
one of the other four methodology classes as well.

REFERENCES __________ __

Boehm, Barry W., Software Engineering Economics.
Englewood Cliffs, NJ: Prentice-Hall, 1981.

Booch, Grady, Software Engineering with Ada, 2nd ed.
Menlo Park, CA: Benjamin-Cummings, 1987.

Booch, Grady, Object Oriented Design with Applica­
tions. Redwood City, CA: Benjamin-Cummings,
1991.

Bostrom, Robert P., and J. Stephen Heinen, "MIS
problems and failures: A socio-technical per­
spective," Part I, MIS Quarterly, September 1977,
pp.17-28.

Chen, P. P-S. "The entity-relationship model-Toward a
unified view of data," ACM Transactions on Data
Structures, Vol. 1, March 1976, pp. 9-36.

Davis, Gordon, and Margrethe Olson, Management
Information Systems: Conceptual Foundations, Struc­
ture and Development, 2nd ed. New York: McGraw­
Hill, 1985.

Department of Defense, Standard for Application Devel­
opment, Guideline #2167a. Washington, DC: US
Government Printing Office, 1985.

DeMarco, Tom, Structured Analysis. New York: Yourdon
Press, 1979.

Eliason, Alan L., Online Business Computer Applica­
tions, 2nd ed. Chicago, IL: Science Research Associ­
ates, 1987.

Feigenbaum, E., P. McCorduck, and H. P. Nii, The Rise
of the Expert Company. New York: Vintage Books,
1989.

Gane, c., and T. Sarson, Structured Systems Analysis:
Tools and Techniques. Englewood Cliffs, NJ:
Prentice-Hall, 1979.

Gane, Chris, Computer-Aided Software Engineering: The
Methodology, The Products and the Future. Engle­
wood Cliffs, NJ: Prentice-Hall, 1990.

IEEE, IEEE Software Engineering Dictionary. Piscat­
away, NJ: IEEE Press, 1983.

Lientz, R P., and E. R Swanson, Software Maintenance
Management: A Study of Maintenance of Computer
Application Software in 487 Data Processing Organi­
zations. Reading, MA: Addison-Wesley, 1980.

McClure, Carma, CASE is Software Automation. Engle­
wood Cliffs, NJ: Prentice-Hall, 1990.

Martin, James, Information Engineering, Book 1: Intro­
duction, Book 2: Planning and Analysis, Book 3:
Design and Implementation. Englewood Cliffs, NJ:
Prentice-Hall, 1990.

Necco, Charles R., Carl L. Gordon, and Nancy W. Tsai,
"Systems analysis and design: current practices," MIS
Quarterly, December 1987, pp. 461-476.

Parnas, D. L., "On the criteria to be used in decomposing
systems into modules," Communications of the ACM,
Vol. 15,#12, 1972,pp. 1053-1058.

Sprague, Ralph H., Jr., and Hugh J. Watson, Decision
Support Systems: Putting Theory into Practice. Engle­
wood Cliffs, NJ: Prentice-Hall, 1986.

Swanson, E. R, Information System Implementation:
Bridging the Gap between Design and Utilization.
Homewood, IL: R. D. Irwin, 1988.

Turban, Efraim, Decision Support and Expert Systems':
Management Support Systems. New York: Macmillan
Publishing Company, 1990.

Yourdon, Edward, and Larry L. Constantine, Structured
Design. New York: Yourdon Press, 1978.

KEy TERMS _______ _

adaptive maintenance
analysis
application characteristics
application

responsiveness
application type
automated interface
batch applications
class
coding
computer-aided software

engineering (CASE)
conceptual design
configuration

management
constraint
control constraint
corrective maintenance
data
data analysis applications
data methodology
data warehouse
decision support

applications
declarative language
design
development
economic feasibility
embedded system

engineering
executive information

system (EIS)
expert systems (ES)
feasibility
goals ofSE
group decision support

systems (GDSS)
hierarchic logical data

model
human interface
implementation
inferential constraint
initiation
input
interactive processing
iterative project life cycle
joint application design

(JAD)

knowledge acquisition
subsystem

knowledge base
learn-as-you-go project

life cycle
logical data model
maintenance
manual interface
meta-data
meta-meta-data
methodology
network logical data

model
object-oriented logical

data model
object-orientation
on-line application
operations
organizational

feasibility
output
perfective maintenance
physical data model
postrequisite constraint
prerequisite constraint
process
process methodology
product
program design
proto typing
quality assurance
query application
real-time application
relational logical data

model
retirement
retrieval
SE process
SE product
semantic methodology
sequential project life

cycle
social methodology
software
Software Development

Life Cycle (SDLC)
software engineer
software engineering

spiral application
development

storage
structural constraint
structured problem
subsystem design
technical feasibility
testing
time constraint

Study Questions 43

transaction-oriented
application

Transaction Processing
System (TPS)

unit testing
unstructured problem
validation
verification

EXERCISES _______ _

1. Develop a table of application characteristics
down the rows in the first column, and the appli­
cation responsiveness levels across the columns.
How does each application characteristic differ
for each level of responsiveness?

2. Develop a table of application characteristics
down the rows in the first column, and the
methodology classes across the columns. Begin
to develop a comparative table of the way each
methodology prescribes documenting the re­
quirements for each application characteristic.
You will not be able to complete the table at this
point.

STUDY QUESTIONS _____ _

1. Define the following terms:

application
characteristics

batch application
constraint
data methodology
meta-data
object
on-line application

project life cycle
proto typing
real-time application
semantic methodology
time constraint
unstructured problem
validation

2. Define how each methodology'S history is
affected by technology.

3. What are the four application types and how do
they differ?

4. What are the subtypes of decision support sys­
tems? How do they differ?

5. What is computer-aided software engineering?

44 CHAPTER 1 Overview of Software Engineering

6. What is an application?
7. How do real-time and on-line applications

differ?
8. What is the range of artificial intelligence

applications? What area do most expert sys­
tems cover today?

9. What is the starting point for analysis in a
process methodology? for a data methodology?

10. Why is it important to know the orientation of
a methodology?

11. If most companies do not use methodologies,
why should you learn how to use them?

12. Is some methodology better than none? Is
some life cycle better than none? Discuss the
pros and cons of using and not using method­
ologies and life cycles.

13. What are the components of a feasibility
study? What type of analysis is performed for
each?

14. What are the phases of a sequential develop­
ment life cycle? How do they vary when you
use prototyping?

15. What are the five types of constraints? Give an
example of each.

16. What are the four application types? Give an
example of each.

17. How do on-line and real-time applications
differ?

18. Draw a diagram showing the operation of a
typical batch application. Then draw a diagram
showing the operation of a typical on-line
application. Discuss how they are similar and
how they are different.

19. What is the difference between a semantic
methodology and an object-oriented
methodology?

20. What is quality assurance and when is it
performed?

21. What is meaningful user involvement?
22. List the three uses of prototyping.
23. What are the dangers in using prototyping?
24. What is wrong with a learn-as-you-go life

cycle?
25. What is dangerous about using no methodol­

ogy and no life cycle?

* EXTRA-CREDIT QUESTIONS

1. Develop the pros and cons of the ethical issues
described in Example 1-5. What is your opin­
ion? How can the open questions be resolved?

2. What can be done to further the involvement
of users in applications development? Should
this be done? How can it be done in an ethical
way?

3. Are methodologies as you know them at
this point culture free? How can culture get
in the way of their use in a multinational
organization?

4. Think beyond this text to the development of
applications in a multinational organization.
What are cultural and ethical issues in building
applications that will be used in many countries
of unequal computer resources?

PA

PREPARATION
----------------------~----------------FORSOFTWARE ________ ~ ____ ~-

ENGINEERING
--------------------------------~-----

The four chapters in this section prepare you for the
actual work of software engineering. Chapter 2
serves two purposes: First, research on learning and
software engineering are summarized to give you
some ideas about how to organize the text's material.
Good mental maps of the information ease your
learning and help you keep the different methodolo­
gies distinct. Second, a case describing an applica­
tion to be built is introduced: ABC Video rental
processing. The application is developed in each of
the methodologies we will discuss.

Project managers and software engineers perform
different duties and are usually different individuals
on a project team. In Chapter 3 you will learn the

roles of project managers and software engineers
and how they complement each other. The kinds of
questions we will answer are: What does a project
manager do? How does it differ from a software
engineer? Why is knowledge of management impor­
tant to a software engineer?

Last, in preparation for developing systems,
Chapter 4 defines techniques for gathering the in­
formation you need to analyze and design a system.
Then, we will discuss how you should act and how
to evaluate what you are told during information
gathering. Sample dialogues between ABC man­
agers and the software engineering team illustrate
the information presented in Chapter 2.

45

CHAPT ER2

LEARNING ------------------------.. --------~~
APPLICATION ----------------------.. --------~--~
DEVELOPMENT

--------------------,.--------.. --~
INTRODUCTION ____ _

There is rarely one 'right' solution application in
software engineering. Just as in Chapter 1, we said
there is rarely one 'right' way of getting a solution
for an application. Despite this ambiguity of the
software engineering process and product, there are
approaches to problem solving in software engi­
neering that are more successful than others. Your
gaining experience to know those approaches is
one goal of this text. To assist you, this chapter dis­
cusses how we learn, how we evolve from novice
to expert, and how you can apply this knowledge to
mastering the material in this book. In the second
section, the case study we follow throughout the text
is introduced. The case is related to learning ap­
proaches suggested in the first section, and to the
review in Chapter 1. First, let us turn to learning and
the development of expertise.

How WE DEVELOP ___ _
KNOWLEDGEAND ____ _
EXPERTISE ______ _

Learning
There are two basic stages of skill development in
learning that we call the declarative and procedural

46

knowledge development stages. In the declarative,
or what stage, we learn basic skills, rules, and activ­
ity sequences. We learn declarative knowledge be­
fore process knowledge. During the process, or how
stage, we imbed the what knowledge into a process.
We learn how to perform the activity sequences, and
how to integrate the different rules. In the last part
of how learning, we internalize both the declarative
and process knowledge so they become part of our
automatic memory.l

The internalization of declarative and process
knowledge occurs through

• experiencing real life
• doing classroom exercises
• reading cases and solutions
• developing practice problems with feedback
• studying both good and bad examples

Cognitive psychology and artificial intelligence
research describe human thinking as case-based
reasoning. A case is a predetermined representation
of event sequences in a particular setting.2 During

1 For a complete discussion of declarative and process knowl­
edge, see Chi, Glaser, & Rees, 1982.

2 Kintsch & Mannes, 1987, discuss case-based reasoning.
Schank & Abelson, 1977, also writing about artificial intelli­
gence call case-based reasoning "script" based reasoning. The
two terms--case and script-are essentially the same.

How We Develop Knowledge and Expertise 47

Declarative
Method
Knowledge

Procedural
Method
Knowledge

Problem Domain Knowledge

Problem
Statement

Mental
Model of
Problem

Mental Model

CASE
Knowledge

Analyist
Knowledge

r-------t ... ~1 of Problem ~ Solution
Solution Representation

Declarative
Method
Knowledge

Procedural
Method
Knowledge

Methodology Knowledge

Mental
~ Model of

Methodology

FIGURE 2-1 Interaction of Knowledge Types in Systems Analysis (adapted from Vessey &
Conger, 1993)

learning, we recognize patterns of alternatives,
expected actions, and decisions that work. After
reaching a detailed level of understanding of the pat­
terns, we internalize a case, imbedding the patterns,
actions, and decisions into our knowledge structure.

In systems analysis, two different types of cases
might be appropriate: analysis task and problem
task. Figure 2-1 illustrates the information used in
analysis and how they interact. The analysis domain
case is the declarative and process knowledge of
actions needed to do the analysis task. We can divide
analysis tasks further into subjective and objective
activities. Subjective analysis activities are subprob­
lems in application development that accompany all
methodologies. Some representative analyst knowl­
edge includes knowing

• what life cycle is appropriate
• what data-gathering technique is likely to be

most effective
• when data gathering is complete enough
• when we should iterate through earlier stages

of the process

During objective analysis activities, we describe
the functioning and design of a proposed application.
We may further subdivide objective activities into
techniques used, such as methodology or computer­
aided software engineering (CASE) tools. When we
do not follow a methodology, we rely on our own
problem-solving ability and knowledge.

The second type of knowledge required to
develop an application is problem task case

48 CHAPTER 2 Learning Application Development

knowledge. Problem task knowledge is the de­
clarative and process knowledge of the problem
domain being automated. For example, order entry­
inventory control processing describes a general
problem task domain. If we add that the system is for
a retail business, it is less general. If we add that the
system is for Sears and Roebuck, for instance, it is
less general again. During the automation process,
we apply our knowledge of how to do analysis to
the problem domain. We use analysis knowledge
both to describe the current system and to develop
the functions of the new system.

Use of Learned Information
Case-based reasoning relies on our recall of past
similar experiences, that is, analogous events. Anal­
ogies are similar experiences that we use to

• classify problems
• plan a course of action
• suggest explanations
• suggest means of recovery from failures

When the analogy matches the current situation,
we use it to predict what will happen based on the
analogous event. When the analogy does not fit, we
look for similarities between current and past expe­
riences from which we can generalize to build new
analogies.

During the learning process, we build our own
examples to help us learn new information. We rec­
ognize similarities between different episodes, com­
pile the similar, generalized events, and form a new
memory case. This generalization process is learn­
ing. Learning calls for failure of an analogous ex­
pectation to work for the current case, followed by
explanation of the failure which we make sense of
and fit into our own memory as a new case.

Why is the use of analogy so important? System
analysis is work that requires judgment and adjust­
ment. System analysis has nonoptimal solutions (i.e.,
relies on satisficing), and takes place within a
bounded knowledge base. Analogical reasoning is
better for systems analysis than reasoning by under­
standing because analogical reasoning relies on
experience to generate cases while understanding

relies on experimental trial and error. When ana­
lysts have applicable analogous experience, we try to
fit that knowledge to the current situation to serve
several purposes: understanding of situational dy­
namics, generating options, and calculating the
chance of success of an application option.

In systems analysis tasks, there are frequently one
or more aspects of a problem that are unfamiliar to
the analyst. In unfamiliar situations, analysts first
rely on aspects of the work with which we are
familiar, then enlarge and broaden the applicability
of our analogical knowledge. But what happens
when we do not have the experience to use analogies
or our analogies do not appear applicable? Then, we
turn to expert/novice differences in problem solving
for general tasks to see what happens.

Expert/Novice Differences
in Problem Solving
The differences between experts and novices are dif­
ficult to pin down. Expert analysts are considered to
have an extensive, internalized knowledge upon
which they draw to apply analogous problem
domains and problem-solving techniques to a cur­
rent analysis task. They work quickly, knowing what
they know and what they don't know, and are able
to determine at least one workable solution quickly,
sometimes within minutes. A novice, on the other
hand, is slow and unsure, exhibiting some, but not all
expert behaviors, and making mistakes throughout
the process. Experts and novices differ consider­
ably in their approaches to solving problems. For
instance, novices

• develop local mental models of problem
parts, that is, work on bits of small problems
rather than on integrating the bits into a
whole. For example, novices concentrate on
adding customers instead of concentrating on
customer maintenance, including add, change,
delete, and retrieval processing.

• use undirected search in a trial and error
manner (for example, to determine the utility
of a new technology). The undirected way is
to look through several magazines to see if

How We Develop Knowledge and Expertise 49

they have articles on the technology, instead of
looking through a subject index at a library.

• analyze surface features (for example, think
of control statuses and their allowable values
instead of the implications for processing that
relate to each value)

• simulate design entities in isolation (for exam­
ple, simulate video rental processing without
paying attention to how it works with return
processing)

• misconceive actions (for example, never
analyze the complete rental/return cycle)

• fail to integrate the chunked local models into
a whole global problem solution (for example,
fail to integrate history processing into the
rental/return cycle)

Novice problem-solving strategies include satis­
ficing and conservatism. Satisficing means to know­
ingly elect a nonoptimal solution.3 Novices search
for any solution; experts search for the best solu­
tion. Conservatism is minimal change of a solution;
it means the problem solver takes the first solution
rather than testing alternatives. Novices search for
alternatives only when the existing method fails, but
they cannot always tell that the existing method is
failing. So, in becoming conservative, novices use
their first conceptualization of a problem. In contrast,
experts use optimizing and alternative evaluation in
analysis and design. Because of conservatism,
novices suffer breakdowns-errors in the problem­
solving process. Since the process is both con­
strained and directed by a methodology, the
breakdowns relate to the analyst's mental model of
the problem and use of a methodology to develop a
mental model of the solution.

Conversely, experts do

• categorize problems (for instance, ABC
Video Rental processing is a simple form of
an order entry problem)

• develop global mental models of the problem
that they 'see' or visualize the entire problem
solution

3 See Simon [1960] for a more complete discussion of satisfic­
ing and decision making.

• use directed searches in problem expansion
and identification of similar problems

• analyze deep structures, not just define terms
but analyze their meaning, fit, and the political
and technical implications

• use goals and plans to determine what steps to
take in finding a solution

• perform skilled sequences of actions including
mental simulation and top-down expansion of
the problem

Experts use knowledge of the application devel­
opment process to direct actions independently from
the problem. For instance, regardless of the prob­
lem or methodology, you always begin with a defi­
nition of the scope of the activity. This abstract
knowledge about structuring of a problem, proce­
dures, and process uses internalized cases and plans,
and relies on experience. Problem analysis and
design involve decomposition of a problem into sub­
problems, relying on sub strategies of analogy and
understanding to guide decomposition in a top-down
manner. When the problem domain is new and the
problem type is new, expansion progresses breadth­
first. But, for problem solving in familiar domains,
experts prioritize areas on which to focus, using a
depth-first strategy for each new area.

With methodology training, practice, and feed­
back, novice software engineers can display many
expert behaviors in a short time, i.e., after analyz­
ing and designing as few as three case problems.4

Methodologies sequence events, and constrain
and direct the actual analytical process. Guide­
lines and heuristics about what to analyze and how
to analyze it are supplied by the method with com­
ments supplied by the text and instructor. Relation­
ships are identified to link each deliverable within
a method, associating the thought processes used
to develop the deliverables. All of these directed
activities speed and simplify both the develop­
ment of expert behavior and the internalization of
methodologies.

Research on whether there are differences
between methodologies for facilitating expert

4 See Vessey & Conger, 1993, for an example of this type of
study.

50 CHAPTER 2 Learning Application Development

behaviors is in its infancy. Several laboratory studies
by the author and others identify process methods
as easier to learn, with no noticeable difference
between methodologies in the delivered quality of
the resulting proposed logical system. One thing we
do know is that not all methodologies work equally
well for all problems. This information will be dis­
cussed in Chapter 13.

How to Ease Your
Learning Process
In this text, we assume that you want to go beyond
knowing the basics of systems analysis and design,
but that you do know the basics. We assume you
have a working knowledge of structured systems
analysis and design, data base, and programming.
Most systems analysis and design courses practice
developing data flow diagrams. In this text, we will
discuss DFDs and compare and contrast them with
other methods, building on your current state of
knowledge. If you don't feel confident about your
ability to draw data flow diagrams, there are exer­
cises at the end of Chapter 6 for practice. For data­
base knowledge you should know and understand
the value of normalization, and you should be
familiar with SQL and at least one database package.
For programming, you should have practice with
some procedural language (e.g., Cobol) writing and
debugging programs that read sequential files to gen­
erate reports. Knowledge of data structures, files,
and a structured language, such as Pascal, is helpful
but not necessary to using this book successfully.

Application development is essentially a prob­
lem-solving exercise which is unique because there
is rarely one right or best answer to an automation
problem. Practitioners and professors of application
development will both tell you that the best way to
learn software engineering is to "Do it!" A quote to
support this idea comes from Confucius:

I see and I forget,
I hear and I remember,
I do and I understand.

In doing, you will make mistakes, get con­
fused, and think you are completely wrong. Don't

give up. Ask questions. Since we learn declarative
knowledge first, try to remember as much of the pro­
cedural what knowledge as you can while you read
the text.

Try to think like an expert. Try to develop a
global picture of the problem, methodology, or other
subject in your mind and develop a plan of attack
for your work session. Try to categorize probiems
both that you are working on and that you are having
with the work. Analyze your thought processes to
develop a better understanding of your problem­
solving approach. See if you can mentally simulate
your application design, asking yourself how com­
plete it is and how well it solves the problem.
Attempt to analyze the' deep structures' by asking
what each term means and what it implies. Talk
about all of these thought processes both with your
instructor and with other students.

Practice your reasoning process by reviewing the
example in the text, by working through problems
at the end of each chapter, and by talking to other
students about the reasoning you used to develop
your representations. Try different ways of doing the
same thing. When you find mistakes, try to learn why
what you did was not the best, and how you could
have reasoned to develop a better answer. Through
these processes, you will learn valuable problem­
solving skills that will be useful throughout your
career in IS.

APPLICATION _____ _
DEVELOPMENT ________ _
CASE _______ __
Now, we are going to switch gears, away from the
theoretical to the realistic. In this section, we pre­
sent the case used throughout the text. The setting, a
video store, is used for two reasons. First, it is a sim­
ple business that should allow you to build an accu­
rate, complete mental model. A complete mental
model is crucial to developing an accurate solution
in any methodology. Second, most of us rent videos
and have analogous knowledge that we can practice
using. As you read the cases, try to apply the ideas
discussed in the previous section. Ask yourself,

What is the 'big' picture? Do I understand this prob­
lem? Use analogies from your experiences as a video
store customer (or clerk) to the way Vic wants to run
his business.

The case-ABC Video Rental Processing-is
representative of the class of order processing/
inventory control problems. Through its process­
ing, customer, inventory, and order files are main­
tained. In addition, ABC Video Rental Processing
also is unique in that the video rental business is
different from other businesses, and ABC's video
rental processing is distinct from other video rental
businesses.

ABC Video rental processing similarities and dif-:
ferences from other types of order processing appli­
cations highlight the importance of knowing how to
learn. The similarities allow you to use analogy to
determine the general requirements of the applica­
tion. For instance, all orde~ entry applications require
customer, order, and inventory databases. Con­
versely, each company does its own detailed pro­
cessing for order fulfillment. In ABC's case, it is a
rental company, not a sales company, and rentals are
not handled the same as sales. So even if you already
know order processing, only a portion of the knowl­
edge will be applicable to the rental situation. Keep
this in mind when you discuss your own video store
experiences. Each store has its own 'brand' of pro­
cessing that might differ from ABC's. You must con­
stantly evaluate the applicability of your past
experience to the current situation, trying to use
everything possible without forcing inappropriate
past knowledge on the new client's application.
Next, the context of the industry is described.

History of the Video
Rental Business
The video rental industry experienced phenomenal
growth during the 1980s; The cost of entry into the
industry was low, every mom-and-pop store, super­
market, and small time entrepreneur entered the
market. There was no stability in the market and
competition was fierce. For instance, some busi­
nesses required "membership fees," others did not.

Application Development Case 51

Some busine~ses charged one price for all rentals,
usually about $2.00 per videotape per day. Some
businesses Qffered promotions, such as "Two-Fer­
Tuesdays," for which two tapes were the same price
as one.

Sooribusinesses recognized that 80% of their
videos were rented within 20 days of a tape's release
into the market. With this recognition, video stores
introduced a two-tiered pricing system, charging a
new-release price and an old-release price. The mar­
ket began to destabilize and small store owners, for
whom the business was a sideline, were forced to
decide if they wanted to devote the floor space to
videos which soon became obsolete, or if they would
abandon the business. They abandoned the business
in droves and the video rental industry went through
a period of consolidation.

The business today is stable, but is becoming
monopolized by large chains: RKO and Blockbuster,
for instance. ABC is an anomaly in this market
because it is still a one-person, one-store operation.
Vic, ABC's owner, would like to offer unique and
useful services with a minimum of 'bureaucracy' in
the process, and to eventually franchise his business
expertise. With these goals in mind, we turn to his
business requirements for defining the video order
processing application Vic wants to build.

ABC Video Order
Processing Task
ABC Video rents video cassettes to customers. Since
this business is becoming more competitive, Vic, the
owner, wants to automate rental processing, inven­
tory maintenance, and an expert system to speed and
simplify the rental process. Vic prepared information
for the consulting team to begin work. Vic tried to
separate what he wanted from what he needed. So,
the application business requirements are listed.
Then, Vic's 'vision' of the application is presented.

General Requirements (Excerpted
from a niemo from Vic to consultants)

... ABC Video currently owns two PC ATs and can
get IBM compatible PCs cheaply. I would like all the

52 CHAPTER 2 Learning Application Development

machines hooked together somehow to share the
information and have some equipment backup in case
a PC breaks down. Each PC will have a printer for
two-part forms. If the customer wants a copy of an
order, he or she takes the top copy and signs the bot­
tom. I need a signed copy to legally charge for unre­
turned tapes.

I want to minimize typing throughout all the process­
ing. Bar code readers are cheap. Can we use that tech­
nology for keeping track of rentals?

There are three to six clerks doing rentals at anyone
time, sharing machines. Rental/return processing is
about 90% of the business. Machines should be
allowed to do any processing, but should stay set at
rental/return processing once there. I want to be able
to know where every tape in the store is---out on
rental, on the shelf, or waiting reconditioning.

Business requirements relate to customer, videos,
rentals, and history information. Each of these
requirements are listed below.

Customer Requirements

Customers are people who desire to rent videos for
one or more days.

1. All customers must be 'registered'. This means
they must have an easy to remember identifica­
tion code, plus their phone number, name,
address, credit card number, credit card type,
and credit card expiration date on record before
they may rent videos.

2. All members of a household should be able to
share the same identification number.

3. Customers are required to pay rentals in
advance and settle late fees before any new
rentals are allowed.

4. Customers can return tapes in three ways:

• Drop off through a slot in the door
• Drop off at the desk as they walk in to get

new videos
• Drop off as they take out new rentals

5. Customers who fail to return tapes or damage
tapes are charged for the video on their credit
cards. Their customer record must be marked
'bad credit risk' and they will not be allowed to
rent videos.

6. Retrieval of customer information must be
allowed by identification, phone, name,
address, zip, or credit card number.

7. All fields must be allowed to be changed as
required.

8. Reports on number of new customers by month,
by year, 'bad credit risk' customers, late return­
ing customers, expired credit card numbers
must all be allowed.

9. Deleting of customers must be allowed by the
manager (Vic) only.

Video Requirements

Videos are taped movies, sports, or music events that
are rented to customers.

1. All videos received in the store must be 'regis­
tered' and tracked. Minimum information is
identification number of copies, title, vendor,
code, and date received. Video registration
should use some technology (a bar code
reader?) that does not require typing.

2. Individual copies of videos should be identifi­
able for rental/return processing.

3. All copies of a title must be identifiable to track
rental trends.

4. Counts of the number of rentals by copy and by
title should be available for reporting.

5. Retrieval of video information for reporting
must be allowed on any single or multiple crite­
ria. Common reports needed will be for mainte­
nance (based on how many rentals), number of
tapes and rentals by type (e.g., musical, horror,
drama, comedy), and for tapes that have not
rented in the last x days.

6. I don't know how hard or expensive this is,
but I would like some history information,
such as

• rentals by copy by title
• days rented by month by year by copy

by title
• rentals by customer so I can warn them when

they try to re-rent a title

7. Future provisions should allow for

• tracking the number of days of rentals by
copy by title or by dates of rentals

• multiple rental products (such as VCRs, cam­
corders, CDs, video games, Nintendo game
sets, and so on)

• automatic debit card or credit card payments
• variable rental charges based on promotions,

date of receipt, and so on

Rental Processing

1. First, NO BUREAUCRACY! Second, the
process MUST BE EASY. The rental process
must not require customers to carry a card,
must not require clerks to type much, and must
be easy to learn. Return processing must also be
simple and flexible.

2. To take out tapes, customer ID and video IDs
are entered. All other information should be
pulled from the computer.

3. The system should compute total charges,
include late fees, and compute change for
money entered.

4. The computer must be hooked to a cash drawer
or cash register that unlocks when the money
is entered.

5. A printed copy of orders must be kept and
signed by customers. These go to accounting
and are reconciled at the end of the day.

6. End of day totals for the cash registers must
show a total number of tapes out, cash paid,
tapes in, on-time tapes, late tapes, late fees, and
a total amount of money in for the day.

Vic's Vision of Rental/Return Processing

Customers choose videos for rental either by taking
the empty box from a shelf in the store or by telling
the clerk the video name(s). The clerk retrieves the
tape(s), which are filed alphabetically by name. The
clerk enters customer identification (could this be
phone number?) into the system to retrieve the cus­
tomer's record and to create an order. Any late fees
from previous rentals must be settled before a new
rental can occur.

The clerk uses a bar code reader (or other scanner) to
scan the video identifier and enter videotape identifi­
cation into the system. For each video bar code
entered, the system completes the rental detai1line on
the screen with today's date, videotape identification,
video name, and rental price. When bar code IDs for
all videotapes to be rented have been entered, the sys­
tem computes the total fee, automatically computing
and adding in sales tax. Late fees may be added to the
total if any are outstanding. The customer is told the
total amount and the money is paid.

When the clerk enters the money amount into the sys­
tem and puts the cash into the cash register, the sys­
tem reduces the amount paid by the total fee amount
to obtain the amount of change due to the customer.
The amount due to ABC for the rental is reduced to

Application Development Case 53

zero on the order. The customer signs a copy of the
order form as it is printed on a printer and takes the
video(s) home.

On return of tapes, the clerk scans the bar code IDs of
the videos. The system should retrieve and display the
order with the return date and any late fees added to
the detai1line. If either there are no late fees or late
fees are settled upon return of the video, the order is
deleted from the system and the history of use infor­
mation for the tape is updated. Late fees, and the
order information about tape(s) rented that caused the
late fee(s), remain on file until they are paid.

Trend analysis should include query capabilities with
statistics built in. This should be available on an
ad hoc basis without having to anticipate all queries
and/or types of analysis in advance. Part of the analy­
sis is used to determine how many tapes of each film
to purchase. Trends might be based on sequential
nights of rental, number of nights rented within the
first 20 days, number of nights rented within the sec­
ond 20 days, and so on. Each individual tape, even
though it might be the nth copy of m copies of the
same film, should be identifiable for this analysis.
These requirements are not included with the descrip­
tion of required file information above, because
you should determine the best way to supply this
information.

Discussion

Let's stop here a moment and think about the ABC
Rental Processing case. First, get a global mental
model of the problem. The problem is to automate
rental/return, customer, and video inventory pro­
cessing, including totaling of orders, computing
change, monitoring of late returns, and creation of
historical information. This sounds like a complete
statement of problem scope, and it could be used for
that purpose. In this case, the problem is small
enough to hold most of the functions in mind at
once.

Do you know enough to automate the problem?
No, you do not, not if you want to do it properly. The
processes, in terms of how a customer will interact
with ABC personnel, are fairly simple. Rental pro­
cessing has fairly well-defined data requirements
and business requirements about how to do the
process steps. The flow of processes for rentals still

54 CHAPTER 2 Learning Application Development

needs elaboration, but is complete enough for under­
standing the general problem.

What don't you know? The kinds of questions we
will ask will be details of what we already know:
How many? How often? What about variations on
the process? Questions will also elaborate on con­
straints and determine if there are interfaces. Some
examples of specific questions include: How many
videos are there in the store? How many new ones
arrive each month, week, day? How many customers
are there? How many rentals per day? What kind of
security is needed? Does Vic already have software
in mind for this application?

There are many more questions we will ask as
we move through the text, and the type of questions
varies with the methodology. Even with many ques­
tions, we do know quite a bit about the overall
process and Vic's ideas for how the process should
work. We know much less about specific details of
the operation that we need to fully understand the
problem and devise a workable solution. We will get
more details as we progress through the text.

In terms of the Chapter 1 discussion on types of
applications, rental processing will be on-line with
interactive processing. It is a transaction processing
application with some query processing. The rental
application transaction portion automates the paper­
work of rentals, returns, and payments for rentals.
The query and reporting part of the rental application
uses predefined data in a read-only manner, and has
predefined reporting requirements as well as ad hoc
reporting requirements. The rental processing case is
used throughout this text to reason through each
methodology.

SUMMARY
----------~----

In this chapter we explained the nature of learning
and experience. Declarative knowledge is knowl­
edge about what actions, procedures, or steps
are taken to perform some task. Declarative
knowledge is a required but incomplete learning.
Process knowledge is knowledge about how to
perform, reason, and integrate the steps we know
from declarative learning. While we learn, we form
analogies or cases that form patterns of experi-

ences. When we match a pattern from experience
with some current problem, we use analogical
thinking. When a past experience does not match
some current problem, we analyze the differences
to develop a new case based on the new situation.
The internalization of cases in our memory is
learning.

Novices differ from experts in their problem­
solving approach. Novices make mistakes because
they do not have a global view of a problem, cannot
mentally simulate a solution to the problem, and do
not see connections and meaning in problem parts.
Experts are able to analyze novel problems because
they use analogies from their experience to develop
a global view of the problem, can take a top-down
view of what they know and do not know, can sim­
ulate their solutions mentally, and understand con­
nections and meaning in problem parts. Several tips
for practicing software engineering were provided to
speed and simplify your learning.

The case company, ABC Video, and its role in the
video rental business was described, rental-order
processing details were developed.

REFERENCES
--------~---

Adelson, B., and E. Soloway, "The Role of Domain
Experience in Software Design," IEEE Transactions
on Software Engineering, SE-11, Vol. 11, 1985,
pp. 1351-1360.

Jeffries, R, A. A. Turner, P. G. Polson, and M. E.
Atwood, "The Processes Involved in Designing Soft­
ware," in Cognitive Skills and Their Acquisition (J. R
Anderson, ed.). Hillsdale, NJ: Lawrence Erlbaum
Associates, 1987, pp. 255-283.

Kintsch, W., and S. M. Mannes, "Generating Scripts
from Memory," in Knowledge Aided Information
Processing (E. van der Meer and J. Hoffman, eds.).
NY: Elsevier Science Publishing Co., Inc., 1987,
pp.61-80.

Klein, G. A., and R. Calderwood, "How do People Use
Analogies to Make Decisions?," in Proceedings of
Case Based Reasoning Workshop (J. Kolodner, ed.),
DARPNISTO, Clearwater Beach, FL, May, 1988,
pp. 209-218.

Littman, D. c., J. Pinto, S. Lechovshy, and E. Soloway,
"Mental Models and Software Maintenance," in
Empirical Studies of Programmers-l st Workshop

(E. Soloway and S. Iyengar, eds.). Norwood, NJ:
Ablex Publishing Co., July 5-6, 1986, pp. 80-98.

Schank, R. c., and R. P. Abelson, Scripts, Plans, Goals
and Understanding. Hillsdale, NJ: Lawrence Erlbaum
Associates, 1977.

Schank, R. C., "Explanation: A First Pass," in Experi­
ence, Memory and Reasoning, (J. L. Kolodner and
C. K. Riesbeck, eds.). Hillsdale, NJ: Lawrence
Erlbaum Associates, 1986, pp. 139-166.

Shemer, I., "Systems analysis: A systemic analysis of a
conceptual model," Communication of the ACM,
\'o1.30,#6,June, 1987,pp.506-512.

Simon, H., The New Science of Management Decision.
NY: Harper and Row, 1960.

\'essey, I., and S. A. Conger, "Requirements specifica­
tion: Learning object, process, and data methodolo­
gies," Communications of the ACM, accepted for
publication, 1993.

Wand, Y., and R. Weber, "A unified model of software
and data decomposition," in Proceeding of the 12th
International Conference on Information Systems (J. I.
De Gross, I. Benbasat, F. DeSanctis, and C. M. Beath,
eds.). NY: SIGBDP, Association for Computing
Machinery, 1991.

KEy TERMS _______ _

analogy
analysis domain
breakdown
case
case-based reasoning
categorize problems
conservation
declarative knowledge
deep structures
directed search
expert

generalization
global mental model
goal
local mental model
novice
plan
problem domain
process knowledge
satisficing
surface features
undirected search

EXERCISES _______ _

1. Develop pseudo-code for ABC Video's rental
processing system. Identify and discuss what the
essential portions of rental processing are. Dis­
cuss which procedures could be either included
or omitted without changing the essence of the
problem. (Note to Instructor: This is a useful

Study Questions 55

exercise to ensure that all students have a good
understanding of the problem.)

2. Describe a work situation you have experienced.
Discuss the organization: the structure of the
organization, its goals, its strategies for meeting
its goals, its culture, its managers' style, the
social life at work.
A. Describe your job and how your job con­

tributed to the organization's goals. Describe
the computer applications, if any, you used
in your job. Analyze what you did on your
job and recommend computer applications
that could have streamlined, enhanced, or
broadened your job. Do you have the 'big
picture' of the company and your job's role?
If not, how would you go about developing a
global view?

B. Describe some area of the organization (you
mayor may not have worked there) that
could use an application to speed its work,
make its work more accurate, enhance jobs,
provide better information to workers, or
simplify work life. Describe the application
and how it would meet its goals.

STUDY QUESTIONS ___ _

1. Define the following terms:
analogy
conservatism
declarative knowledge
global mental model

problem domain
satisficing
surface features

2. Which comes first-declarative knowledge or
process knowledge? Why? How does learning
work?

3. Why and how do we use analogies?
4. Why are analogies better used in systems analy­

sis and design than a trial-and-error method of
problem solving?

5. ,Describe the details of what it means to rent a
tape at ABC. How do the manual processes
translate into computer processes? Use analo­
gies from your own experience to discuss
rentals.

6. Make a list of questions you have about ABC
order processing that still need to be answered.

56 CHAPTER 2 Learning Application Development

Use analogies from your own video rental expe­
rience to identify issues that still need to be
resolved.

7. Describe the details of what it means to return a
tape. How do the manual processes translate into
computer processes? Identify subprocedures for
which you have choices about when and how
they are performed.

8. How do you develop a global mental model of
some problem? How do you know if you have a
global mental model of some problem? How do
you validate your mental model?

9. What does it mean to create historical informa­
tion? When does history get created? In the
ABC case, is history created at video rental
time? or at video return time? or at some other
time? How do you know when you have the cor­
rect answer to this type of question?

* EXTRA-CREDIT QUESTIONS

1. Write a one page analysis of some work experi­
ence you know about. Describe some function
and how it contributed to the organization's

goals. Describe the computer applications, if
any, used in the function. Analyze the job and
recommend computer applications that could
streamline, enhance, or broaden the function.
Make a list of questions you need answered to
gain a complete understanding of the problem
areas.

2. Draw a diagram or verbally describe (in pseudo­
code or your own words) how ABC Video per­
forms order processing. Make a list of questions
you have about ABC order processing that still
need to be answered. Describe how your experi­
ence as a video store customer helps you under­
stand what ABC is trying to do. Describe, from
your experience as a video store customer, how
you think a video store should be automated.
How does it differ from Vic's desires? What
should you do about those differences? What are
Vic's goals for the application in addition to pro­
cessing rental/returns? What features might you
consider for the application to meet those goals?
List three functions you can put in the system to
help meet Vic's goal of "no bureaucracy."

CHAPT ER3

PROJECT
------------------------------~--------.. -----MANAGEMENT

INTRODUCTION ____ _

The role of the software engineer (SE) differs from
the project manager in that the SE provides technical
expertise, while the project manager provides orga­
nizational expertise. Depending on the size of an
organization and project team, one person might per­
form both roles. Small project teams (Le., less than
five people) and organizations with limited software
development staff (Le., less than 10 people) expect
one person to assume both software engineer and
project manager roles. The larger the organization,
the more likely the functions are split and the more
extensive each person's experience is expected to be.

The proj ect manager and software engineer are
responsible for tasks that include both complemen­
tary and supplementary skills. In general, the soft­
ware engineer is solely responsible for management
of the life cycle, including the following areas
detailed in Chapters 4 through 14:

• Management and conduct of development
process

• Development of all documentation
• Selection and use of computer-aided software

engineering (CASE) tools
• Elicitation of user requirements
• Technical guidance of less skilled staff

• Assurance that representation techniques, such
as data flow diagrams, are correct, consistent,
and validated

• Oversight of technical decisions
• Assurance that constraints (e.g., two-second

response time) are identified and planned as
part of the application

Complementary activities are activities that are
performed jointly but with different emphasis
depending on the role. Complementary activities
include planning the project, assigning staff to tasks,
and selecting from among different application
alternatives.

The project manager (PM) is solely responsible
for organization liaison, project staff management,
and project monitoring and control. These major
responsibilities are discussed in this chapter.

When one person or another is identified as solely
responsible for some activity, it does not mean that
they alone do the work. The SE and PM are team
leaders who work together in all aspects of develop­
ment. The SE may have project management expe­
rience. Sole responsibility means that when a
disagreement occurs, responsibility for the final de­
cision rests with the responsible person. Different
management styles determine how open a manager
is to suggestion and discussion of alternatives.

57

58 CHAPTER 3 Project Management

FIGURE 3-1 Example of Too General a Plan

A short discussion of appropriate behaviors for proj­
ect managers is also included in this section. These
behaviors are the project manager's responsibility
toward the project.

First we discuss the joint SE and PM activities.
Then we discuss activities for which the project
manager is solely responsible. Management styles
and a brief discussion of project manager respon­
sibilities to the project team are included in the
section on personnel management. The last sec­
tion lists computer-aided support tools for project
management.

COMPLEMENTARY -------

ACTIVITIES ______ _

Joint activities of the software engineer and project
manager include project planning and control,
assigning staff to tasks, and selecting from among
different alternatives for the application.

Project Planning
To plan the project, the project manager works with
the SE to determine human, computer, and organiza­
tional resources required to develop the application.
While a detailed discussion of planning is included
in Chapter 6, the aspects of special interest to the
project manager are in this section.

A project plan is a map of tasks, times, and their
interrelationships. It can be very general (see Figure
3-1) or very specific (see Figure 3-2). Neither ex­
treme of plan is very useful although some plan is
better than none. A rule of thumb for level of detail
is to define activities for which a weekly review of
progress allows the SE and project manager to know
whether the schedule is being met. Figure 3-3 shows
an example of a well-defined plan.

The general methodology of planning is as
follows:

1. List tasks. Include application development
tasks, project specific tasks, interface organi-

FIGURE 3-2 Example of Too Detailed a Plan

zation tasks, and review and approval
tasks.

2. Identify dependencies between tasks.
3. Assign personnel either by name or by skill

and experience level.
4. Assign completion times to tasks; compute

the most likely time for each.
5. Identify the critical path.

The project manager and SE share responsibility
for developing the plan. The SE's responsibility is
to know all of the tasks relating to the application be­
ing developed; the project manager's responsibility
is to ensure that all organizationally related tasks are
included in the list. (The application tasks are dis­
cussed in Chapter 6.) Organization tasks include the
following:

1. Review documents for completeness, con­
tent, consistency, and accuracy.

Complementary Activities 59

2. Negotiate, agree, and commit to start and end FIGURE 3-3 Example of Acceptable Level
dates for work. of Detail

60 CHAPTER 3 Project Management

3. Define necessary application interfaces; plan
for detailed interface design work.

All documentation, plans, and design work of the
project team is subject to review by at least the
user/sponsor. Many other departments or organiza­
tions might also be required to review some or all
of the work. These organizations might include man­
agers of IS, users, quality assurance, legal, audit,
operations, other application groups, government
regulators, industry regulators, or others. Each or­
ganization applies its specialized knowledge to the
application documents to assess their adequacy.

The second task is to obtain agreement and com­
mitments from outside agencies or departments. Fre­
quently, resources and work are provided by other
departments. Clerical support, for example, might
be from an Administrative Services Department.
Operations departments supply support in terms of
computer time, memory, disk space, terminals, log­
on IDs, access to software environments, access to
data bases, and so on as necessary to develop and
test the application. Auditors frequently want to
comment on auditing plans and change the design
based on their findings. Quality assurance depart­
ments might review documents to find inconsisten­
cies and errors that" require correction. Vendors
might need to install hardware, software, or related
applications that need liaison from the project team
and testing once installed. All of these activities need
to be scheduled and planned. Since dates for com­
mitments might not be known when the plan IS
developed, the plan contains the dates at which con­
tact should be initiated and dates by which the com­
mitment must be made in order not to impact the
delivery date.

Third, the project manager obtains requirements
for application interfaces from other application ar­
eas. An interface is data that is sent or received be­
tween applications. The interface application areas
might be in the same company, but might also be an
industry group or a government organization. The
plan reflects dates by which contact should be initi­
ated and by which the information is required.

If a make-or-buy decision will be made, the pro­
ject manager and SE work together to develop the
subplan for this decision. Sub activities relating to

acquisitions include creating and submitting requests
for a proposal (RFP), obtaining vendor quotes, eval­
uating vendor quotes, selecting and obtaining man­
agement approval for a vendor, negotiating contract
and delivery dates, and planning and testing of the
acquired item.

When all of the items are identified, they are re­
lated to each other. Tasks that are related are drawn
on a task dependency diagram showing the se­
quences of dependencies. Sequences may be inter­
dependent (see Figure 3-4). When all sequences of
tasks are on the diagram, independent tasks are
added. Milestones, such as the completion of a fea­
sibility analysis document, are shown and are visu­
ally obvious because the preceding" sets of tasks all
feed into that task. Task sequencing can vary de­
pending on the methodology used. (See Chapter 6
for more on this topic.)

Sequencing tasks is the first step to identifying the
critical path of tasks for the application's develop­
ment. The critical path is the sequence of dependent
tasks that together take the most development time.
If any of the tasks in the critical path are delayed,
the project is also delayed. So, the critical path tasks
are the greatest source of risk for project completion.

The next step is to estimate the amount of work.
For this discussion, we assume the project manager
and SE assign times to tasks based on their experi­
ence (Le., reasoning by analogy). Other methods are
discussed in Chapter 6. Times are assigned to each
task based on its complexity and amount of work.
Three times should be estimated: an optimistic time,
a realistic time, and a pessimistic time. The formula
used to compute the most likely time is shown in
Figure 3-5. The figure weights the most likely, real­
istic time by a factor of two in relation to the other
estimates.

While times ate being assigned, the skill sets and
experience levels of a person to do this task should
be defined. The list of skill sets and experience lev­
els is used to determine how many people and what
type of people are required on the project for each
phase. Other assumptions will surface, and a list of
them should be kept, as shown in Table 3-1. The
assumptions become part of the planning document.

When resource requirements and timing are com­
plete, several activities take place. The SE develops

Complementary Activities 61

FIGURE 3-4 Example of Interdependent Sequences of Tasks

(0 + 2R + P) /4= Most Likely Time Estimate

Legend:

O-Optimistic Time Estimate
R-Realistic Time Estimate
P-Pessimistic Time Estimate

FIGURE 3-5 Formula for Determining
Schedule Time

a schedule; the project manager develops a budget.
They both identify the critical path and discuss it in
terms of potential problems and how to minimize
their likelihood. Task definitions are made more de­
tailed for critical tasks, to allow more control and
monitoring.

When complete, the plan, schedule and budget
are submitted to the user and IS managers for com­
ment and approval. Work begins, if it hasn't already,
with the plan used to guide project work. The plan
is used by the project team to see where their work

62 CHAPTER 3 Project Management

TABLE 3-1 Project Assumptions

Type Assumption

Availability of configuration, component of mainframe,
special hardware, programmer support equipment, tools,
time

User time involvement. This may be expressed in time
per day for a number of days, or may be in number of
days.

Need for services from audit, law, vendors, quality
assurance, or other support groups

Software performance

Test time, terminal time, or test shot availability

Disk space

Memory, CPU time, tape mounts, imaging access,
or other mainframe resources

Personnel

Hardware/software availability

fits in the whole project, and it is used to monitor
progress toward project completion.

The plan should never be cast in concrete. Plans
should change when the tasks are wrong, times are
underestimated, or there are changes in project scope
that alter the activities performed in some way.

Example

Programmers will gain access to IEW by September
10,1994.

A middle manager representative from Accounts
Payable will be available in a Joint Application
Design session scheduled for June 1-5, 1994.

The Audit Department will be able to review and
comment on the adequacy of audit controls within
7 business days of receiving the review document.

The Database Management Software will be able to
process 10,000 transactions per day.

Batch programs can be tested simultaneo~sly with on-line
programs.

Batch programs will be able to average three test runs
per day with an average turnaround of less than 2.5 hours.

Batch programs will be less than 160K and will require
no more than two tape mounts each.

Operations will make available 100 cylinders of IBM
3390 disk space for the project beginning 9/10/94. An
additional 50 cyl. will be added for test databases by
10/30/94. An additional 250 cyl. will be added for pro­
duction database conversion by 11/30/94.

For testing, 30 CPU minutes per day plus 75 hours of
terminal access time will be required beginning 10/30/94.

Two senior programmer/analysts with 2-3 years of
Focus experience and 2-3 years of on-line, multiuser,
application development experience is required by 6/30/94.

Four programmers with 1-2 years of Focus experience and
one year of VM/CMS experience is required by 7/15/94.

Imaging equipment will be available for application test­
ing no later than 9/10/94.

15 PCs or IBM 3279 terminals will be available for
access and testing use no later than 9/10/94.

Assigning Staff to Tasks
Task assignment is fairly straightforward. The ma­
jor tasks are to define the tasks and skills needed, list
skills and availability of potential project members,
and match people to tasks. The project manager and

SE actually begin discussing possible project staff
when they are planning the project and tentatively
assigning people to tasks. Then the project man­
ager's real work begins.

The hard part of an assignment is the judgment
required to match people whose skills are not an ex­
act match for those needed; this is the usual case. For
instance, you might want two programmer analysts
with the following list of skills:

• design and programming experience on a sim­
ilar application

• three to five years experience in the opera­
tional environment

• one to two years of experience with the data-
base software

• managerial experience for two to four people
• known for high quality work
• known as an easy-going personality

Suppose your manager gives you a junior pro­
grammer right out of a training program, an analyst
who does not program and who has no operational
environment, database, or managerial experience,
and a senior programmer who does no design, is
known to be difficult, and sometimes does high qual­
ity work.

The good news is that you have three people
instead of two. The bad news is no one of them has
all of the qualifications you want. What do you do?
This is what management is all about.

The project manager should get to know the team
members well. This means assessing their position
with the company, expectations on the project, spe­
cific role desired for the person, possible start and
end dates for work, and personality or personal is­
sues that might affect their work. Much of this in­
formation can be got from previous performance
reviews. But nothing substitutes for discussing the
information with the person.

The project manager has responsibilities to his or
her manager, the client sponsor, and to the rest of
the project team to get the best, most qualified peo­
ple possible. In these capacities, the project man­
ager honestly discusses previous problems with the
person, any personal problems that might detract the
person's attention from work, and any outside jobs,
school, or other commitments that might also hin­
der their commitment. The person and the project

Complementary Activities 63

manager both should be given an opportunity to ac­
cept or reject the possibility of work. Even when
there is no choice, it is also the responsibility of the
project manager to make his or her expectations of
quality and quantity of work clear. If the person will
not report directly to the project manager, the per­
son she or he will report to should also be at the
meeting. In this way, everyone knows exactly what
was said and what commitments were (or were not)
made.

The answer to the task assignment problem above
is to assign the tasks to best fit the skills. Assign the
senior person responsibility for the work of the
junior one, and provide motivation and incentives
for quality work (see the following section on moti­
vation). You also alter the schedule, if needed, to
more closely mirror the actual skills of the team.

The heuristics, or rules of thumb, for personnel
assignment are as follows:

1. Assign the best people to the most complex
tasks from the critical path. Assign all critical
path tasks. As the experience and skill levels
of people decrease, assign less complex and
smaller tasks. Do not give new, junior, or
unqualified staff any tasks on the critical
path. Assignment of senior people to critical
tasks minimizes the risk of missing the target
date.

2. Define a sequence of work for each person to
stay on the project for as long as their skill
set is needed. Try to assign tasks that provide
each person some skill development.

3. Do not overcommit any person by assigning
more tasks than they have time. Make sure
each person will be busy, but allow time to
finish one task before beginning another.

4. Allow some idle time (2-5%) as a contin­
gency for each person. Do not allow more
than eight sequential hours (i.e., one day) of
idle time for any person.

5. Do not schedule any overtime. Scheduled
overtime places unfair stress on people's pro­
fessional and personal commitment and is a
regular enough occurrence in development
that it should not be scheduled at the outset.

The project manager is also responsible for coor­
dinating movement from another assignment to the

64 CHAPTER 3 Project Management

current development project. This coordination is
done with the other project manager(s) involved and
possibly the personnel department. New hires should
be assigned a 'buddy' to help them get familiar with
the company, its facilities, the computer environ­
ment, policies, and procedures. Senior staff should
be assigned to mentor junior staff, encouraging the
learning of new skills on the job.

Finally, the project manager must ensure that
each person understands the expectations and duties
assigned to him or her. All staff should have a copy
of their job description. They should know the extent
of their user interaction, extent of their intraproj-ect
responsibility and communication, and policies
about chain-of-command on who to go to with prob­
lems, project errors found, or problems with work
assignments.

Ideally, the team should be given an overview of
the application, a chance to review the schedule, and
an opportunity to comment on their ability to meet
the deadlines assigned. If they cannot meet the dead­
lines and have reasonable explanations, the plan,
schedule, and budget should be changed. In addition,
any training or learning on-the-job that is required
should result in a lengthening of the schedule. If the
team members agree to the schedule, then they are
committed to getting the work done within the time

allowed and should be held accountable for that as
part of their work assignment.

Selecting from Among
Different Alternatives
Applications all have alternatives for implementa­
tion strategy, methodology, life cycle, and imple­
mentation environment. The project manager and SE
together sort out the options, develop pros and cons,
and decide the best strategies for the application.

Implementation Strategy

Implementation strategy is some mix of batch,
on-line, and real-time programming. The decision
is based on timing requirements of users for data
accuracy, volume of transactions each day, and num­
ber of people working on the application at anyone
time. All of these numbers are estimates at the plan­
ning stage of an application, and are subject to
change. The strategy decision might also change.
In general, though, a decision can be made at the
feasibility stage to provide some direction for data
gathering.

As Table 3-2 shows, the timing of data accuracy
drives the decision between batch and on-line. Keep

TABLE 3-2 Decision Table for Implementation Strategy Selection

Timing of Data Currency

< 1 hour

< 4 hours

< 24 hours

N

N

Y

N

Y

Peak Transaction VolumelNumber of People Entering Data

<10

10-59

> 59

Options

Batch application

On-line application

Real-time application

x

y

N

N

x
X

N

Y

y

N

X

X

N

Y

y

X

X

y

y

N

N

X

y

y

N

X

X

y

y

X

in mind that these are rules of thumb and need to be
used in an organizational context. If data can be
accurate as of some prior period, a batch applica­
tion might be developed. If data must be accurate as
of some time of the business day, either on-line or
real-time strategies would be successful.

If the volume of transactions divided by the num­
ber of people is very high (over 60 per minute), then
a high-performance application, with many concur­
rent processes, that is, a real-time application, might
be warranted.

If the volume of transactions divided by the num­
ber of people is low (less than 25 per minute), but the
timing requires on-line processing, an on-line appli­
cation is best.

The gap in transactions per minute from 10 to 60
requires more information, specific to the project, for
a decision. Answers to several questions are needed.
For instance, how complex is a transaction? How
was the number of workers arrived at, and can the
number change? Is management willing to fund the
difference in cost for a real-time application over an
on-line one? Are there other factors (e.g., specific
database software to be used) to consider in the
decision? These questions are all context specific
and the resulting decision would be determined by
their answers.

Implementation Environment

The implementation environment includes the
hardware, language, software, and computer-aided
support tools to be used in developing and deploying
the application. The decision is not final at the fea­
sibility and planning stage, rather the alternatives
and a potential decision are identified. The issues to
be resolved for a final decision are then identified.

Frequently there is no choice of implementation
environment. The organization has one environment
and there are no alternatives; all development uses
one mainframe and one language (for instance,
COBOL). More often, as personal computers and lo­
cal area networks become more prevalent, the alter­
natives are mainframe or network with PCs as the
workstation in the chosen environment.

The decision is based frequently on the experi­
ence of the project manager, SE, and potential team
members. People tend to use what they know and not
use what they do not know. Ideally, the implemen-

Complementary Activities 65

TABLE 3-3 Decision Table for
Implementation Environment

CPU Bound

I/O Bound

< 100,000 Trans/
Day

> 100,000 Trans/
Day

Hardware
Mainframe

LAN

LAN + Mainframe
network

N

Y

y

x
X

X

N

Y

y

X

X

y

N

y

X

X

y

N

y

X

tation environment should be selected to fit the
application, not the skills of the developers.

For instance, if a real-time application is be­
ing built for a Sun workstation environment under
Unix operating system, C++ or Ada are probably
the languages of choice. Certainly, Cobol is not a
choice.

Guidance in implementation environment selec­
tion comes from the user. Do they have equipment
they want to use? How is it configured? What other
software or applications are on the equipment? How
amenable is the user to changing the configuration to
fit the new application?

Then, with this information, the decision table in
Table 3-3 can be used as a guideHne for selecting
the implementation environment.

In general, whenever there is a specific require­
ment, it tends to drive the remairling decisions.
Whenever there are general requirements, the deci­
sion can remain open for a longer time. Some direc­
tion-either toward a mainframe solution or a
PC/LAN solution-should be tentatively decided
during feasibility and planning. During this process,
the project manager should identify the issues
for further information needed in making a final
decision.

Methodology and Project Life Cycle

The final issue to be tentatively decided is which
methodology and how streamlined the Hfe cycle

66 CHAPTER 3 Project Management

TABLE 3-4 Decision Table for Methodology and Life Cycle Selection

Source of Complexity

Process Y

Data Y

Knowledge representation

Balanced

Novel problem N N

Methodology

Process X

Data X

Object X

Semantic

will be. Frequently, there is no choice about these
decisions, either. The organization supports one
methodology and one life cycle and there is no dis­
cussion allowed. Equally frequently, enlightened
managers know that not all projects are the same,
therefore the development of the projects should also
not be the same.

Methodology choices are process, data, object,
social, semantic, or some hybrid of them (see Chap­
ter 1). Life cycle choices are the sequential waterfall,
iterative prototyping, or learn-as-you-go (see Chap­
ter 1). These decisions are not completely separated
from those of implementation environment in the
previous section, because any fixed implementation
requirements can alter both the methodology and the
life cycle choices.

Assuming no special implementation require­
ments, the application itself should be the basis for
deciding the methodology. In a business environ­
ment, the rule of thumb is to choose the methodol­
ogy that addresses the complexity of the application
best. If the complexity is procedural, a process
method is best. If the complexity is data related, a
data methodology is best. If the problem is easily

Y

Y

Y Y

Y Y

N N Y Y Y Y

X

X X X

X X X X X

X X

broken into a series of small problems, an object
method might work best. If the project is to automate
expert behavior or includes reasoning, a semantic
methodology is best. A decision table summarizing
heuristics on deciding methodology and life cycle is
shown as Table 3-4.

Life cycle choice also requires some decision
about what type and how much involvement there
is of users. If som~ intensive, accelerated require­
ments or analysis technique is used [see joint
requirements RI~rlni~g (JRP) and joint application
design (lAD), Part II Introduction], either a stream­
lined sequ~ntiaJ life; cycle or an iterative approach
can beus~d. Very large, complex applications with
known requirements usually follow a sequential wa­
terfalllife cycle. If some portion of the application­
requirements, software, language-is new and
untested, prototyping should be used. Object orien­
tation assumes prototyping and iteration. If the prob­
lem is a unique, one-of problem that has never been
automated before, either alearn-as-you-go prototyp­
ing or an iterative life cycle would be appropriate.

In the next sections, the activities for which the
project manager has sole responsibility are detailed.

These activities include liaison, personnel manage­
ment, and project monitoring and reporting.

LINSON ______________ _

The project manager is a buffer between the techni­
cal staff and outside organizations. In this liaison
role, the project manager communicates and negoti­
ates with agents who are not part of the project team.
A liaison is a person who provides communications
between two departments. Examples of outside
agents include the project sponsor (who mayor may
not be the user), IS managers, vendors, operations
managers, other project managers, and other depart­
ments such as quality assurance (for validation and
testing), law (for contracts), and administration (for
~lerical and secretarial support).

For each type of liaison, status reports are an
important means of communication (see sample in
Figure 3-6). Status reports document progress, iden­
tify problems and their resolution, and identify
changes of plans to all interested parties. In addition,
many other communications of different types are
described for each type of liaison. The guidelines
here are just that-guidelines. They are developed
assuming that open communications between con­
cerned parties is desired, but the guidelines require
judgment and knowledge of the situation to sepa­
rate a good action from a less good action.

Project Sponsor
The sponsor pays for the project and acts as its
champion. A champion is one who actively sup­
ports and sells the goals of the application to others
in the organization. A champion is the 'cheerleader'
for the project.

The goals of liaison with the champion are to
ensure that he or she knows the status of the project,
understands and knows his or her role in dealing
with politics relating to the project, and knows the
major problems still requiring resolution.

The major duty of the champion is to deal with
the political issues surrounding the project that
the project manager cannot deal with. Politics are
in every organization, and politics relate to organi-

Liaison 67

zational power. Power usually is defined as the
ability of a person to influence some outcome. One
source of power comes from controlling organi­
zational resources, including money, people, infor­
mation, manufacturing resources, or computer
resources.

Political issues of application development do not
relate to the project, but to what the project repre­
sents. Applications represent change. Changes can
be to the organization, reporting structure, work
flow, information flow, access to data, and extent of
organizational understanding of its user con­
stitllency. When changes such as these occur, some­
on'e,'s status changes. When status changes, the
people who perceive their status as decreasing
will rebel.

The rebellion may be in the form of lies told to
analysts, refusal to work with project members,
complaints about the competence of the project
team, or any number of ways that hinder the change.
If the person causing trouble is successful, the proj­
ect will fail and his or her status will, at worst, be
unchanged. Politics, left unattended, will lower the
chances of meeting the scheduled delivery date and
raise the risk of implementing incorrect require­
ments. The project manager usually tries to deal with
the political issues first, keeping the sponsor in­
formed of the situation. If unsuccessful, the sponsor
becomes involved to resolve the problem.

In some organizations, the project manager com­
municates to the sponsor only through his or her
manager. In others, the project manager handles all
project communications. In general, treat the spon­
sor like your boss. Tell him or her anything that will
cause a problem, anything they should know, and
anything that will cause the project delays.

User
The user is the person(s) responsible for providing
the detailed information about procedures, pro­
cesses, and data that are required during the analy­
sis of the application. They also work with the SE
and project manager in performing the feasibility
analysis, developing the financial and organizational
assessments of user departments for the feasibility
study.

68 CHAPTER 3 Project Management

ICIA Industries-Interoffice Memo

DATE: October 10, 1994

TO: Ms. S. A. Cameron

FROM: J. B. Berns

SUBJECT: Order Entry and Inventory Control Project Status

Progress

We have resolved the testing problems between batch and on-line by going to a two-shift
programming environment. The on-line programmers are working from 6 A.M. to 2 P.M. and
the batch programmers are working from 2 P.M. to 10 P.M. This is not an ideal situation, but it
is working at the moment.

We are still two weeks behind the schedule for programming progress, and we may not be
able to make up the time, but we should not lose any more time.

The on-line screen navigation test began two days ago and is going smoothly. Several
minor spelling problems have been found, but no logic problems have been found. George
Lucas should complete the user acceptance of the screen navigation and screen designs
within three days if no other problems surface.

Problems

The decode table for warehouse location, due 5/12/94 from George Lucas, is still not deliv­
ered yet. This is going to delay testing of the on-line inventory allocation programs begin­
ning in ten days if we do not have it. Is there another person we can contact to get this
information?

Operations found what appears to be a bug in one of the CICS modules. When a screen
call is made, two bytes of the information are lost. We are double-checking all modules to
ensure that it is not an application problem. Jim Connelly is calling IBM today to see if they
have a fix for the problem. At the moment, this is not causing any delays to testing. But it
will cause delays beginning next week if the problem is not resolved. The delays will be to
all on-line modules calling screens and will amount to the time per module to code a work­
around for the unresolved problem. This should be about one hour each for a total of
120 hours. We hope this delay can be avoided; everyone possible is working on the prob­
lem, including two experts from our company whom we called in last night as a free service
to ICIA.

FIGURE 3-6 Sample Status Memo and Report

Project manager-user communication includes
both planned and unplanned status meetings, writ­
ten communications for status, analysis, interview
results, documentation, and walk-throughs of appli­
cation requirements as specified by the project team.
Timing of user communications differs with the type
of communication, but is most often daily until the
application begins programming and testing. Then, a
minimum of weekly personal contact should main­
tain the relationship.

In general, tell the user everything that might
affect them, the project, or the schedule negatively;
do not tell them anything else.

IS Management
IS managers, like most managers, want to know
progress, problems and their solutions, warnings of
lateness, and political issues. They do not want to
handle all problems for their managers, nor do they
appreciate finding out a project will be late the week
before it is due. Tell your manager anything that
might get him or her in trouble, that they need to
know, or that might impact the project negatively.
Always expect to propose solutions and argue if you
think your solution is better than their's. Always
accept their solution if it is mandated, unless it is
unethical or illegal.

Technical Staff
Technical staff here means the project team. Always
be open with them. Keep them current on progress,
problems and resolutions, and any information that
affects their ability to do their job. Praise quality
work. Practice team building using common sense,
like having small victory parties at the end of phases,
sharing birthdays, or announcing promotions.

Operations
Operations affect the project differently depend­
ing on the phase. In early phases, word processing
and PCs must be available for documentation.
Computer-aided software engineering tool access
might be required. Timing, type, and needs of ac­
cess should be planned and negotiated well in

Liaison 69

advance. The kinds of problems a team might suffer
from no access may delay documentation but does
not delay the work of analysis. In the worst case, the
work can be done manually.

During design, the database administrator must
have access and resources allocated for the definition
and population of a test database. This must also be
negotiated well in advance.

During implementation, old data must be con­
verted to the new format and environment, programs
must be placed in production, and users begin using
the application. At this time, the operations depart­
ment assumes responsibility for running the appli­
cation. This responsibility must also be planned and
negotiated in advance.

When programming and testing begin, all project
members need access to compilers, test database,
editors, and, possibly, testing tools to work on their
programs. Absence of resources at this time can
severely delay project completion. For each day of
person-time lost, there can be one day of project
delivery time lost. Timing, type, and volume of ac­
cess are all negotiated items. Advance negotiation
should begin at least one month prior to the need.
Most operations managers will tell you they want to
know about a demand for their resources as soon as
you can identify the demand and the date needed.
Most operations managers will also tell you they
want all requirements at once. So you should be pre­
pared to discuss analysis, design, and implementa­
tion needs before much work takes place.

In general, operations managers need to know
what the project needs from them and when. They
also should be sent progress reports and told of any
problems that affect the use of their resources.

Vendors
A vendor is any company, not your own, from
which you obtain hardware, software, services, or
information. If the application is installed in an ex­
isting environment, probably no vendor contacts are
needed. If, however, acquisition of software, hard­
ware, or both is planned, there are three types of con­
tact with the vendor that take place. The first is
proposal communication, the second is for negotia­
tions, and the last is customer support.

70 CHAPTER 3 Project Management

A Request for Proposal (RFP) (see Chapter 16)
is a document developed by the PM and SE to solicit
bids from potential vendors. Vendors are asked to
respond with an estimate of service and price within
some number of days (e.g., 30). All bids received by
the cut-off date are reviewed. Proposal communica­
tions are usually limited to information about the pro­
posal. RFPs are accepted and responded to by vendor
marketing staff with some technical assistance. Proj­
ect manager contact is with the marketer.

Part of the RFP process is the development of a
list of required features for the item being bid upon.
This list should have priorities and weights assigned
to it during the proposal stage for use during the
analysis. Bids are rated on the requirements then
compared to see which vendor most closely meets
the needs of the application.

When a vendor is selected, a contract must be
negotiated. Negotiation may be with the marketer,
but might also be with a financial person or with the
marketer's manager. Similarly, the project manager
might do all or some of the negotiation with assis­
tance from a financial person or his or her manager.
Negotiations deal with price, time period of the con­
tract, number of sites, number of users, type of
license, guarantees in case the vendor goes out of
business, warrantees, and so on. There is no one way
to negotiate, and most often, all negotiations are
turned over to legal staff for completion of contract
terms. It is important never to commit to any terms
until they are seen and approved by some manager
in the organization. Frequently, contracts have far­
reaching implications that an individual project man­
ager may not know.

Other Project Teams
and Departments
Other IS organizations that might need project
communications include a database administration
group, other project teams, and a quality assurance
group. Other departments might include law, or
audit. In all cases, the communication is similar.
These groups need to know what their relationship
to your project is, how soon and what type of sup­
port you need, who to contact for questions and

information, and project status that might change
any of these requirements.

In addition, you also have needs of these teams.
If any of the organizations is performing work
you need to complete your project, then you need
the same things from them that they need from you.
You need to know exactly what they will do for you
and how it will be transmitted to your project, whom
to contact, and task status that might affect your
schedule.

To summarize, many other groups and depart­
ments in the organization need to have liaison activ­
ities with a project. It is the project manager's job to
provide that liaison with communications tailored
to the needs of the other organization.

PERSONNEL _____ _
~ANAGEMENT ____ _

For personnel management, the project manager
hires, fires, coaches, motivates, plans, trains, and
evaluates project team members.

Hiring
Hiring is usually coordinated through a personnel
office that oversees all IS hiring, not just one proj­
ect. Newspaper advertisements can be more cost­
effective, general, and get a better response when
coordinated for all projects. The personnel office
receives the responses and filters obviously unqual­
ified applications out from the pool of applicants.
Then, working with the project manager, the per­
sonnel department screens the applicants and
arranges project interviews.

As in most things, timing is important. Ads take
from one to two weeks to get approved and placed.
Receipt of resumes usually takes the same amount of
time. Interviewing is time consuming and can take
another one to two weeks for each hire. Then, offers
are made and salary negotiations completed. The
elapsed time to hire someone might be seven weeks
or longer.

In addition, scheduling interviews may mean
early-morning, evening, or lunch-time work. People
searching for a job who already have one may not

want to take vacation time for an interview. If the
person appears qualified, the project manager is
expected to shift his or her schedule to fit the needs
of the applicant.

Firing
You may not agree, but keeping a person in a job
for which they are unsuited does more damage to
the manager, the person, and the project than you
might think. Project managers are damaged because
they think of little else and agonize over the de­
cision much longer than necessary. People usu­
ally know if they are going to be terminated because
they did not complete their specified tasks. They
should have been told, in writing, before the termi­
nation date.

Prolonging a termination is damaging to the per­
son being fired because it gives them a false sense
of hope, makes them lose confidence in the person
not following through on their described actions, and
also allows them to influence other project members
negatively.

Finally, procrastination on firing is damaging to
the project because the longer the termination is
delayed, the more likely the person being terminated
will begin talking of his or her situation to other proj­
ect members and disrupting work. As more people
find out, more time is spent speculating on the situ­
ation. Less work gets done and the staff eventually
loses confidence in the project manager.

No one gets into trouble overnight. Usually there
is a period during which a problem is known, but it
might be corrected before any real problems arise.
It is at this time that the project manager should sit
down with the person and talk about the situation.
Legally, everyone in this situation is entitled to at
least one warning letter which is also placed in their
personnel file. This is followed by a letter of repri­
mand stating that performance is substandard with
reasons for that judgment. The letter also states that
the person is on probation and will be terminated by
a specified date unless some actions are taken. The
actions are then listed. If the person does the as­
signed work satisfactorily, they are off probation. All
of these communications are in writing, monitored
and approved by personnel and the IS manager, and

Personnel Management 71

are the basis for any future legal action by the
employee.

If the work is performed satisfactorily, probation
ends. If not, the person is terminated. Termina­
tion from a project does not necessarily require ter­
mination from a company. If a person is ill-suited to
a particular project, she or he might still be a valu­
able employee. A good project manager will first try
to place the person somewhere else in the organiza­
tion. If the person is terminated from the com­
pany, the company can try to help them find another
job through an out-placement service or by provid­
ing company resources (a desk and phone away
from the project) until a job is found. If the person
is terminated for antisocial behavior, an addic­
tion, or for some other nontechnical problem,
the project manager might help them seek profes­
sional help.

Motivating
Motivation has personal and professional aspects.
Professional motivation arises from a desire to do a
good job. People are motivated to do a good job
when they are treated like a professional and given
meaningful, interesting work that includes some dis­
cretionary decision making and some creative de­
sign.

Personal motivation arises from a desire to
improve one's position in life. Position in life is
defined individually and may mean earning more
money, buying a bigger house, becoming an analyst,
or becoming a manager, and so on.

Project management style is the determining
factor of personal motivation. A project manager
who facilitates participation, fosters controlled risk­
taking, and allows people to grow as individuals will
gain undying loyalty from his or her staff. A project
manager who treats the staff as stupid, lazy, and
unmotivated might obtain desired behaviors from
them, but it will be through intimidation and
coercion.

The proj ect manager needs to know the proj­
ect team members individually in order to tailor
reward systems and assignments to help them reach
their goals. Project manager commitment to help­
ing team members reach personal goals determines

72 CHAPTER 3 Project Management

how professionally motivated the team members
will be.

There are three aspects to motivation. First, the
project work itself can be used to further profes­
sional goals that include doing novel work and
advancing to new levels of seniority, experience, or
responsibility. Second, the project manager must be
careful to tailor reward and pt iishment systems to
fit the tasks, being unbiased in terms of importance
of individual contributions to the work. Third, the
individual professional must make a commitment to
doing something extra to gain the reward, either
on-the-job or on his or her own time.

Take, for instance, a mainframe Cobol program­
mer who wants to move to a personal computer LAN
environment using C++. The project has relaxed
deadlines and the project manager might be able to
help the person, but some commitment from the pro­
grammer is needed. The project manager recom­
mends that the person find, attend, and pass a C++
course for which the company will pay. Then, the
person will be assigned a task in the desired envi­
ronment. If the task is successful, more tasks will
follow. If the task is not successful, the situation will
be reassessed.

Professional motivation might also come from
fostering development of association ties outside of
work. Meetings or user groups of vendors, l profes­
sional associations,2 or other professional groups
related to work duties might be paid for by the com­
pany to foster professional motivation.

Motivation also has a negative side. The actions
that would be taken should the person fail to do their
job competently must also be known. There should
be company policies about quality and quantity of
work that are also included as part of job descrip­
tions. In the absence of company policy, the project
manager should adopt rules, with the knowledge and
consent of their manager, about punishments for fail-

1 Guide and Share are IBM mainframe user groups with over
10,000 members each. DECus is the Digital Equipment users
group. In these huge groups, there are subgroups with inter­
ests in every software package, language, and development
environment offered by the vendor.

2 The Association for Computing Machinery (ACM) is one
example.

ure to meet work requirements. These should also be
made known to everyone on the project.

Career Path Planning
Motivating is an immediate activity of the project
manager, but all employees and managers should be
encouraged to develop longer range aspirations, as
well. The project manager should help plan, with
each individual, the tasks from this project that can
be used to further his or her career.

The project manager should discuss goals and
career paths at the beginning of the project and at
least annually during performance reviews after that.
The discussion should include a frank assessment
of current perceptions of the individual's verbal,
organizational, and professional skills, as well as
helping the person plan courses, assignments, or
opportunities to improve his or her performance.
There should be direct ties from performance to
rewards. Any time an individual does something sig­
nificant enough to be mentioned on an appraisal, he
or she should be told and either praised or counseled
to change.

Training
The purpose of project training is to specifically
address weaknesses of staff in techniques, technol­
ogy, or tools used on the project. The SE and any
project leaders are directly responsible for identify­
ing training needs. The project manager is responsi­
ble for obtaining the training for the individual(s)
who need it. A senior mentor for the trained skill
should be assigned to monitor progress in the devel­
opment of the skill, once training is complete.

Nonrelated training, as discussed above, may also
be authorized by the project manager depending on
employee need, rewards, and fit with employee
goals.

Evaluating
Evaluations are annual assessments of the person
from both professional and organizational perspec­
tives. Evaluations are written and usually are signed

by the reviewed person and the reviewer. Quality
and quantity of work assignment are the professional
assessments and are the most important aspects of
junior level work. Junior staff, having no business
experience, are monitored most closely for their abil­
ity to do their work. Competence for the assigned
jobs is determined, and the more competent, the
faster the person is promoted.

As people become more senior, quality and quan­
tity of assigned work becomes assumed and organiz­
ing, motivating, communications, and interpersonal
skills become more important. The non task specific
skills are viewed from an organizational perspective.
More emphasis is placed on the ability to persuade,
manage, motivate, and communicate with others,
thus describing a good manager.

Promotion for most senior people is to the man­
agerial ranks. In some companies, the importance
of very senior, technical experts, is recognized. In
those companies, equal emphasis is placed on the
professional and organizational assessments. Tech­
nical staff can aspire to the senior technical positions
without having to sacrifice their technical expertise
in the bargain.

The usual performance evaluation contains
sections for assignments, communications and inter­
personal relations, absences, planning and organiza­
tion, supervision, delegation, motivation, training,
and special considerations. Each of these is de­
scribed briefly.

The assignments section contains a brief descrip­
tion of four or five major assignments with expecta­
tions on quality and quantity of work for each as well
as a brief paragraph assessing the extent to which the
assignment was met. Quality and quantity of work
are intangible and frequently subjective assessments,
but there are always expectations of the amount of
work a person should do, and of the extent to which
reworking is needed. In addition, the individual's job
description should give guidance on expectations for
work quality and quantity. Finally, the extent to
which the person needs to be monitored and assisted
is an indicator of the extent to which they can work
independently and competently at their job. The dis­
cussion of quality and quantity should be presented
in terms of job description, manager expectations,
and extent to which expectations are met. Specific

Personnel Management 73

examples are required to demonstrate very high and
very low quality work.

Project managers evaluate communications and
human relations. Assessments of both relating verbal
and written communication skills are developed.
Communication skills are related to specific project
assignments and to other project activities, such as
walk-throughs, that are not major assignments.
Communication evaluation includes grammar,
speed, persuasiveness, clarity, and brevity. The per­
son's ability to develop and deliver a presentation,
and actual experiences doing these are described.

Another area of assessment is interpersonal
relationships with project manager, senior staff
members, peers, others in the department, and users.
Additional comments might discuss specific inci­
dents that vary from the general assessment and that
might highlight a need for improvement, or identify
a particular skill. For instance, a person with good
negotiating skills might be identified by their arbi­
tration of a disagreement between two other project
members.

Work absences are mentioned in terms of total
days missed, number of absences, and type of ab­
sence. If there are company policies about absences
and they are exceeded, a comment about the extent
to which absences affected work might be added.
The ability of the person to meet deadlines, main­
tain an accurate status of the project, and need spe­
cial communications due to absences are all
described. Extraordinary situations causing a long
absence, such as emergency surgery, are included.

For planning and organization, accuracy, detail,
independence of work, and cooperation with other
affected groups are all assessed. In addition, the per­
son's adherence to their own plans is discussed. Do
they use it properly as a road map, or is it a rigid rule
from which no straying is allowed, or is it ignored
and treated as a task done for management?

Delegation is the extent to which the work is
shifted from the manager to subordinates. Issues
rated are how well work assignments match people's
skills, allow monitoring to ensure completion,
provide for personal and career improvement of
subordinates.

Managerial style is assessed in terms of group
motivation. Does the project manager obtain

74 CHAPTER 3 Project Management

commitment from staff with enthusiasm, discom­
fort, unhappiness, or anger? Does the manager ask
or command? How successful is the strategy and
what must the manager do to change unsuccess­
ful strategies? Are tactics altered to fit the person
being managed, or is everyone treated the same
way? Are people treated fairly or is favoritism
prevalent?

Can the manager motivate others to learn new
skills? To what extent does the manager provide
needy staff with training, either formal or informal,
on techniques, technology, and tools? If formal train­
ing is given by the person being rated, summaries
of student ratings of quality and quantity of training
should be presented. The person's ability to pro­
vide mentoring and quality of mentoring might be
addressed.

Finally, there is usually a section for the project
manager to recommend future assignments, training,
or other professional activities for further develop­
ment of the individual.

MONITOR ______ _
AND CONTROL ____ _

Status Monitoring
and Reporting
The rationale of the planned application develop­
ment is that you monitor the plan to communicate
activity status and interim checkpoints to clients.
The overall goal-meeting the project installation
date-is the end point of a lengthy complex set of
processes. Without the plan, knowing whether or not
the installation date will be met is difficult. Status
monitoring is the comparison of planned and
actual work to identify problems. Project control is
the decisions and actions taken based on the proj­
ect's status.

In a planned approach, project team members
report time spent on each activity for some period.
The sample time sheet (see Figure 3-7), allows
breakdowns for several tasks listed across the top of
the form and hours worked on the task reported by
day of the month. Totals by day of the month and

by task over the period are tallied by row and column
totals. This type of reporting allows the project man­
ager to easily see for each person weekend work,
how many hours are spent on each activity over a
period, and how many effective work hours there are
per day.

In addition, each person should write a short
progress report. The report summarizes progress in
qualitative terms, identifies problems, issues, errors,
or other conflicts that might delay the work. If a task
will be later than its schedule date, the reason for
lateness must be explained. The project manager and
SE both review the reports and time sheets to decide
if problems need further action. A sample progress
memo is shown as Figure 3-8.

The SE and project manager map actual progress
of each person against the planned times. When
progress looks slow, the project manager asks the
person specifically if there are problems, if there are
enough resources, for example, test shots, and if the
person thinks they can meet the deadline. If the task
appears to have been underestimated, the schedule is
checked to see if changing the time allotted will
cause completion delays. Similar tasks are checked
to see if they are also underestimated. The cumula­
tive effect of changes is checked to see if completion
is in jeopardy. If it is, the project manager discusses
the problem with his or her manager and they
decide on the proper course of action.

The best policy is to address potential problems
early, before they become big problems. If a person
cannot finish work because of too many assign­
ments, then reassign some of the work to another
person. If they have not got enough testing time,
arrange for more time. Active management prevents
many problems.

Problem follow-up includes determining the
severity and impact, planning an alternative
course of action, modifying the plan as required,
and continuing to monitor the problem until it is
resolved or no longer has an impact on the deliv­
ery date.

Tell the client about problems that may not be
solved so they are prepared for delays if they become
inevitable. When changes become needed, tell the
client about changes to planned dates even when
they do not change the completion date.

Monitor and Control 75

Project: ___________ _ Month:

Name:

Activities

Day of Total
Month for Day

1/16

2/17

3/18

4/19

5/20

6/21

7/22

8/23

9/24

10/25

11/26

12/27

13/28

14/29

15/30

31

Total

FIGURE 3-7 Time Sheet

76 CHAPTER 3 Project Management

ICIA Industries-Interoffice Memo

DATE: October 10, 1994

TO: J. B. Berns

FROM: M. Vogt

SUBJECT: Order Entry and Status

Progress

We completed our screen design and navigation testing 10/7/94 and turned the modules
over to George Lucas for user acceptance. He requested changes to several items:

1. The location of the total at the bottom of the screen is moved left five spaces.
2. The PF key assignment for PF3, which we were using to END any process. He would

like END to be PF24. We explained that this is not a good design because the operator
needs more key strokes (and hence is more likely to err) for PF24. Also, this is a very
time-consuming change, about 10 hours, and that he should have mentioned his prefer­
ence during the reviews. He decided to think about it and talk to some real operators
before making a firm decision.

The other testing is progressing well. I am almost done testing the entire order process,
except for inventory allocation. I need the warehouse codes from George by next week if
I am to continue testing the programs.

Problems

The warehouse codes which were promised some months ago are getting to be on the criti­
cal path. If I do not have them by next week, I cannot continue to test the inventory alloca­
tion portion of the application. I can assign my own code scheme, then change it to the real
one if I have to, but I would like to avoid the double work.

FIGURE 3-8 Sample Progress Report

The kinds of problems that occur and the activi­
ties the project manager monitors change over the
course of the development. For instance, during the
definition of the project scope, the project manager
monitors the following:

Is the client cooperative?
Are all the stockholders identified and involved?

Are users being interviewed giving accurate,
complete information?

Are users participating as expected?
Are there any apparent political issues to be

addressed?
Does the scope look right? That is, does the

current definition appear to include relevant
activities?

By analysis, the project manager knows most
users and how they work, should have identified
potential political problems and dealt with them, and
should be comfortable that the project scope is cor­
rect. The activities monitored turn toward the project
team, and include the following:

Do all analysts know the scope of activity and
work within it?

Is the analysts' work emphasis on what and not
how?

Are users participating as expected?
Are all project members pulling their weight?
Is everyone interested and happy in their job?
Is there any friction between team members, or

between team members and users?
Does everyone know what they and all others

are doing?
Is there constant feedback-correction with users

on interview results?
Are team members beginning to understand the

users' business and situation? Are the team
members objective and not trying to force
their own ideas on the users?

Are walk-throughs finding errors and are they
getting resolved?

Are documents created looking complete? Does
the user agree?

Is the analysis accurately addressing the prob­
lems of the user? Are team members analyz­
ing and describing exactly what is needed
without embellishment?

Is typing turnaround, printing of word-processed
documents, copying, or other clerical support
acceptable?

Does communication between teams and be­
tween teams and users appear to be satis­
factory?

Is the project on time? What is the status of
critical path tasks? Has the critical path
changed because of tasks that finished early?

Where are the biggest problems right now? How
can we alleviate the problems?

What do we not know that might hurt us in
design?

The functional requirements that result from
analysis should describe what the application will

Monitor and Control 77

do. The project manager is constantly vigilant
that the requirements are the users. One problem
many projects have is that the user wants a plain
functional application but the analysts design a high­
priced application with the user functions, but with
many unnecessary features, or 'bells and whistles,'
as well. This problem, if it occurs, must be dealt with
before analysis ends or extraneous functions will
be in the resulting application. When over-design
problems surface, it is important to try to trace
them to specific analysts for retraining in providing
their services.

In design, the emphasis shifts to monitoring the
rate, type, and scope of changes from the users. If the
business is volatile, requirements change may
become a constant problem. Change management
procedures should be developed and used. At this
point, the project manager's worries include the
following:

Do the analysts know the application?
Is the translation to operational environment

correct and complete?
Are walk-throughs finding errors? Are errors

being resolved?
Are users participating as expected? Are users

properly involved with screen design, test
design, acceptance criteria definition?

Are all project members pulling their weight?
Is everyone interested and happy in their job?

Is there any friction between team members,
or between team members and users?

Does everyone know what they and all others
are doing?

Are all team members aware of their changing
responsibilities, and are they comfortable
with and able to do design tasks?

Does communication between teams and
between teams and users appear to be satis­
factory?

Is the project on time? What is the status of
critical path tasks? Has the critical path
changed because of tasks that finished early?

Where are the biggest problems right now?
How can we alleviate the problems?

What do we not know that might hurt us in
programming? Is the implementation
environment suitable for this application?

78 CHAPTER 3 Project Management

Can the database management software
accommodate this application?

The number of project team members usually
increases for programming to do parallel develop­
ment as much as possible. The communication over­
head necessary to know everyone's status and for
them to know the project status increases. The prob­
lems in the programming and unit testing stage
tend to focus on communications and programmer
performance.

Does everyone understand how their work fits
into the project? Does everyone know their
critical-path status? Are all current project
members pulling their weight? Does every­
one know what they and all others are doing?

Is testing time sufficient? Is terminal access
sufficient?

Does everyone know the technologies they are
using sufficiently to perform independently?

Are junior staff paired with senior mentors?
Are users requesting further changes?
Are users participating as expected in test

design, user documentation development,
conversion, and training?

Is there constant feedback-correction with users
on suspected errors?

Are prototypes being used as much as possible
to demonstrate how the application will
work?

Are walk-throughs productive, finding errors?
Are errors getting resolved?

While programming and unit testing are proceed­
ing, tests for integration and system level concerns
are being developed. The database is being estab­
lished and checked out. The operational environment
is being prepared. Concern shifts from getting the
application expressed in code to getting it working
correctly. The kinds of questions a project manager
might have are the following:

Are all current project members pulling their
weight? Does everyone know what they and
all others are doing?

Is testing time sufficient? Is terminal access
sufficient?

Are users requesting further changes? Are users
participating as expected in testing?

Is there constant feedback-correction with users
on suspected errors?

Are walk-throughs productive, finding errors?
Are errors getting resolved?

Does the system level test really prove that the
functions are all accounted for?

Does the integration test verify all interconnec­
tions? How can it be leveraged to prove the
reliability of the interconnections during the
system test?

What do we not know about the operational
environment that might hurt the project?

Is the database software working properly? Are
back-up and recovery procedures adequate
for testing?

How can we use the integration and system tests
to develop a regression test package?

Is documentation being finalized? Is everyone
working to capacity? Should we start letting
programmers go to other projects? If we let a
key person go, who can take their place when
a problem occurs?

Finally, testing is complete, the application
appears ready, and the user is ready to work. There
should have been a plan for actually implementing
the operational application that eases the user into
use without too much trauma. The easing-in period
gives the project team some time to fix errors found
in production without excessive pressure. The
issues now center on getting the application to work
in its intended environment for its intended users.
The questions include the following:

Is the site prepared adequately? Is air condi­
tioning sufficient? Are lighting and
ergonomic design sufficient?

Are users properly trained and ready to do
work?

Are work cycles and evaluation of results identi­
fied sufficiently to allow implementation and
verification of results?

When errors are found, are they getting
resolved?

Are users taking charge as expected?
Are all current project members pulling their

weight? Does everyone have enough
work to do? Can people be freed to other
projects?

Automated Support Tools for Project Management 79

Is communication between teams and between
teams and users appearing satisfactory? Are
users told whenever major problems occur?
Are they participating in the decision making
about error resolution?

Many of the questions above are technical in
nature and would be referred to the SE to monitor.
The project manager is like a mother hen and is sup­
posed to worry about everything. Obviously, if the
plan addresses the activities as it should, many of the
answers to the above sets of questions are found in
weekly progress reports of team members. Compil­
ing the individual progress reports and project prog­
ress reports in a project log allows the manager and
any of the staff to review decisions, problems and

their resolutions, and other issues as they occur dur­
ing the development.

AUTOMATED _____ _

SUPPORT TOOLS ____ _
FOR PROJECT _____ _
~ANAGEMENT ____ __
Project management support tools have increased in
sophistication and performance since the mid-1980s
when the first PC-based tools arrived. The tools in
this section support project planning, task assign­
ment and monitoring, estimation tools, and sched­
uling tools (see Table 3-5). Key tool capabilities

TABLE 3-5 Automated Support Tools for Project Management

Product

CA-products

DataEasy Project Management

Demi-Plan

Foundation

IEW, ADW (PS/2 Version)

Life Cycle Manager

Life Cycle Project Manager

Maestro

microGANTT

Milestone

Multi-Cam

Company

Computer Associates International, Inc.
Islandia, NY

Data Easy Software
Foster City, CA

Demi Software
Ridgefield, CT

Arthur Anderson & Co.
Chicago,IL

Knowledgeware
Atlanta, GA

Nastec
Southfield, MI

American Management Systems
Fairfax, VA

SoftLab
San Francisco, CA

Earth Data Corp.
Richmond, VA

Digital Marketing Corp.
Walnut Creek, CA

AGS Mgmt Systems
King of Prussia, PA

Technique

Project planning

Task mapping

Critical path project planning
and tracking

Project management
Project planning

Project planning

Project planning, task
assignment, tracking

Project planning, task
assignment, tracking

Problem tracking

Project planning

Critical path project planning
and tracking

Project planning and tracking

(Continued on next page)

80 CHAPTER 3 Project Management

TABLE 3-5 Automated Support Tools for Project Management (Continued)

Product Company Technique

PMS II North America MICA Inc. Project planning, task
San Diego, CA assignment, tracking

Critical path
PERT

Primavera Project Manager Primavera Systems Inc.
Bala Cynwyd, PA

Project planning, task
assignment, tracking

Project Microsoft
Bellevue, WA

Project planning, task
assignment, tracking

Project Workbench,
Fast Project

Applied Business Technology
NY, NY

Project planning, task
assignment, tracking

System Architect Popkin Software and Systems, Inc.
NY, NY

Project planning

Teamwork Cadre Technologies Inc.
Providence, RI

Planned completion
date tracking

vsDesigner Visual Software, Inc.
Santa Clara, CA

not considered here include word processing,
spreadsheets, calendars, or interfaces to electronic
mail (these are considered useful for all organiza­
tion members). Other tools that are used by a pro­
ject manager but are discussed in other sections of
the text are for configuration management, quality
control, and metrics.

SUMMARY ________ ~ __ _
The project manager role is frequently separate and
distinct from that of the software engineer. The soft­
ware engineer is generally responsible for technical
aspects of project work. Some tasks are joint, com­
plementary activities shared by project managers
and software engineers. For these joint activities,
the software engineer contributes technical skills,
and the project manager contributes organizational
skills.

Project completion
tracking
Critical issues
monitoring

The project manager is solely responsible for
most people-related aspects of projects. The three
main tasks of the project manager are organizational
liaison, employee management, and project monitor­
ing and control. Organizational liaison includes cre­
ating working relationships with other organizations
and departments, resolving project-related problems
regardless of their nature, and reconciling the project
design with expectations of others. Employee man­
agement includes working with Personnel to hire,
fire, and staff the project. Employee management
also includes individual employee monitoring to
help them evaluate, set, and attain career goals. Proj­
ect monitoring and control is the other major proj­
ect management activity. Monitoring means to trace
the progress of project work and compare it to bud­
geted time and resources to maintain progress. Con­
trol includes deciding and implementing project
changes when progress is not satisfactory. Project
changes might include change of job assignments,

introduction of training, or change to schedules,
and plans.

REFERENCES __________ __

Abdel-Hamid, Tarek, and Stuart E. Madnick, Software
Project Dynamics: An Integrated Approach. Engle­
wood Cliffs, NJ: Prentice Hall, 1991.

Gilbreath, R. D., Winning at Project Management: What
Works, What Fails and Why. NY: John Wiley and
Sons, 1986.

Gildersleeve, Thomas R., Data Processing Project Man­
agement. New York: Van Nostrand Reinhold Com­
pany, 1974.

Glass, Robert L., Software Conflict: Essays on the Art
and Science of Software Engineering. Englewood
Cliffs, NJ: Prentice Hall, Yourdon Press, 1991.

Cleland, D. I., and William R. King, Systems Analysis
and Project Management. NY: McGraw-Hill,
1983.

King, William R., and D. I. Cleland (eds.), Project Man­
agement Handbook, 2nd ed. NY: Van Nostrand Rein­
hold, 1988.

Pfeffer, Jeffrey, Organizations and Organization Theory.
Boston: Pitman, 1982.

Rogerson, Simon, Project Skills Handbook. Lund,
Sweden: Chartwell-Bratt, 1989.

KEy TERMS _______ _

champion
complimentary activities
critical path
evaluations
heuristic
implementation

environment
implementation strategy
interface
liaison
personnel management

project control
project plan
request for proposal

(RFP)
sponsor
status monitoring
task dependency

diagram
user
vendor

EXERCISES ________ _

1. List and discuss three advantages and three dis­
advantages to project team members using time
sheets to report work activities. What might

Study Questions 81

some alternatives for reporting task progress and
time spent be?

2. Write an honest appraisal of yourself for the
work you have done in school toward your cur­
rent degree. Give specific examples of good and,
maybe, poor work. Rate your knowledge and
skills gained in terms of a schedule that ends
when you graduate.

3. Discuss the following comment: "It is impor­
tant for a project manager to have been a
programmer and an analyst. Otherwise, the
manager has no feel for the problems and
their severity."

STUDY QUESTIONS ____ -
1. Define the following terms:

champion critical path heuristic
liaison project plan

2. When and why are the software engineer and
project manager roles split?

3. Describe the project manager's role in
planning.

4. Describe a general planning methodology.
5. What kinds of reviews are done on project doc­

umentation? Why are they necessary?
6. What are five types of operations resources that

might be needed on a project?
7. What is the minimum lead time recommended

for resource requests?
8. What is an RFP and when is it used?
9. What is the purpose of a task dependency

chart?
10. What is a critical path and why is it

important?
11. Should a plan be finalized and cast in

concrete?
12. List four types of assumptions made during

planning and describe why each is important.
13. Why should project team members submit time

sheets?
14. Describe how to assign staff to tasks. Why is

the process rarely this simple?
15. Describe the heuristics for assigning staff to

projects.
16. Should planned overtime be in a schedule?

82 CHAPTER 3 Project Management

17. List five things every person should know
about his or her job when working on an appli­
cation development project.

18. What are the three alternatives for implementa­
tion strategy?

19. What are the heuristics for deciding implemen­
tation strategy?

20. List two choices for implementation en­
vironment.

21. Describe the heuristics for deciding implemen­
tation environment.

22. What are the choices for methodology and life
cycle?

23. Describe the heuristics for deciding meth­
odology.

24. Describe the heuristics for deciding life cycle.
25. What is a liaison? What project manager duties

require liaison work?
26. List the contents of a project status report.
27. What is politics and how does it affect applica­

tion development work?
28. Why are performance appraisals done?

* EXTRA-CREDIT QUESTIONS

1. List and discuss types of assessment from a per­
formance appraisal. How does a manager ensure
the ratings are fair and objective? What should a
manager do if he or she does not like the person
being reviewed?

2. Develop a project plan for ABC Video based on
the information in Chapter 2 only. Use the case
and this chapter to decide the tasks. Use your
experience, whatever it is, to decide the times
for the tasks. Do not look at other information in
this or other texts when planning the work.
What assumptions do you have? How comfort­
able are you with your estimates? Keep this
assignment and redo it at the end of Chapter 6.

CHAPTER4

DATA GATHERING
----------------~--------------FOR APPLICATION
--------------------------~-----DEVELOPMENT

--------------------.. --------~-----

INTRODUCTION ____ _

Each phase of application development requires
interaction between the developers and users to
obtain information of interest at the time. Each phase
seeks to answer broad questions about the applica­
tion. For instance, in feasibility analysis, the ques­
tions are broad and general: What is the scope of
the problem? What is the best way to automate? Can
the company afford (not) to develop this applica­
tion? Is the company able to support application
development?

In analysis we seek what information about the
application. For instance, What data are required?
What processes should be performed and what are
the details of their performance? What screen design
should be used?

In design, we develop how information relating to
the application. For example, How does the appli­
cation translate into the specific hardware environ­
ment selected? How does the logical data design
translate into a physical database design? How do
the program modules fit together?

The kind of interaction that elicits answers to
questions such as these differs by information type
and phase. In this section we describe the alterna­
tives for obtaining information to be used for appli-

cation development. The alternative data gathering
techniques are described, then related to application
types. Then, ethical considerations in data collec­
tion and user relations are discussed.

DATA TYPES _____ _

Data differs on several important dimensions: time
orientation, structure, completeness, ambiguity, se­
mantics, and volume. Each of these dimensions is
important in defining requirements of applications
because they give guidance to the SE about how
much and what type of information should be col­
lected. Also, different data types are related to
different application types and require different
requirements elicitation techniques. Inattention to
data dimensions will cause errors in analysis and
design that are costly to fix. Error correction cost is
an increasing function of the phase of development
(see Table 4-1).

In addition to obtaining information, we also use
the techniques for validating the information and
interpretation in the proposed application. Use of
validation techniques during each phase increases
the likelihood that logic flaws and misinterpretations
will be found early in the development.

83

84 CHAPTER 4 Data Gathering Application Development

TABLE 4-1 Cost of Error Correction by
Phase of Development

Phase in Which Cost Ratio to
Errors are Found Fix the Error

Feasibilityl Analysis 1

Design 3-6

Code/Unit Test 10

Development Test 14-40

Acceptance Test 30-70

Operation 40-1000

From Boehm, Barry, Software Engineering Economics. Engle­
wood Cliffs, NJ: Prentice-Hall, 1981.

Time Orientation
Time orientation of data refers to past, present, or
future requirements of a proposed application. Past
data, for example, might describe how the job has
changed over time, how politics have affected the
task, its location in the organization, and the task.
Past information is exact, complete (if maintained),
and accurate. There is little guessing or uncertainty
about historical records.

Current information is information about what is
happening now, and its relevance in determining the
future. Fpr instance, current application information
relates to operations of the company, the number
of orders taken in a day, or the amount of goods
produced. Current policies, procedures, business
industry requirements, legal requirements, or other
constraints on the task are also of interest in appli­
cation development. Current information should be
documented ip. sOme way that it can be read by the
develoPPlent team to increase their knowledge of the
application and problem domains.

Future requirements relate to changes in the in­
dllstry expected to take place. They are inexact and
difficult to verify. Economic forecasts, sales trend
projections, and business 'guru' prognostications are
examples of futllre information. Futllre-oriented in­
formation might be used, for example, by managers
in an executive information system (EIS).

Structure
Structure of information refers to the extent to
which the information can be classified in some way.
Structure can refer to function, environment, or form
of data or processes. Information varies from un­
structured to structured with interpretation and defi­
nition of structure left to the individual SE. The
information structuring process is one in which the
SE is giving a form and definition to data.

Structure is important because the wrong applica­
tion will be developed without it. For instance,
knowing that the user envisions the structure of the
system to be one with 'no bureaucracy,' minimal
user requirements, and no frills, gives you, the SE, a
good sense that only required functions and data
should be developed. In the absence of structuring
information, technicians have a tendency to develop
applications with all 'the bells and whistles' so
the users can never complain that they don't have
some function.

An example of structuring of data is shown in
Figures 4-1 and 4-2. When you begin collecting
information about employees for a personnel appli­
cation, you might get information about the em­
ployees themselves, their dependents, skills the
employees might have, job history information,
company position history, salary history, and per­
formance reviews.

The information comes to you in pieces that may
not have an obvious structure, but you know that all
of the data relates to an employee so there must be
relationships somewhere. In Figure 4-2, we have
structured the information to show how all of the
information relates to an employee and each other
in a hierarchic manner. Each employee has specific
one-time information that applies only to them, for
instance, name, address, social security number, em­
ployee ID, and so on. In addition, each employee
might have zero to any number of the other types of
information depending on how many other compa­
nies they have worked at, whether they have chil­
dren, and how long they have worked at the
company. The most complex part of the data struc­
ture is the relationship between position, salary, and
reviews. If salary and performance reviews are dis­
joint, they would be as shown, related to a given

FIGURE 4-1

FIGURE 4-2

Name Dependent's Date of Birth

Age

Job Title at Time of Raise

Social Security Number Job Salary

Address

Raise Amount Dependent's Name

Current Job Title
Performance Reviewer

Date of Raise Date of Performance Review

Past Job Title

Job Title at Time of Review

Performance Rating

Unstructured Personnel Data

Personal Information
Social Security Number
Name
Address
Date of Birth

I
Dependent Information
Dependent Date of Birth
Dependent Name
Dependent Relationship

I

I
1

Job Information
Job Title
Job Department
Job Begin Date
Job End Date
Job Salary

J

Data Types 85

,..-'-- Performance Ratings
Performance Rating Date
Performance Rating
Performance Reviewer

,-r- Raise Information
Raise Date
Raise Amount

I

Structured Personnel Data

86 CHAPTER 4 Data Gathering Application Development

position the person held in the company (see Figure
4-2). The other option is that salary changes are de­
pendent on performance reviews and the hierarchy
would be extended another level.

Completeness
Information varies in completeness, the extent to
which all desired information is present. Each ap­
plication type has a requisite level of data complete­
ness with which it deals. Transaction processing
systems deal with complete and accurate informa­
tion. GDSS and DSS deal with less complete infor­
mation. EIS, expert systems, or other AI applications
have the highest levels of incompleteness with
which they must cope.

In applications dealing with incomplete informa­
tion, the challenge to you is to decide when the
information is complete enough to be useful. Some­
times this decision is made by the user, other times
it is made within the application and there need to
be rules defining complete enough.

Ambiguity
Ambiguity is a property of data such that it is vague
in meaning or is subject to multiple meanings. Since
ambiguity deals with meaning, it is closely related to
semantics. An example of ambiguity is to ask the
following query:

PRINT SALES FOR JULY IN NEW YORK

In this query, New York can mean New York State or
New York City; both answers would be correct. Ob­
vious problems will occur to a person who asks that
request for one context (the state) and gets an answer
for the other context (the city). Contextual cues help
SEs to define the one correct interpretation of am­
biguous items; further problems arise because of
multiple semantic interpretations within a single
context. For that reason, semantics is discussed next.

Semantics
Semantics is the study of development and change
in the meaning of words. In business applications,
semantics is the meaning attached to words. Mean-

ing is a social construction; that is, the people in
the organization have a collectively shared defini­
tion of how some term, policy, or action is really
interpreted.

Semantics is important in applications develop­
ment and in the applications themselves. If people
use the same terms, but have different meanings for
the terms, misunderstandings and miscommunica­
tions are assured. If embedded in an application,
semantically ambiguous data can never be processed
by a program without the user being aware of which
'meaning' is in the data. Applications that have
semantically mixed data then rely on the training and
longevity of employees for proper interpretation of
the data. If these key employees leave, the ability to
correctly interpret the meaning of the data is lost.
Losing the meaning of information can be expensive
to the company and can result in lawsuits due to
improper handling of information.

An example of semantic problems can be seen in
a large insurance company. The company uses the
term 'institution' to refer to its major clients for
retirement funds. The problem is that 'institution'
means different things to different people in the
company. In one meeting, specifically convened to
define 'institution,' 17 definitions surfaced. The
problem with semantic differences is not that 16 of
the 17 definitions are wrong. The problem is that all
17 definitions are right, depending on the context of
their use. It is the SEs job to unravel the spaghetti
of such definitions to get at the real meaning of terms
that are not well defined at the corporate level. Un­
raveling the meaning of the term 'institution' took
about 20 person-months over a two-year period to
get the user community to reach consensus on the
corporate definition of the term 'institution.'

Volume
Volume is the number of business events the sys­
tem must cope with in some period. The volume of
new or changed customers is estimated on a monthly
or annual basis whereas the volume of transactions
for business operation is usually measured in volume
per day or hour, and peak volume. Peak volume is
the number of transactions or business events to be
processed during the busiest period. The peak period

might be annual and last several months, as with tax
preparation. The peak might be measured in seconds
and minutes, for example, to meet a Federal Reserve
Bank closing deadline.

Volume of data is a source of complexity because
the amount of time required to process a single
transaction can become critical to having adequate
response time when processing large volumes. Inter­
active, on-line applications can be simple or ex­
tremely complex simply because of volume. For
instance, the ABC rental application will actually
process less than 1,000 transactions per day. Contrast
this volume with a credit card validation application
that might service 50,000 credit check requests per
hour. Credit card validation is simple processing;
servicing 50,000 transactions per hour is complex.

Applications that mix on-line and batch process­
ing using software that requires the two types of
processes to be distinct, requires careful attention to
the amount of time necessary to accommodate the
volumes for both types of processing. For instance,
the personnel application at a large oil company was
designed for 20 hours of on-line processing with
global access, and four hours of batch reporting.
When the system went 'live,' the on-line processing
worked like a charm because it had been tested,
retested, and overtested. The batch portion, for
which individual program tests had been conducted,
required about 18 hours because of the volume of
processing. After several weeks, the users were fed
up because printed reports had been defined as the
means of distributing query results, and they had
none. The solution required an additional expendi­
ture of over $200,000 to redevelop all reports as
pseudo-on-line tasks that could run while the inter­
active processes were running. Simple attention to
the volume of work for batch processing would have
identified this problem long before it cost $200,000
to fix.

DATA COLLECTION_-----'--__
TECHNIQUES _____ _

There are seven techniques we use for data gathering
during application development. They are inter­
views, group meetings, observation, temporary job

Data Collection Techniques 87

assignment, questionnaires, review of internal
and outside documents, and review of software.
Each has a use for which it is best served, and each
has limitations to the amount and type of informa­
tion that can be got from the technique. The tech­
nique strengths and weaknesses are summarized
in Table 4-2, which is referenced throughout
this section.

In general, you always want to validate the infor­
mation received from any source through trian­
gulation. Triangulation is obtaining the same
information from multiple sources. You might ask
the same question in several interviews, compare
questionnaire responses to each item, or check
in-house and external documents for similar infor­
mation. When a discrepancy is found, you reverify it
with the original and triangulated sources as much as
possible. If the information is critical to the applica­
tion being correctly developed, put the definitions,
explanations, or other information in writing and
have it approved by the users separately from the
other documentation. Next, we discuss each data
collection technique.

Single Interview
An interview is a gathering of a small number of
people for a fixed period and with a specific purpose.
Interviews with one or two users at a time are the
most popular method of requirements elicitation. In
an interview, questions are varied to obtain specific
or general answers. You can get at people's feelings,
motivations, and attitudes toward other departments,
the management, the application, or any other entity
of interest (see Table 4-2). Types of interviews are
determined by the type of information desired.

Interviews should always be conducted such that
both participants feel satisfied with the results. This
means that there are steps that lead to good inter­
views, and that inattention to one or more steps is
likely to result in a poor interview. The steps are
summarized in Table 4-3. Meeting at the conve­
nience of the interviewee sets a tone of cooperation.
Being prepared means both knowing who you are in­
terviewing so you don't make any embarrassing
statements and having the first few questions pre­
pared, even if you don't know all the questions.

88 CHAPTER 4 Data Gathering Application Development

TABLE 4-2 Summary of Data Collection Techniques

Strengths

Get both qualitative and quantitative information

Get both detail and summary information

Good method for surfacing requirements

Interviews

Weaknesses

Takes some skill

May obtain biased results

Can result in misleading, inaccurate, or irrelevant
information

Requires triangulation to verify results

Not useful with large numbers of people to be
interviewed (e.g., over 50)

Group Meetings

Strengths

Decisions can be made

Can get both detail and summary information

Good for surfacing requirements

Gets many users involved

Strengths

Surface unarticulated procedures, decision criteria,
reasoning processes

Not biased by opinion

Observer gets good problem domain understanding

Weaknesses

Decisions with large number of participants
can take a long time

Wastes time

Interruptions divert attention of participants

Arguments about turf, politics, etc. can occur

Wrong participants lead to low results

Observation

Weaknesses

Might not be representative time period

Behavior might be changed as a result of being observed

Time consuming

Review Software

Strengths

Good for learning current work procedures
as constrained or guided by software design

Good for identifying questions to ask users
about functions-how they work and whether
they should be kept

Weaknesses

May not be current

May be inaccurate

Time consuming

Data Collection Techniques 89

TABLE 4-2 Summary of Data Collection Techniques (Continued)

Strengths

Anonymity for respondents

Attitudes and feelings might be more honestly
expressed

Large numbers of people can be surveyed easily

Best for limited response, closed-ended questions

Good for multicultural companies to surface
biases, or requirements and design features that
should be customized to fit local conventions

Questionnaire

Weaknesses

Recall may be imperfect

Unanswered questions mean you cannot get the
information

Questions might be misinterpreted

Reliability or validity may be low

Might not add useful information to what is already
known

Temporary Assignment

Strengths

Good to learn current context, terminology,
procedures, problems

Bases for questions you might not otherwise ask

Weaknesses

May not include representative work activities or
time period

Time consuming

May bias future design work

Q.eview Internal Documents

Strengths

Good for learning history and politics

Explains current context

Good for understanding current application

Weaknesses

May bias future design work

Saves interview luser time

Not useful for obtaining attitudes or motivations

Review External Documents

Strengths

Good for identifying industry trends, surveys,
expert opinions, other companies' experiences,
and technical information relating to the problem
domain

Weaknesses

May not be relevant

lnformation may not be accurate

May bias future design work

90 CHAPTER 4 Data Gathering Application Development

TABLE 4-3 Steps to Conducting a
Successful Interview

1. Make an appointment that is at the convenience of the
interviewee.

2. Prepare the interview; know the interviewee.
3. Be on time.
4. Have a planned beginning to the interview.

a. Introduce yourself and your role on the project.
b. Use open-ended general questions to begin the

discussion.
c. Be interested in all responses, pay attention.

5. Have a planned middle to the interview.
a. Combine open-ended and closed-ended questions

to obtain the information you want.
b. Follow-up comments by probing for more detail.
c. Provide feedback to the interviewee in the form of

comments, such as, "Let me tell you what I think
you mean, ... "

d. Limit your notetaking to avoid distracting the
interviewee.

6. Have a planned closing to the interview.
a. Summarize what you have heard. Ask for correc­

tions as needed.
b. Request feedback, note validation, or other actions

of interviewee.

• Give him or her a date by which they will
receive information for review.

• Ask him or her for a date by which the review
should be complete.

c. If a follow-up interview is scheduled, confirm the
date and time.

A good interview has a beginning, middle, and
end. In the beginning, you introduce yourself and put
the interviewee at ease. Begin with general questions
that are inoffensive and not likely to evoke an emo­
tional response. Pay attention to answers both to get
cues for other questions, and to get cues on the hon­
esty and attitude of the interviewee. In the middle, be
businesslike and stick to the subject. Get all the in­
formation you came for, using the techniques you
chose in advance. If some interesting side informa­
tion emerges, ask if you can talk about it later and
then do that. In closing, summarize what you have
heard and tell the interviewee what happens next.
You may write notes and ask him or her to review

them for accuracy. If you do notes, try to get them
back for review within 48 hours. Also, have the in­
terviewee commit to the review by a specific date to
aid in your time planning. If you say you will fol­
low up with some activity, make sure you do.

Interviews use two types of questions: open­
ended and closed-ended. An open-ended question
is one that asks for a multisentence response. Open­
ended questions are good for eliciting descriptions of
current and proposed application functions, and for
identifying feelings, opinions, and expectations
about a proposed application. They can also be used
to obtain any lengthy or explanatory answers. An
example of open-ended question openings are: "Can
you tell me about ... " or "What do you think about
... " or "Can you describe how you use ... ".

A closed-ended question is one which asks for
a yes/no or specific answer. Closed-ended questions
are good for eliciting factual information or forcing
people to take a position on a sensitive issue. An
example of a closed-ended question is: "Do you use
the monthly report?" A 'yes' response might be
followed by an open-ended question, "Can you ex­
plain how?"

The questions can be ordered in such a way that
the interview might be structured or unstructured
(see Table 4-4). A structured interview is one in
which the interviewer has an agenda of items to
cover, specific questions to ask, and specific infor­
mation desired. A mix of open and closed questions
is used to elicit details of interest. For instance, the
interview might start with "Describe the current
rental process." The respondent would describe the
process, most often using general terms. The inter­
viewer might then ask specific questions, such as,
"What is the daily volume of rentals?" Each struc­
tured interview is basically the same because the
same questions are asked in the same sequence. Tal­
lying the responses is fairly easy because of the
structure.

An unstructured interview is one in which the
interview unfolds and is directed by responses of
the interviewee. The questions tend to be mostly
open-ended. There is no set agenda, so the inter­
viewer, who knows the information desired, uses the
responses from the open-ended questions to develop
ever more specific questions about the topics. The

Data Collection Techniques 91

TABLE 4-4 Comparison of Structured and Unstructured Interviews

Strengths

Structured

Uses uniform wording of questions for all
respondents

Easy to administer and evaluate

More objective evaluation of respondents
and answers to questions

Requires little training

Results in shorter interviews

Unstructured

Provides greater flexibility in question wording to suit
respondent

Can be difficult to conduct because interviewer must listen
carefully to develop questions about issues that arise spon­
taneously from answers to questions

May surface otherwise overlooked information

Requires practice

Weaknesses

Structured

Cost of preparation can be high

Respondents do not always accept high level of
structure and its mechanical posing of questions

High level of structure is not suited to all
situations

Reduces spontaneity and ability of interviewer
to follow up on comments of interviewee

same questions used above as examples for the
structured interview might also be used in an un­
structured interview; the difference is that above,
they are determined as a 'script' in advance. In an
unstructured situation, the questions flow from the
conversation.

Structured interviews are most useful when you
know the information desired in advance of the in­
terview (see Table 4-4). Conversely, unstructured in­
terviews are most useful when you cannot anticipate
the topics or specific outcome. A typical series of in­
terviews with a user client begins with unstructured
interviews to give you an understanding of the prob­
lem domain. The interviews get progressively struc-

Unstructured

May waste respondent and interviewer time

Interviewer bias in questions or reporting of results is
is more likely

Extraneous information must be culled through

Analysis and interpretation of results may be lengthy

Takes more time to collect essential facts

tured and focused as the information you need to
complete the analysis also gets more specific.

User interview results should always be commu­
nicated back to the interviewee in a short period of
time. The interviewee should be given a deadline
for their review. If the person and/or information are
critical to the application design being correct, you
should ask for comments even after the deadline is
missed. If the person is not key in the development,
the deadline date signifies a period during which you
will accept changes, after the date you continue
work, assuming the information is correct.

It is good practice to develop diagram(s) as part
of the interview documentation. At the beginning of

92 CHAPTER 4 Data Gathering Application Development

the next interview session, you discuss the dia­
gram(s) with the user and give him or her any writ­
ten notes to verify at a later time. You get immediate
feedback on the accuracy of the graphic and your
understanding of the application. The benefits of this
approach are both technical and psychological. From
a technical perspective, you are constantly verifying
what you have been told. By the time the analysis
is complete, both you and the client have confi­
dence that the depicted application processing is
correct and complete. From a psychological per­
spective, you increase user confidence in your ana­
lytical ability by demonstrating your problem
understanding. Each time you improve the diagram
and deepen the analysis, you also increase user con­
fidence that you will build an application that
answers his or her need.

Interviews are useful for obtaining both qualita­
tive and quantitative information (see Table 4-2).
The types of qualitative information are opinions,
beliefs, attitudes, policies, and narrative descriptions.
The types of quantitative information include fre­
quencies, numbers, and quantities of items to be
tracked or used in the application.

Interviews, and other forms of data collection,
can give you misleading, inaccurate, politically mo­
tivated, or irrelevant information (see Table 4-2).
You need to learn to read the person's body language
and behavior to decide on further needs for the same
information. Table 4-5 lists respondent behaviors
you might see in an interview and the actions you
might take in dealing with the behaviors.

For instance, if you suspect the interviewee of
lying or 'selectively remembering' information, try
to cross-check the answers with other, more reliable
sources. If the interview information is found to be
false, ask the interviewee to please explain the dif­
ferences between his or her answers and the other
information. The session does not need to be a con­
frontation, rather, it is a simple request for explana­
tion. Be careful not to accuse or condemn, simply try
to get the correct information.

Persistence and triangulation are key to getting
complete, accurate information. You are not required
to become 'friends' with the application users,
but interviews are smoother, yield more informa­
tion for the time spent, and usually have less' game-

playing' if you are 'friendly' than if you are viewed
as distant, overly-objective, or noninterested.

Meetings
Meetings are gatherings of three or more people for
a fixed period to discuss a small number of topics
and sometimes to reach consensus decisions. Meet­
ings can both complement and replace interviews.
They complement interviews by allowing a group
verification of individual interview results. They can
replace interviews by providing a forum for users to
collectively work out the requirements and alterna­
tives for an application. Thus, meetings can be use­
ful for choosing between alternatives, verifying
findings, and for soliciting application ideas and
requirements.

Meetings can also be a colossal waste of time (see
Table 4-2). In general, the larger the meeting, the
fewer the decisions and the longer they take. There­
fore, before having a meeting, a meeting plan should
be developed. The agenda should be defined and cir­
culated in advance to all participants. The number
of topics should be kept to between one and five. The
meeting should be for a fixed period with specific
checkpoints for decisions required. In general, meet­
ings should be no longer than two hours to maintain
the attention of the participants. The agenda should
be followed and the meeting moved along by the
project manager or SE, whoever is running the meet­
ing. Minutes should be generated and circulated to
summarize the discussion and decisions. Any
follow-up items should identify the responsible
person(s) and a date by which the item should
be resolved.

Meetings are useful for surfacing requirements,
reaching consensus, and obtaining both detailed and
summary information (see Table 4-2). If decisions
are desired, it is important to ask the decision makers
to attend and to tell them in advance of the goals
for the meeting. If the wrong people participate, time
is wasted and the decisions are not made at the
meeting.

Joint application development (lAD) is a spe­
cial form of meeting in which users and technicians
meet continuously over several days to identify ap­
plication requirements (see Figure 4-3). Before a

Data Collection Techniques 93

TABLE 4-5 Interviewee Behaviors and Interviewer Response

Interviewee Behavior

Guesses at answers rather than admit ignorance

Tries to tell interviewer what she or he wants to
hear rather than correct facts

Gives irrelevant information

Stops talking when the interviewer takes notes

Rushes through the interview

Wants no change because she or he likes the
current work environment

Shows resentment; withholds information or
answers guardedly

Is not cooperative, refusing to give information

Gripes about the job, pay, associates, supervisors,
or treatment

Acts like a techno-junkie, advocating state-of­
the art everything

JAD session, users are trained in the techniques used
to document requirements, in particular, diagrams
for data and processes are taught. Then, in prepara­
tion for the JAD session, the users document their
own jobs using the techniques and collecting copies
of all forms, inputs, reports, memos, faxes, and so
forth used in performing their job.

A JAD session lasts from 3 to 8 days, and from
7 to 10 hours per day. The purpose of the sessions is
to get all the interested parties in one place, to de-

Interviewer Response

After the interview, cross-check answers

Avoid questions with implied answers. Cross-check
answers

Be persistent in bringing the discussion to the desired topic

Do not take notes at this interview. Write notes as soon
as the interview is done. Ask only the most important
questions. Have more than one interview to get all
information.

Suggest coming back later

Encourage elaboration of present work environment and
good aspects. Use the information to define what gets kept
from the current method.

Begin the interview with personal chitchat on a topic of
interest to the interviewee. After the person starts talking,
work into the interview.

Get the information elsewhere. Ask this person, "Would
you mind verifying what someone else tells me about this
topic?"

If the answer is no, do not use this person as an informa­
tion source.

Listen for clues. Be noncommittal in your comments. An
example might be, "You seem to have lots of problems
here; maybe the application proposed might solve some of
the problems." Try to move the interview to the desired
topic.

Listen for the information you are looking for. Do not
become involved in a campaign for technology that does
not fit the needs of the application.

fine application requirements, and to accelerate the
process of development. Several studies show that
JAD can compress an analysis phase from three
months into about three weeks, with comparable
results. The advantage of such sessions is that users'
commitment is concentrated into the short period of
time. The disadvantage is that users might allow
interruptions to divert their attendance at JAD meet­
ings, thus not meeting the objective. JAD is dis­
cussed in more detail in the Introduction to Part II.

94 CHAPTER 4 Data Gathering Application Development

FIGURE 4-3 JAD Meeting

Observation
Observation is the manual or automated monitoring
of one or more persons' work. In manual observa­
tion, a person sits with the individual(s) being ob­
served and takes notes of the activities and steps
performed during the work (see Table 4-2). In auto­
mated observation, a computer keeps track of soft­
ware used, e-mail correspondence and partners, and
actions performed using a computer. Computer log
files are then analyzed to describe the work process
based on the software and procedures used.

Observation is useful for obtaining information
from users who cannot articulate what they do or
how they do it (see Table 4-2). In particular, for
expert systems, taking protocols of work is a use­
ful form of observation. A protocol is a detailed
minute-by-minute list of the actions performed by a
person. Videotaping is sometimes used for continu-

ous tracking. The notes or tapes are analyzed for
events, key verbal statements, or actions that indicate
reasoning, work procedure, or other information
about the work.

There are three disadvantages to observation (see
Table 4-2). First, the time of observation might not
be representative of the activities that take place nor­
mally, so the SE might get a distorted view of the
work. Second, the idea that a person is being ob­
served might lead them to change their behavior.
This problem can be lessened somewhat by exten­
sive observation during which time the person be­
ing observed loses their sensitivity to being watched.
The last disadvantage of observation is that it can
be time-consuming and may not yield any greater
understanding than could be got in less time­
consuming methods of data collection.

Advantages of observation are several. Little
opinion is injected into the SE's view of the work.

The SE can gain a good understanding of the cur­
rent work environment and work procedures through
observation. The SE can focus on the issues of
importance to him or her, without alienating or dis­
turbing the individual being observed. Some barriers
to working with the SEs that are needed for inter­
views and validation of findings might be overcome
through the contact of observation.

Some ground rules for observation are necessary
to prepare for the session. You should identify and
define what is going to be observed. Be specific
about the length of time the observation requires.
Obtain both management approval and approval of
the individual(s) to be observed before beginning.
Explain to the individuals being observed what is
being done with the information and why. It is
unethical to observe someone without their knowl­
edge or to mislead an individual about what will be
done with the information gained during the obser­
vation session.

Temporary Job Assignment
There is no substitute for experience. With a tem­
porary job assignment, you get a more complete
appreciation for the tasks involved and the complex­
ity of each than you ever could by simply talking
about them. Also, you learn firsthand the terminol­
ogy and the context of its use (see Table 4-2). The
purpose, then, of temporary job assignment is to
make the assignee more knowledgeable about the
problem domain. Temporary assignments usually
last two weeks to one month-long enough for you
to become comfortable that most normal and excep­
tional situations have occurred, but not long enough
to become truly expert at the job.

Temporary assignment gives you a basis for
formulating questions about which functions of the
current method of work should be kept and which
should be discarded or modified.

The disadvantage of work assignments are that it
is time-consuming and may not be a representative
period (see Table 4-2). The choice of period can
minimize this problem. The other disadvantage is
that the SE taking the temporary assignment might
become biased about the work process, content, or
people in a way that affects future design work.

Data Collection Techniques 95

Questionnaire
A questionnaire is a paper-based or computer-based
form of interview. Questionnaires are used to obtain
information from a large number of people. The
major advantage of a questionnaire is anonymity,
thus leading to more honest answers than might be
got through interviews. Also, standardized questions
provide reliable data upon which decisions can
be based.

Questionnaire items, like interviews, can be ei­
ther open-ended or closed-ended. Recall that open­
ended questions have no specific response intended.
Open-ended questions are less reliable for obtaining
complete information about factual information and
are subject to recall difficulties, selective perception,
and distortion by the person answering the question.
Since the interviewer neither knows the specific re­
spondent nor has contact with the respondent, open­
ended questions that lead to other questions might go
unanswered. An example of an open-ended ques­
tion is: "List all new functions which you think the
new application should do."

A closed-ended question is one which asks for a
yes/no or graded specific answer. For example, "Do
you agree with the need for a history file?" would
obtain either a yes or no response.

Questionnaire construction is a learned skill that
requires consideration of the reliability and validity
of the instrument. Reliability is the extent to which
a questionnaire is free of measurement errors. This
means that if a reliable questionnaire were given to
the same group several times, the same answers
would be obtained. If a questionnaire is unreliable,
repeated measurement would result in different
answers every time. Questionnaires that try to mea­
sure mood, satisfaction, and other emotional char­
acteristics of the respondent tend to be unreliable
because they are influenced by how the person feels
that day. You improve reliability by testing the ques­
tionnaire. When the responses are tallied, statistical
techniques are used to verify the reliability of related
sets of questions.

Validity is the extent to which the questionnaire
measures what you think you are measuring. For
instance, assume you want to know the extent to
which a CASE tool is being used in both frequency

96 CHAPTER 4 Data Gathering Application Development

of use and number of functions used. Asking the
question, "How well do you use the CASE tool?"
might obtain a subjective assessment based on the
individual's self-perception. If they perceive them­
selves as skilled, they might answer that they are
extensive users. If they perceive themselves as
novices, they might answer that they do not use the
tool extensively. A better set of questions would be
"How often do you use the CASE tool?" and "How
many functions of the tool do you use? Please list the
functions you use." These questions specifically ask
for numbers which are objective and not tied to an
individual's self-perception. The list of functions
verifies the numbers and provides the most specific
answer possible.

Some guidelines for developing questionnaires
are summarized in Table 4-6 and discussed here.
First, determine the information to be collected,
what facts are required, and what feelings, lists of
items, or nonfactual information is desired. Group
the items by type of information obtained, type of
questions to be asked, or by topic area. Choose a
grouping that makes sense for the specific project.

For each piece of information, choose the type of
question that best obtains the desired response. Se­
lect open-ended questions for general, lists, and non­
factual information. Select closed-ended questions to
elicit specific, factual information, or single answers.

Compose a question for each item. For a closed­
ended question, develop a response scale. The five­
response Likert-like scale is the most frequently
used. The low and high ends of the scale indicate
the poles of responses, for instance, Totally Disagree
and Totally Agree. The middle response is usually
neutral, for instance, Neither Agree Nor Disagree.
Examine the question and ask yourself if it has any
words that might not be interpreted as you mean
them. What happens if the respondent does not know
the answer to your question? Do you need a response
that says, I Don't Know? Is a preferred response hid­
den in the question? Are the response choices com­
plete and ordered properly? Does the question have
the same meaning for every department and possible
respondent? If the answers to any of these questions
indicate a problem, reword the question to remove
the problem.

If you have several questions that ask similar
information, examine the possibility of eliminating

TABLE 4-6 Guidelines for Questionnaire
Development

1. Determine what facts are desired and which people
are best qualified to provide them.

2. For each fact, select either an open-ended or
close-ended question. Write several questions and
choose the one or two that most clearly ask for the
information.

3. Group questions by topic area, type of question, or
some context-specific criteria.

4. Examine the questionnaire for problems:

• More than two questions asking the same informa­
tion

• Ambiguous questions
• Questions for which respondents might not have

the answer
• Questions that bias the response
• Questions that are open to interpretation by job

function, level of organization, etc.
• Responses that are not comprehensive of all possi­

ble answers
• Confusing ordering of questions or responses

5. Fix any problems identified above.
6. Test the questionnaire on a small group of people

(e.g., 5-10). Ask for both comments on the questions
and answers to the questions.

7. Analyze the comments and fix wording ambiguities,
biases, word problems, etc. as identified by the
comments.

8. Analyze the responses to ensure that they are the
type desired.

9. If the information is different than you expected,
the questions might not be direct enough and need
rewording. If you don't get useful information that
you don't already know, reexamine the need for
the questionnaire.

10. Make final edits, print in easy-to-read type. Prepare a
cover letter.

11. Distribute the questionnaire, addressing the cover
letter to the person by name. Include specific instruc­
tions about returning the questionnaire. Provide a
self-addressed, stamped envelope if mailing is
needed.

one or more items. If you are doing statistical analy­
sis of the answers, you might want similar questions
to see if the responses are also similar (i.e., are cor­
related). If you are simply tallying the responses and

acting on the information, try to use one question
for each piece of information needed. The minimal­
ist approach keeps the questionnaire shorter and eas­
ier to tally.

Pretest the questionnaire on a small group of rep­
resentative respondents. Ask them to give you feed­
back on all of the items that they don't understand,
that they think are ambiguous, badly worded, or
have responses that do not fit the item. Also ask them
to complete the questionnaire. The answers of this
group should highlight any unexpected responses
that, whether the group identified a problem or not,
mean that the question was not interpreted as in­
tended. If the pretest responses do not provide you
with new information needed to develop the project,
the questionnaire might not be needed or might not
ask the right questions. Reexamine the need for a
questionnaire and revise it as needed. Finally, change
the questionnaire based on the feedback from the test
group. The pretest and revision activities increase
the validity of the questionnaire.

Provide a cover letter for the questionnaire that
briefly describes the purpose and type of information
sought. Give the respondent a deadline for complet­
ing the questionnaire that is not too distant. For
instance, three days is better than two weeks. The
more distant the due date, the less likely the ques­
tionnaire will be completed. Include information
about respondent confidentiality and voluntary ques­
tionnaire completion, if they are appropriate. Ideally,
the questionnaire is anonymous and voluntary. To
the extent possible, address the letter to the individ­
ual respondent.

Give the respondent directions about returning
the completed questionnaire. If mailing is required,
provide a stamped, self-addressed envelope. If
interoffice mail is used, provide your mail stop
address. If you will pick up responses, tell the person
where and when to have the questionnaire ready for
pickup.

Document Review
New applications rarely spring from nothing. There
is almost always a current way of doing work that is
guided by policies, procedures, or application sys­
tems. Study of the documentation used to teach new
employees, to guide daily work, or to use an appli-

Data Collection Techniques 97

cation can provide valuable insight into what work
is done.

The term documents refers to written policy
manuals, regulations, and standard operating proce­
dures that organizations provide as a guide for man­
agers and employees. Document types include those
that describe organization structure, goals, and work.
Examples of each document type follow:

Policies
Procedures
User manuals
Strategy and mission statements
Organization charts
Job descriptions
Performance standards
Delegation of authority
Chart of accounts
Budgets
Schedules
Forecasts
Any long- or short-range plans
Memos
Meeting minutes
Employee training documents
Employee manuals
Transaction files, e.g., time sheets, expense

records
Legal documents, e.g., copyrights, patents,

trademarks, etc.
Historical reports
Financial statements
Reference files, e.g., customers, employees,

products, vendors

Documents are not always internal to a company.
External documents that might be useful include
technical publications, research reports, public sur­
veys, and regulatory information. Examples of ex­
ternal documents follow:

Research reports on industry trends, technology
trends, technological advances, etc.

Professional publications with salary surveys,
marketing surveys, or product development
information

IRS or American Institute of CPA reports on
taxes, workmen's compensation, affirmative
action, financial reporting, etc.

98 CHAPTER 4 Data Gathering Application Development

Economic trends by industry, region, country,
etc.

Government stability analyses for developing
countries in which the application might
be placed

Any publications that might influence the
goals, objectives, policies, or work
procedures relating to the appli­
cation

Documentation is particularly useful for SEs to
learn about an area with which they have no previ­
ous experience. It can be useful for identifying issues
or questions about work processes or work products
for which users need a history. Documents provide
objective information that usually does not discuss
user perceptions, feelings, or motivations for work
actions.

Documents are less useful for identifying atti­
tudes or motivations. These topics might be impor­
tant issues, but documents may not contain the
desired information.

Software Review
Frequently, applications are replacing older software
that supports the work of user departments. Study
of the existing software provides you with informa­
tion about the current work procedures and the
extent to which they are constrained by the software
design. This, in turn, gives you information about
questions to raise with the users, for instance, how
much do they want work constrained by the appli­
cation? If they could remove the constraints, how
would they do the work?

The weaknesses of getting information from soft­
ware review are that documentation might not be
accurate or current, code might not be readable, and
the time might be wasted if the application is being
discarded.

To summarize, the methods of collecting infor­
mation relating to applications include interviews,
group meetings, observation, questionnaires, tempo­
rary job assignment, document review, or software
review. For obtaining information relating to re­
quirements for applications, interviews and JAD
meetings are the most common.

DATA COLLECTION ___ _
AND APPLICATION ___ _
TyPE ________ _

In this section, we identify the data gathering tech­
niques most useful for each application type. Like
most aspects of application development, the tech­
niques can be used for all application types, but
because of their strengths and weaknesses, they do
not always result in the type of information that is
needed most. In this section, we first match data col­
lection techniques to the data types discussed in the
first section. Then, the data types are matched to
application types (from Chapter 1). Next, we match
the data collection techniques to application types
based on the data types they have in common.

Data Collection Technique
and Data Type
Table 4-7 summarizes the discussion of the above
sections. By matching technique for data collection
to data type, we are more likely to identify informa­
tion of interest than using other techniques. As the
table shows, interviews and meetings are useful for
eliciting all types of information. This is the reason
they are most frequently used in application work.

Observation provide~ only crude numerical esti­
mates of volumes, and is restricted to current time,
varying ambiguity, and possibly variable semantics
(see Table 4-7). Because the information from an
observation is unstructured, some skill is required
of the SE to iIppose a structure on it that fits the sit­
uation. Al~o, the information may be incomplete.

Questionnaires can ask structured questions about
any time frame but only obtain complete answers for
questions asked (see Table 4-7). If the questions are
open-ended, the completeness might be quite low.
Ambiguity in questionnaires should be low, but the
question semantics might be misinterpreted by the
respondents. Questions about volume at a depart­
ment or organization level are usually inappropri­
ate. Information about the volume of transactions or
time for transaction processing for individual work­
ers would get meaningful information.

Data Collection and Application Type 99

TABLE 4-7 Data Collection Techniques and Data Type

Technique Time Structure Completeness Ambiguity Semantics Volume

Interview All All All All Varies All

Meeting All All All All Varies All

Observation Current Unstruct. Incomplete May vary Varies Crude
measure

Questionnaire All Structured Complete for Low Fixed but might Individual
questions asked be subject to volumes

Temporary job Current Unstruct. Incomplete
assignment

Internal Past- Unstruct. Incomplete
documents current

External Mostly Unstruct. Incomplete
documents current-

future

Software Past- Structured Complete for
review current software

Temporary job assignments are similar to obser­
vation in having a high degree of uncertainty asso­
ciated with the information obtained (see Table 4-7).
The information tends to be current, unstructured,
and incomplete depending on the period of work.
Ambiguity varies from low to medium depending
on how well-defined and structured the work is.
Semantic content might vary depending on the
shared definitions in the work group.

Documents provide unstructured, incomplete
informations from which no relevant volume infor­
mation is likely. The time orientation differs whether
the documents are internal or external to the com­
pany (see Table 4-7). Internal documents are mostly
oriented to the past or current situation. External
documents are mostly oriented to current or future
topics. The semantics of external documents on ma­
ture technologies or topics tend to be relatively fixed
while that of internal documents might vary by
department or division.

interpretation only

Low-med. Varies For period
of obser-
vation but
may not
be represen-
tative

Low-med. Varies Maybe

Low-med. Relatively N/A
fixed

Low-med. Fixed Maybe

Software provides past, and possibly cur­
rent, information that is structured because it is
automated. The ambiguity should be low to me­
dium, and semantics should be fixed since the
application imbeds definitions of data and pro­
cesses in code. Information on volumes may be
present but should be cross-checked using other
methods.

Data Type and
Application Type
Application types are transaction processing (TPS),
query, decision support (DSS), group decision sup­
port (GDSS), executive information (EIS), and ex­
pert systems (ES). Each of these has one or more
predominate datatype characteristics that identifies
its application. Table 4-8 shows all applications
categorized for all data types. Here we discuss only

100 CHAPTER 4 Data Gathering Application Development

TABLE 4-8 Data Type by Application Type

Technique Time Structure Completeness Ambiguity Semantics Volume

TPS Current Structured Complete

Query Past, Structured Complete
current

DSS All Structured Varies

GDSS Current- Unstruct. Incomplete
future

EIS Future Unstruct. Incomplete

Expert system Current Semi- Incomplete
based on structured
past

the data types that differentiate between application
types.

TPS contain predominantly known, current,
structured, complete information (see Table 4-8).
Recall that TPS are the operational applications of a
company. To control and maintain records of cur­
rent operations, you must have known, structured,
current, and complete information.

Query applications have similar characteristics
to TPS with the difference that they might concen­
trate on historical information in addition to current
information (see Table 4-8). Queries are questions
posed of data to find problems and solutions, and
to analyze, summarize, and report on data. To per­
form summaries and reports with confidence, the
data must be structured, complete, and interpreted
consistently being both unambiguous and of fixed
semantics.

DSS are statistical analysis tools that allow
development of information that aids the decision
process. The type of data that identifies DSS so
that all time frames might be represented, may
be incomplete, ambiguous, have variable semantics
and medium to high volume (see Table 4-8). DSS
might be used, for instance, in analyzing which of
two variations on a given product might enjoy
the larger market share. To do this analysis, past
sales, current sales, and sales trends in the industry

Low Fixed Any

Low Fixed Any

Low-med. Varies Med.-high

Med.-high Varies Low

Med.-high Varies Low-med.

Med.-high May vary Low

might all be analyzed and tied together to develop
an answer.

GDSS are meeting facilitation tools for groups
of people. GDSS tools operate in a structured man­
ner working on data that is unstructured, current, and
future-oriented. GDSS mostly deal with data that is
incomplete and contains semantic and other ambigu­
ities (see Table 4-8). The tools themselves are com­
plete, unambiguous, and so forth, but the meeting
information they process is not.

EIS are future-oriented applications that allow
executives to scan the environment and identify
trends, economic changes, or other industry activity
that affect their governance of a company. EIS deal
mostly with 'messy' data that is unstructured,
incomplete, ambiguous, and contains variable
semantics (see Table 4-8). Interpretation is always a
problem with such data, which is why executives
who excel at reading the environment are highly
compensated.

Last, expert systems manage and reason through
semistructured, incomplete, ambiguous, and variable
semantic data (see Table 4-8). Experts and ESs take
random, unstructured information and impose a
structure on it. They reason through how to inter­
pret the data to remove ambiguity and to fix the
semantics. Therefore, even though the data coming
into the application might have these fuzzy char-

Data Collection and Application Type 101

TABLE 4-9 Data Collection Technique and Application Type

TPS Query DSS GDSS EIS ES

Interview X* X

Meeting X X

Observation X X

Questionnaire X X

Temporary job
assignment X X

Internal documents X X

External documents X X

Software review X X

*Boldface identifies most frequently used method.

acteristics, the data processing is actually highly
structured.

Data Collection Technique
and Application Type
Finally, in discussing different data types, we desire
to know which data collection techniques are best
for each application type. By combining the infor­
mation in Tables 4-7 and 4-8, we develop Table
4-9 to summarize data collection techniques for each
application type. The table entry in boldface shows
the principle method of data collection for each
technique.

TPS and query applications can profit from
the use of all techniques. Meetings and interviews
predominate because they elicit the broadest range
of responses in the shortest time (see Table 4-9).
Observation and temporary job assignment are
particularly useful in obtaining background informa­
tion about the current problem domain, but need to
be used with caution so as not to prejudice the design
of the application. Questionnaires are useful when
the number of people to be interviewed is over 50.
Also, questionnaires are useful in identifying
characteristics of users that determine, for instance,
training required of users during organizational fea-

X

X

X

X

X

X

X

X

X X X

X X X

Limited Limited X

Limited

X X X

Limited Limited Limited

sibility analysis. Also, if the screen requires, for
instance, colors or different types of screen arrange­
ments, questionnaires might be useful for present­
ing a small set of alternatives from which the actual
users choose.

DSS also are shown as having a use for all data
collection techniques, but not all techniques are
practical in all cases (see Table 4-9). DSS are gen­
erally developed for use by people in jobs with a sig­
nificant amount of discretion in what they do and
how they do it. Therefore, observing or working
with one or two people as representative may result
in a biased view of the application requirements for
a general purpose DSS. Even for a custom DSS,
observation and job assignments might both be
impractical if the SE does not know enough about
the job being supported to interpret what she or he
observes. The same holds true of documents. Docu­
ments, such as statistical reports, might be useful
for providing samples of the types of analyses
desired in a DSS. Other documents, such as poli­
cies, procedures, and so on, are not likely to be rele­
vant to the application. For general purpose DSS
with a large number of users, questionnaires are a
useful way to identify the range of problems and
analysis techniques required in the DSS. This infor­
mation might be followed by interviews or meetings
to determine DSS details.

102 CHAPTER 4 Data Gathering Application Development

GDSS are usually custom-built suites of software
packages that provide different types of support for
automated meetings. As such, the SE working on a
GDSS environment needs to know the types of
issues, number of participants, as well as types of
reasoning and group consensus techniques desired.
GDSS components are neither common knowledge
nor frequently used; you might build one GDSS in
a career. Therefore, significant time would be spent
finding out about the market,vendors, and GDSS
components. External documents on vendor prod­
ucts are useful in developing questions that elicit the
required information. After knowledge of the market
is obtained, interviews and meetings are useful to
determine the specific requirements and to review,
with users, what the GDSS can and cannot do. Other
methods might have some limited value. For in­
stance, observation of an actual meeting that might
be automated would be useful for the SE to gain
insight about how a tool might work. Internal docu­
ments that provide information about meetings that
the GDSS is expected to provide would also be
useful. Both of these techniques, observation and
document review, have a specific limited role in pro­
viding the information needed to build a GDSS. Any
software review that is done would be review of
other company's GDSS facilities or of vendor prod­
ucts, rather than review of in-house software.

EIS are similar to GDSS in the rarity and general
lack of knowledge about what an EIS is. EIS are not
standard applications with a screen for data entry of
some type and reports that are displayed. EIS are
information presentation facilities that can be struc­
tured with menus and selection tools, but may dis­
play document pages, newspaper articles, book
abstracts, summary reports, and so on. EIS are usu­
ally built for a small number of users, which elimi­
nates the use of questionnaires. EIS are custom and
one-of-a-kind environments for which past docu­
ments or software will be of limited value. Obser­
vation is most likely limited because executives
would be uncomfortable in being observed. Tempo­
rary job assignment is not possible because you can­
not just 'be an executive' for a week or two. This
leaves external documents, interviews, and meetings
as the most likely techniques for data collection (see
Table 4-9). As with GDSS, external documents will

be mostly to identify the market, vendors, and prod­
ucts. Interviews are most likely to be used to deter­
mine executives' information needs and preferred
delivery platforms.

Finally, SEs use interviews, observation, and
external documents the most in developing expert
systems (see Table 4-9). Experts frequently can talk
about external aspects of their jobs, the physical cues
they use as inputs, and the result of their reasoning
and how it is applied to the business. They are just as
frequently unable to discuss their reasoning pro­
cesses and how they put the cues together to make
sense of unstructured situations. Experts, by defini­
tion of the term expert, have so internalized their
work that they just do it. They don't think con­
sciously about how they are doing what they do.
Therefore, observation, in particular, the use of pro­
tocol analysis, is useful in getting information the
expert might not be able to articulate. Protocol
analysis is time-consuming and indefinite because
you, the SE, are inferring a reasoning process from
actions taken. At best, the protocol analysis gives
you questions to ask about the work that assist the
experts in discussing aspects of work they ordinar­
ily cannot. Thus, observation is interleaved with in­
terviews to discuss what is observed. As the process
continues, structure is imposed on both the data and
the problems to begin to develop the ES. The process
of obtaining an expert's reasoning processes is called
knowledge elicitation. The process of structuring
the unstructured data and reasoning information is
called knowledge engineering. Knowledge engi­
neering is an activity that is difficult to learn and re­
quires training through an apprenticeship approach
in which the trainee works with an expert knowledge
engineer.

PROFESSIONALISM ___ _
AND ETHICS _____ _

A profession is defined as a job requiring advanced
training. Computer information systems develop­
ment and any job dealing with information tech­
nologies qualify as professions. Professionalism is
acting in accordance with the highest expectations of
a professional group. Those expectations are codi-

fied in professional codes of ethics for various orga­
nizations. The organizations relating most closely
to IS professions are the Association of Computing
Machinery (ACM) and Data Processing Manage­
ment Association (DPMA). Both organizations have
ethical conduct codes and the codes are similar. The
most widely publicized code for the Association for
Computing Machinery [1990], follows:

1. The developer shall act with integrity at all
times.
a. The developer shall qualify an opinion out­

side his or her area of competence.
b. The developer shall not falsify his or her

qualifications.
c. The developer shall not knowingly issue false

statements about the present or expected sta­
tus of a system.

d. The developer shall not misuse confidential
or proprietary information.

e. The developer will remain sensitive to and
will reveal potential conflicts of interest.

2. The developer should constantly strive to in­
crease his or her competence in the profession.
a. A developer will diligently attempt to de­

velop systems that perform their intended
functions and satisfy the organization's
needs.

b. A developer will help his or her colleagues
develop professionally.

3. A developer shall accept only assignments for
which there is reasonable expectation of meeting
the goals of the system.

4. A developer should use his or her special knowl­
edge to advance the health, privacy, and general
welfare of the public and society.
a. A developer should always consider the indi­

vidual's right to privacy when working with
data.

b. A developer should refrain from participating
in a project in which he or she feels there will
be undesirable consequences for individuals,
organization, or society as a whole.

If you read the ACM Code of Ethics carefully,
note that it contains ethical topics and professional­
ism topics. To separate out what is professional con­
duct from what is ethical conduct, we first define

Professionalism and Ethics 103

ethics terms and relate ethics to IS professions. Any­
thing that is unethical is also unprofessional, but the
reverse is not true. Professionalism is a broader sub­
ject than ethical behavior. In fact, the early name for
codes of ethics was' codes of professional behavior.'
Ethics is in the section on data collection because
many of the issues are concerned with user relations
and are most evident in data collection activities.

So, what is ethics? Ethics is the branch of phi­
losophy that studies moral judgment and reasoning.
A dilemma is any situation requiring a choice
between two unpleasant alternatives. Therefore, an
ethical dilemma is any situation in which a decision
results in unpleasant consequences requiring moral
reasoning. The addition of information technologies
to organizations presents novel, little understood
opportunities for unethical behavior that are rarely
discussed in texts.

Ethics is an issue of growing interest as it relates
to information technologies. You, as users and
developers of ITs, are sometimes in particular cir­
cumstances that subject you to dilemmas that need to
be reasoned through to reach an ethical decision.
One problem with ethics is that it is misunderstood
as religious upbringing and the application of reli­
gious thought to real life situations. In fact, that is
incorrect. Ethical decisions and reasoning are based
on philosophies of rights, equity, and utility, that is,
the greatest good for the greatest number of people.
Ethics requires evaluation of alternatives, requiring
only belief in the equality and dignity of man. Next,
we discuss ethics as it relates to different aspects of
data collection and user interactions in application
development. Then, a procedure for reasoning that is
likely to lead to ethical decisions is presented for
your use.

Ethical Project Behavior
Confidentiality

Always be trustworthy of information told in confi­
dence. In fact, assume that any interview informa­
tion is in confidence, unless the person being
interviewed is specifically told that it is 'on the
record.' Besides being unethical, telling 'tales out
of school' will eventually return to hurt your career.

104 CHAPTER 4 Data Gathering Application Development

If you think some information gained in privacy
should be shared, ask if the interviewee minds if you
discuss it. With permission, the bounds of confiden­
tiality are removed and you are free to discuss the
information.

The exception to this rule occurs when a person
confides in you about an illegal act. You are legally
bound to report any illegal activity to the managers,
company authorities, and police, if no action is
taken. By law, if you do not report illegal acts, you
are an accessory to the act and are also libel to
legal action.

Privacy

Experts have a right to know when their experience
and knowledge are being used in an application. The
basic rule is treat others as you would like to be
treated. Would you like it if the company observed
your use of computers and built systems based on
it? Especially in building expert systems there are
ethical issues about ownership of expertise. There
should be no observation, in person or by computer,
without permission. No one should be coerced into
cooperation. Participation should be voluntary.

Ownership

Computers are now so much a part of corporate life
that we tend to get confused about who owns the
resources. On an intellectual level, most people rec­
ognize that the company that owns the computers
also owns the computer time. But, in a given situa­
tion, most people feel that if the resource is not used
it is wasted, and that computer time is like the ether,
a free resource that is there for the taking. Most
executives do not feel the same way, whether or not
there is a policy about computer resource use.

Find out, in advance, the company policy or
owner feelings about personal use of computing
resources, then follow their guidance. Actions like
running a program for a friend, doing personal fi­
nances, keeping track of the baseball team, and so on
mayor may not be ethical, depending on how the
company feels about the use of its resources.

Who owns work and work-related products
should be spelled out in detail so that if you feel

something is rightfully yours, so does the client!
company and you can feel ethical about taking it. For
instance, technical, user, or operational documenta­
tion, screen designs, data dictionary, program code,
vendor literature, or other products that you develop
or gather in the course of development are all subject
to ownership confusion. If you work for a consulting
company and develop a proprietary application, like
ABC's rental system, you have no right to sell the
processing to other companies. This right is nego­
tiable and belongs only to the client unless that right
is specifically itemized in the contract. Be clear
about ownership and you are less likely to be fired or
sued over ownership rights.

The expertise that you gain from working on a
project is intellectual property. Expertise is yours
unless you sign a contract to the contrary. However,
it is unethical to use your company-specific knowl­
edge for personal, noncompetitor, or competitor
financial gain unless you have an agreement with
your employer about such use. Usually employers
ask that you not divulge proprietary information, but
the definition of proprietary may be open to inter­
pretation. Also, employers can bar you from using
information for one to two years if they can prove
that it might hurt their business. The best course of
action is to get such issues in the open and decided in
advance so no conflict occurs.

Politics

Try to never be mixed up in a political battle. This
is easier than it sounds, especially if you are the SE
or project manager. Politics is the science of man­
agement often driven by personal motivation. In
organizations, most people have the company's
interest in mind when they make decisions; everyone
is also assumed to at least consider their personal sit­
uation in decisions, as well. Some people put per­
sonal improvement ahead of all other considerations,
even to the detriment of the company. Extreme self­
ish motivation without regard to the outcome for
others or the company is unethical.

In a political battle, the politician(s) try to ma­
nipulate the project results to improve their position
in the company. Political maneuvering might take

different forms: stalling, lying, artificial require­
ments, false cooperation, or different public and pri­
vate statements. You, as the SE or PM, must become
sensitive to such actions and learn how to diffuse
them. The tactics are manifested in the discussion
of interviewee actions and interviewer reactions in
Table 4-5.

Courtesy

It is not necessary to tell every project problem to the
user. You are ethically bound to discuss problems
that might impact schedule, budget, or accuracy.
When to tell a user about problems requires common
sense. You should tell them early enough to warn
them that the problem is coming, and late enough not
to have been a whistleblower for nothing. Never wait
until the last minute when nothing can be done to
fix the problem, or all project participants lose cred­
ibility. Always solicit user assistance in problem res­
olution once they are told. The purpose of weekly
status meetings is to provide status and identify
problems and their anticipated resolution. These
problems always foreshadow schedule and budget
problems when they remain outstanding for a long
period. A problem outstanding several months with
no solution in sight will probably impact the sched­
ule and budget. In keeping the user up-to-date on
technical problems you indirectly apprise them of
potential cost and budget overruns.

Personal Manner and Responsibility

When people work on a project with others, they
sometimes lose sight of their contribution as stand­
ing on its own for quality review. Somehow the
notions of 'on time, within budget, and accurate'
have meaning to the project but not to the individ­
ual who is coding and testing a module. One role of
the PM and SEs is to instill the sense of responsibil­
ity in every person. Each person should know their
tasks, budget, expected resource use, and due date.
Each person should be held accountable for meet­
ing their deadlines and for having no errors in the
code. Accountability is easy to displace in project
work; who is responsible becomes diffuse. Some

Professionalism and Ethics 105

people say the project manager is always account­
able. Some say the analysts and SEs. Some say no
one. The short answer is that everyone is responsi­
ble for and should be made accountable for his own
work and its integration into the project whole.

Do not talk to your manager, client, or your
employees about work problems that do not relate
to project completion. This is just good business.
Managers and clients want answers and solutions,
not problems. Therefore, they should be informed
of status and problems that might someday affect
them, but should otherwise be left alone. A manager
doesn't want to know how Suzie in the typing pool
or Carl in the copy room butchered your work. You
deal with it and forget it. If you have a problem with
the quality of someone's work who does not report
to you, mention it to that person, and if unresolved,
talk to their manager. The less accusatory and more
factual you can be, the less like a whiner and com­
plainer you appear. Be sure you can back up any
accusations you make.

Do not tell the client or your manager about your
personal problems unless you have a personal rela­
tionship. Personal problems can always be blamed
for everything that goes wrong, but that is neither
adult nor ethical. Henry Ford's famous quote,
"Never complain, never explain," comes to mind
here. Your job at work is to work, so just do it.

Do not get emotionally involved with the user. If
there is a budding relationship, it can wait until the
project is complete. Emotional involvements are
easy to fall into when you are together 10 to 15 hours
a day for months at a time. They also are prone to
collapse as soon as a new project begins and you and
they both work with others 10 to 15 hours a day.
Emotional attachments cloud judgment and do not
belong in the office.

Never intentionally mislead. Never lie. Never
give false impressions, false perceptions, or any
information that might cause users to infer a better,
bigger, more functional application than you plan to
deliver. Users will form their opinions based on what
you and their managers tell them. Don't oversell the
application and what it can do for their job. Also, if a
downsizing is taking place at the same time, don't
falsely give people hope that their jobs will be saved

106 CHAPTER 4 Data Gathering Application Development

when they might not. You don't raise alarms, but you
don't give false hope either.

Ethical Reasoning
When you feel you are confronted with a problem
that requires ethical reasoning, you need some way
to identify all potential stakeholders, to evaluate the
alternative courses of action, and to reason through
the alternatives. One such method is presented here
as a way to initiate reflection on your own thinking
about the way you reason through tough problems.
This is certainly not the only method of problem
reasoning.

Identify Stakeholders

First, identify who might benefit or suffer from your
decision. This action identifies stakeholders, people
who have a stake in the outcome of your action. This
is a difficult task, especially with computer use when
you might not know the stakeholders personally.
Stakeholders might be stockholders of a company,
the company itself, your boss, you, the user com­
munity, the user/client for the application, society, or
people subject to direct or indirect connection to the
application. For instance, space shuttle astronauts,
patients in a hospital, people who live near the plant
in which the application will run, e-mail recipients,
report users, governments, data entry clerks and their
managers, all might be stakeholders.

Identify Actions Stakeholders
Would Choose

Then, identify the action each stakeholder would
prefer you to take and why. This task defines all pos­
sible actions. Begin with yourself. What do you want
to do? Why do you think this is the best decision?
Answer these questions from the perspective of each
stakeholder group. Putting yourself in each stake­
holder group's position requires objectivity and dis­
tance from the problem.

Eliminate Alternatives

Next, determine if there are any policies, procedures,
laws, or other guidelines that make one or more

alternatives untenable. Cross them off the list. Once
a type of conduct crosses over into governance by
laws, it is no longer an ethical issue, but becomes a
legal one. Always obey the laws of the country you
are in and the country you represent. For instance,
bribery is a way of life in many countries, but not in
the United States. Therefore, you are legally bound
not to use bribery in business when you work for an
American firm.

Policies and procedures of companies are similar
in codifying conduct, but do not hold the same strin­
gency of penalty for their transgression. Violation
of policies is usually a fireable offense, meaning you
lose your job when you violate a policy. Procedures
are less stringent, but are expected to be followed.
You might receive a letter of reprimand for not fol­
lowing a procedure exactly.

Guidelines, such as the professional code of
ethics listed above, also provide heuristics about
conduct to help you in governing your work behav­
ior. There is no direct penalty in not following a code
of ethics. You might be sued or fired, but the pun­
ishment is not from the professional organization.

Reason Through Negative
Outcome Alternatives

For the possible courses of action remaining on your
list, reason through each by asking key negative
questions. If the answer to any of these negative out­
come questions is yes, remove the alternative action
from the list.

Are the rights of any person or group violated by
this action? Consider the right to privacy, ownership
of information about individuals' buying habits, pay­
ment habits, income, tax status, and so on. Consider
the rights to company privacy of customer, financial,
personnel, medical, and other proprietary inform a -
tion. Ask if the lack of security and access controls,
for instance, subject the database to casual brows­
ing by system users. If such browsing could result
in a violation of privacy to customers, it should be
prevented.

Does taking this action result in inequitable treat­
ment of a person or group? Equitable treatment
requires judgment of equality. In multinational com­
panies, inequity might be seen as a business deci-

sion. For instance, many US corporations initially
got into international business by dumping their sec­
ond rate quality goods in other markets. Was this
ethical? The answer is in the manner in which it was
done. If the goods were sold as second quality, there
is no issue. If the goods were sold as first quality,
the companies basically lied and were unethical.

Companies might be subject to inequity because
of their internal staff quality, too. Does the company
lose money because of the inefficiency of design? A
manager, for instance, might insist on using a par­
ticular software because he knows it, even though it
is not efficient for the task. The manager is making
a trade-off of current knowledge versus cost and
time for learning a new product, that can cross the
line into unethical behavior when it costs the com­
pany tangible amounts of money. Using mainframes
which rent for millions instead of networks that cost
thousands could be construed as unethical when net­
works are not even considered because of a lack of
expertise. In other words, making a business deci­
sion to stay with a significantly more expensive
alternative after considering all alternatives, is ethi­
cal. Avoiding a comparison of alternatives or mak­
ing a decision because of technical ignorance is
not ethical.

Does taking this action have the potential of plac­
ing a person or company in jeopardy financially,
physically, legally, or morally? Hospital applications
that hook patients to computerized monitors, trans­
portation industry applications that affect safety of
planes and cars, power plant applications that deal
with monitoring power-generation equipment, and
so forth, are all potentially life-threatening. We need
such applications, but their design and maintenance
must be of the highest possible quality to pose the
least risk to human life. If corners are cut on analy­
sis, design, or testing, lives can be lost.

Reason Through Neutral and
Positive Outcome Alternatives

For remaining actions, ask key positive outcome
questions to select the best alternative. Does taking
this action result in the best possible outcome for all
stakeholders? What is the result of taking no action?

Summary 107

If only negative outcomes are possible, does tak­
ing this action result in the least harm to all stake­
holders? If this is the case, who suffers and what type
of injury? If the stakeholder is warned in advance,
can the problem be averted?

Select a Course of Action

When all the pros and cons of each alternative have
been identified, select the alternative that produces
the greatest good for the greatest number of people,
that does not violate anyone's rights, and that results
in the most equitable decision, with all stakehold­
ers' equity considered.

SUMMARY ________ ~ __ _
Data gathering is done during every phase of appli­
cation development, but serves different purposes
in each phase. The types of data collected depends
on the type application and phase of development.

Data types refer to the characteristics of data for
time-orientation, structure, completeness, ambiguity,
semantics, and volume. Attention to data types in
selection of data collection technique is less likely to
cause errors and more likely to find errors than inat­
tention to data type. The cost of errors rises dramat­
ically the later in the development process it is
found. Time orientation of data refers to past, pres­
ent, or future data requirements for an application.
Data structure refers to the extent to which data can
be classified. Data completeness is the extent to
which desired information is present. Ambiguous
data have unclear or multiple meanings; companies
strive for unambiguous definitions for data. Data
semantics are the meanings, we as organization
employees, give to data. Volume is the numbers of
each item of interest in an application. Volumes can
have widely varying time orientations. SEs must
attend to peak as well as average volume.

Several data collection techniques were dis­
cussed, including interviews, group meetings,
questionnaires, observation, temporary job assign­
ment, review of internal and external documents,
and review of software. Interviews are meetings
between two or three people for obtaining any type

108 CHAPTER 4 Data Gathering Application Development

of information. Interviews can be structured or
unstructured. Questions asked can be open-ended or
closed-ended.

Group meetings include four or more people
and can substitute for interviews or can be used to
validate interview findings. Joint application devel­
opment meetings are a special type of meeting
specifically convened to develop application re­
quirements. Special training and planning are
required for JAD sessions. Both interviews and
meetings require attention to an agenda and time
period.

Observation is the monitoring of one or more per­
sons' work. Observation is useful for learning a
problem domain and is most often used in expert
system development. A data analysis technique
called protocol analysis is used to infer the reasoning
processes of experts from detailed manuscripts of
their actions during a period.

Temporary job assignment is an alternative
means of gaining problem domain experience
for nonmanagerial, nonexecutive jobs. Question­
naires are structured forms of interviews conducted
on many people, usually more than 50. Statistical
techniques are frequently used in analyzing ques­
tionnaire results. Reliability and validity of the ques­
tions are issues to be considered in questionnaire
development.

Document review is useful in gaining background
information about an application area. Documents
can be internal or external to the company.

Software review is the analysis of programs and
documentation to learn the details of a current
application.

In developing the information about data collec­
tion technique related to application type, we also re­
lated data collection technique to data type and data
type to application type. From these analyses, we
find that interviews and meetings are most fre­
quently used because they are the only techniques
useful regardless of application type. The other tech­
niques have specific purposes for each application
type. For instance, software review for TPS, tempo­
rary job assignment, or observation are useful in
gaining problem domain experience. Observation is
most useful in expert system development. External

documents are important in unique GDSS and EIS
development. Questionnaires are most useful in DSS
for general use in a company, for surveying user
preferences for design options, or for obtaining
detailed information about the application from a
large number of people.

KEy TERMS ________ _

closed-ended question
data ambiguity
data completeness
data semantics
data structure
data time-orientation
data volume
dilemma
document
ethical dilemma
ethics
intellectual property
interview
joint application

development (JAD)
knowledge elicitation
knowledge engineering

meetings
observation
open-ended question
peak volume
politics
profession
professionalism
protocol
questionnaire
reliability
semantics
stakeholder
structured interview
triangulation
unstructured interview
validity

REFERENCES ______ ~ __ __
Flaaten, Per 0., Donald J. McCubbrey, P. Declan

O'Riordan, and Keith Burgess, Foundations of Busi­
ness Systems, 2nd ed. Fort Worth, TX: Dryden Press,
1992.

Gause, Donald C, and Gerald M.Weinberg, Exploring
Requirements Quality Before Design. NY: Dorset
House Publishing, Inc., 1989.

Lucas, Henry C, Jr., The Analysis, Design, and Imple­
mentation of Information Systems, 4th ed. NY:
McGraw-Hill, Inc., 1992.

Mockler, Robert J., and Dorothy G. Dologite,
Knowledge-based Systems: An Introduction to Expert
Systems. NY: Macmillan Publishing Co., 1992.

Zahedi, Fatemah, Intelligent Systems for Business:
Expert Systems with Neural Networks. Belmont, CA:
Wadsworth Publishing, 1993.

EXERCISES
----------~ --

1. Ethics is far from a settled issue, especially as it
relates to use of information technologies. One
issue, for instance, is that development of artifi­
cially intelligent applications might be unethical
because we do not know how they will turn out.
That means, we cannot predict if a person or
company will get hurt. Debate this issue and
develop conclusions for your class. Summarize
the debate and send it to a trade magazine such
as Communications of ACM, Computerworld, or
Datamation.

2. For ABC Video, play the roles of Vic, Mary, and
Sam. Either write or playact an interview to
elicit requirements for the proposed rental appli­
cation. Mix the use of open and closed questions
to follow a chain of logic.

3. Develop a questionnaire that might be used with
the user community of the Office Information
System case in the Appendix.

STUDY QUESTIONS ___ _

1. Define the following terms:
ambiguity professionalism
ethical dilemma reliability
joint application semantics

development structure of data
professional triangulation

2. Why are data types important? What happens
when the wrong data collection techniques

are used? How does data collection tech­
nique relate to costs in applications?

3. How do data types relate to applications?
4. Discuss the cost of fixing errors in applications.
5. How do ambiguity and semantics differ? Why

are they both important?
6. When are temporary job assignments not a use­

ful data collection technique?
7. What type of information can be got from tem­

porary job assignments?
8. What is the use of reviewing documents? How

do you choose whether to review internal or
external documents?

Study Questions 109

9. Why would you ever review software? What
are the pitfalls of software and software docu­
mentation review?

10. Compare and contrast individual interviews
and meetings, listing two purposes that are
the same for both techniques and two that
are different.

11. Compare and contrast structured and unstruc­
tured interviews.

12. Compare and contrast open-ended questions
and closed-ended questions.

13. Describe how an unstructured interview pro­
gresses. What types of questions are used as
the opening? How does the interviewer know
what types of questions to ask? What types of
questions are used after the opening?

14. Which kinds of data can you best get from
observation?

15. Which kinds of data can you best get from
external document review?

16. Which kinds of data are you unlikely to get
from a questionnaire?

17. Which data collection technique is most useful
for obtaining expert reasoning processes?
Why? Describe the use of the technique.

18. Which data collection technique is most useful
for obtaining executive needs for an EIS?

19. Why are expert systems and EIS unique?
20. Which question types are used for factual,

detailed explanations of work processes?
21. How do you select between structured and

unstructured interviews?
22. What is the typical follow-up to an interview?

Who does what and when?
23. Why are meetings a useful data collection tech­

nique? How do you plan a meeting to avoid
wasting time?

24. Describe how to develop a questionnaire.
25. Describe protocol analysis. When is it

used? What application type(s) is it most
used for?

26. What type of data are most likely in a DSS?
27. Describe the time-orientation of EIS. What

type of data is associated with EIS?
28. Describe knowledge engineering. When is it

used and why?

110 CHAPTER 4 Data Gathering Application Development

29. What is the difference between professionalism
and professional ethics?

30. Discuss three of the six areas of ethical conduct
by IS professionals.

31. Describe an ethical dilemma you might face in
application development work. How should it
be dealt with?

32. Describe the reasoning process for developing
an ethical solution to some issue.

* EXTRA-CREDIT QUESTIONS

1. For ABC Video's rental application, we still do
not know accurate counts for volumes of rentals,
late returns, on-time returns, late fees, or cus­
tomers. How would you go about finding this
information? Be specific in identifying a data
collection technique, the number of people
involved, and the amount of time involved. At
what stage of the development process should
this information be got?

2. The ACM's Code of Ethics, number 2, discusses
the need for developers to constantly increase
competence in their profession and to help
others to do likewise. Is this an ethical issue?
Who are the stakeholders to the issue? Reason
through the issues and develop your own
thoughts on the subject. Compare them to class­
mates, arguing for your position.

3. List and define the data type for all data cur­
rently identified for ABC's rental application.
Refer to Chapter 2 for the data definitions.

PA

---PROJECT
INITIATION ----- -----------------------------------.............. -------

The two chapters in this section address the activities
that take place before analysis of a specific project
begins. Project initiation can take place in several
different ways. First, it can be part of a larger enter­
prise reengineering effort. Second, a project might
be initiated as part of an information systems plan­
ning effort. Third, a project might be initiated based
on a user request for a specific project. All three
methods of project initiation are equally feasible and
equally useful in beginning an application develop­
ment project.

Chapter 5 addresses the first two project initiation
efforts. The main discussion is how to do a reengi­
neering design of an organization and plan applica­
tions and technologies to support the redesign.
Enterprise level planning, such as an information
systems plan, is described as a subset of activities
that focus on applications only and are an abbrevi­
ated reengineering study. Most researchers and in­
dustry experts, such as James Martin, recommend
that at least an information systems plan (ISP) is a
worthwhile planning activity in existing organiza­
tions. Both reengineering and ISPs result in plans for
multiple applications which are prioritized for
development.

Enterprise level planning exercises are costly, and
some companies cannot afford to spend computer
resources on such studies. In these companies, appli­
cation development projects are initiated via a
direct request from a user. Also, companies that do
enterprise level plans might desire to reconfirm rec­
ommendations that might be two or three years old.
For direct initiation and for reconfirmation of rec­
ommendations, a user memo to the Information Sys­
tems Manager or to an IS Steering Committee can
initiate project assessment. Such an assessment is
called a feasibility study.

Chapter 6 details the activities involved in a fea­
sibility study. A feasibility study is performed to
assess the financial, technological, and organiza­
tional readiness of the company for the application.
Feasibility is an important analysis that is usually
conducted on individual application projects rather
than on a whole group of applications, such as might
be identified in an ISP or organizational reengineer­
ing project. The feasibility analysis determines the
extent to which new technologies, skills, or training
are required by the user and developer staffs and
assesses the ability of the company to pay for the
development project.

111

112 PART II Project Initiation

Part of the technical feasibility is to define a
direction for the application development through an
evaluation of technical development alternatives.
For instance, an application might be on-line or real­
time; it might be on a standalone PC, on a PC con­
nected to a local area network, or on terminals
attached to a mainframe; it might use a 4GL data­
base software such as Orac1e™ or a full-service
database such as IMS DB/DC. 1 Likely alternatives
are evaluated to determine the extent to which func­
tional requirements would be supported, and to
determine any alternative-specific benefits that
might be present. A recommendation for technical

1 Oracle ™ is a trademark of the Oracle Corporation. IMS
DBIDC is a product of IBM Corporation.

concepts is made and may (or may not) be accepted
at the completion of the feasibility study. Even
though the concept need not be cast in concrete at
this time, it helps to have a sense of the operational
environment for conducting the analysis phase of
the project.

A risk assessment should be performed as part of
feasibility analysis. The risk assessment identifies
technical, personnel, and financial problems that
could hinder the successful completion of the proj­
ect. For each risk defined, two types of plans are
developed. First, a contingency plan to deal with the
problem if it should occur is defined. Second, imme­
diate steps to minimize the probability of the risk's.
occurrence are planned and taken.

CHAPT ER5

ORGANIZATIONAL ________ -----
REENGINEERING
AND ENTERPRISE _______ .--------

PLANNING ______ ~ __ ~-

INTRODUCTION ____ _

As the economy becomes more global and the busi­
ness climate more competitive, companies need to
reevaluate what they do and how they do it. Reengi­
neering is the evaluation and redesign of business
processes. The goal is to streamline the organiza­
tion to include only the business functions that
should be done rather than necessarily improve on
what is done today. Reengineering can introduce
radical change into organizations with information
technologies as key to supporting new organiza­
tional forms and providing information delivery to
its users.

When radical approaches are not necessary (or
wanted), the techniques of reengineering can be
scaled down to provide enterprise level plans for
information systems. Enterprise level planning tech­
niques originally were developed in response to
managers' complaints that IS departments did not
respond to their information needs and frequently
built applications that the company did not need.
Enterprise planning techniques match IS plans to
organization plans and are also used within the
context of reengineering. Techniques include stake­
holder analysis, critical success factors, and infor-

mation systems planning (ISP). In this chapter, we
first develop the conceptual basis and methodology
for reengineering. Enterprise techniques are defined
for use in reengineering analysis. Then, enterprise
level IS planning, without organization design, is
described. The last section identifies computer-aided
software engineering (CASE) tools that support re­
engineering and enterprise level analysis techniques.

CONCEPTUAL _____ _
FOUNDATIONS _____ _
OF ENTERPRISE ____ _
REENGINEERING ____ _

Organizational reengineering is the evaluation and
redesign of business processes, data, and technol­
ogy (see Figure 5-1). The goals ofreengineering are
to achieve dramatic improvements in quality, ser­
vice, speed, use of capital, and reduced costs. The
rationale for business reevaluation comes from need.
The need may be to turn around a failing company,
to increase competitiveness, to improve customer
service, to increase product quality, or any combi­
nation of these. The philosophy of reengineering is

113

114 CHAPTER 5 Organizational Reengineering and Enterprise Planning

Before

Data

After

FIGURE 5-1 Reengineering Targets

that, when implemented alone, total quality pro­
grams, organization redesign, or information tech­
nology are inadequate for an organization to realize
its potential. The main resources of organizations
today are people and information. Both people and
data, the raw material of information, have to be
optimized to even try to meet the company's poten­
tial. Organization redesign optimizes the people
resource; the interjection of quality improves both
organization and data. Complete reevaluation of
technology that provides the information infrastruc­
ture optimizes the data and delivery of data to the
people who need it. This chapter discusses how to

evaluate the organization and its information re­
quirements, how to reengineer both the organization
and the technology, and how to plan for the imple­
mentation of radical change.

Reengineering theory comes from management
and IS. Management theories about organization
design, job design, and reskilling are all used in re­
design of work and the organization structure.

First, good management practice dictates that
only essential activities be done. To assure this, re­
engineering assumes an organization level plan for
all functions, activities, and processes that accom­
plish the activities. It also assumes that the plan is
actively managed to ensure that all processes di­
rectly relate to the organization's mission, goals, and
objectives. Nonessential processes, departments, and
layers of management are eliminated to streamline,
speed, and lower the cost of process performance.

Second, in job redesign, a caseworker approach is
preferred to an assembly line approach. Casework­
ers 1 have increased control, decision making, au­
thority, and discretion. Redesigned, enlarged jobs
improve the quality of work life, thus, improving the
quality of work.

To satisfy employees and customers, for instance,
customer service departments might adapt a case­
worker approach to work. In the caseworker ap­
proach, employees know the entire process from
beginning to end and work independently to service
their personal customers. In addition, the caseworker
works closely with the marketing and sales force for
those same customers. The consequences of case­
workers are great. The customer service agents have
reskilled, enlarged jobs that are more interesting.
Intrabusiness communications between, for instance,
sales and customer service, are improved. External
customer relations should also improve because cus..:
tomers have one consistent representative with
whom they work.

Enlarged jobs are not a way to squeeze more
work out of already overworked people. In the cus­
tomer service example, initially a clerk does a small
number of activities that present a partial view of a
large number of customers. In a reengineered job,

1 Hackman [1990].

Conceptual Foundations of Enterprise Reengineering 115

the clerk does a large number of related activities
that present a complete view of a small number of
customers. The move is away from an assembly line
approach and toward self-sufficient workers or work
groups.

The first reengineering improvement for case­
workers comes from job redesign. If the 80-20 rule
is applied to most businesses, 80% of the transac­
tions in the business are the norm, and 20% are
exceptions. Organizations are typically designed to
handle exceptions well. The 80% of their work that
is normal tends to take much longer than needed.
One goal of reengineering is to increase handling
speed and quality of handling for the 80% of nor­
mal transactions by an order of magnitude, for
instance, by at least 10 times. A second goal is to
decrease the number of exceptions to as close to zero
as possible. For instance, at Ford, one way to prevent
errors in the receipt of goods from vendors was to
accept only complete, exact shipments. Any item
that did not match an order item caused the entire or­
der to be returned. Vendors got the message quickly
that Ford would not accept their shoddy work prac­
tices any more and were forced to revise their pro­
cedures as well.

Empowerment of the caseworkers comes from
job redesign, removal of errors from the process, and
from the use of any and all information and tech­
nologies that assist them in performing their job.
Information technologies enable reengineering. In­
formation technologies (IT) are any technologies
that support the storage, retrieval, organization, man­
agement, or processing of data. A technology plan
and goals should be developed and managed at the
organization level.

In addition, data, the raw material for informa­
tion, requires recognition and organizational com­
mitment as a corporate resource. As a corporate
resource, data requires the same careful planning and
ongoing management as cash-on-hand, office equip­
ment, or personnel. Data must be managed at the
corporate level as a key asset of the organization.

To manage and plan for the organization struc­
ture, its data, and its technology, enterprise level
(i.e., the entire organization is the enterprise) plans
must be devised. These plans, or 'architectures,'
provide a snapshot of the current organization. An

enterprise architecture is an abstract summary of
some organizational component's design. The orga­
nizational strategy is the basis for deciding where the
organization wants to be in three to five years. When
matched to the organizational strategy, the architec­
tures provide the foundation for deciding priorities
for implementing the strategy.

The organization process architecture identifies
the major functions of the organization, the activities
that define the functions, and the processes that
accomplish the activities. Examples of each of these
levels are shown in Figure 5-2. It does not detail the
procedures for how to do each task.

During reengineering analysis, the entire process
architecture is reevaluated for its support in achiev­
ing organizational goals. For processes that survive
the analysis, the organization is redesigned. Theories
of interdependence, linking mechanisms, and orga­
nization design are applied to structuring work
groups in the reengineered organization.2 These the­
ories are not new. Rather, theorists and practitioners
have talked about them for years with little move­
ment of theory into practice. Over the same years,
information technologies matured sufficiently to
support the integration and data sharing required of
the information organization. In the early 1990s, a
ground swell of changing companies became an
avalanche, with many companies trying to imple­
ment the theories using information technologies to
support the revised organization.

The second architecture, data architecture, iden­
tifies the enduring, stable data entities (people,
places, organization, events, and applications) that
are critical to the organization maintaining itself as
a going concern. IS theories of information modeling
and information systems planning are used in data
analysis. In particular, entity-relationship modeling
is used for documenting data and its relationships.
Entity-process analysis is used to design subject area
databases. Entity-application analysis and process­
application analysis are used to define automation
requirements. These analyses originated in IBM's

2 Interdependence theory is Thompson's [1967]. Galbraith
[1976] and Galbraith and Nathansen [1979] propose linking
mechanisms with some organization design. Other organiza­
tion design work is listed in the references.

116 CHAPTER 5 Organizational Reengineering and Enterprise Planning

FIGURE 5-2 Sample Process Architecture

information systems planning (lSP) methodology
and are expanded in reengineering.

The network architecture identifies all locations
of work and their communications requirements.
It is the basis for deciding telecommunications
support.

Finally, the te~hnology architecture contains
information about platforms [e.g., mainframe, local
area network (LAN), or personal computer (PC)],
special-purpose technologies (e.g., multimedia,
imaging, e-mail) and the locations of each. By map­
ping the network and technology architectures, orga­
nization level technology changes can be identified.
New technologies, such as imaging, can be evalu­
ated and positioned to provide the most leverage to
the organization.

Successful reengineering is not assured. Neces­
sary conditions, or absolute prerequisites, for reengi­
neering include:

1. Management commitment, usually from the
CEO or top manager of the organization.

2. Formally articulated organizational mission,
goals, and objectives.

3. Full commitment of the reengineering
team.

4. Training and support for the reengineering
team.

5. The desire to change the organization and
its culture.

In addition to the necessary conditions, reengineer­
ing assumes the following:

1. Nothing escapes review. The reengineering
team has as its mission to evaluate the orga­
nization, including its structure, jobs, data,
processes, and technology. Recommendations
in any of the five areas of assessment may
be made.

2. Enlarging jobs and empowering job holders
as caseworkers rather than as assembly line
workers is desirable.

3. Business and IS organizations must become
partners in the redesign and technology
empowerment.

4. In improving quality of processes, elimina­
tion of errors via elimination of functions and
superfluous processes is desirable.

5. There are no technology constraints. Recom­
mendations will be made without regard to
current budgetary, organizational, or other
constraints. Implementation planners, based
on recommendations and manager's priori­
ties, will attend to constraints.

6. Data shareability is desired. While normaliz­
ing data within an application environment
minimizes redundancy in an application, min­
imizing organizational data redundancy via
data administration and across applications is
the real goal. Building subject area data bases
and providing data access based on need
rather than on organization structure is the
means to achieving organizationally mini­
mized data redundancy.

This assumption of no constraints may not be
realistic in that politics and survival of participants
can subvert the desired objectivity in a reengineering
project. One of the management challenges in re­
engineering is to prevent politics from preventing
the needed change.

Industry leaders and successful turnaround
companies who now thrive provide the motivation
for sweeping change. These companies are orga­
nized differently from their competition. Industry
leaders today tend to have fewer departments, fewer
layers of management, and fewer people doing anal­
ogous jobs than their competition. Their success is
partly organizational and partly cultural. These
successful companies succeed because they define
their market in terms of what their customers want
and demand, then they exceed those expectations.
Because these companies do not have excess struc­
ture, they are flexible to continuously reeval­
uate what they are doing and how well they are
doing it.

Planning Reengineering Projects 117

Ford Motor Company, for instance, turned around
their losing company when introducing their 'Qual­
ity is number one' program. They compared their
organization to others, including Japanese firms, and
found they had many more people performing simi­
lar functions. In some cases, like the accounting
area, the difference was more than 10 to I in num­
bers of people. Ford threw away the book about how
accounting should be done, eliminated parochial
interests about where decisions should be made,
made data sharing from databases universal, and
reduced their staff by over 60%. The result of the
extensive changes is happier people with more skills
used in a given job. Individual jobs are done faster
and more cheaply with almost no errors.

The philosophy of reengineering is to define
stakeholders' goals and then exceed them. The phi­
losophy is based on the idea that change can be
good. Companies must scan the business horizon
and actively change the organization as needed to
lower costs, and to improve, speed, and increase the
quality of service(s) in meeting its mission. They
must be equally proactive about discontinuing ser­
vices, departments, applications, or technologies that
no longer relate to organizational goals and objec­
tives. In short, the organization must be proactive
rather than reactive about all aspects of its operation.

PLANNING ______ _
REENGINEERING ____ _
PROJECTS ___________ _

Schedules for reengineering projects can be based on
several different scenarios. The goal of all scenarios
is the same: redesign of organization, jobs, pro­
cesses, data, and supporting technologies. A sec­
ondary goal is that all redesign planning be
completed in a short period of time. The short period
should be within four months from the time the team
is formed until all recommendations are presented to
the senior manager sponsor(s).

Reengineering projects can be completed faster
or slower depending on several factors. First is the
amount of actual time spent by each team member.
Ideally, all team members should be relieved of their

118 CHAPTER 5 Organizational Reengineering and Enterprise Planning

current duties and assigned full time to the reengi­
neering effort. In reality, the best managers, who you
want on the team, also are the most needed to run the
current business. So, part-time or short duration full­
time commitments might have to suffice.

In all cases, one to four senior IS staff (i.e., con­
sultants, senior analysts, software engineers, or proj­
ect managers) are assigned full time to the project.
Much of the work performed during the reengineer­
ing project is identical to that performed as part of an
information systems planning exercise. IS staff who
already know ISP only need to learn several types
of matrix analysis and organizational design to be
fully capable of performing the reengineering work.

The second major factor in determining the
amount of time is the size of the organization being
analyzed. A 100-person, five-department organiza­
tion can be analyzed easily within four months. A
10,000-person, 200-department with four hierarchic
levels can also be analyzed within four months, but
requires more people and more discipline to the
team. A good rule of thumb is to have one person for
every 10-15 departments or every 100 jobs.

Four months is the time most authors recommend
for completion of the entire reengineering project,
from inception to development of the implementa­
tion plan. The actual pilot testing and implemen­
tation of the changes might take several years
to complete. There are several good reasons for a
short time schedule. First, managers cannot suspend
their work indefinitely and run a company, too. If
several people are allocated full time it drains the
management resource. Second, with a mentality ori­
ented to quarterly results in the United States, most
managers will not wait longer than that to prepare for
change. Third, the project is bound to be known
throughout the organization soon after it begins.
When reorganizations are imminent, work is re­
placed by gossip and worry. The shorter the time
of the reengineering study, the less lost work to the
organization.

When the end date is mandated, the team does the
amount of work they can accomplish within the time
constraint. This approach to work is called 'level of
effort.' With a level of effort approach, the team
works at capacity up to the deadline and, what does
not get done, does not get done. For large projects,

then, the level of effort approach assumes an incom­
plete analysis.

The assumption here is that error-prone and bot­
tleneck processes are the targeted activities. While a
high-level description of the entire enterprise is pos­
sible, only the problem activities are actually in the
level-of-effort study.

Scenarios for three levels of user manager partic­
ipation are provided in Figures 5-3 through 5-5. Fig­
ure 5-3 shows a short burst of participation, similar
to a joint requirements planning (JRP).3 In this sce­
nario, users and analysts are trained and go off-site
for an intensive 4- 8 days (depending on the size of
the organization) of requirements, data, process, and
entity-process analysis. An alternative that mini­
mizes the amount of time managers are absent from
work is to hold the JRP meetings over one or two
weekends. More than 90% of the data gathering can
be completed using the JRP approach. In this sce­
nario, most of the analyses are done by the full-time
project staff, but are presented for review and deci­
sions to the user-team participants. In no case do
the IS staff make the decisions and recommenda­
tions alone.

The second scenario assumes constant part-time
participation over time (see Figure 5-4). In this sce­
nario, user managers are available for meetings,
interviews, and analysis sessions 1-3 hours each
day. They must be committed to participating and
must not waver from participation, or the project will
falter. Notice the dotted lines for all activities. The
dotted lines imply a part-time, longer activity. The
full-time IS staff actually do most of the legwork,
interviews, and preparation for analyses. But, once
again, the decisions are made by the user managers,
not the IS staff.

The final scenario assumes full-time commitment
for the duration of the project (see Figure 5-5). With
full-time users and full-time IS staff, the length of
the project can be as short as three weeks and, for
large organizations (e.g., 1,000 people, 50 depart­
ments), as long as 16 weeks. Table 5-1 shows the
major tasks and activities with expected percentages
of effort for each task.

3 JRP is an innovation of IBM Corporation. It is fully discussed
in the introduction to Part II.

Reengineering Methodology 119

Weeks

111111111122222
123456789012345678901123

Identify Sponsor

Assign Staff

Scope Project

Create Schedule

Identify Mission Statement

Gather Information

Develop Data Architecture

Develop Process Architecture

Develop Network/T echnology
Architectures

Develop Analysis

Develop Org. Implementation
Plan

Develop IT Implementation Plan

Legend:

~

~

~~

~~

~

1- 1-1- -

~
~
P:;
~

~I- "r- 1--

~
~

"U
1-1- II

~ Findings Presented to Users

m Recommendations Presented to Sponsor

I Implementation Plan Presented to Sponsor

Part-Time Activity

Full-Time Activity

FIGURE 5-3 Reengineering with Part-Time Users

REENGINEERING ____ _
METHODOLOGY ________ _

Reengineering is most easily done within the scope
of information system planning (ISP) projects. With
a greater balance of process and data analysis, and
several additional activities, reengineering uses the
same information as the ISP. The major steps and

their results, type of questions asked, and analyses
are listed in Table 5-1. The steps are summarized in
Figure 5-6 which shows a significant amount of
overlap between steps. The times allocated to the
tasks are as individual stand-alone activities and do
not reflect the amount of actual time spent on the
step. For instance, the architectures are all allocated
one week. But they are preceded by activities of four
weeks during which they should also be developed.

120 CHAPTER 5 Organizational Reengineering and Enterprise Planning

FIGURE 5-4 Reengineering with Continuous, Part-Time Users

All of those particular steps are iterative and require
three to five weeks to complete. A detailed descrip­
tion of each reengineering step follows.

Identify Project Sponsor
The first step of reengineering is to enlist or be en­
listed by the project sponsor. The project sponsor

is a senior level manager who will pay for and
champion the project. A champion is an individual
with commitment, enthusiasm, credibility, and in­
fluence who can act as a 'cheerleader' for the project
and its outcomes. The sponsor is the overall project
manager for the reengineering project and must have
the authority, fortitude, and desire to change the
organization and its work, based on the recommen­
dations from the reengineering analyses.

Reengineering Methodology 121

Weeks

111111111122222
123456789012345678901123

Identify Sponsor

Assign Staff

Scope Project

Create Schedule

Identify Mission Statement

Gather Information

Develop Data Architecture

Develop Process Architecture

Develop NetworkiT ech nology
Architectures

Develop Analysis

Develop Org. Implementation
Plan

Develop IT Implementation Plan

Legend:

~ Findings Presented to Users

m Recommendations Presented to Sponsor

II Implementation Plan Presented to Sponsor

Part-Time Activity

Full-Time Activity

FIGURE 5-5 Reengineering with Full-Time Users

Assign Staff
Three or four user area, senior, or middle managers
should be assigned to the reengineering project for
a period not to exceed four months. At least one
month of the initial commitment should be full time;
the remainder of the work may require only part­
time commitment. Two or three senior IS managers,
or SEs, or data administrators, or consultants should

be assigned to the project full time for its entire
duration.

All team members should attend ~ reengineer­
ing workshop or class together to fully acquaint
them with the techniques and goals of the activity.
The individuals assigned must have commitment to
this work. They must be senior enough and good
enough at their own jobs to have instant credibility
within their organization. Without both of these

122 CHAPTER 5 Organizational Reengineering and Enterprise Planning

TABLE 5- 1 Percentage of Reengineering
Effort by Task

Activity % Effort

Obtain sponsor N/A

Initiate project N/A

Assign staff N/A

Scope project 2-5%
(Concurrent with next two 2 Days
activities)

Develop schedule 2-5%
3-5 Days

Identify mission statement 2-5%
1 Day

Gather data 20-25%
3-4 Weeks

Develop process architecture 6-10%
3 Days-1 Week

Develop data architecture 6-15%
3 Days-1 Week

Develop and analyze entity/ 20-25%
process matrix 3-4 Weeks

Develop implementation plan 20-25%
3-4 Weeks

Develop technology 6-10%
architecture 3 Days-1 Week

Total duration 100%
12-17 Weeks

requirements, the target of four months for the total
effort is doubtful.

Scope the Project
The key criteria for properly scoping a reengineering
project are data self-sufficiency and user commit­
ment. Data self-sufficiency is defined as 70% (or
more) of data used in performing the business func­
tions that must originate within the subject organi­
zation. The goal of scoping is to identify a group of
departments that create their own information and
are not dependent on other departments for data to

do their work. Control over data creation equals data
self-sufficiency.

The second criteria is user commitment. User
commitment means that the managers participating
in the reengineering project must be committed to
changing the organization. This is not as difficult as
it might sound. Few people enjoy their job when
they know it is inefficient and hampered by ineffec­
tive organization or systems designs. When the best
managers in an organization that needs change are
assigned, they become enthusiastic about the pros­
pect of designing the work groups to fit the work.
Because their positions in the company are not at
risk, there is little reluctance to participate.

Determining data self-sufficiency requires de­
velopment of a quick entity-relationship diagram
(ERD), process hierarchy, and entity/process
matrix. The results should be about 80% complete
and address the major entities and processes. The
analysis of the matrix is to determine where data are
created, nothing else. If data are not created within
the organization, the amount of data and the creat­
ing (or originating) organization are identified and
added to the study. In addition, the amount of data
for all entities created within the organization must
be identified to determine the percentage of data self­
sufficiency. The percentage is derived from the for­
mula shown as Figure 5-7.

The inputs to the formula (I) identify a count of
transactions or other work items generated within
the target reengineering organization. The outside
work (0) represents a count of transactions or other
work items coming into the department from else­
where in the organization. Outside work is not sub­
ject to review or error reduction, and the goal is to
keep it to a minimum in the study. In Figure 5-7, the
target organization generates 75% of its own data
and is, therefore, data self-sufficient enough to ben­
efit from reengineering.

Less than 70% data sufficiency implies too
narrow a scope because of too great a data depen­
dency on outside organizations. Lack of data self­
sufficiency artificially constrains (or may mask
potential) elimination of errors, organizations, or
levels of management that are not needed. If the
scope is too narrow, the analysts present the infor­
mation to the sponsor and request a broadened scope
to include the information-creating organization(s).

Identify Sponsor

Assign Staff

Scope Project

Create Schedule

Identify Mission Statement

Gather Information

Develop Data Architecture

Develop Process Architecture

Develop NetworklTechnology
Architectures

Develop Analyses

Develop Org. Implementation
Plan

Develop IT Implementation Plan

Reengineering Methodology 123

1 1 1 1 1 1 1
1234567890123456

c

G

FIGURE 5-6 Overlap Between Reengineering Tasks

Formula:

1/ (I + 0) * 100 = % DS

Example:

1= 750,000 records

0= 250,000 records

750,000 / (750,000 + 250,000) * 100 = 75%

Legend:

I = Data generated inside the reengineered
departments

o = Data generated outside the reengineered
departments that is required for them to do
their work.

DS = Data Self-sufficiency

FIGURE 5-7 Formula for Determining Data
Self-Sufficiency

For instance, reengineering might target an
accounting function. About 90% of the informa­
tion in an accounting function originates from other
organizations within the company. Without also
including those functions in the reengineering
study, changes that address, for instance, data accu­
racy or work location problems, are unlikely to be
successful.

The scope might not be complete until the next
several tasks are partially complete, due to a lack of
information about data and responsibilities. There­
fore, the initial scope should be reexamined before
completion of the entity/process matrix analysis to
reconfirm data self-sufficiency.

Create a Schedule
The team creates a schedule for the entire reengi­
neering project not to exceed four calendar months.
Each step has an estimated range of time that should

124 CHAPTER 5 Organizational Reengineering and Enterprise Planning

be allotted as a percent of the project total shown
in parentheses (see Table 5-1). Each task is assigned
to a team member who is held a<;countable for
the work.

Identify Mission Statement
Identify the mission statement for the organization
with quantified goals for measurement. A mIssion
statement is a short paragraph summarizing the
overall purpose of the organization. The details of
the document should include goals and objectives,
along with determinants of success (i.e., critical
success factors) for each, with required data for mea­
suring the extent to which the goals are met (i.e.,
means-end analysis).

If the organization has no mission statement,
or has no quantified goals and objectives, do
not attempt to develop these for the organiza­
tion. Disband the reengineering group and have the
managers work on perfecting the mission, goals,
and objectives before reconvening the reengineer­
ing effort.

Goals should have a three- to five-year horizon
and should be specifically measurable (i.e., quanti­
fied) (see example in Figure 5-8). There should be
at least one goal for each sentence in the mission
statement. Goals relate to stakeholders who are peo­
ple affected by the outcome. Some stakeholders

Increase the number of new customers by 5% each
year for five years.

Increase sales to existing customers by 8% per year
for five years.

Increase number of rentals per store visit by providing
an expert system to assist in selecting movies for
rental.

Reduce sales support expenses by 10% in one year.

Reduce overhead expense by 10% each year for
two years.

FIGURE 5-8 Example of Organization Goals
for ABC Video

include customers, vendors, stockholders, owners,
and boards of directors.

Identify critical success factors for determining
that goals are met. A critical success factor (eSF)
defines some essential process, data, event, or
action that must be present for the outcome to be
realized. For instance, if the goals in Figure 5-8 are
desired, a eSF might be Ensure that sales staff are
fully trained in locating movie information.

The last step of critical success factor analysis is
to decide what information is required to measure
goal success. In the example, goals relate to sales.
The eSF also relates to 'training.' Success measures
for sales and for sales staff knowledge of how to find
movie information are required. Periodic evaluation
with training for ill-informed sales staff is one way.
Management needs to know evaluations that have
taken place and misinformed staff who have been
retrained. If the same person(s) are being retrained,
management intervention might be warranted.

Intangible goal measurement is just as important
as tangible goal measurement. An intangible goal
might be increased customer satisfaction. To mea­
sure this, an outside polling company can canvass
customers and ask different recall or direct questions
about their satisfaction with the company's services.
Recall-type questions are of the form: Which vendor
that you work with has the best customer service?
Direct questioris are of the form: Rate the customer
service of company x.

The next step is to link each eSF, critical infor­
mation measure, and goal to functions, processes,
technology and data in the organization. If this step
calmot be completed yet, defer completion of this
task until information gathering is complete. If new
entities or processes are defined through eSF analy­
sis, add them to the list for reengineering analysis.

Gather Information
Gather information on processes, data, process prob­
lems, quality problems, data problems, accessibility
to data, timing of work (e.g., lags that cause idle
time), time constraints for performance, and prob­
lems related to timing. A sample list of questions
are:

What are the major steps to accomplishing each
process?

Which processes/procedures are required to
accomplish the mission, goals, and
objectives?

What data are used as input? Where does it
come from? Who enters or creates data? uses
or retrieves data? changes or updates data?
deletes data?

How is the input transformed by the process to
produce the results? That is, what do you
do when you do your job?

What data are passed between processes? What
is the current storage media for the data (e.g.,
computer, fax, paper, verbal, memo, etc.)?

Are the different types of data that you need for
your job used sequentially or in parallel?
Could you describe the procedure?

Where are time lags in your job during which
you are waiting for someone else to give you
work or information? How do you deal with
these lags?

Where are quality problems? How do you deal
with errors? What is the source of each type
of problem? Where (in which process or
outside organization) is each problem
detected? Where are quality problems within
the procedures you use to do your job? How
do you try to guard against these problems?

What would you do differently if you could
design your own job? How might computer
technologies help you? Suppose you have all
the new computer and other technologies
available for your job's use. What technology
would you use and how?

Information might come from forms, screens, re­
ports, phone messages, fax messages, automated
applications, policy and procedure books, and so
on. The people actually doing the work provide this
information.

Most information is obtained through an inter­
view format. Interviews should be individual or in
small groups (groups should have members who
share common goals to minimize political conflicts).
All middle and senior managers for the Qrgani~ation
should be interviewed in addition to representative

Reengineering Methodology 125

white-collar, blue-collar, or clerical staff. Treat the
sessions as fact-finding, not fault-finding. Address
all the topic areas for which information is required.

If you think you are getting incomplete or false
information, cross-check, or triangulate, the infor­
mation by asking the same questions of multiple
sources. For instance, Manager A says his major
problem is caused by erroneous data received from
Manager B's area, and Manager B did not identify
the problem in your first discussion. Return to Man­
ager Band reinterview him or her, specifically dis­
cussing data quality as a problem identified by the
other area.

To validate the complete findings, make a group
presentation to all interviewees for final confirma­
tion that the information is accurate and complete.

Summary of the Architectures
In this section, we expand Zachman's4 information
systems architecture (ISA) framework to describe
how to express the reengineering information in
terms of architectures. The four architectures of
interest in reengineering are data, process, network,
and technology. First, we define the framework
and information presented at each level. Then, re­
engineering information is translated into the four
architectures.

Conceptual Levels of the Architecture

The information systems architecture (lSA) de­
scribes distinct architectures relating business con­
text to application context. The five levels are
described in general terms below and are summa­
rized in Figure 5-9. Only the first two levels, scoping
and enterprise analysis, are used in reengineering.

Information systems application development
and organizational redesign are complex engineering
activities that are similar to constructing a building
or an airplane. The ISA describes the intellectual
levels of detail needed for complex engineering

4 John Zachman [1987]. Zachman's architecture discusses data,
process, and network. ISA does not yet include a technology
architecture. This idea is from reengineering consulting which
requires a view of the technology as a basis for technology
redesign.

126 CHAPTER 5 Organizational Reengineering and Enterprise Planning

Model Level

Scope Sponsor

~----------~----------

Enterprise User

~---------------------
Information

Systems
SEiAnalyst

~---------------------

Hardware/Software SEiDesigner/Builder

~---------- -----------
Components Programmer

~---------------------

Functioning System Computer

Adapted from J. A. Zachman, 1987

FIGURE 5-9 Conceptual Levels of the
Architecture

activities. Then, it links them to data, processes, net­
works, and technologies-the components of com­
puter applications and reengineering.

In all three businesses-aerospace, architecture,
and systems-we begin with a sponsor's idea of
what the item being built should look like. This is the
scope of the reengineering project that defines what
is in and what is not in the problem. If the item is a
house, for instance, users talk about a two-story
colonial with four bedrooms, three bathrooms, and
a fireplace in the family room. For reengineering, the
sponsor targets departments doing order processing
and customer assistance. In this case, the item is the
order processing department.

The user talks to an expert to describe his or her
view of the item, and the expert translates the user's
idea into an enterprise level, logical description of
the item. A logical description is one that lists what
is done without saying how. The item begins to take
more shape and be less specific. The description of
the item is somewhat more abstract. For the house,
we now have a family room of 13.5 feet by 16 feet
with a cathedral ceiling that is open to the kitchen
with entries to the foyer and living room. For reengi­
neering, we have an order entry process that includes
order receipt, order change, order inquiry, inventory
allocation, creation of shipping papers, movement of
goods, invoice creation, and an interface to accounts
receivable. Both of these descriptions are signifi­
cantly more detailed than the first. Neither descrip­
tion is complete. We still don't know the type of
windows in each room, for instance. Nor do we
know, for reengineering, whether the work is auto­
mated, how an order is processed, or whether any of
the steps can be done together. In both cases, the
details are unimportant at this level.

At the next level, the expert translates the logi­
cal, enterprise view of the item into terms and infor­
mation that are useful to the analysts of the item. So,
the expert (or different experts) translates the enter­
prise view into a logical information systems design.
The logical design still describes what the item will
do, but in more detail than before, and in terms
understood by application developers. In reengineer­
ing, the logical design is very specific about the item,
its parts, and how they fit with the other items and
their parts. In our order processing example, we
would know what data, what fields, what processes
and their details, timing of processing, what appli­
cations and technology are currently used to support
the work. Designers can review the detailed logical
design and see how it can be automated.

In the next step, designers review the logical
design and translate it to specific materials, thus cre­
ating a technology-based model. In reengineering
studies, this translation takes redesigned work, work
groups, departments, data, and technology as inputs.
The inputs are translated into database schemas,
applications' design specifications, network designs,
and specific hardware/software platforms for sup­
porting the redesigned work. In the order process-

Model

Scope
Sponsor

Process

List of Business
Functions

I
I
I
I
I
I
I

Data

List of Things
Important to

Business

Function = Group : Entity = Class of
of Activities : Business Thing

I
I

Reengineering Methodology 127

Network

List of Business
Locations

Node = Bus.
Location

Technology

List of Business
Technologies

Technology = Platform
+ Special Equipment

I I I -------------r----------------r----------------I----------------,-----------------
I I I
I I I

: Process : Entity Relationship I Logistics
Network

Technology
Network

Enterprise
User

: Hierarchy : Diagram
I I
I I
I
I
I
I
I
I
I
I

Function =

Business Process

Entity = Business
Entity

Relnship. = Bus.
Constraint

Node = Business
Process

Link = Comm.
Need

Node = Computer
Link = Network Link

Adapted from J. A. Zachman, "A Framework for Information Systems Architecture/'
IBM Systems Journal, 26, #3, 1987, pp. 276-292.

FIGURE 5-10 Reengineering Levels and Architecture Domains

ing example, the requirements specification would
be translated into program specifications for specific
hardware, software, and language.

Finally, at the lowest component level, schemas,
specifications, and technology plans are imple­
mented and translated into working computer
components.

Only the scope and enterprise models are dis­
cussed in this chapter; the other levels are too com­
puter-oriented and not appropriate for reengineering.

Domains of the Architecture

The conceptual domains apply to four organizational
domains: data, process, network, and technology.
A domain is an area of interest. The data domain
defines the entities of interest to the target organiza­
tions and the interrelationships between them. The
process domain describes the functions, activities,
and processes of the target organizations, without
any identification of how they are accomplished. The

128 CHAPTER 5 Organizational Reengineering and Enterprise Planning

ABC VIDEO MISSION STATEMENT
The mission of ABC Video is to develop and
maintain quality relationships with customers,
vendors, and employees.

For customers, we provide a large selec­
tion of current and classic videos for rental at
a fair price. We assist them in selecting videos
with courtesy, service, and a minimum of
bureaucracy.

Process Data

Video Selection Customer

Service Request Video Rental
(i.e., process rental) Vendor

Order Creation Order

Accts. Payable Video (= goods in
inventory)

Payroll Employee

Personnel

network domain describes the organization from a
geographic perspective. The technology domain
describes the organization of work from a technol­
ogy platform perspective.

Translating Information
into Architecture
There are two levels of architecture we describe in
this section for reengineering: the scope and the
enterprise model.

Scope

In reengineering, we assume that the mission state­
ment fully expresses the scope of the organization.
The mission statement is translated into network

For vendors, we order videos with reason­
able lead times and timely payment of bills.

For employees, we provide a congenial
atmosphere with comfortable, clean, and
safe working conditions for a fair wage.

Network Technology

Location = 1 None

(inferred)

technology, process, and data scopes to initiate the
reengineering effort. Example 5-1 shows a mission
statement for ABC Video and how it might be trans­
lated to identify the scope of the four domains. At
the scope level, we should know the major entities of
interest to the organization and the business func­
tions and their activities.

The network and technology domains mayor
may not be mentioned in the mission statement. The
sponsor or user participants define these when they
are not in the mission statement. The network scope
defines the location of work for each activity. The
technology scope defines technology platform by
location. Because ABC has only one location and
no technology, it is a simple example. Another ex­
ample here is for a plastics subsidiary of a large
international company. Figure 5-11 shows existing
hardware platforms listed by location. In Figure

Hardware Platform-Scope

Location 1

Mid-Size Computer

LAN 1-25 PCs

LAN 2-15 PCs

LAN 3-42 PCs

Location 2

LAN 4-23 PCs

Location 3

Mid-Size Computer

5 Stand-alone PCs

3 CAD/CAM Platforms

Location 4

Mid-Size Process Control Computer

LAN-25 PCs

1 CAD/CAM Platform

Location 5

Mainframe

FIGURE 5-11 Plastics Company Hardware
Platform Scope

5-12, the activities from the process hierarchy are
reused and identified by location.

At this point in reengineering, if the mission
statement were suspect in its completeness, a stake­
holder analysis might be developed to determine if
all constituents of the organization are represented.
If they are not, the mission statement would be
redrafted to include missing constituencies. While
this redrafting takes place, the reengineering study
ceases operation. A stakeholder is any person who
interfaces with, works for, or otherwise is impacted
by an organization. Stakeholders include the owner,
managers, employees, suppliers, customers, credi­
tors, government, community, and competitors.
Ideally, representative stakeholders from each group
should review the strategy and offer suggestions for
improvement.

When stakeholders are identified, the goals of
each stakeholder are defined and related to the orga­
nization's functions and strategies. If a goal does not

Reengineering Methodology 129

Activity by Location

location 1

Finance-3 products at this location

Accounting-All products

Customer Service-All products

Product Management-3 products

Personnel/Payroll

Location 2

Finance-2 Products at this Location

Product Management-2 Products

General Manager

Location 3

R&D

Manufacturing Setup

Location 4

Manufacturing Plant

Location 5

Corporate Headquarters

FIGURE 5-12 Plastics Company Activity
by Location

match a current function or strategy, management
determines if the goal will, in fact, be met. The goals
are translated into strategies which, in tum, are trans­
lated into work. The intention of stakeholder analy­
sis is that rational, reasonable goals should have both
strategic and organizational functions that relate to
the attainment of goals. Even if goals are omitted
from the final strategy, at least all stakeholders and
their desires are identified and considered.

Enterprise Models

At the enterprise level, the USer managers work
with information systems (IS) project repre­
sentatives to define busiriess areas in logical terms.
The principle business modeling activities include
entity-relationship diagrams (ERD) for data,
functional decomposition diagrams for work pro­
cesses, a network diagram of process communi­
cation needs, and a technology network diagram

130 CHAPTER 5 Organizational Reengineering and Enterprise Planning

Place
Order

Identify Items
& Vendors

Call Vendor to
Verify Availability

and Price

Create and
Mail Order

FIGURE 5-13 ABC Video Process Hierarchy

showing technology deployment. The ERD docu­
ments major data types and their interrelationships.
The functional decomposition identifies business
functions and their component activities and work
processes. The network architecture shows the loca­
tion of work and intraorganizational communication
requirements. The technology architecture shows the
hardware platforms by location and the telecommu­
nication linkages between them. All four architec­
tures are developed piecemeal as information
becomes known. (ERD and functional decomposi­
tions are discussed in detail in Chapter 9 and are only
summarized here.)

Monitor
Order

Identify Late
or Problem

Orders

Call Vendor
and Inquire
or Reconcile

Verify Receipts
Against Orders

PROCESS ARCHITECTURE. Process architec­
ture development is concurrent with data gathering.
The time recommended in Table 5-1 is for comple­
tion and validation of the information. The decom­
position first identifies business functions, then the
component activities and their processes. Figure
5-13 shows an example. A business function is a
group of on-going activities that accomplish some
complete job that is within the mission of the enter­
prise. Functions are general and fit most organiza­
tions. For instance, accounting and personnel are
found in most organizations regardless of industry or
business type. At the next level of detail, an activity

defines one or more related procedures that accom­
plish some task. For accounting, for instance, activ­
ities might be monthly close, maintaining chart of
accounts, or daily transaction processing. At the
lowest level of detail for this diagram, a business
process identifies the details of an activity, fully
defining the steps taken to accomplish the activity.
Business processes within an accounting monthly
close might be gathering information, validating in­
formation, performing initial analysis, and so on.

The steps to developing a functional decomposi­
tion diagram include:

• Identifying the functions of the target
organizations

• Interviewing the representatives from each
area to identify the activities performed for
each function

• Further identifying the processes for each
activity

During the decomposition process, business
problems are identified by the interviewees. The
problems are prioritized by the users with the reengi­
neering team in order of their significance to the
organization's quality and function. Usually the
number of major problems to be identified is fixed
and between five and ten. Without a limit, the prob­
lem findings could overwhelm the analysts. Also,
having the number of major problems fixed requires
users to reach consensus about the seriousness and
scope of problems.

DATA ARCHITECTURE. This activity is con­
current with data gathering. One week of extra time
is recommended to allow completion and validation
of information. The data architecture is defined in an
entity-relationship diagram. An entity is some per­
son, object, concept, application, or event from the
real world about which the organization maintains
data. A relationship is a mutual association between
entities.

For instance, a customer creates an order. Cus­
tomer and order are entities; create is their mutual
relationship. Figure 5-14 shows a basic ERD that
summarizes this relationship. ERDs can be much
more elaborate and include the number, or cardinal­
ity, of the relationship, and information about

Reengineering Methodology 131

Customer

--

C reates

0
/ "'-
Order

FIGURE 5-14 Sample Entity Relationship
Diagram

whether or not the relationship is required. Cardi­
nality identifies one-to-one, one-to-many, and many­
to-many relationships. Each customer can have
many orders; therefore, this is a one-to-many rela­
tionship. So in this ERD the cardinality is one-to­
many. The many side of the relationship is shown
with 'crow's feet' on the diagram. Orders don't
come from thin air; there must be a customer to have
an order. Conversely, customers are not required to
always have orders. Therefore, customer is required,
and order is optional in the relationship as signified
on the diagram by the short bar and small oval,
respectively.

The steps, then, to developing an ERD are:

• Identify data entities, including new entities
required to attain and name organization goals

• Link entities to show their interrelationships
• Define relationship cardinality and the

required/optional nature of relationships

NETWORK ARCHITECTURE. The enterprise
level of network architecture defines organization
activities from the functional decomposition
performed at each location and communica­
tions requirements between them. The architecture

132 CHAPTER 5 Organizational Reengineering and Enterprise Planning

\ \
\ \

\
\ \ / /

6~-­y---

I
I
I
I
I
I
I
I
I
I
I ~--
: ~ L ____________ _

Location 3

/

-- ~ -- Mftg -------
Location 4

\
\
\
\
\
\

---- \

---~
I
I

------'
Location 5

Interdependent activities; constant contact required.

- - - - - - - Coordination and information sharing activities;
intermittent contact required.

No connection-independent activities; no regular contact
required.

FIGURE 5-15 Plastics Company Network Architecture

described in this section is of the current organiza­
tion. During reengineering, if the changes recom­
mended affect the locations of work or the activities
of work, then the network architecture is redrawn to
mirror the recommended organization. When the
changes are presented to the sponsor for approval,
the old network and recommended network archi­
tectures should be contrasted to highlight the
changes.

The process hierarchy defined functions, activi­
ties, and processes. The network architecture could

define any of these levels. For ABC Video, we
would choose the function level because there is
only one work location. For the plastics company ex­
ample (see Figure 5-15), the activity level is chosen
because functions located in more than one place
may not include the same activities at all locations.
Using the activity level gives a further level of detail,
atld accuracy, to the work. If the company were very
decentralized and diverse, the analysis could be at
the process level.

For the architecture, each activity is placed in a

Reengineering Methodology 133

Location 1 Location 2 Location 3 Location 4 Location 5

I I I I

:1~N41--i---~~~-I--r~-~:Y;
I I SIZE I SIZE I
I I I I

I I I PC'S I I I LAN 51 I I I I I
I I I I
I I I CADI I I I CADI I I
I I CAM I CAM I

Legend:

--- = Permanent Link

- - - - = Dial-Up Link

FIGURE 5- 16 Plastics Company Technology Architecture

circle within a square identifying a location (see Fig­
ure 5-15). The circles are connected when the activ­
ities require communication to complete their work.

TECHNOLOGY ARCHITECTURE. The tech­
nology architecture creates a network diagram of ex­
isting technology at each location using a network
technique similar to the network architecture (see
Figure 5-16). Then, the technology platforms are
connected with lines to show telecommunications
linkages between them. Dotted lines are used to
show dial-up linkage. Solid lines are used to show
permanent connections. At this level, other special
hardware, such as imaging, CD-ROM, or technolo­
gies such as ISDN, are connected to the platform to
which it is attached.

Like the network architecture this is a snapshot of
the current technology deployed throughout the
organization. If the recommendations for the re­
designed organization eliminate or change locations,
a second technology architecture is created to
depict the new view of the organization.

At this point, the team is complete in their data
gathering. The team conducts a group meeting with
all previously interviewed individuals to summarize
their findings and present the diagrams. The purpose
and sole focus of the meeting is to verify the accu-

racy of the information presented. No further analy­
sis, and no suggestions on the analysis, should be
discussed at this meeting.

Architecture Analysis
and Redesign
The analysis uses a series of matrices matching the
architectures to redesign the organization, its data,
applications, and technology infrastructures. The
process and data architectures are the basis for the
organization and data design. The current applica­
tions are mapped to the redesigned organization and
data to recommend changes to the application envi­
ronment. The technology and network architectures
are analyzed to recommend telecommunications and
technology infrastructure changes that best meet the
enterprise's goals. These analyses are discussed
here.

Organization and Data

A process called affinity analysis is used to analyze
the data and processes. Think of this as normalizing
data across the organization. Affinity means 'attrac­
tion' or 'closeness.' Affinity analysis clusters pro­
cesses by the closeness of their functions on data

134 CHAPTER 5 Organizational Reengineering and Enterprise Planning

Entities =
Purchase

Order PO Item
Vendor

Item
Inventory

Item Vendor

Processes =
Identify Items
& Vendors

Call Vendor to
Verify Avail/Price

Create & Mail Order

File Order Copy
by Vendor

Identify Late &
Problem Orders

Call Vendor &
Inquire on Order

Verify Receipts
against Order

CRUD CRUD

R R

R R

RU RU

RU RU

Send Invoices to
Accountant RD RD

FIGURE 5-17 ABC Video Data/Process Matrix

entities they share in common. Because the average
data/process matrix has about 400 entries, affinity
analysis is best accomplished through an automated
tool, such as ADWTM.5

A matrix of processes from the process hier­
archy diagram and data entities from the entity­
relationship diagram is created. The processes are
written in rows down the left side and data entities
across the top (see Figure 5-17). Use the lowest
level processes, such that all elemental processes
for the organization and application area are pres­
ent. When writing the process name, append a
prefix to identify the activity and function from the
hierarchy diagram.

In each cell, identify the functions each process is
allowed to perform on data. Possible functions are
create (C), retrieve (R), update (U), and delete (D).
One or more of the letters, as defined by the current
organizational responsibilities, are entered for each

5 ADW is a trademark of Knowledgeware, Inc., Atlanta, Ga.

R

RU

CRU

R

RU

RU

R

R

R

R

CRU

RU

R

RU

R

entity. This matrix gets its nickname from those
functions; it is a CRUD Matrix.

Affinity analysis relates processes by their re­
sponsibility in creating shared entity information.
The create responsibility for 80+% entities shared
between processes shows high affinity. An affinity
matrix is iteratively refined by affinity groups or
processes with entity creation responsibility. In a
typical 20 x 20 matrix with 400 cells, five to seven
affinity clusters will emerge. Affinity clusters may
contain processes from several current organiza­
tions; organizational location of responsibility is not
of interest in this exercise.

Several clusters may overlap. This is normal and
not a cause for worry. If only one cluster emerges,
clustering continues with analysis of update respon­
sibility, and, if necessary, delete and retrieval re­
sponsibility. When a reasonable number of clusters
emerges, the next step begins. A reasonable number
may be one to five clusters for a small organization,
such as ABC, or six to nine for a large organization.

Figure 5-18 shows affinity clusters for ABC. A
first analysis of create responsibility would place
Create & Mail Order in a group and Identify Items &
Vendors in a group without classifying the other
entities. The final clusters shown in the figure
emerge after also analyzing update, delete, and
retrieval responsibility. The lines highlight the clus­
ters and simplify diagram interpretation; they do not
necessarily include all actions in the clusters.
Notice that the Call Vendor to Verify . .. process
overlaps both clusters. It is placed in the second clus­
ter because it also updates Vendor information.

The next step is to analyze organizational ade­
quacy. Each process is individually analyzed first to
ensure process-goal correspondence. If the process is
specifically tied to the organization goals, objectives,
and mission, mark it for retention. If the process is
not tied to the organization goals, objectives, and
mission, either link it to goals or objectives, or mark
it for elimination.

Purchase

Reengineering Methodology 135

Next, for processes that are candidates for elimi­
nation, determine if they also create, update, or
delete data. What is the relationship of this process
to 'close' processes? Is it in a sequence with other
processes? If so, can those processes take on its data
responsibilities (thus enlarging the scope of the
process)? If the eliminated process also stands alone,
where else is the data used? If the answer is no­
where, mark the data for elimination. [Plan to return
to the individual(s) who identified either the process
or the data to confirm that you have not missed some
information linking the process or data to the mis­
sion.] If data is created by the process marked for
elimination, but updated and deleted elsewhere, can
the other processes assimilate data creation? What
other information will those processes now need in
order to be able to create the entity? Ask similar
questions for updating and deleting the data.

Next, analyze the current organization design.
First, is each data entity created only in one process?

Vendor Inventory I EntHles = Order PO Item Item Item Vendor

Processes =
Create & Mail Order CRUD CRUD CRU R R

Call Vendor &
Inquire on Order RU RU RU R R

Verify Receipts
against Order RU RU RU R

Send Invoices to
Accountant RD RD

File Order Copy
by Vendor R R

Identity Late &
Problem Orders R R R R RU

Identify Items
& Vendors R R CRU

Call Vendor to
Verity Avail/Price RU RU

FIGURE 5-18 Affinity Clusters in ABC Data Process Matrix

136 CHAPTER 5 Organizational Reengineering and Enterprise Planning

If not, is there some business reason why two
processes are creating the same data? Or is there his­
torically introduced redundancy? If the former,
continue the analysis. If the latter, combine the
processes and eventually redo the affinity analysis.
Second, are the processes that cluster together in the
same department? If so, the organization need not
change. If not, then realign the organization bound­
aries to have all processes that create the same data
reporting to the same manager. Expand the scope of
the pro-cesses to include as much of the create-up­
date-delete processing as possible. Needs for re­
trieval or access affect future plans rather than this
decsion process.

When the process analysis is complete, the
remaining processes are all critical to the organiza­
tion mission. The next task is to tentatively redefine
jobs within the context of the remaining processes.
The goals of job redesign are to enlarge and enrich
the jobs, and to eliminate interprocess dependencies
through job design. Interprocess dependency is elim­
inated or reduced by the caseworker approach to
job design and by expanding data access to all who
use it.

To define a job, begin with the processes in a
function. Add processes to the job until either the
skill mix or activity served changes. Then, define
another job until either the skill mix or activity
changes. Continue to define jobs until all processes
are assigned. There may be jobs that span activities
but they should be exceptional.

After jobs are completely defined, map them to
functions by their affinity, that is, in terms of their
data creation and usage. Do not pay attention to the
number or types of jobs reporting to functions at this
point. Again, concentrate on eliminating errors,
paper, and dependencies. When all jobs are mapped
to activities, the first phase of organization redesign
is complete. The next phase takes place during the
implementation planning.

The second analysis and redesign that results
from process/data analysis is for subject area data­
bases and applications to support them. This is a
more subjective analysis than job redesign because
there is no theory of application development and
how to size applications. The current thought is that
applications that support well-defined subject areas

will provide the best organizational support. The rea­
son for this is that subject areas, data entities, and
attributes are all fairly static. With well designed
data, the processing can change without affecting
the database.

First, use entity clusters to define subject area
databases. Check that each entity is also linked to at
least one goal or objective. If an entity is not linked,
either establish the correspondence, or mark it for
elimination. Conversely, analyze the processes
which use the entity. If this is the only data used by
the process, but the process is tied to some goal,
determine the presence of data to measure progress
toward the goal and, if needed, add a new entity to
the list; otherwise, if the related process also stands
alone, mark both the entity and the process for
elimination.

The subject area databases defined by affinity
analysis should be mapped to current, automated
applications. If the subject areas are completely
automated and the applications are integrated, no
changes are needed. Rarely is this the case. Usually
several applications process pieces of subject area
data and both manual and automated usage of data
is required. The only integration is through the expe­
rience of users who know where to go for informa­
tion they need.

Redefine applications to support each subject area
of data. Define application changes for process
changes that reduce problems. Define ad hoc query
facilities for all jobs requiring retrieval access to
data. Assume on-line processing for most applica­
tion work. Identify and recommend technologies that
streamline and speed information storage and deliv­
ery. Based on the problems and solutions identified,
determine the potential impact of applications for
meeting goals. Prioritize applications for develop­
ment to achieve the greatest impacts first.

Network/Technology Design

Before either the network or the technology designs
are done, the receptiveness of the sponsor and man­
agers to the changes in jobs and applications should
be verified. If they support the work to date, the net­
work and technology analyses can continue. If they
do not support the job redesign or are reluctant about

application suggestions, those aspects of the reengi­
neering must be defined acceptably before this
analysis.

There is no theory of network or technology
design at the enterprise level. Rather, we have rules
of thumb that must be evaluated in each business
context. First, if the job redesign and process analy­
sis substantially change the activities being per­
formed in the organization, the enterprise network
model should be recast in terms of the revisions.
Next, if locations are significantly different, the tech­
nology model should be redrawn to reflect revised
locations.

When the two network diagrams are acceptable,
they are compared and analyzed to recommend new
and changed technologies for supporting the new
organization.

Using the technologies identified as needed to
fully support jobs, develop an overview of the tech­
nology for the organization. Classify types of appli­
cations on mainframes, local area networks (LANs),
and stand-alone personal computers. Classification
should identify applications by size, 'corporateness'
of data, data sharing requirements, specialized tech­
nology required, and number of users.

Across the organization, rationalize the use of
technology resources, minimizing the overall
cost to the organization. If new technologies are
recommended, develop estimates of implementa­
tion costs and benefits, including average cost
per expected user employee. If possible, identify
incremental costs for expanding the user base
once the technology is installed. Include training
costs in the estimates. Identify and recommend pos­
sible uses for technologies to reduce incremental
costs of use.

This activity is one in which the IS representa­
tives have the most value added during reengineer­
ing. Being technology literate, IS representatives can
work with their technology planners to determine
possible technologies for consideration that have not
been identified before. The IS people should take the
lead in the rationalization of technologies. Deciding
the type of applications that belong on various plat­
forms for the organization requires the know ledge
and guidance of the IS steering committee or the IS
director (i.e., Chief Information Officer, MIS Man-

Reengineering Methodology 137

ager, or some similar title). Explanations of the
applications mapping to technology platforms
should be in business terms but based on sound
understanding of the technology involved.

An example of network/technology redesign for
the plastics company example is provided. The plas­
tics company architectures in Figures 5-15 and 5-16
are used to create the revised network in Figure
5-19. One obvious problem is that organizations that
need to communicate for work are not electronically
connected. This suggests a network change to inter­
connect all interdependent activities. This change
means that the LANs that are only connected
through a star configuration in Location 1 might be
connected via a backbone to the midsize computer.
Backbones in each location with multiple LANs can
be connected to provide intra-location communica­
tions, freeing the larger machines for inter-location
connection and data processing. With this type of
network design, everyone in the company can com­
municate with everyone else.

After this cursory analysis, we next look at the
technologies used for subject databases and appli­
cations. First, the subject databases are added to the
technology map. If pieces of databases are scattered,
integrate them or determine distribution require­
ments. This type of recommendation should be
coordinated with the applications recommendations
which are probably similar. Recommendations about
centralization, decentralization, federation, or distri­
bution of both data and processes should be consid­
ered. Changes in all infrastructure software such as
telecommunications monitors, database manage­
ment software, terminal interfaces, and so forth
should be considered for each activity at each loca­
tion. Advantages and disadvantages of all technolo­
gies, current and proposed, should be developed and
an estimated cost-benefit analysis developed.

In the plastics company example, software and
applications are added to the network/technology
analysis shown in Figure 5-20. Order information is
only available at Location 1, even though all sales
and product management organizations (Locations 1
and 2) require access. These data differences in what
currently exists to what is required show the type of
findings in network/technology analysis. To deter­
mine the best course of action, more information

138 CHAPTER 5 Organizational Reengineering and Enterprise Planning

Location 1 Location 2 Location 3 Location 4 Location 5

Current I
I

Applications I
I
I

Customer Financial R&D Scheduling I Accounting I

Maintenance Management I Consolidation R&D Manufacturing:
Order (local only) Manufacturing Control Accounting
Processing Payroll (local only)

Personnel (local only) Financial
Management Management

Payroll (Loca- (local only)

tions 1, 2, 3) Payroll

Accounting (local only)

Financial
Management
(local only)

Required
Applications

Customer Customer R&D Order Inquiry No change
Maintenance Maintenance R&D Subsystem
Order Order Manufacturing of Order
Processing Processing Processing

Personnel Accounting Scheduling
Management (local only) Manufacturing
Payroll (Loca- Financial Control
tions 1 & 2) Management Payroll
Accounting (local only) (local only)

Financial
Management
(local only)

Legend:

= Permanent Link

= Dial-Up Link

FIGURE 5-19 Plastics Company Network and Technology Analysis

Location 1

Operatingl
Database
Software

IBM MVS
IBM/DB2

I

Location 2 I Location 3

Novell/Sybase IBM MVS
IBM/DB2

Reengineering Methodology 139

Location 4

IBM MVS
IBM/DB2

IBM VM/CMS
IBM/DB2

Novell/Sybase Novell/Sybase Novell/Sybase I

Legend:

= Permanent Link

= Dial-Up Link

FIGURE 5-20 Plastics Company Technology and Software Details

might be requested of the locations. For instance,
do they need up-to-the-minute information? Why or
why not? The answer to this question determines the
need to redevelop the applications as on-line rather
than batch. If the locations need up-to-the-minute in­
formation, on-line applications are required. Let's
say that the sales and product management informa­
tion users need orders only as of the previous close
of business and that customer service agents in
Location 1 would like up-to-the-minute information
because most changes are made the same day. This
information about needs gives the reengineering
team the details they need to make intelligent rec­
ommendations about application changes. In this
case, either on-line order entry with retrieval, or the
entire application as on-line might be acceptable
alternatives.

Next, consider new technologies to manage paper
and work flow. For instance, do using groups need
facsimiles of the paper forms? In some industries,
such as insurance, the answer would be yes. In plas-

tics manufacturing, the answer is no. So, imaging or
other micro-forms management hardware and soft­
ware are not considered.

Specific operating environments should be con­
sidered next. If the networks are used to pass elec­
tronic mail and data files back and forth, the
operating environments do not necessarily have to
be the same. If, however, on-line query and file shar­
ing across environments is desired, the network
operating systems and database management soft­
ware probably should be the same to simplify user
access. This type of decision is aided by develop­
ment of a cost-benefit analysis for data access using
consistent software. What is cost of change? What
is the risk and cost of not changing? How much
added time is required, per request, to formulate and
obtain information with no change, and with
change? The answers to these questions are used to
determine the redesigned operating environment.

In the plastics example, the current environment
down-loads information nightly from Location 1 to

140 CHAPTER 5 Organizational Reengineering and Enterprise Planning

Locations 2 and 4. The managers at those locations
would like access to interim data if the applications
are moved to an on-line environment. In other
words, they want the access if the data are more cur­
rent. Customer service needs current information.
We decide to move to the on-line environment and
provide networkwide access to data and services on
the net. If the network operating systems (NOS) and
data bases are incompatible with this idea, they
would need to be replaced and made compatible.

To summarize, the network and technology archi­
tectures are superimposed and compared to decide
company changes. Then, technology requests and
application and software recommendations are
superimposed on the revised technology diagram.
Evaluation of requests, suggested changes from IS,
and recommendations from the organization design
team takes place by analyzing each change. Change
evaluation includes cost-benefit analysis, develop­
ment of advantages and disadvantages of change,
and issue analysis with information supplied by
potential users.

Implementation Planning
Once the analysis and recommendations are com­
plete and tentatively approved, a plan to prioritize
and sequence the changes is developed. A reengi­
neering study is of limited use if there is no road map
for how to attain the recommendations based on
where the organization is today. Implementation
planning designs the map. The steps of this phase
are:

1. Develop job descriptions.
2. Define the organization.
3. Plan information technology.
4. Plan training.
5. Plan implementation.

Define Job Descriptions

This is a first-cut at describing the new positions.
The jobs still require human resources evaluation
and refinement during the next stage: implementa­
tion. To develop jobs, we reanalyze the tentative job
descriptions, attending to data needs for each job.

We define jobs as including related job skills for sim­
ilar, related data. For each job, list the processes,
data, and skills required of an incumbent. When the
subject area database changes, create a new job, but
keep as a goal that each job should do some 'whole
thing,' have decision power, access to all needed
data, and be self-contained. Keep in mind that con­
straints on job identification are data self-sufficiency,
process self-sufficiency, and minimal coupling to
other jobs and processes.

For each job, identify the processes and entities.
Identify the technologies that would achieve the job
objectives with the utmost speed and accuracy. Use
suggestions (and return for more specific informa­
tion if necessary) from interviewees about technol­
ogy that might be used. At this point, do not worry
about capital expenditures for technology. Keep
technology information for the technology/network
analysis.

Question all current methods of work and all
process dependencies. For instance, do you need
paper copies of orders? By law, you need records of
orders, not paper orders. Devise schemes that elim­
inate paper, eliminate creation of paper, and elimi­
nate any handling of paper. Replace paper with
technology whenever the information must be re­
tained for legal or governmental compliance.

Concentrate on implementing change to eliminate
all identified problems. Relate each process and
entity to one or more problems identified; determine
how to improve quality of process and eliminate the
errors. Finally, concentrate on eliminating depen­
dencies between functions and between processes.
Interfunctional dependency is minimized by elimi­
nating physical interactions or replacing them with
technology based interactions. For instance, elimi­
nate shipping papers by providing the shipping
department with access to the order database.

For each job within each process, write job de­
scriptions to align job goals with the corporate goals
and objectives. The outcome of this exercise is
to give every individual the means-management
structure, data, and technology-of meeting those
goals. Give every individual, at every level, specific
measurable responsibilities. Recommend changes
to the compensation plans to relate compensation to
meeting/exceeding of objectives and goals.

For each newly clustered, enlarged job, analyze
its relationships with other jobs to minimize inter­
job linkages. Reanalyze each job to ensure data and
process self-sufficiency. Finally, define defect-free
work procedures. If errors must be dealt with,
describe where they might occur and their proper
handling.

Define the Organization

A first-cut organization structure will have three lay­
ers: CEO, functional managers, and everyone else.

The implication is that self-directed work teams
with either a limited hierarchy or a matrix manage­
ment organization will result. Other organizational
forms can result but are not specifically defined in
any of the reengineering methodologies. The steps to
developing a new organization design are: map jobs
to functions, analyze relationships between jobs
placing jobs in clusters or work groups, based on
data self-sufficiency, process self-sufficiency and
minimal coupling of clusters, and determine the
location of work (in large organizations some jobs
are centralized, some decentralized, and some cen­
tralized with replication in the remote locations). If
the first-cut does not result in a completely irrational
organization design, it might be accepted as it is for
trial. If there are too many different clusters (use
5-7 as the rule) or too many different jobs in a clus­
ter (use 5-15 as the rule), additional reevaluation
might be required.

Grouping of jobs is based on their interdepen­
dence. There are three types of interdependence in
organizations: pooled, sequential, and reciprocal.
Pooled interdependence is a relatively indepen­
dent, low level of interaction between depart­
ments or jobs. Sequential interdependence defines
a serial relationship between departments or jobs.
Reciprocal interdependence defines highly interre­
lated activities that are worked on jointly by multiple
units requiring feedback and constant adjustment.
For instance, a bank loan department might be
viewed as relatively independent (i.e., pooled) from
other parts of a bank in that they need customer
information received from the customer for their
decision with no other units involved. Purchasing,
receiving, and payables are sequentially interdepen-

Reengineering Methodology 141

dent in that they all use purchase order data. Yet all
these job types have different job skills; that is, they
each make different decisions and perform different
actions based on their access to the purchase order
information. A reciprocally interdependent depart­
ment is a hospital intensive care ward in which many
specialists with different skills and knowledge all
work toward the same goal of patient recovery.

To group jobs, three methods of organization
design deal with the three types of interdependence.
If the jobs relate to each other sequentially, cluster
jobs with similar skills together. Affinity groupings
of processes and entities are used to decide skill
requirements. Clusters may be sequentially depen­
dent with jobs within each cluster providing different
skills. Plan to provide shared database access to link
clusters; this minimizes paper movement and en­
sures data access.

For example, look at the bank loan department
again. Bank loan department processes are sequen­
tially related after the loan is made. Once the loan
commences, records are established and payments
are received, posted, and analyzed. In an assembly
line approach, these processes are different jobs. In a
caseworker approach, all of these processes are
within one job. Caseworkers could conceivably
monitor loans for any customer, but usually have a
case 'load' that is defined by alphabetic groupings of
last initial of loan-maker names or some similar
scheme.

If the processes have pooled interdependence,
then job clusters contain one job type. For pooled
interdependence, use subject area data as the decid­
ing factor on when to create a new job. Each job,
cluster, or group should have its own data self­
sufficiency.

If the jobs are reciprocally interdependent and
pass work back and forth, or need discussion on
details regularly during the performance of work,
design work groups in the same way you designed
jobs. That is, design work groups to include all skills
needed to perform one activity or function. Find all
of the jobs that reciprocally share information; then,
define the set of different jobs that would comprise
a work group. Try to keep groups small with under
12 different jobs represented. For instance, engi­
neers, raw materials purchasing, manufacturing, and

142 CHAPTER 5 Organizational Reengineering and Enterprise Planning

quality control may all need access to the same
design drawings, specifications, and components
lists. They may be able to identify alternatives, make
decisions, and improve quality simply by sharing
responsibility for finished products. These job types
would be clustered in work groups (i.e., quality
circles).

Plan Information Technology

The next step is to redefine the IS environment. The
rationale for deciding priorities is to correct the ma­
jor problems first, and/or meet the goals/objectives
with the largest impact on net income. The steps to
develop an IS redevelopment plan are:

1. Compile all subject area database and appli­
cation changes, redevelopment, enhancement
requirements.

2. Compile all technology and network infra­
structure requirements.

3. Map technology and network needs to data­
base and application needs.

4. Define software reengineering projects.
5. Define new application development

projects.
6. Determine priorities for all projects.
7. Develop a plan for two years of development

and reengineering work. Develop a tentative
3-5 year plan for the remaining projects.

To develop the technology plan, create three
matrices: technology/process, process/entity, and an
entity/technology matrix. The technologies are all
those identified by interviewees and team members
as potentially useful in the organization. Complete
each matrix. In each cell of the process/technology
matrix, enter whether the technology speeds deliv­
ery, improves accuracy, improves service, or lowers
cost. Enter all improvements that apply. This matrix
is used to determine priorities for change.

In the entity/technology matrix identify which
data entities are already fully or partially automated
and the type of automation. Types of automation
include file, application database, or subject area
database.

Using the original process/entity matrix, identify
the extent and type of automation for each process/
data cell. Types of automation for processes include
full or partial, and batch, on-line, or real-time. These
matrices may not be 100% complete, but are used
to guide the implementation planning process by
providing a summary of planned changes.

Plan Training

Develop a training plan to upgrade skill levels to
meet new performance requirements, recommending
how current jobs can be mapped onto the new jobs.
This should be a skeleton plan defining sequencing
of training and approaches-outside company,
inside company, phased by department, phased over
time, and so on. Actual training details cannot be
complete until human resources' redefinition and
formalization of job descriptions and levels, and
estimates of number of people to be trained for each
job are known. The plan should be sufficiently
detailed to allow a pilot test of the training and new
work approach before its complete deployment.

Plan Implementation

Develop an implementation plan that reflects some
phased approach to changing the organization. The
number of people in anyone job type might be dif­
ficult to determine if the jobs are very different from
the present. Moving from the assembly line to the
caseworker or group work approaches changes the
entire equation; more, rather than less, people might
actually be needed. Human resources might be able
to assist in this type of estimating. If estimates of
numbers of people in caseworker jobs are too vague,
a pilot study can be conducted to facilitate estimating
of total personnel needs.

When the mapping is complete, summarize the
recommended changes and determine how they can
be implemented. The possible approaches are pilot
organization, phased implementation (by function,
location, business priority, or application), or total
cut-over. Develop timing of changes. If the changes
are expected to take more than six months, deter­
mine how the organization, processes, data, or tech­
nology can be streamlined, changed, added to, or

eliminated now to provide immediate improvement
and correction of some problem(s).

ENTERPRISE _____ _
ANALYSIS ______ _
WITHOUT ______ _
ORGANIZATION ____ _
DESIGN _______ _

Even without the extensive organization and tech­
nology redesign of reengineering, an enterprise
analysis helps managers establish applications prior­
ities and develop a plan for introducing new applica­
tions and technologies into their organizations.

The same analyses for entities and processes are
performed. Current automation of the affinity clus­
ters are summarized on the diagram. Recommended
changes are mapped to organization goals and strate­
gies to decide priorities for change. The changes
from enterprise analysis are incremental and relate to
applications and subject area databases. Sweeping
technology and network reassessment are miss­
ing from this activity. Likewise, organization prob­
lems and finding obsolete functions are not goals of
this analysis.

When organization problems are identified, they
can be referred to the sponsor for consideration. One
example of organization problems is identified from
the entity/process matrix after affinity analysis is
performed. Each process should have a prefix identi­
fying its original function and activity relationships.
If the function/activity prefix for each creating pro­
cess for each entity is not the same, an anomaly is
found in that multiple managers have responsibility
for creating the same data. The idea is that processes
which do share responsibility for creating some
entity should report to the same manager. The same
manager can minimize conflicts and maximize
coordination and control over data creation.

A second type of organization problem is found
in the process hierarchy diagram. Because the dia­
gram is built to describe its information without
regard to current organization, some overlap or

Summary 143

duplication of activities may be found. When this
occurs, an effective technique for showing duplica­
tion, for example, is to draw shadow boxes, behind
the process (or activity or function) duplicated.
Then, on each box, identify the organization having
the responsibility, one box for each organization.
This effectively communicates organizational over­
lap without a need for additional comment, and is
less inflammatory than verbal or text descriptions
because it is presenting organizational facts.

AUTOMATED _____ _
SUPPORT TOOLS FOR __ _
ORGANIZATIONAL ___ _
REENGINEERING ____ _
AND ENTERPRISE ____ _
ANALYSIS ______ _

The tools needed to support organization reengi­
neering are similar to those for project plan­
ning, but include process hierarchy diagrams,
entity-relationship diagrams, network architectures,
and technology architectures. Many tools support
one or more of these requirements. Few tools on the
market currently support all of these requirements.
The automated support tools are summarized in
Table 5-2.

SUMMARY ________ _

Reengineering of an organization reevaluates
data, processes, technologies, and communications
needs to ensure that an enterprise meets its goals
as stated in its mission statement. The activities
of reengineering include the data collection, analy­
sis, and development of recommendations to meet
organizational goals through radical redesign
of work.

Reengineering is intended to alter the shape and
operations of an organization. Frequently, organiza­
tions and managers do not want sweeping change.
When incremental change is desired, enterprise level

144 CHAPTER 5 Organizational Reengineering and Enterprise Planning

TABLE 5-2 Automated Support for Organizational Reengineering and
Enterprise Analysis

Product

Analyst/Designer Toolkit

Anatool, Blue/60
MacDesigner

Bachman

Company

Yourdon, Inc.
NewYork,NY

Advanced Logical SW
Beverly Hills, CA

Bachman Info Systems
Cambridge, MA

Technique

Entity -relationship
diagram (ERD)

ERD

Bachman ERD

CA-products Computer Associates International, Inc. Data modeling
Strategic planning

CorVision

Deft

ER-Designer

Excelerator

Cortex Corp.
Waltham, MA

Deft
Ontario, Canada

Chen & Assoc.
Baton Rouge, LA

Index Tech.
Cambridge, MA

ERD

ERD

ERD

ERD
Structure chart

Foundation Arthur Anderson & Co.
Chicago,IL

ERD
Project management
Project planning

IEF

IEW,ADW
(PS/2 Version)

Texas Instruments
Dallas, TX

Knowledgeware
Atlanta, GA

analysis uses a subset of the analyses of reengineer­
ing to develop applications and subject area database
development recommendations.

REFERENCES __________ __
Davenport, Thomas H., Process Innovation: Reengineer­

ing Work through Information Technology. Boston,
MA: Harvard Business School Press, 1993.

ERD
Enterprise analysis
and planning
Process hierarchy

ERD
Enterprise analysis
and Planning
Functional decomposition

Dunckel, Jacqueline, Good Ethics, Good Business: Your
Plan for Success. North Vancouver, British Columbia:
Self-Counsel Press, 1989.

French, W. L., and C. H. Bell, Jr., Organization Develop­
ment. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1984.

Galbraith, Jay R., and Daniel A. Nathanson, Strategy
Implementation: The Role of Structure and Process.
St. Paul, MN: West Publishing Co., 1978.

Galbraith, J. R., Organization Design. Reading, MA:
Addison-Wesley Publishing Co., 1977.

References 145

TABLE 5-2 Automated Support for Organizational Reengineering and
Enterprise Analysis (Continued)

Product

MacAnalyst,
MacDesigner

Maestro

Multi-Cam

PacBase

ProKit Workbench

Company

Excel Software
Marshalltown, IA

SoftLab
San Francisco, CA

AGS Mgmt Systems
King of Prussia, PA

CGI Systems, Inc.
Pearl River, NY

McDonnell Douglas
St. Louis, MO

Technique

Decision table
Entity class hierarchy
ERD

ERD

ERD
Enterprise analysis
and planning
Project management

Enterprise analysis
and planning
Process decomposition

ERD

Silverrun Computer Systems Advisers, Inc.
Woodcliff Lake, NJ

ERD

SW Thru Pictures Interactive Dev. Env.
San Francisco, CA

ERD

System Architect Popkin Software and Systems, Inc.
NY,NY

ERD

System Engineer LBMS ERD
Houston, TX

Teamwork Cadre Technologies Inc
Providence, RI

ERD

Telon, and other products Pansophic Systems, Inc.
Lisle, IL

ERD

The Developer ASYST Technology, Inc.
Napierville,IL

ERD
Structure chart
Organization chart

Greiner, L. E., and R O. Metzger, Consulting to Man­
agement. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1983.

Hage, J., and M. Aiken, Social Change in Complex
Organizations. New York: Random House, 1970.

Hackman, J. R, ed., Groups That Work (and Those That
Don't): Creating Conditions/or Effective Teamwork.
San Francisco, CA: Jossey-Bass, 1990.

Hackman, J. R, and G. R Oldham, Work Redesign.
Reading, MA: Addison-Wesley, 1980.

Hammer, M., "Reengineering work: Don't automate,
obliterate," Harvard Business Review, July-August,
1990, pp. 104-112.

Hammer, M., "From cow paths to data paths," Computer­
world, December 25, 1989-January 1, 1990, pp. 16-17.

IBM Corporation, Business Systems Planning Informa­
tion Systems Planning Guide, IBM Document # GE 20-
0527-1, Armonck, NY, 1978, pp. 1-92.

King, William R, "Strategy set transformation," MIS
Quarterly, March, 1978.

146 CHAPTER 5 Organizational Reengineering and Enterprise Planning

King, W. R., and D. I. Cleland, eds., Strategic Planning
and Management Handbook. NY: Van Nostrand Rein­
hold,1988.

Huse, E. E, Organization Development. New York: West
Publishing Co., 1980.

Kouzes, James M., and Barry Z. Posner, The Leadership
Challenge: How to Get Extraordinary Things Done
in Organizations. San Francisco, CA: Jossey-Bass,
1990.

Lindenfeld, E, and J. Rothschild-Whitt, eds., Workplace
Democracy and Social Change. NY: Porter, Sargent,
1982.

Rockart, John, "Critical success factors," Harvard Busi­
ness Review, March-April, 1979, pp. 81-91.

Singh, Arvind, Comments from A Business Reengineer­
ing Workshop given in NY to TIAA, Performance
Development Corporation, Princeton, NJ, January,
1992.

Sowa, J. E, and J. A Zachman, "Extending and formaliz­
ing the framework for information systems architec­
ture," IBM Systems Journal, Vol. 31, #3, 1992, pp.
590-616.

Thompson, J. D., Organizations in Action. New York:
McGraw-Hill, 1967.

Zachman, J. A, "A framework for information systems
architecture," IBM Systems Journal, Vol. 26, #3, 1987,
pp. 276-292.

KEY TERMS ___ --. __

affinity
affinity analysis
architecture
business activity
business function
business process
caseworker
champion
critical success factor (CSF)
CRUD matrix
data
data architecture
data domain
data self-sufficiency
domain
enterprise architecture
information systems

architecture (ISA)
framework

information technologies

level of effort
logical description
mission statement
network architecture
network domain
network scope
organizational

reengineering
pooled interdependence
process architecture
process domain
project sponsor
reciprocal interdependence
reengineering scope
sequential interdependence
stakeholder
technology architecture
technology domain
technology scope
user commitment

EXERCISES _______ _

1. Look at the questions suggested for data gather­
ing on page 125. Think of other possible ques­
tions and why they might be good additions to
those suggested. Discuss your suggestions with
class members.

2. Describe how the information provided for the
four architectures can be used in multiple ways
as the basis for IS and organization redesign.

3. Discuss the differences in outcomes of an orga­
nizational reengineering project if one or more
of the assumptions in the list on pages 116-117
are not met.

4. Try to develop process and data architectures for
the Abacus Printing Co. case in the Appendix.
Try to do an affinity analysis of the information.
Develop a list of questions you need answered
to do a complete analysis.

STUDY QUESTIONS ___ _

1. Define the following terms:

data architecture
enterprise analysis
information

technologies
network architecture

organizational
reengineering

process architecture
technology

architecture

2. What is the motivation for organizational
reengineering?

3. What are the steps to organizational
reengineering?

4. Why are caseworker or quality circle work
groups preferred to the assembly line approach
to work?

5. What is the 80-20 rule and how does it apply
to reengineering?

6. What is an architecture and why is it important
to reengineering?

7. What types of architectures are used in
reengineering? What is the purpose of each
architecture?

8. What is an entity and how is it used in the data
architecture?

9. What is a platform and how is it used in the
technology architecture?

10. List three prerequisites of reengineering. Why
are they necessary conditions for a successful
project?

11. What are four assumptions of reengineering?
12. Why are different scheduling scenarios neces­

sary for the organization of reengineering
projects?

13. What is a level-of-effort approach to work?
Why is it used with reengineering?

14. Why is there overlap between reengineering
tasks? Why is overlap necessary?

15. What is the role of the project sponsor?
16. List the types and roles of people who should

be assigned to a reengineering project.
17. Why is data self-sufficiency the major criterion

for scoping a reengineering project?
18. Describe a good mission statement. What

makes the difference between a good mission
statement and a bad one?

19. How are critical success factors used in
reengineering?

20. List five information sources and the type of
data that the team gets from each one.

21. Discuss the conceptual levels of Zachman's IS
architecture. Which two relate to reengineer­
ing? Why are the others not used here?

22. What is the purpose of mapping the two levels
of architecture into different domains? Why
the domains chosen?

23. Who is a stakeholder? Why is a stakeholder
important?

24. Describe a CRUD matrix and its use.
25. Why is affinity analysis important? What are

the reengineering results that are basetl on
affinity analysis?

26. List three rules of thumb for deyeloping the
network and technology recomII1endations.

27. Why is implementation planriIng important
to a reengineering effort? When changes are

Extra-Credit Questions 147

dramatic, what is a good approach to imple­
menting change in the organization?

28. How does enterprise analysis differ from orga­
nizational reengineering? Are these differences
significant? Why not do enterprise analysis
only?

29. Which automated support tools provide all de­
sired functionality for reengineering support?

30. What are the functions desired of an automated
support tool for reengineering?

31. What are the key criteria for proper scoping of
a reengineering project? Explain.

* EXTRA-CREDIT QUESTIONS

1. You have been named to lead an organization
reengineering effort for a small, one-location
company. The company has functions for ac­
counting, purchasing, inventory management,
shipping, and sales. The business of the com­
pany is retail sales of furniture. The current
computer system supports the billing, shipping,
and invoicing process. No one but employees in
the accounting department use or access the
computer at present. Develop a plan and sample
questions you might ask the employees and the
owner for an organization reengineering project.

2. What are factors that can cause a reengineering
project to complete faster or slower? Explain.

3. Imagine that you work in a company that has all
types of computer hardware and networks:
mainframes, mid-size, PCs, wide-area main­
frame networks, and local area networks. What
are the issues in defining what data and applica­
tions should be on each type of hardware?
Develop and discuss possible guidelines for data
and application location selection.

CHAPT ER6

APPLICATION ----------------------.. ________ .r--~

FEASIBILITY
----------------------------------~ ANALYSIS

AND PLANNING ____ ---------, _____ ------.

INTRODUCTION ____ _

Feasibility is the first stage of application develop­
ment. The purpose of the feasibility study is to
ensure that the organization can accommodate the
technology, organization changes, and cost of the
new application. During feasibility analysis the
major tasks are: define the scope and boundaries of
the problem, generate technical alternatives, assess
costs, benefits and risks, and recommend an applica­
tion deve!opwent strategy. The procedures described
in this chapter are used for large, full life-cycle
projects; selective and abbreviated forms of the
analysis are used for iterative development and for
small projects.

DEFINITION OF ____ _
FEASIBILITy _____ _
TERMS _____________ _

The feasibility analysis tasks and the terminology
of each are briefly described. The stages of work
during feasibility are: gather information, develop
alternatives, evaluate alternatives, and plan and doc­
ument the recommended approach to development.

148

During the information gathering stage, the goal
is to develop a request from a vague, general state­
ment into a specific request with boundaries and
scope completely defined. Key business and applica­
tion leverage points are defined during the scoping
activity. A business leverage point is some activity
from which a competitive advantage can be gained.
An application leverage point is some automated
function that might provide a competitive advantage
to the using business unite s). Application leverage
points frequently relate to improvements of better,
faster, and more to work. Some business and appli­
cation leverage points are:

Increase market share
Increase linkage to vendors or customers
Provide desired information that is not currently

available.

Business and application leverage points are
used as the starting point for developing the benefits
that would result from a change in the current
method of work. Benefits can be tangible or intan­
gible. Both benefit types are important for man­
agement to decide whether or not to do the
recommended changes. Tangible benefits are mea­
surable improvements to a specific work product or
process. For instance, reducing staff by 10 people

and the resulting cost savings are tangible benefits.
Intangible benefits are not directly measurable. For
instance, improved customer service through inte­
grated database access has tangible and intangible
benefits:

Tangible Benefits

Decrease operating cost by 10% in first year
Increase market share by 5 % per year for three

years

Intangible Benefits

Improve company image
Increase customer satisfaction
Improve employee job satisfaction
Provide faster and more accurate information to

customer services representatives

Another tangible benefit might be faster response
time for inquiry requests from five minutes to 15 sec­
onds. An intangible benefit from the same action
might be improved customer satisfaction. More
satisfied customers are less likely to go elsewhere
for their products, but proving that customer sat­
isfaction is improved is difficult to quantify, and
is intangible.

Also in information gathering, the business envi­
ronment, competitive environment, and current
method of performing the work that would be
revised are described in sufficient detail to allow
determination of appropriate changes. The functions
and procedures that are needed in the new applica­
tion are identified, as are problems with current pro­
cedures and new functions that are not part of current
procedures.

After the current problem domain is understood,
alternative approaches to the problems are devel­
oped. Alternative approaches to an application are
different configurations of work, hardware, firm­
ware, or software. Alternatives can begin with non­
automation alternatives, such as change in work
flow, and progress to different platforms, software,
and designs. Usually between two and five alterna­
tives are considered. Alternative definitions include
the technology, benefits, and risks of each approach.
A benefit, as discussed above, is some improvement
in the work product or process that results from a

Definition of Feasibility Terms 149

specific alternative. Risks are events that would pre­
vent the completion of the alternative in the manner
or time desired.

Risk assessment determines possible sources of
events that might jeopardize completion of the
application. In general, the goal is to develop the
project on time, within budget, and without errors.
Risk assessment and contingency planning help you
meet this goal. Contingency planning is the identi­
fication of tasks designed to prevent risky events and
tasks to deal with the events if they should occur.
The goal is to minimize the possibility of the event
occurring, but to also have a plan just in case the
worst happens. Having a contingency plan prevents
having to force decisions under pressure.

When the alternatives have been defined, they are
evaluated. The number of requirements met by the
approach is assessed, and the benefits and risks of
each are weighed to identify the alternative with the
least risk and most benefit. If an alternative exists
that meets all required and optional requirements,
meets all benefits, and has the least risk, it would be
the recommended option. Most often, there is a mix
of requirements met and risk incurred, that prevent
selection of an alternative based on technical merits
alone. Rather, several competing alternatives might
be further evaluated to differentiate between them.
To decide between the alternatives, development
plans, costs, and financial analysis are developed.

A project plan is a schedule of tasks and esti­
mated completion times for application develop­
ment. A project plan includes tasks to be completed,
tentative task assignments, staffing plans, and com­
puter resources needed for the project. From the staff
and resource estimates, costs of development are
determined. If there are multiple alternatives, the
costs of each are computed. The costs are used in the
financial analysis which occurs next.

Several different types of financial analysis might
be performed; the two most common ones are cost/
benefit, and makelbuy. Cost/benefit analysis is the
computation of net present value for each alterna­
tive. Net present value (NPV) equalizes the cost
estimates by accounting for the time value of money
for multiperiod investments. A make/buy analysis
chooses between alternatives for providing an item,
such as a software application. The make analysis

150 CHAPTER 6 Application Feasibility Analysis and Planning

estimates the cost of building a customized applica­
tion, while the buy analysis estimates the cost of pur­
chasing a package.

Other financial analyses, such as internal rate of
return and payback period, might also be computed.
Internal rate of return analysis determines the
interest rate which equates cash investment outflow
with positive cash flow. Payback period analysis
determines the number of years required to recover
the cash outlays based on the projected monetary
benefits.

After all the analyses are performed, a final rec­
ommended alternative is defined. Technical and
monetary considerations are balanced and a recom­
mendation is based on some mix of them. For in­
stance, a recommendation might be based on the
fastest payback coupled with most requirements met.
Alternatively, the decision might be based on the
lowest NPV and the extent to which leverage can be
maximized. When the alternatives are virtually equal
in comparison, multiple approaches to the applica­
tion are presented and the user, IS managers, and
project team decide together what approach is best.
This is often the case.

Finally, a feasibility document is created to sum­
marize the feasibility analysis and the recommenda­
tion. The document is a summary of all of the
preceding steps and analyses taken during the feasi­
bility phase. Next, we discuss each feasibility activ­
ity in detail.

FEASIBILITy _____ _
ACTIVITIES ______ _

Feasibility analysis is an activity that ranges from
several days to several weeks in duration. In general,
a feasibility should be completed in fewer than
12 weeks; after that point, one of two problems
exists. Either the problem domain is too large and
should be broken into smaller problem areas, or the
feasibility team is going into too much detail and
should summarize at a higher level. The informa­
tion at the end of feasibility should be accurate
enough to allow managers to decide on the worth of
pursuing a project, but high level enough that an
analysis phase to clarify details of requirements is

needed. The information is incomplete with about
95% confidence in the accuracy of the information.
Similarly, a budget and project plan produced at this
high level of abstraction should have about an 80%
level of confidence attached to it. This means that the
budget and time schedule are ±20% inaccurate, and
implies budget adjustment later in the project. In this
section, we detail the actions of feasibility analysis
and project planning outlined in the previous section.
For each topic, guidelines for completing the work
are presented and followed by an example of the
activity for ABC Video.

Gather Information
Guidelines for Gathering Information

The four major tasks during information gathering
are:

1. Define the business and work environments
2. Describe current system of work
3. Identify key benefits and leverage points
4. Identify broad system requirements

The activities are done in parallel rather than sequen­
tially. As information is collected, leverage points
and requirements emerge from discussions on which
old procedures to keep and what new technology,
procedures, data, or interfaces are needed.

If an enterprise level plan exists, the data gather­
ing begins with the architectures to obtain an
overall view of the current data, processes, and tech­
nology of the target business area(s) (see Figure
6-1). The process decomposition is used to identify
and match the affected jobs and tasks with those sug­
gested by the requesting application sponsor. The
data architecture is used to identify what data are
involved and the extent to which the data are already
automated. The technology architecture is checked
to identify hardware, software, and applications sup­
porting the work functions today, and to identify
potential platforms as operational sites for the new
application. For each job affected, the technology
architecture matches jobs (from the process archi­
tecture) with applications capabilities.

The architectures, if present, are the basis for
obtaining information from the user departments

Feasibility Activities 151

Model Process Data Network Technology

I

Process
Hierarchy

: Entity Relationship Dia- Logistics
Network

Technology
Network I

I gram
I
I
I
I
I
I
I Enterprise

Level
Analysis

: CJ4O-C:J
I

Function = Entity = Business Entity Node = Business Node = Computer
Business Process Relnship = Bus. Con- Process Link = Network Link

straint Link = Comm. Need

Feasibility
Identify and match Identify data and Identify potential Identify hardware,

affected jobs extent of data operational platforms software, and
Study Use and tasks automation applications

Adapted from Zachman 1987

FIGURE 6-1 Enterprise Architectures in Feasibility Study

involved. Recall that the methods of data gathering
(from Chapter 4) might include interviewing, docu­
ment review, observation, talking to other compa­
nies, temporary work assignment, and questionnaire
surveys. During feasibility, interviews, document
review, and other companies are the primary infor­
mation sources. Although the other methods could
be used, they take more time and elicit more detail
than required for feasibility analysis.

Assume you are doing the information gathering
using interviews. You might work in two-person
teams for interviews so that the project has a built­
in backup for every person, should someone get sick,
called on jury duty, or be reassigned. One person
asks the questions while the other person acts as
scribe taking notes. This method of interviewing
results in fewer misconceptions and errors from for­
getting than interviews by one person. At the end of
every session, follow-up steps should be identified
for both you and the interviewee. For instance, you
might document the interview and ask the inter­
viewee to review and correct your documentation.
You commit to having the material back by a specific

date and request the review within a set time. In this
manner, you conclude the meeting with a commit­
ment from the interviewee to do the review by a cer­
tain date.

During the writing of interview materials, graph­
ical techniques for both data and processes can be
used to synthesize the findings. The most common
graphical techniques are entity-relationship dia­
grams (ERDs) for data, and process decomposition
and process data flow diagrams for processes
(PDFDs). Development of these diagrams is detailed
in Chapter 9. An older variant of PDFDs called data
flow diagrams (DFDs) are also used; they are de­
tailed in Chapter 7. In general, ERDs capture infor­
mation about the data entities that are within the
scope of the study problem domain. An entity is any
person, place, thing, or event about which the orga­
nization needs to keep data. The relationships
between entities define some business-related asso­
ciation that is within the problem scope. The process
decomposition diagram depicts the organization
tasks that are being studied. The problem area is
compared to the process hierarchy and ERD to

152 CHAPTER 6 Application Feasibility Analysis and Planning

ensure correct scoping. PDFDs summarize the pro­
cesses of the problem and relate them to each other,
the outside world, and to data entities.

In addition to diagrams which summarize the pro­
cedures and data of the target problem domain, you
also create text documents that describe the current
process, the aspects of the current process to be
retained, and the changes and motivation for
changes. In general, text should be minimized
because it is easily misinterpreted. Diagrams and
graphics are preferred to text. Lists of items are pre­
ferred to paragraph form text. Requirements for the
new application should be as specific as possible.
For instance, a requirement might be stated 'reduce
turnaround time from receipt of an order through
invoicing from 14 days to 2 days.' During the sys­
tems analysis phase, the actual details of functions to
implement this requirement are developed.

As we said above, key business and application
leverage points are defined during the data collection
activity. Leverage points are context specific. What
might be a leverage point in one company and
industry might be standard procedure in another
company and industry.

An example of leverage points is provided by
examining imaging technology. Imaging technology
automates facsimiles of business forms. Image files
are databases of forms with indexes for retrieval and
linkage to data databases. Applications can be de­
veloped to integrate data and image information for
users at terminals. The technology provides both
business and application leverage by improving
work flow and allowing the management of paper
flow through an organization.

The leverage provided by imaging is highest in
organizations that are information and paper inten­
sive, for instance, insurance and financial services.
These paper intensive industries are required, by law,
to provide original document search capabilities.
Before imaging technology, these companies either
used microforms or paper, both of which have only
rudimentary indexing capabilities. Microforms
require their own viewing equipment that is neither
intelligent, nor capable of integration to an applica­
tion. Paper, if kept, is so voluminous that whole
buildings are dedicated to document storage. Trying
to retrieve specific documents and files requires

armies of clerks and dedication to accurate refiling.
Simply applying imaging technology by itself buys
marginal improvement to paper management. The
big payoff is in integrating imaging with software
to manage work.

Work flow management software is integrated
with imaging technology to schedule work for
clerks, monitor document locations, and monitor
work progress through any number of departments
(see Figure 6-2). All of these actions can be done
without fear of losing the document because it
is an electronic image. Printing of the image is pos­
sible if a paper copy is needed by a clerk for some
reason.

Imaging and work flow management together can
flatten hierarchies, reduce the number of clerks
involved in image production, and eliminate the
need for clerks to manage files. Staff reduction is a
business leverage point and a benefit of the activity.
For individual jobs, frustration is reduced because
information can not be 'removed for use' from an
image file. Clerks are more productive and their jobs
can be upgraded because the emphasis now can be
placed on understanding and interpreting the infor­
mation rather than on simply collecting all the
information correctly. Thus, an application leverage
point is present in enhancing jobs of the people in the
workflow.

Leverage points identify benefits of the proposed
application. Other benefits might be present and
should be identified; they may not have a direct
strategic impact. For instance, in keeping with the
idea that most proposed applications are to improve
work, benefits about more, faster access, integrated,
or improved quality data might be defined. Similarly,
automation of more tasks, faster report generation,
integration of processing, or improved timing of
response might all be benefits. Conversely, the new
application might be expected to reduce staff, link­
ages between departments, work errors, and so on.
These benefits are all tangible and measurable and
should be identified.

Intangible benefits are equally important, but are
harder to quantify. Intangible benefits are indirect,
unmeasurable benefits with a high degree of uncer­
tainty. For instance, one benefit of personal work sta­
tions with access to software has been a rethinking,

User

8)
n

d

e

x

DBMS

Imaging
Software

Imaging
Hardware

Feasibility Activities 153

Database

Image
Base

FIGURE 6-2 Logical View of Work Flow Management Software

by many people, of how they do their work. Tbey
now type their own documents directly and use sec­
retarial support for changes and formatting. They
do their own analyses and perform many different
types of analysis that they could not do, and there­
fore never thought of doing, before they had desk­
top computer access. This type of change is an
indirect benefit that increases the effectiveness of a
person's work, while the tangible benefits deal
mostly with efficiency improvements. Both types of
benefits are important in application qecisions.

The SE works with the users to define the tangible
and intangible benefits relating to a project. Benefits
identified are listed in the documentation of the pro­
posed application, and a value is attached to each
one. Tangible benefits are quantifiable by determin­
ing the change expected to result from the new
application. Intangible benefits usually are listed
with a possible range of benefit. In presenting this
information to decision makers, you must be able to
justify why intangible benefits exist. Managers will
ask and expect the reasoning behind any expected
financial gains, whether tangible or intangible.

Now let us turn to ABC Video to discuss how to
perform the data collection activities.

ABC Video Information Gathering

Of the methods of data gathering available, several
can be eliminated immediately. First, questionnaires
for a total of six employees would be impractical.
All employees are available for discussions during
nonpeak times. Also, studying documentation is
not possible because the manual methods are not
documented. Observation and temporary work
assignment can give some information about the cur­
rent problems to be solved through automation, but
are of limited value in actually designing Ule new
application.

Talking to competitors is not feasible because
they do not want to help the competition; however,
to define benefits that might accrue for the ABC
application, l<:nowledge of competitor clerical
assignments and computer systems is valuable.
Observation of competitors is a good way to get
some insight to the benefits Vic might get from

154 CHAPTER 6 Application Feasibility Analysis and Planning

automation. The remaining data collection method,
interviews, should be used extensively for Vic and
the clerks to determine the work flow, problems,
and possibilities for the ABC application. To supple­
ment the interviews, we should observe competitors
by using their services for a period of time to get
information about their work assignments and
applications.

For ABC, we define the current environment,
proposed environment, leverage points, and benefits.
Through Vic's interviews we find that ABC operates
in a highly competitive environment. Large chain
video rental businesses are crowding small one-shop
businesses, like ABC, out of the market. ABC must
remain competitive to stay in business and to grow
as Vic expects. Vic sees the future to be in services
offered to customers. In terms of video rental pro­
cessing, service translates into minimal bureaucracy
with as many variations on service to customers
as possible.

Currently, ABC uses a manual method of video
rentals. The customer chooses a video and presents
the video cover (or title) to a clerk. The clerk locates
the video, locates a rental card for the customer, and
writes the current rental on the card. Charges for late
fees are computed from the card if any are owed, and
the customer pays for the current and any late
rentals. The customer signs the rental card which is
filed by the clerk. During the peak business period,
from 6 P.M. to 10 P.M., the rental cards are placed in a
pile for later refiling. Frequently, cards are misplaced
and the customer is then not charged late fees. If a
tape is never returned and the accompanying card is
lost, Vic has no way to trace who has what tape(s).
This method is error prone and subject to whims of
clerks who have been seen changing return dates for
friends who return tapes late. Also, the time involved
in locating a given customer's rental card ranges
from 30 seconds to several minutes during nonrush
time, and can be as high as 10 minutes during the
peak rush time because clerks are waiting to access
the card file.

Vic's requirement for the new application is to
provide a fast, simple method of providing rental
processing and accounting without introducing any
new bureaucracy into the process. The system must
be on-line, accommodate at least five clerks working

simultaneously, provide for growth in video inven­
tory, and expansion of the business to other related
sale/rental items. At a summary level, the data enti­
ties in ABC rental processing are customers, video
inventory, and rentals. Figure 6-3 is an ERD show­
ing the relationships between these entities. Also at a
summary level, the major processes of rental pro­
cessing are customer maintenance, video mainte­
nance, and rent/return processing. These processes
are summarized in Figures 6-4 and 6-5.

Figure 6-4 is a hierarchic process decomposition
diagram for the business, showing many more func­
tions than just the rental processing. The rental pro­
cessing area has bold lines to highlight it from the
rest of the diagram. This diagram is developed at the
enterprise level to ensure that the correct depart­
ments and processes are accounted for in an appli­
cation development effort.

Figure 6-5 is a high level process data flow dia­
gram for the rental activities only. The diagram
shows the inputs, processes, and outputs of the rental
activity. Inputs are rent/return requests, payments,
process requests, new customer information, and
new video information. Processes are maintenance,
reporting, and rental/return. At the feasibility level,
this is an acceptable level of detail for data and pro­
cedure knowledge and documentation.

To determine leverage points for ABC's applica­
tion, we examine what the application does for ABC
in the context of its industry and competitive envi­
ronment. To do this we ask and answer several ques­
tions. First, can this application give ABC a
competitive position in the industry? The answer to
this question must be no. ABC is a one-shop orga­
nization that might grow to several branches but is
not expected to grow to national prominence. There­
fore, the application might give ABC a presence in
the local market, but the application's strategic
impact on the industry is zero.

Second, does the application give ABC competi­
tive advantage in the local industry? All other things
being equal, the application could give some local
advantage over other video stores in Dunwoody,
Georgia, the town where the company is located.
The impact on the local industry, in terms of subur­
ban Atlanta, is close to zero. The other 'things' that
must be equal or better for ABC to obtain a local

Feasibility Activities 155

Customer

-I-

R equests

(D
/ '" Refers to

Open Rental "- ,....
v '-'

FIGURE 6-3 ABC Entity-Relationship Diagram

advantage include the number and variety of videos
available, desirability of the location, and attitude
of clerks to customers. For this discussion, we
assume that location, attitude and variety of videos
are at least equal.

Observation of the applications of the rival video
stores is required to assess the potential impact of the
subject application. There is a national chain store
down the street, approximately .8 miles away. That
store is evaluated since it is the closest competition.
The chain store sells and rents Nintendo TM, Sega
Genesis ™ , and computer software as well as videos;
plus, the chain store sells tickets to local rock con­
certs and events, and sells records, CDs, and audio
tapes. Thus, the chain store is a recreational elec­
tronics store while ABC is simply a video rental
store.

The fact that ABC is specialized and the chain
store is general works in ABC's favor because of rel-

I Video
I Copy

v
(b

Is Described by

-"-

Video

ative staffing levels. There are usually four clerks
working in the chain store. Of the four clerks, two
are at cash registers at which lines average three
waiting patrons during peak periods. One of the
other clerks roams the store assisting customers
while the other clerk processes ticket orders. There
are frequently lines at the ticket counter, especially
when a famous rock group's tickets go on sale.
Sometimes there are several hundred people on line.
On average, there are 12 customers in the store at
all times, with a peak average of 20. The peak times
are the same as ABC's-6 P.M. to 11 P.M. Of the
20 customers during peak time, about 10 people
actually rent or purchase something. The average
age of a rental customer is about 19.

Contrast this situation with ABC. Five clerks
work at ABC during the peak hours of 6 P.M. to
11 P.M. The remainder of the time, three clerks are on
hand. The clerks, in general, do not roam the store

156 CHAPTER 6 Application Feasibility Analysis and Planning

FIGU RE 6-4 ABC Hierarchic Process Decomposition Diagram

assisting customers; they are all behind the counter
doing payment processing for customer rentals. The
lines, if any, form in the peak times and average two
people per clerk. If a customer has a question, she
or he waits until a clerk is free, then gets assistance
and rental payment at the same time. On average,
there are five people in the store at all times, with an
average of 25 during the peak times. Of the 25 peak
customers, 18 rent videos and seven leave empty­
handed.

ABC's rental 'hit rate' of .72 (i.e., 18 of 25) is
much higher than the industry average of .50.1 Their
single purpose may work against them for some cus­
tomers who want full service electronic entertain­
ment, and may work for them for other customers
who only rent videos. The average age of an ABC
rental customer is 22. Thus, the customer is slightly,

1 The industry average is located by doing library research on
the industry.

but not significantly, older than the chain store's
customers.

So far, the company contrast neither favors nor
disfavors ABC over the chain store. Next, we com­
pare the company's procedures for rental processing.
The chain store requires a subscription to their com­
pany's services that includes the presentation of a
valid driver's license and credit card to establish an
account. To use the account, each family member is
assigned their own number and given his or her own
ID card. The ID card is presented at the time of
rental and paymeht of all current and past charges is
required for a rental to take place. The presence of a
family member ID allows parents who get stuck pay­
ing their children's fees to track the guilty party. If
two family members make rentals in the same day,
the clerk mayor may not mention that a rental
already exists to the later person. There is no proce­
dure for clerks to help customers control the num­
ber of rentals in one day, nor is there a way for
previous rentals to be known.

<::D a:m.
CD C o

:J

FIGURE 6-5 ABC Process Data Flow Diagram

ABC's expected rental processing is detailed in
Chapter 2. Vic's vision of ABC's rental application
does slightly favor ABC over the chain store. ABC
will also assign family members their own IDs, but
an ID card is not required of a customer. Rather, Vic
envisions using the telephone number as the ID and
asking the person for their name at the time of rental.
A list will appear on the screen of all authorized
renters for a given phone number with a sequential
number the clerk selects beside each name. The pro­
cedures to accompany rental processing assume that
customers want to know if a previous rental that day
has occurred. Also, Vic envisions keeping track,
electronically, of the previous rentals for a family

Feasibility Activities 157

Video

Customer

Video

Video

Open Rental

Customer

and giving them the chance to stop a rental transac­
tion on a previously viewed video. Thus, Vic's sce­
nario has less bureaucracy, more service, and more
customer-oriented clerical procedures than the chain
store. These three improvements are the leverage
points for ABC in its local market.

Next, we define other noncompetitive benefits of
the application. The application eliminates many
of the errors that can happen in a manual system
of work. For instance, clerks can no longer decide
who pays late fees by changing return dates. Cus­
tomer cards, which can be lost, are eliminated and
replaced by automated file records which can only
be deleted by Vic. Both videos and customers must

158 CHAPTER 6 Application Feasibility Analysis and Planning

be on an automated file to be eligible for rental
processing.

The application will provide for automatic gen­
eration of end-of-day reports on receipts and trans­
actions by clerk, by register, or by customer. If a
discrepancy is found between receipts and money
in the cash register, having a log of transactions that
can be printed will assist the accountant in tracing
errors. Both of these types of reports provide signif­
icant improvement over the current manual methods.
Under the current method, receipts are tied to money
in each register by sorting the paper copies of trans­
actions and adding the totals. If there is an error, it
is almost impossible to trace since no money is
actually tied to an individual transaction. At the pres­
ent, the accountant writes off errors.

Developing a list of the benefits for ABC's
application is fairly easy because automation so
improves a manual operation level task. Take the
adjectives faster, better, more and, for each, define
all the tasks or data that will be improved in some
way relating to the adjective. For instance, process­
ing an individual transaction will be faster because
manual card lookup is gone, data entry is minimized
to Customer ID and Video ID(s) with the computer
retrieving and displaying all other information about
each entity. Individual transactions will have im­
proved data integrity by eliminating manual errors,
such as writing the wrong amount, entering a wrong
amount at the register, writing the wrong tape ID, re­
trieving the wrong customer card, and so forth. More
information will be available for management use.
For instance, end-of-day reports provide the accoun­
tant more information and Vic might develop ad hoc
reports of all automated information. The benefits
for ABC's rental application are summarized next.

Simplify customer IDs-Less bureaucracy than
competition

Provide help to customers in finding tapes­
More service than competition

Give customers information on previous rentals
the same day and on videos they have
previously rented-More customer-oriented
clerical procedures than competition

Increase data accuracy for customers, videos,
rentals

Allow tracking of late rentals
Allow accurate computation of late fees
Increase speed of customer and video informa-

tion retrieval
Improve customer service
Provide accounting record of transactions
Allow tracking of transaction errors
Decrease time for individual transactions

through minimal typing
Increase speed and accuracy of fee processing
Decrease file update time
Provide more accurate and timely end-of-day

reports
Improve customer satisfaction with overall

rental process through the above changes

After general benefits are identified, they are
made specific and quantified for evaluation of costs.
The benefits listed above are specific enough to
quantify directly (see Table 6-1). Quantification,
though, requires detailed knowledge of the business
and expected benefits. Vic is the business expert and
he participates in the quantification activity. For each
benefit, he is asked how much revenue (or expense)
is related to each item for one occurrence of each
benefit. For each, Vic is also asked the degree of cer­
tainty for the benefit and his estimate. The numbers
provided are multiplied for the total number of each
benefit expected. The degree of certainty (ranging
from 0.0 to 1.0) is then multiplied by each total
amount to provide a range of estimates for each. In
the example shown in Figure 6-6, the benefit of more

Total revenues $500,000

Losses from 2% of revenues
inaccurate data

Dollar loss from $10,000
bad data

Certainty factor 80%

Benefit of more .8 * 10000 = $8,000-$10,000
accurate data

FIGURE 6-6 Example of Benefit
Computation

Feasibility Activities 159

TABLE 6-1 ABC Quantified Benefits

Benefit Expected Increase in Revenue

Simplify customer IDs-Less bureaucracy than competition

Provide help to customers in finding tapes-More service
than competition

Give customers information on previous rentals the same
day and on videos they have previously rented-More
customer-oriented clerical procedures than competition

Increase data accuracy for customers, videos, rentals

Allow tracking of late rentals
Allow accurate computation of late fees

Increase speed of customer and video information retrieval

Improve customer service

Provide accounting record of transactions
Allow tracking of transaction errors
Provide more accurate and timely end-of-day reports

Decrease time for individual transactions through
minimal typing

Increase speed and accuracy of fee processing

Decrease file update time

Improve customer satisfaction with overall rental process
through the above changes

accurate data entry, Vic figures his current losses at
2% of total revenues of $500,000, or $10,000. He
feels the $10,000 estimate is about 80% accurate.
Stated another way, by eliminating errors in data
entry, Vic will gain $10,000 with 80% certainty.
Thus, the benefit to be gained from more accurate
data entry is $8,000-$10,000.

Table 6-1 shows the benefits from the list on
p. 156 with dollar values associated with them. For
the benefits resulting in $1,000 increases in revenue,
Vic was unsure that there was much tangible out­
come, but estimated about $3, or one rental, per day.
For the higher dollar estimates, he worked through
the estimates in the same way shown above for
increased accuracy.

$1,000

$1,000

$ 500

$8,000-10,000

$10,000-15,000

$1,000

$1,000

$3,000-5,000

$1,000

$1,500

$5,000

$2,500

Develop Alternative Solutions
The activities in developing alternatives include
definitions of technical alternatives, and benefits and
risks of each alternative.

Define Technical Alternatives

There are no specific, theory-based guidelines for
developing technical alternatives. Rather, the tech­
nical alternatives within a specific business are
explored to determine what is possible and practi­
cal. First, define the application concept (see Table
6-2). How up-to-date does information maintained
by the application need to be? If the answer is four

160 CHAPTER 6 Application Feasibility Analysis and Planning

TABLE 6-2 Steps in Developing the
Technical Alternatives

• Define the overall application concept

• Evaluate usefulness of existing hardware/software

• If new equipment or software is needed:

• Determine data sharing requirements
• Determine the criticality of data to the company

• If shared or critical data, select equipment (either LAN
or mainframe) and software that allow centralized
control over data.

• If noncritical and nonshared data, select the smallest
equipment that allows necessary level of control. In
multi location settings, consider decentralizing or
distributing the application by duplicating equipment,
application, or data in several locations.

• Define special hardware requirements and ensure
that the special hardware works with the selected
hardware/software platform(s).

hours or more, a batch application is sufficient. If the
answer is between two and four hours, interactive
data entry with batch updates throughout the day
might be acceptable. If the answer is in the range
from seconds old to four hours, an on-line applica­
tion is also sufficient. If the answer is that the system
user must react to all transactions as they occur, a
real-time application is needed. On-line is the most
frequently selected option.

Next, for individual processes, determine the con­
cept at the lower level of detail. For instance, for
reporting, should answers be developed as a report
request is entered or can they be run overnight?
Some reports might need to be on-line, others might
be run in batch mode. The volume of print, estimated
time for processing, and urgency of data all are used
to select the concept for individual processes. For
instance, an ad hoc report that generates 10,000 lines
of print should not be sent to a display screen; rather,
it should be printed. Also, a long report might be cre­
ated at the time of the request, but sent to a print
queue for convenience of printing. The decisions
made during feasibility are not expected to be per­
manent at this point, rather, you are estimating the

concept to help in the evaluation of complexity of
design.

After the concept is developed, hardware and
software are evaluated. If there is hardware and soft­
ware already installed, investigate their use first. Can
the application be developed for operation on the
existing equipment? Can the existing software
accommodate the application? Can the application
coexist with other applications currently used? If
the answers to these questions are "yes," the plat­
form recommended is the existing equipment and
software. If a "no" answer is given, then investigate
new hardware or software as needed.

If no hardware or software are currently used, or
the current equipment cannot be used to do the
application, select the likely hardware platforms.
First, determine whether the application users need
to share information or not and how up-to-date the
information must be. For instance, can copies of the
application run in different locations with daily
update of files, or must the users share all informa­
tion throughout the day? Second, determine the
'corporateness' of the data. How critical to the
organization is the application data? If the company
depends on the data to stay in business, then a more
centralized, controlled environment is required than
if the data is not critical to the company.

The need for centralized control over data that is
critical to the organization is one factor to con­
sider in recommending a platform and environment
for an application. The extent to which the company
relies on application operability, the importance of
data integrity, audit trails and security, and the ability
of the environment to accommodate these needs
are all assessed. Although there are no clear dif­
ferences in application management between a
LAN and a mainframe, software does make a dif­
ference. The levels of security, number of simul­
taneous users, size of database, locking of records
for simultaneous update, and many other technical
considerations differ widely across networks, oper­
ating systems, databases, and languages. When dis­
tribution is an alternative, the centralization issue
becomes even more important to evaluate and
resolve. Full discussion of the decision criteria for
distributing data and applications are deferred until
Chapter 10.

To determine hardware alternatives identify the
smallest size computer possible that can accommo­
date the task, providing for data sharing and central­
ized control as needed. The cheapest and smallest
platforms that meet the criteria are alternatives. For
hardware we then ask if any other special purpose
hardware is needed for this application. If other spe­
cial purpose hardware is needed, enough research on
the hardware should be done to determine what is
required and whether or not it can be used with the
identified alternatives.

From the hardware identification activity, the
most likely platforms should be narrowed to two or
three. The key factors in narrowing the selected plat­
forms are reliability and flexibility. Portability might
also be important, depending on the environment.
Reliability is the extent to which the hardware, soft­
ware, and application will be operational. Flexibility
is the extent to which the hardware, software, or
application can be modified easily. Hardware flexi­
bility relates to the extent to which upgrades can be
made, for example the number of additional boards,
the maximum memory upgrade, the type bus, and
type disk channel, to name a few. Software flexibil­
ity relates to package design and how often the ven­
dor releases updates of new functions. Application
flexibility relates to methodology, implementation
language, and skill of the developers. Reliability and
flexibility are important issues in, for example,
selecting a PC workstation, because of the diversity
and quantity of alternatives available. If you evaluate
five different vendors of IBM PC-compatible equip­
ment, you will have different reliabilities and flexi­
bilities for each. But even more confusing is that five
different configurations of a PC from the same
vendor might also have five different reliabilities
and flexibilities.

Portability is the extent to which the software
can be moved to another hardware/operating system
environment without change. The fewer changes
when moving the application, the mote portable it is.
Portability is an issue when the application is devel­
oped in one environment (e.g., a LAN) and is ported
or moved to another environment for operations
(e.g., a mainframe). Portability is also important
when an application is developed in one location and
is implemented in multiple locations which may not

Feasibility Activities 161

have the same configuration. Multiple locations with
heterogeneous environments are the norm in distrib­
uted applications.

Hardware alone rarely determines the recom­
mended alternative. In addition to picking hardware
platforms that can accommodate the needs for multi­
ple, simultaneous users, you also choose the soft­
ware most likely to be used in each environment.
Again, these selections might change as the design
progresses, but their purpose during feasibility is to
allow assessment of skills, training needs, cost, and
application design complexity.

In choosing software, you identify a program­
ming language, database environment, and any
special software needed. Each alternative is devel­
oped to solve the entire problem, meeting all re­
quirements and as many optional requests as
possible. Only the best alternative(s) for a given
environment is considered. Two sets of alternatives
illustrate this statement.

The first set of alternatives is for a mainframe
environment using different operating environments.
The first alternative (see Figure 6-7a) identifies an
IBM mainframe, running the MVS operating sys­
tem, and using IBM's DB2 for database and IMS/
DC for telecommunications control. The second
alternative (see Figure 6-7b) identifies an IBM
mainframe, running the conversational VM/CMS
operating system, and using a Focus database.
Telecommunications control is hidden from the

Figure 6-7a. Alternative 1

Hardware:
Operating System:
Database:
Telecomm Control:

Figure 6-7b. Alternative 2

Hardware:
Operating System:

Database:
Telecomm Control:

IBM Mainframe 309x
MVS
DB2

IMS/DC

IBM Mainframe 309x
VM/CMS
Focus
SNA through VM

FIGURE 6-7 Two Alternatives Using
Different Software

162 CHAPTER 6 Application Feasibility Analysis and Planning

Figure 6-8a. Alternative 1

Hardware:
Operating System:
Database:
Telecomm Control:

Figure 6-8b. Alternative 2

Hardware:
Operating System:
Database:
Telecomm Control:

IBM Mainframe 309x
VM/CMS
Focus
SNA through VM

IBM PC-Compatible
MS/DOS, Windows
Focus
Novell Ethernet

FIGURE 6-8 Alternatives Using Different
Operating Environments

application and is through VM (i.e., using VTAM
and SNA). Both of these scenarios might be pro­
posed, with the deciding factors relating to time of
development and expertise of staff, rather than to the
desirability of one environment over the other.

The second set of scenarios is for a network ver­
sion of an application (see Figure 6-8a) versus a
mainframe version (see Figure 6-8b). Both environ­
ments would use a database which is already avail­
able in-house. In this case, the decision relates to
environmental and cost factors since both alterna­
tives use similar database software. Then, reliabil­
ity, flexibility, and portability are issues.

Estimate Benefits of Recommended
Alternatives

Two kinds of benefit estimates are developed. First,
the general benefits defined are analyzed to deter­
mine that they are (or are not) met by each pro­
posed alternative. Second, new benefits that relate
to a specific proposed alternative are defined.
Again, benefits are context specific, relating to a
given alternative for a given company at a given
time.

The first benefits estimate is a tally of the num­
ber of general application benefits met and, if it can
be determined, the effectiveness of implementation
within the proposed alternative. Effectiveness, for
our purpose, is the extent to which an alternative will
implement the application requirements more,

better, and faster. To measure the number of re­
quirements met by each alternative, we simply
count which are met in an implementation of each
alternative.

To measure effectiveness, we need to determine
the extent to which each requirement will be devel­
oped. This extent can only be defined in a specific
context for a specific application. For instance, two
requirements for ABC might be "Provide minimal
data entry for customer and video identification" and
"Use a scanner for data entry whenever possible"
(see Figure 6-9). One alternative might assume the
entry of scanned data only. A second alternative
assumes the entry of scanned data while providing
for keyboard entry in case of scanner hardware fail­
ure. A third alternative might assume the keyboard­
ing of a minimal number of characters for each type
of data. The first two alternatives meet both criteria.
The third alternative does not meet the second
requirement. Only the second alternative, how­
ever, provides both the requirement and a backup.
The second alternative would be rated more effec­
tive in meeting the requirement than the others,
while both the first and second alternatives meet the
benefits. On a scale of one to three, the alternatives
would be rated two, one, and three, respectively.
In a different company with a different context,
the same alternatives might be rated one, three,
two respectively.

Define Risks

The purpose of risk assessment is to determine all
the things that can go wrong. If you have heard of
Murphy's Laws, you know they apply to applica-

Alternative 1: Scan Data Entry

Alternative 2: Scan Data Entry
or
Keyboard Data Entry with Minimal
Typing

Alternative 3: Keyboard Data Entry with Minimal
Typing

FIGURE 6-9 Sample Evaluation of
Alternative Effectiveness

Feasibility Activities 163

TABLE 6-3 Sources of Risk

Source of Risk Risks

Hardware Not installed when needed

Cannot do the job

Software

Group

Project management

User

Computer resources

Does not work as advertised

Installation not prepared in time

Installation requirements (e.g., air-conditioning, room size, or electrical) insufficient

Wiring not correct

Hardware delivered incorrectly

Hardware delivered with damage

Not installed when needed

Cannot do the job

Does not work as advertised

Contains 'undocumented features' that cause compromise on application requirements

Vendor support inadequate

Resource requirements are over budgeted, allocated amounts

Key person(s) quit, are promoted elsewhere, go on jury duty, have long-term illness

Skill levels inadequate

Training not in time to benefit the project

Schedule not accurate

Budget not sufficient

Manager change

Quits, transfers, is replaced

Not cooperative

Not supportive

Does not spend as much time as original commitment requested

Test time insufficient

Test time not same as commitment

Inadequate disk space

Insufficient logon IDs

Insufficient interactive time

tion development. The three most common of Mur­
phy's Laws are:

Table 6-3 is a list of possible sources of risk. For
each item on the list, you determine the likelihood of
it occurring for this project. For instance, if you are
using only existing equipment, you could skip the
risks dealing with hardware installation problems.
As. sources of risk are identified, they should be

1. If anything can go wrong, it will.
2. Things go wrong at the worst possible time.
3. Everything takes longer than it should.

164 CHAPTER 6 Application Feasibility Analysis and Planning

placed in a separate table and rated for likelihood of
occurrence for each alternative. In addition, other
possible risks for the project might be added to the
list. For instance, if revenue for current year drops
25%, the company might not be able to afford
the project.

ABC Video Alternatives

First, technical alternatives for developing ABC's
rental application are developed. Next, benefits and
risks relating to each alternative are estimated.

To develop technical alternatives, the application
requirements should be listed as follows:

1. Provide add, change, delete, inquiry
functions for customer, video, and rental
information

2. Automate processing of rental transactions,
including

• Interactive processing and data display for
all outstanding video rentals, including
fees owing

• The maintenance of customer history of
rentals, rental history for each video tape,
creation and change of rental transaction
records

• Monitoring of outstanding rentals by
customer

• Computation of late fees owing from
prior transactions

• The ability to create new customers as
part of rental processing

• The ability to add new videos to the sys­
tem as part of rental processing

• Query of any rental related infor­
mation

3. Minimize data entry in rental processing by
using bar codes or similar technology

4. Provide interactive, on-line updating capa­
bilities for all files

5. Provide transaction logging for database
integrity

6. Do daily backup of all files and application
programs

7. Provide ad hoc reporting capability for all
files and legal combinations of files (e.g.,

customer with video rentals with customer
rental history)

8. Provide end-of-day reports of activity by
transaction with summaries by transaction
type (i.e., rental, late fees, other fees)

9. Provide for future growth of 15% per year
per file

10. Provide for future growth in number of sys­
tem users to be one every 18 months for five
years. A total of nine concurrent users
should be supported.

11. Provide SQL compatibility for future
growth and compatibility between software
applications

12. Provide mean time between failures
(MTBF) of 1 year for hardware selection
and mean time to repair (MTTR) of 1 hour
in hardware maintenance contracts

13. Provide on-line processing for all functions
from 8 A.M. to 11 P.M. daily

ABC has specific requirements that imply an on-line
application, significant ad hoc reporting, and inter­
active processing with immediate file update
throughout the day. Batch processing should be fea­
sible as a background task to on-line processing
since the on-line portion of the day is so extensive
and there might be a problem trying to staff the batch
hours. Beginning with a hardware platform, then
continuing to software and applications, the pro­
posed alternatives are defined. Only alternatives that
can meet all requirements should be identified; how­
ever, if that is not possible, any feasible alternatives
are identified and evaluated later. In ABC's case,
only alternatives that can meet all requirements are
identified.

In a small business, the two most likely hardware
platforms are multiuser minicomputers or client­
server local area networks. These are considered
here. The competing hardware platforms are an IBM
AS/400 minicomputer versus a token ring local area
network (LAN). Each of these decisions requires a
minianalysis of the alternatives in their respective
environments that are beyond the scope of this text.
To specify the LAN, for instance, requires compari­
son of options and costs of probabilistic versus de­
terministic networks, cabling requirements, network
operating systems (NOS), network interface card

TABLE 6-4 Hardware Platform Estimates l

Client/Server Alternative

Item Cost

Workstation (6)

Server

Software

Cable-Shielded Twisted Pair (STP)

Network Interface Cards (7)

Network Operating System
(Ethernet), 6-10 stations

Total

$ 4,8001

$ 2,000

$ 3,500

$ 1,900

$ 1,000

$ 2,500

$15,700

Minicomputer Alternative

Item

Workstation (6)

Minicomputer

Software

Cable-STP

Total

Cost

$ 4,800

$15,000

$ 5,000
Plus $2001
month

$ 1,900

$26,700
Plus $2001
month

1 Keep in mind that these are estimates for the sake of discussion
and not real dollar estimates.

(NIC), compatible software, and so on. Both hard­
ware platforms can be implemented successfully in
ABC's environment, can support the volume of
transactions, and can support the expected company
and applications growth.

Once the platforms are identified, the hardware
cost of implementing the application on the alterna­
tive platforms is estimated (see Table 6-4). From
these estimates, the most likely (e.g., the cheapest)
two to three alternatives are selected. Also, if there is
doubt about the economic feasibility of the applica­
tion, the client/user can determine whether to con­
tinue with the analysis or not. As Table 6-4 shows,
the client/server LAN is cheaper than the minicom-

Feasibility Activities 165

puter hardware alternative. Both alternative defini­
tions exclude software for rental processing which is
estimated separately because the option to purchase
software versus custom development of software
should be evaluated.

The client/server alternative is recommended to
Vic and he approves although he is concerned about
the cost. As a small business person, his company
nets under $1,000,000 per year and, in ABC's case,
is closer to $500,000. A rule of thumb in automa­
tion expenditures is to spend under 10% of net in­
come. Vic's concern is that the total cost may exceed
$50,000 and his financial risk becomes a problem.

The remaining estimates use only the client!
server solution to develop software application alter­
natives. The choices are between purchasing a soft­
ware package and developing a customized package
for rental processing. Mary researches available soft­
ware packages and finds that the cheapest one is
VidRent2 which costs $7,500 plus $1,500 mainte­
nance per year (see Table 6-5). VidRent will be com­
pared to building a customized applications using
either SQL Server3 or Focus. SQL Server is selected
as representing software specifically designed to

2 VidRent is a fictitious name.

3 SQL Server™ is a trademark of Sybase and Microsoft
Corporations.

TABLE 6-5 Alternative Software
Packages

Maximum
Number of

Software Initial Cost Maintenance Users

SQL $17,500a $1,800/year Up to 20

Server™

LAN $12,000 $1,200/year Up to eight

FOCUS™
with SQL

VidRent $ 7,500 $1,500/year Any number
of users on
one LAN

aKeep in mind that these are estimates for the sake of discussion
and not real dollar estimates.

166 CHAPTER 6 Application Feasibility Analysis and Planning

take advantage of client/server environments. Focus
is selected as representing software with which
Mary's team has extensive experience. The costs of
each alternative are completely different and provide
for different numbers of users. These factors are kept
in mind, but the requirements must be analyzed to
determine if one software should be favored func­
tionally over the others.

The requirements are reevaluated and rated for
each development alternative as shown in Table
6-6. First, consider the softwares' capabilities.
VidRent provides neither query capabilities nor his­
torical customer or video processing. It also cannot
create new customer or video records as part of
rental processing. VidRent also does not provide
transaction logging. If this package were chosen,
these requirements would go unmet. Through dis­
cussion with the vendor, Mary determines that query
processing can be done by using any software that
can access ASCII files. Thus, the addition of
dBase™ or Orac1e™ or some other single-user pack­
age to provide Vic with query capabilities is a cheap
alternative that adds about $1,200 to the alternative.
This alternative is still limited in that querying would
be limited to an off-line function when the on-line
application was not in operation. This requirement is
caused by the record locking scheme in VidRent.
Also, the software package could be modified
by Mary's group to provide the history process­
ing desired by Vic, without violating the vendor
warranty. Thus, VidRent's cost increases, and it is
capable of doing most requisite processing (see
Table 6-7).

Both Focus and SOL Server are fully capable of
supporting the application. Both require complete,
custom development of the application, but both pro­
vide application generators and have built-in query
capability. A quick estimate by Mary based on her
experience and without a detailed project plan is that
the total development work would take about six­
person months. At $150 per day, for a 26-day month,
the custom software development will be about
$23,400 (i.e., 6 * 150 * 26). Except for cost, there is
no advantage or disadvantage to either package
based on application requirements. SOL Server's
license allows 15 concurrent users which is more
than Focus.

Next, consider the organizational impacts of each
package. Mary's team requires training for either
VidRent or SOL Server. Training for SOL Server,
which is supplied by the vendor, would not be
charged to Vic since the knowledge is useful to
the team after the rental application is complete.
VidRent training, also from the vendor, would be
paid by Vic. Training costs must be added to its cost
(see Table 6-7).

Next, consider vendor reputation and market sta­
bility. SyBase and Microsoft, the vendors of SOL
Server, are both relatively young companies, with
Microsoft the current leader in software for the PC
market. Focus' company, Information Builders, Inc.,
is over 15 years old and has enjoyed steady growth.
Therefore, both vendors are expected to remain
viable market forces for the foreseeable future.
VidRent's vendor, VidSoft, is 5 years old and still is
run from the owner's home. The company has grown
steadily by selling to the single video store firms
such as ABC, but the owner, Mark Denton, does not
publicize his earnings.

In summary, SOL Server and Focus both meet all
software requirements of the application; VidRent
could be made to provide most requirements. Cost
favors the VidRent proposal with a total esti­
mated software cost of $22,000. At this point, Vic
must decide how much he wants the custom fea­
tures of his application and whether the compro­
mises on querying and ease of processing are worth
$13,000.

Vic and Mary discuss the alternatives frankly.
Mary recommends not going with VidRent because
of the company size, lack of features, and need for
customizing for any features not already in the pack­
age. Vic is staggered by the cost of custom software
development and is inclined to purchase VidRent
and forget his grand plans. Mary reminds him that
if he does not develop his application as envisioned,
the competitive advantages might disappear. Vic
eventually decides that he does want the application
as currently defined and that he is not willing to com­
promise his vision in any way. Therefore, only SOL
Server and Focus alternatives are developed further
to determine the benefits and risks of the softwares.

Only general benefits are evaluated for each
alternative; there are no apparent benefits of one

Feasibility Activities 167

TABLE 6-6 Rating Software Development Alternatives

Function

Provide add, change, delete, inquiry functions for
customer, video, and rental information

Interactive processing and data display for all
outstanding video rentals, including fees owing

On-line processing from 8 A.M. to 11 P.M. daily

The maintenance of customer history of rentals,
rental history for each video tape, creation, and
change of rental transaction records

Monitoring of outstanding rentals by customer

Computation of late fees owing from prior transactions

The ability to create new customers as part of
rental processing

The ability to add new videos to the system as part
of rental processing

Query of any rental-related information

Minimize data entry in rental processing by using
bar codes or similar technology

Provide immediate file update

Provide transaction logging for database integrity

Do daily backup of all files and application programs

Provide ad hoc reporting capability for all files and
legal combinations of files

Provide end-of-day reports

Provide for growth of 15 % per year per file

Provide for nine concurrent users

Provide SQL compatibility

Total requirements met out of 18

software over the other. The benefits of the applica­
tion identified in an earlier step are compared to
each proposed software alternative. As you can see
from Table 6-8, the benefits are identical for each
implementation.

Finally, risks of the alternatives are defined. The
list of possible risks is customized for the applica­
tion and each risk is assessed for probability of

SQL Server Focus VidRent

Yes Yes Yes

Yes Yes Yes

Yes Yes Yes

Yes Yes Yes

On-line On-line Off-line

Yes Yes Yes

Yes Yes No

Yes Yes No

On-line On-line Off-line

Yes Yes Yes

Yes Yes Yes

Yes Yes No

Yes Yes Yes

Yes Yes Only with
another package

Yes Yes Yes

Yes Yes Yes

15 10 Any number

Yes Yes For ASCII files

18 18 15

occurrence with a specific alternative (see Table
6-9). The table of risks is repeated here with an
analysis of the two language environments. Hard­
ware risks apply equally to both alternatives. Soft­
ware risks vary because of differences in product
knowledge by the development team, product
functionality, and expected cost, all of which favor
Focus.

168 CHAPTER 6 Application Feasibility Analysis and Planning

TABLE 6-7 Total Estimated Cost of Software Alternatives

Software

SQL Server™

LAN FOCUS™ with SQL

VidRent

Initial Cost

$17,5001

$23,400

$12,000
$23,400

$ 7,500
$ 2,500
$ 5,000
$ 7,000

Purpose

License fee
Custom software

Total $37,900

License fee
Custom software

Total $35,000

License fee
Database query software
Training
Customizing

Total $22,000

1 Keep in mind that these are estimates for the sake of discussion and not real dollar estimates.

TABLE 6-8 Benefits of SQL Server and Focus Alternatives

Benefits

Simplify customer IDs

Provide help to customers in finding tapes

Give customers information on previous rentals the same day and on
videos they have previously rented

Provide data accuracy for customers, videos, rentals

Track and display late rentals

Compute and display late fees

Increase speed of customer and video information retrieval

Improve customer service

Provide accounting record of transactions

Allow tracking of transaction errors

Provide accurate and timely end-of-day reports

Decrease time for individual transactions through minimal typing

Increase speed and accuracy of fee processing

Decrease file update time

Improve customer satisfaction with overall rental process through
the above changes

Total benefits met out of 15

SQL Server Focus

Yes Yes

Procedure Procedure

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Yes Yes

15 15

Feasibility Activities 169

TABLE 6-9 ABC Risks of Software Development Alternatives

Risks

Hardware not installed when needed

Hardware cannot do the job

Hardware does not work as advertised

Hardware installation not prepared in time

Hardware installation requirements (air conditioning or electrical)
insufficient

Wiring not correct

Hardware delivered incorrectly

Hardware delivered with damage

Software not installed when needed

Software cannot do the job

Software does not work as advertised

Software contains 'undocumented features' that cause compromise
on application requirements

Software vendor support inadequate

Software resource requirements are over budgeted, allocated amounts

Key person(s) quit, are promoted elsewhere, go on jury duty,
have long-term illness

Group skill levels inadequate

Training not in time to benefit the project

Schedule not accurate

Budget not sufficient

Manager change

Vic quits, transfers, is replaced

Vic/clerks not cooperative

Vic/clerks not supportive

Vic does not spend as much time as original commitment requested

Test time insufficient

Test time not same as commitment

Inadequate disk space

Insufficient logon IDs

Insufficient interactive tiIhe

SQLServer

Low

Low

Low

Low

Low

Low-Medium

Low

Low

Low

Low

Low-Medium

Medium

Low-Medium

Low

Low

Low-Medium

Low-Medium

Low

Low

No

No

Low

Low

Low

N/A

N/A

N/A

N/A

N/A

Focus

Low

Low

Low

Low

Low

Low-Medium

Low

Low

Low

N/A

N/A

N/A

N/A

N/A

Low

No

N/A

Low

Low

No

No

Low

Low

Low

N/A

N/A

N/A

N/A

N/A

170 CHAPTER 6 Application Feasibility Analysis and Planning

Once the benefits, risks, and alternatives are de­
fined, they are evaluated to narrow the field to one
(or two) proposed alternative(s).

Evaluate Alternative Solutions
The recommended alternatives are evaluated for
technical adequacy, organizational feasibility, ex­
tent to which benefits are met, and severity of asso­
ciated risks. In general, we select the alternative that
meets the most requirements, yields the greatest ben­
efit, and has the lowest associated risk. When these
characteristics do not relate to the same technical
alternative, one or two are selected for further analy­
sis and the remaining alternatives are eliminated
from consideration. In this section, we discuss tech­
nical, organization, benefit, and risk evaluations for
narrowing the decision to one or two alternatives.

Evaluate Technical Feasibility

Technical feasibility assesses the technology, its
maturity in the market, its availability to the com­
pany, and the likelihood of successful use. Techni­
cal feasibility is most important when using new
technologies that are leading edge. You want to be
leading the competition, not bleeding, when using
new technologies!

The key questions used to evaluate technical fea­
sibility are:

Is the technology in use elsewhere?
Is the technology used elsewhere for similar

applications?
How mature is the technology?
How much industry experience is there with this

technology?
Are staff with experience using this technology

easy to find?
How does each alternative manage the applica­

tion sources of complexity?
Does the proposed alternative require any

compromise of application requirements?
What type of compromise and which
requirement(s)?

Each question is evaluated for each technical alter­
native proposed. Any issues about a technology's

ability to perform as required for an application
should be identified. Objective answers that may not
be what managers want to hear are required to ade­
quately assess technical feasibility. Maintaining
objectivity is difficult when market pressure to
develop an application exists and managers want to
develop an application.

To perform technical feasibility analysis, the
technical alternatives are listed and compared across
alternatives. Then, the application requirements are
listed and evaluated for number of requirements met
across the alternatives. The alternative meeting the
most requirements is favored during this analysis.
If there is a difference in the extent to which a
requirement would be met, that information is noted
in the analysis.

Evaluate Organizational Feasibility

Organizational feasibility is the extent to which the
organization is ready to implement the proposed
application. First, using the questions below, orga­
nization structure is assessed to define organizational
changes required.

Does the organization structure need to be
changed?

Do all groups that create the same information
report to the same manager?

Do user jobs require new procedures?
Do user jobs require new work organization?

For instance, do they move from individual
assembly line-type arrangement to work
groups?

Do users have the required level of computer
literacy?

Do users have the required level of typing
skills?

Will users require training for the new
application?

Can training be done by other users?
Are users involved in screen design, accep­

tance test design, and/or general application
development?

Does the IS staff know the problem domain?
Does the IS staff know the software being used?
Does the IS staff know the operating environ-

ment being used?

Organization structure is evaluated to determine
if the people who have creation authority for data
all report to the same management and that all
departments and jobs that will be needed in the new
application are defined or currently exist. Second,
expected users are evaluated to determine the extent
to which training is required to implement the pro­
posed application. For instance, some computer lit­
eracy and typing skills might be required. If users
must know how to turn the machine on and activate
an application, but do not currently use computers,
you might need to do a short questionnaire or inter­
view users to determine their level of computer
literacy. Any needs identified are added to the im­
plementation plan as a task (and cost) of the pro­
posed application. The goal of this first type of
organization analysis is to identify user department
changes and user requirements for training, both of
which must be satisfied before the organization can
effectively use the proposed application.

A second type of organizational feasibility
assesses the readiness of the IS organization to
develop the proposed application. When a custom
development is being done by consultants, you eval­
uate their skills with the technology and similar
problems to determine their readiness. The assess­
ment determines staff skill with the hardware,
operating environment, programming language,
database, and similar environments. As with the user
organization, feasibility, level of expertise and train­
ing requirements are determined. Technical staff
training requirements defined during this assessment
are added to development plans for cost analysis.

The last type of feasibility assessment, financial
feasibility, is performed after a plan for the recom­
mended alternative(s) is developed. Financial feasi­
bility is discussed in a following section.

Assess Benefits

Benefits defined for the application in general, and
for specific implementation alternatives, are assessed
to determine which proposed alternative yields the
outcome with the highest reward to the organization.

Benefits are tallied for each alternative. First, a
simple count of the benefits for each alternative is
done. Then, for benefits assigned monetary values,
the amounts of increased revenues or avoided

Feasibility Activities 171

expenses are summed to provide a single dollar­
value benefit for each alternative. If there are no
alternative-specific benefits, the number and value of
benefits are the same for all alternatives. If there are
alternative-specific benefits, then one or several
alternatives might be preferred. These are identified
by this analysis.

Assess Risks

Similar to the benefits analysis, the risks of each pro­
posed alternative are assessed to determine the
alternative with the least risk. First, a simple count of
the risks for each alternative is done. Then, for
alternative-specific risks, the extent to which they
are likely to occur is assessed. If there are no alter­
native-specific risks, the risks are the same for all
alternatives. When the risks are not the same, alter­
natives with lower, less likely risks are preferred to
alternatives with a high likelihood of occurrence. If a
dollar value of exposure is assigned to the risk, it is
considered, with lower values of risk preferred to
significant potential losses.

Propose New Application

Next, the recommended solution(s) are defined in
sufficient detail to allow project planning and finan­
cial analysis. The development plans include hard­
ware, software, operating environment, development
concept, technical feasibility, organization feasibil­
ity, benefits, and risks.

The proposal of the new application might docu­
ment the recommendations formally to begin to
develop the feasibility report, or may still be an
informal collection of information that supports the
remaining analyses. The formality of this gathering
of information is decided by the Project Manager
and SE, based on their confidence in their decisions.
If they are fairly confident that no major changes will
take place, they might develop final versions of doc­
umentation and begin an informal review of their
findings and recommendations with users.

ABC Video Evaluation of Alternatives

The alternatives first are assessed in terms of the
technical and organizational feasibility. Then, the
benefits and risks of each are assessed. Based on

172 CHAPTER 6 Application Feasibility Analysis and Planning

the differences between alternatives, a recommended
solution is selected.

Both packages, SOL Server and Focus, appear
capable of providing the complete application as
envisioned by Vic. The implementation would prob­
ably be smoother with Focus given the high skill
level of Mary and her staff with the product. SOL
Server might have intangible benefits in that, if
another store were opened, the software could eas­
ily communicate between stores, having been built
specifically for distributed processing. This benefit is
not immediate, however, and the current technical
solution favored is Focus. Focus has a longer history,
and is thus, a more mature product, has a large com­
pany backing it, provides all technical requirements
for current and future plans; and is cheaper than SOL
Server in the example.

From an organization perspective, neither product
offers any distinct advantages or disadvantages. The
staff at ABC would have to learn both products.
Both vendors offer classes in the Atlanta area. The
company does not need reorganization to accommo­
date the application regardless of software chosen.
From the perspective of Mary's staff, Focus is pre­
ferred since they already have experience using it,
but she feels confident that they could also build the
application using SOL Server if desired.

The benefits analysis is simple in this case. The
benefits do not favor either implementation scenario
since they all apply to both. Thus, all benefits ~re
expected to accrue from either implementation.

The risk analysis favors Focus over SOL Server
slightly. The main difference in risk exposure is from
the lack of usage experience of Mary's group with
SOL Server. This lack of knowledge can only be par­
tially removed by training. Experience in using the
product is really required to develop knowledge of
the 'undocumented features' and unanticipated lim­
itations of the software. In this case, Focus is known
to Mary's team and is therefore preferred.

In the example for ABC, both packages could
probably be used with success in developing the
ABC rental application. Both softwares appear capa­
ble of future growth and have apparent company sta­
bility. The cost differences favor a Focus solution,
while the specific client/server orientation provides
an as yet unneeded benefit to SOL Server. Vic

decides in favor of the Focus solution, but is clearly
unhappy with the overall cost of $50,700. Vic wants
to continue with the planning and financial analysis
for the application, but is also interested in some way
to reduce or defer the development costs of Mary's
team services for customized software. In any case,
the Focus, LAN solution will be planned and evalu­
ated financially in detail. Before we continue with
ABC's problem, we first talk about project planning.

Plan the Implementation
Estimating Techniques

Users are easy to deal with when they feel you
understand their problem, when they think you can
improve their situation through automation, you
can estimate how long the job will take, and you
can estimate their costs. These are not easy items to
know or to develop. When users are comfortable that
they can afford and use the proposed application
within a reasonable amount of time, they become the
champions of the project, fighting for its develop­
ment in the political environment of the business.
Research shows that a champion provides a major
contribution to application development success. In
this section, we discuss the last two important issues
to making the user feel comfortable: planning and
costing the project.4

Accurate estimates are important to

• allow cost-benefit and other financial analyses
• allow hardware/software trade-off analysis
• provide a basis for management evaluation of

multiple projects
• act as the basis for schedule, staffing, project

management, and structure definition
• avoid problems such as contract renegotiation,

overtime, user cost increases; or project costs
increases

At the feasibility level, estimates should be within
20% accurate. This means that the estimates might
be overstated or understated by 20%. Planning

4 All the methods in this section are based on methods
discussed in Barry Boehm's book, Software Engineering
Economics. Englewood Cliffs, NJ: Prentice-Hall, 1981.

should be redone at the end of the analysis phase, at
which time the estimates should be within 10%.
Again, planning at the end of design should refine
the estimates to within 5%. The redefinition of costs
is one activity that meets with resistance from man­
agers who tend to cast in concrete the first estimate
they hear. Part of the Project Manager's role is to
educate the managers and users involved to under­
stand that as the degree of uncertainty about project
activities decreases, the certainty of time estimates
and costs increases. Therefore, the plans should be
redone at the end of every major phase of activity.

The planning methods discussed in the next
section are ways to generate time estimates for the
person-days of project work. These are then con­
verted into costs by allocating an amount of money
for each person required. Ultimately, the Project
Manager and SE rely on their knowledge of the
organization and salaries of individuals. Additional
costs are allocated for computer resources, acquisi­
tion of hardware, software, or consultants, and other
supplies needed to complete the application.

There are many different approaches to planning
which are discussed in the first section below. After
that, we take a practical, experience-based approach
to developing a critical path plan. The experience­
based estimates are then reality checked against two
sets of algorithmic planning formulae. The two plan­
ning methods used are function points and the
CoCoMo model. Both have known flaws. By com­
bining planning methods rather. than using only
one, you improve the likelihood of more accurate
estimates.

Planning methods are usually classified into cat­
egories for algorithmic methods, expert judgment,
analogy, Parkinson, price-to-win, top-down, bottom­
up, or function points. These are defined here, and
several methods are discussed in detail because
they are the most frequently used. Advantages and
disadvantages of each method are summarized in
Table 6-10.

ALGORITHMIC METHODS. An algorithmic
estimating relies on one or more key formulae to
develop an estimate of person-power required for
project work. There are five types of algorithmic
planning methods. The sequence in which they were

Feasibility Activities 173

developed and found to be inadequate is linear (see
Figure 6-10), multiplicative (see Figure 6-11), ana­
lytic (see Figure 6-12), tabular (see Figure 6-13), and
composite, which combines the others. All but the
composite method are rarely used because they
offer too simplistic a model of project work. The
noncomposite methods do not support adjustment
of the model for expertise of staff, tools used to aid
development, or other factors that might alter the
time and cost of development. All algorithmic meth­
ods suffer the same fatal flaw that they rely on some
initial estimate that is difficult to guess and on which
the accuracy of the entire estimate rests.

There are two key variables in the Composite
Cost Model (CoCoMo): number of delivered source
instructions and project mode. Delivered source in­
structions refers to lines of code used in a produc­
tion version of an application and omits any modules
or programs written to support the development
effort. Since any sizable project has thousands of
instructions, this term is expressed as thousands of
delivered source instructions or KDSI. Delivered
instructions are those that actually are in the finished
product and excludes any code that is generated to
facilitate project development. For instance, in a
DBMS application, you frequently write programs
to do a formatted print of the file that are not part of
the finished application. These modules would be
omitted from the estimate. The second important
word is source. Source code means uncompiled,
unlinked lines of code in whatever language is used.
The implication is that some compiled language such
as Cobol, Fortran, Pascal, or PLll, is used. Control
language code is omitted from KDSI, while the num­
ber of Cobol statements is reduced by a factor of .33
to compensate for the high percentage of nonexe­
cutable code.

The model is based on three critical assumptions.
First, it assumes that KDSI can be estimated with
some accuracy. Second, it assumes that the water­
fall life cycle approach is used. Third, the language
of application development (Cobol, Pljl, APL, and
so on) is assumed to have no discernible impact on
the amount of effort or staffing for a project. The lat­
ter two assumptions can be corrected for by the mul­
tipliers. The first assumption, that accurate estimates
of KDSI are possible, is only true when projects are

174 CHAPTER 6 Application Feasibility Analysis and Planning

TABLE 6-10 Advantages and Disadvantages of Estimating Techniques *

Method

Algorithmic

Advantages

Objective, repeatable, efficient,
analyzable formula

Disadvantages

Subjective inputs

Good for sensitivity analysis

Objectively calibrated to experience

Does not accommodate exceptional
circumstances

Assumes history predicts future applications

Expert Judgment Assessment of representativeness,
interactions, and exceptional circum­
stances can be factored into the judgment

No better than participants

Biases, incomplete recall

Representativeness of experience

Analogy

Parkinson

Price to Win

Top-Down

Bottom-Up

Based on experience

Might relate to experience

Often wins the contract

System level focus

Efficient use of resources

More detailed basis

More stable than top-down

No better than participants

Biases, incomplete recall

Representativeness of experience

Reinforces poor practice

Produces large overruns

Unethical misrepresentation of information

Less detailed and stable than other methods

Overlooks technical complexity

May overlook system level complexity
and costs

Fosters individual commitment when
individual estimates own work

Requires more effort than most other
methods

Function Points Objective, repeatable, objective inputs Based on history

Must be calibrated

Focuses on application externals

* Adapted from Boehm, Barry W., Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall, 1981, p. 342.

similar over time, and accurate statistics of past proj­
ect KDSI are maintained.

Project mode refers to a combination of size,
staff, and technology. The three main project modes
are organic, semidetached, and embedded (see Table
6-11). An organic project is developed by in-house
staff, is small to medium in size, and uses existing,
familiar technology.

A semidetached project is one that is developed
by in-house staff and contractors, is intermediate to

large in size, and uses technology that is familiar to
some of the project team.

An embedded project is one that is developed by
contractors, is medium to very large in size, and uses
state-of-the-art technology which is new and unfa­
miliar to all project members.

The five project sizes referenced by CoCoMo are
small, intermediate, medium, large, and very large.
Each size has an average number of thousands of
source instructions to which it relates (see Table

Feasibility Activities 175

Effort = Ao + A 1X1 + ... AnXn

Where An = Weight
Xn = Source of Cost n (e.g., Personnel time)

Where An = Source of Cost n (e.g., Personnel time)
xn = -1 , 0 or 1 depending on presence of cost

Ex.:

Effort = -3.6
+9 (2)

+10.7 (2)
+55.7 (1)

+15 (1)
+29.55 (1)

+2.2 (.6)
+.52 (.4)

= 137.58

High Uncertainty of
Requirements

Unstable Design
Concurrent Hardware

Development
New Technology
Multiple Target Hardware

Platforms
Percent I/O
Percent Match Instructions

Person Months

Ex.:

Effort = .6 *
*.951

* 1001

= 1359

High Uncertainty of
Requirements

Unstable Design
Concurrent Hardware

Development
New Technology
Multiple Target Hardware

Platforms
Person Months Test Code

Person Months

FIGURE 6-10 Linear Estimating Formula
and Example

FIGURE 6-11 Multiplicative Estimating
Formula and Example

NIN 2N log 2N / 2SN2

Where:
NI
N2
N

S
N2
N

Example: If
NI
N2
N
S
N2
N

Number of Program operators (e.g., Add)
Number of Program operands (e.g., Data Fields)
NI +N2
Approximately 18
l:N2 usage, i.e., the number of time the operands are used in instructions
l:NI + l:N2 usage

30
1000

NI + N2 = 30 + 1000 = 1030
Approximately 18
l:N2 usage = 2500
l:NI + l:N2 = 1000 + 2500 = 3500

then NIN 2N log 2N / 2SN2
30 * 2500 * 3500 IOg2 1030/2 * 18 * 1000
75000 * 4.5 / 36000
9.1 Person Months

FIGURE 6- 12 Analytic Estimating Formula and Example

176 CHAPTER 6 Application Feasibility Analysis and Planning

Estimate number of functions by type.
Estimate number of laC for each function.
Table lookup of productivity.
Sum all time.
Distribute according to table formula.

Type

Math
Report
logic

MM/1000 lOC*

6MM
8MM

12 MM
Signal/Process Control
Real-Time Control

20MM
40MM

Example:

5 Math functions 2000 laC
15 Reports 8000 laC
25 logic functions 5000 laC

6 Signal control functions 1200 laC
0 Real-time control o laC

(2*6) + (8*8) + (12*5) + (20*1.2)
12 + 64 + 60 + 24
160 MM

*MM = Person Months
laC = Lines of Code

FIGURE 6-13 Tabular Estimating Formula
and Example

TABLE 6-11 Three CoCoMo Project
Modes

Organic

Semidetached

Embedded

In-house developed

Small-medium size

Existing, familiar technology

Partially in-house and partially
contractor developed

Intermediate-large size

Existing, familiar technology

Contractor developed

Medium-very large size

State-of-the-art, unfamiliar
technology

TABLE 6- 12 Five CoCoMo Project Sizes

Size
Thousands of Lines
of Source Code

Small

Intermediate

Medium

Large

Very Large

2

8

32

128

512+

From Boehm, Barry W., Software Engineering Economics.

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981, p. 75.

6-12). Tables of the estimates, completed for each
of the standard sizes, are provided in Boehm's book.
These sizes provide a guide for calibrating nonstan­
dard KDSI estimates.

To use CoCoMo, the mode is defined, KDSI are
estimated, the formula for the matching project
mode is computed. Table 6-13 shows the CoCoMo
'basic' formulae for each mode. The appeal of such
a simple model is obvious. The model is reusable,
objective, and simple to learn and use. The model's
major source of uncertainty is in the need for an
accurate estimate of KDSI. This difficulty of accu­
rately estimating KDSI should not be minimized.

TABLE 6- 13 CoCoMo Basic Formulae

Mode Effort Schedule

Organic MM= TDEV=
2.4(KDSIl.05) 2.5(MMo.38)

Semidetached MM= TDEV=
3.0(KDSI1.12) 2.5(MMo.35)

Embedded MM= TDEV=
3.6(KDSI1.20) 2.5(MMo.32)

MM = Person Months
TDEV = Time of Development

From Boehm, Barry W., Software Engineering Economics.

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981, p. 75.

Next the multipliers are evaluated and used to
modify the person-month estimate based on project
specific factors (see Table 6-14). Risks, uncertain­
ties, constraints, and staff experience are all evalu­
ated to determine their potential impact on the
schedule. The basic person-months estimate is mul­
tiplied by each relevant subjective multiplier to
adjust for project contingencies.

Total months of effort is not very useful for a
multiperson project unless there is also some way to

TABLE 6- 14 Sample Co CoMo Multipliers

Range of
Type Variance Multiplier

Product
Reliability .75-1.4
Data Base Size .94-1.16
Software Complexity .70-1.65

Computer
Execution Time 1.00-1.66
Memory Constraints 1.00-1.56
OS Volatility .87-1.3
Turnaround Time .87-1.15

Project
Modern .82-1.24

Practice
Use of Software Tools .83-1.24
Schedule Constraints 1.10-1.23

Personnel
Analyst Capability .71-1.46
Programmer Capability .70-1.42

Application
Experience .82-1.29

Operating System
Experience .90-1.21

Programming
Language Experience .95-1.14

Rate Each Cost Driver on a scale of 0 (Not applicable) to
5 (Highly applicable)

Multiply rating times multiplier to obtain final multiplier

Multiply MM Computation by final multiplier

From Boehm, Barry W., Software Engineering Economics.

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981.

Feasibility Activities 177

know how much elapsed time the project should take
and when to phase people onto and off of the project.
Co CoMo provides these estimates. The second set of
formulae are used to estimate total development time
(TDEV) which accounts for multiple people work­
ing on the project. (Table 6-13 also shows the algo­
rithms used to compute development effort.) To use
these algorithms, you simply plug in the person­
months value from the first formula into the TDEV
formula matching the project mode.

Finally, the Co CoMo model includes a formula to
estimate staffing levels over time in the shape of a
Rayleigh (pronounced RAY-lee) curve. A Rayleigh
curve (Figure 6-14) starts at some point above zero,
increases to a high point, and gradually decreases to
near zero. The formula for developing the number of
people at any time requires an estimate of the time of
the highest staffing level for the project (see Figure
6-14). This formula assumes a peak about one-third
of the way into the elapsed time (TDEV).

The advantages of any formula for estimating is
that it is objective and repeatable (see Table 6-10).
Further, they are easily understood and require little
effort to use. The disadvantages are that the formulae
all require some initial estimate that is hard to
develop and frequently inaccurate. The formula
might not fit the project and may be complicated
to learn.

EXPERT JUDGMENT. Expert judgment esti­
mating is a technique by which the Project Man­
ager and SE use their experience to guide the
development of the time estimates. Each task is
defined in terms of the program types likely to
result from the task. Then, using their experience,
the PM and SE assign times to each program, adding
design time and analysis time.

For instance, assume there are 15 report pro­
grams. If a batch Cobol report interfacing with a
DBMS averages one week to code and unit test,
3-5 days of design, and 2-4 days of analyses, then
15 reports will average 15 weeks for programming
and one week is allocated per program. The other
phase estimates are similar. A range of 30-60 days
of analysis and of 45-75 days for design are allo­
cated for the 15 reports. Similar estimates are made

178 CHAPTER 6 Application Feasibility Analysis and Planning

Full Time Equivalent Staff 8
7

6

5
4

3

2

1 234 5 6 7 8

Periods

(0.15TDEV = 0.7t)2 *

(
O.15TDEV + O.7t) - 0.33(TDEV)2

FTEt = MM e
O.33(TDEV)2

where MM is man-months
TDEV is total development time

is the period for which the estimate is made

*Adapted from Boehm, 1981. FTEt is Full Time Equivalent staff in time t

FIGURE 6-14 Rayleigh Curve of Staffing Estimates

for batch updates, on-line queries, on-line updates,
and so forth.

When all program estimates are complete, the
entire group is summarized to develop a project
estimate. These are then presented as a range of
estimates with the lowest number representing the
optimistic schedule, the average number represent­
ing the most likely schedule, and the highest num­
ber representing a pessimistic schedule.

Costs are similarly assigned. Each program type
is used to define the skill level of the desired pro­
grammer. For instance, a junior programmer might
be assigned to batch reports, a senior programmer
assigned to on-line processing, and a mid-level
programmer to on-line reports. The times for each
program type and programmer type are summed and
multiplied by the cost of that level person. Similarly,
the level of analyst or programmer-analyst needed
for analysis and design of the tasks is estimated.

Finally, all costs are summed to develop a total cost
for the project.

The advantages of expert judgment are the
ability to factor experience into estimates, to tailor
estimates to assigned personnel, and to develop
estimates quickly and efficiently (see Table 6-10).
The disadvantages are that the estimates are no bet­
ter than the expertise of the PM and SE, they may
be biased, are hard to rationalize, and not objectively
repeatable. That is, the experience cannot be taught
to others so two PM/SE teams estimating the same
project will develop different estimates for the same
problem. Finally, expert judgment is not useful in
novel situations using new technology, methodol­
ogy, or languages.

ANALOGY. Analogical estimating is similar to
applying experience. In estimating by analogy, a
recently completed similar project is selected to act

as a prototype baseline for developing cost estimates
for a current proposed project. Costs are determined
based on the match or mismatch of tasks and pro­
grams to the baseline. In other words, if a task is
essentially the same, then the actual time of the task
in the baseline project is used to estimate the actual
time of the task for the proposed project. Analogy is
applied to time, staff skill levels, and, eventually,
resource, hardware, software, and other costs.

The advantage of analogy is that it is based on an
actual, recent experience which can be studied for
specific differences and only those differences
require new cost estimates (see Table 6-10). The dis­
advantages of analogy are that the analogous pro­
ject may not be representative of the proposed
project, constraints, techniques, or functions. Some
of the disadvantages can be reduced by matching
project functions. This technique might work in
large compallies with many similar projects, but is
not particularly useful in small companies, unique
projects, or projects using new technology, method­
ology, or languages.

PARKINSON'S LAW. Parkinson's LawS states
that "Work expands to fill the available time." Based
on this law, any time can be allocated and that is the
time the project will take (see Table 6-10). For
instance, there are 6 people available for 6 months,
therefore the project will take 36 person-months.
This is a cynical view of estimating that reinforces
poor development practices by random assignment
of time and people.

There are obvious flaws to Parkinson's Law. This
method is likely to be grossly inaccurate in estimates
generated (see Table 6-10). If people are allocated
because they are available and not because they are
needed, their skills are likely to be wasted and the
project is more likely to be late. This method is not
recommended.

PRICE-TO-WIN. Price-to-win is a consultant
strategy that uses a low estimate to obtain ajob, with
the implication that the time and cost will later be
renegotiated. Like Parkinson's Law, this strategy is

5 Parkinson's Law was first published in 1957.

Feasibility Activities 179

not recommended. Price-to-win leads to forced user
compromise on application requirements to try to
meet a cost/time estimate, gives the consulting com­
pany bad public relations, always requires staff over­
time, and most always results in cost overruns for
both time and money.

You might ask, Why would anyone ever use
a price-to-win strategy? Unfortunately, historical
estimates by IS personnel are not very accurate
unless combinations of modern techniques such as
CoCoMo and function points are used and few prob­
lems occur on the project. Following this logic, peo­
ple who use a price-to-win strategy usually believe
any estimate is good as long as they get the job, since
there is little relationship between real and estimated
costs anyway. Frequently, in government projects
especially, the lowest bid wins the job. This logic
of choosing the lowest bid leads to price-to-win
estimates. This has led to problems for several gov­
ernment entities.

TOP-DOWN. Used with one or more of the other
estimating techniques, top-down estimates use
project properties to derive an estimate. Then total
cost is split among the components. After a time
estimate is derived, the 40-20-40 rule is applied to
the estimate. According to the rule, 40% of project
time is spent on analysis and design, 20% is spent on
coding and unit testing, and 40% is spent on project
testing.

The advantage of using a top-down approach is
that, by focusing on global properties of the appli­
cation, an estimate can be developed quickly-in a
day or two. Using analogy to assess global proper­
ties, the proposed project is assumed similar to some
other whole project. For instance, ABC's applica­
tion is an on-line database application with create,
change, delete, and query capabilities for all data,
and an overall query facility for grouped data; sys­
tem functions include start-up, shutdown, and
monthly file maintenance processing.

The major disadvantage of a top-down approach
is that the above description fits most on-line data­
base applications (see Table 6-10). Such a high level
focus cannot identify low level technical problems
that drive up costs. For instance, in a complex data­
base application, one particular data access need

180 CHAPTER 6 Application Feasibility Analysis and Planning

might require a month of design and prototyping
time to prove that the concept works. This type of
special process would be missed in a top-down
estimate. Whole software components might be
missed in the global assessment that, when devel­
oped, account for a disproportionate amount of time
and cost. On balance, top-down estimates are less
stable than more specific estimates.

BOTTOM-UP. The bottom-up approach takes the
opposite view of an application from the top-down
approach. Using a bottom-up estimating approach,
each software component is identified and estimated,
often by the person who would do the development.
All individual component costs are summed to arrive
at the estimated cost of the entire software product.

The bottom-up approach is as likely to miss com­
ponents for development as the top-down approach
(see Table 6-10). At the low level, integration work
to combine modules and programs may not be esti­
mated or is easily underestimated. Also, the bottom­
up approach requires significantly more effort to
develop because every module, progr~m, screen,
database interaction, and so on must be identified
for estimating.

The advantages of the bottom-up approach
are that the estimates are based on a more de­
tailed understanding of the project than the other
methods, and, when estimated by the person doing
the work, the estimates are back~d by a profes­
sional's commitment.

Application Item Count Simple

Inputs (Le., Trans Types) 3

Outputs (Le., Reports, Screens) 4

Programmed Inquiries 3

Files / Relations 7

Application Interfaces 5

FUNCTION POINTS. The function point method
takes an organizational history approach to estimat­
ing. Function points are a measure of complexity
based on global application characteristics. A base­
line developed by analyzing all previous applica­
tions is developed for each type application. The
baseline number of function points is divided by the
actual cost/time of development to get an estimate
for one function point per application type (or lan­
guage, or person-month). New applications are ana­
lyzed to determine an estimate of the number of
function points in the project. Then, the base time
and cost estimates for one function point are multi­
plied by the number of estimated function points for
the proposed application to develop a total time and
cost estimate.

Function point analysis rests on the ability of the
project team to predict the inputs, outputs, queries,
interfaces, and files. Figure 6-15 shows the counts
and weights assigned for each type of I/O. Each
item is counted and weighted for complexity. The
weighted counts are summed.

Then a series of 14 questions to determine differ­
ent types of application complexity are evaluated
on a scale of zero to five to measure increasing
importance of the item to the application (see Table
6-15). The answers to the 14 questions are also
summed. The summed complexity weights and
weighted counts are combined in one formula shown
below to compute the total function points for a
project.

Average Complex FP = Count * Weight

4 6

5 7

4 6

10 15

7 10

From Pressman, Roger S., Software Engineering: A Practitioner's Approach, third edition. NY: McGraw-Hili, 1992, p. 49.

FIGURE 6- 15 Function Point Weighted Count Table

TABLE 6- 15 Function Point Questions
and Rating Scale *

Rating Scale from 0 (No influence) to 5 (Essential)

Factor Questions:

1. Is reliable backup and recovery required?

2. Are data communications required?

3. Are any functions distributed?

4. Is performance critical?

5. Is operational environment volume high?

6. Is on-line data entry required?

7. Does on-line data entry require multiple screens or
operations?

8. Is on-line files update used?

9. Are queries, screens, reports, or files complex?

10. Is processing complex?

11. Is code design for reuse?

12. Does implementation include conversion and
installation?

13. Are multiple installations and/or multiple organiza­
tions involved?

14. Does application design facilitate user changes?
How integral is ease of use?

*From Pressman, Roger S., Software Engineering: A Practi­
tioner's Approach, third edition. NY: McGraw-Hill, 1992, p. 50.

FP = Total weighted count * (.65
+ (0.1 * L(complexity adjustments)))

Function points have become popular enough that
several companies and software packages are avail­
able for developing function point estimates. In ad­
dition, tables of function points per number of lines
of code are also available. For instance, 100 lines of
Cobol is equal to 20 lines of Focus is equal to one
function point. Translating function points into lines
of code, then, requires a simple table lookup.

The appeal of function points is similar to that of
CoCoMo. Any algorithmic method is likely to be
easy to use, understand, and repeat (see Table 6-10).
An algorithm gives the appearance of objectivity

Feasibility Activities 181

that other methods do not. Of course, the function
point estimate has flaws similar to those of CoCoMo,
too. Function points must be calibrated for the orga­
nization based on its history of project development.
It assumes that history predicts the future. Further,
it assumes similar technology and skills across proj­
ects. The model assumes that methodology and
CASE have no impact on project development time.

To summarize, there are several useful methods
of project person-month or lines-of-code estimat­
ing. The most popular are expert judgment, analogy,
CoCoMo, function points, top-down, and bottom-up.
All of these methods have advantages and disadvan­
tages. If a history of projects and function points is
kept, that appears to be the most accurate estimat­
ing technique at the moment. If function points are
not calibrated to the company's history, no one esti­
mating technique is better than any other. Rather, the
methods might be paired or used several at a time to
develop estimates that are closer to reality than esti­
mates developed using anyone method alone.

Planning Guidelines

In the absence of calibrated function points for ABC,
we will discuss the use of several methods in devel­
oping a plan for an application. By combining the
methods, the schedule and plan developed should
be better than using anyone plan on its own.

Several variations for combining estimating tech­
niques are feasible. They are:

1. Estimate inputs, outputs, interfaces, queries,
and files according to function point
directions.

2. Answer 14 questions and estimate project
complexity.

3. Compute function points.
4. Lookup lines of code per function point (FP)

in language table and compute total lines of
code (LOC) for the project.

5. Decide the CoCoMo mode.
6. Using FP LOC as input to the CoCoMo

model, compute person months of effort.
7. Analyze multipliers and adjust the estimate.
8. Compute total development time and project

staffing estimates using the other CoCoMo
formula.

182 CHAPTER 6 Application Feasibility Analysis and Planning

If the company uses function point analysis for its
baseline, function point planning is the first type per­
formed. Then, the plan can be compared to the Co­
CoMo model estimates to verify its goodness of fit.
Alternatively, the project manager can develop a top­
down plan while the SE and any other project staff
working on the feasibility develop a bottom-up plan
by using the following steps:

1. PM and SE together estimate the develop­
ment approach and all functions in the
application.

2. PM uses top-down analysis to develop a list
of activities to be performed and the times for
each.

3. From this list, deliverable products and a
schedule are developed.

4. The list is analyzed to determine task depen­
dencies, and a first-cut critical path chart is
developed.

5. Concurrently with steps two to four, the
SE analyzes each function bottom-up
to determine the complexity, possible
problems, nondeliverable programs, and
amount of effort to be assigned to each
technical task.

6. Any new tasks identified by either the PM or
SE are added to the plan and estimated. The
SE and PM compare and adjust their time es­
timates until they agree.

Another alternative is to combine expert judg­
ment, analogy, top-down, and bottom-up to develop
a first set of estimates. Then, these estimates are
compared to the standard function point estimate for
a reality check. If the expert estimate is more than
15 % lower than the function point estimate, then the
plan should probably be revised upward. In this sec­
tion, we use expert judgment and analogy, using a
top-down approach to develop the estimate, then do
a bottom-up analysis of each piece to ensure they are
all present.

The steps to developing a plan are:

1. Decide the Development Life Cycle (DLC),
approach, and methodology.

2. For each phase, list the deliverable products
that mark completion of the phase.

3. Decide on information gathering tech­
nique(s) and use of lAD, prototyping, or
other variants to DLC.

4. Decide which products the technical project
team members will develop and which the
users will develop.

5. Define dependencies and develop CPM
chart.

6. Assign times to tasks and compute total
project time.

7. Estimate inputs, outputs, interfaces, queries,
and files according to function point
directions.

8. Answer 14 questions and estimate project
complexity.

9. Compute function points.
10. Lookup lines of code per function point

(FP) in language table and compute total
lines of code (LOC) for the project.

11. Estimate productivity in LOC/month.
12. Compare FP number of person months to

the estimated total time.
13. Adjust time estimates, as required, and com­

plete the CPM diagram by adding times.

For instance, assume the waterfall is followed and
the phases include Feasibility, Analysis, Design,
Program Design, Code/Unit Test, System Testing,
Acceptance Testing, and Installation. Then, list de­
liverable products. Phases might have more than one
deliverable product. Products usually coincide with
the ending of life cycle phases. Products for these
phases include a feasibility report, functional re­
quirements specification, design specification, pro­
gram specifications, plans for testing, conversion,
training, and implementation, operational documen­
tation, and user documentation.

From the choices in Chapter 4, decide the ap­
proach to information gathering. If you use lAD, for
instance, the amount of time allocated to analysis is
less than if you use interviews over time. Decide the
overall system design approach. Is prototyping
needed? How involved will users be in the develop­
ment process? How extensive will user training be?
Will CASE be used? Which tool? (Some tools add
analysis and design time, some reduce it). How ex­
tensive are documents expected to be? Is on-line

help software going to replace user manuals? Who is
responsible for planning and executing the conver­
sion? How much data scrubbing to remove errors
from existing data is required? The answers to these
questions increase or decrease the time allocated for
each task.

Next decide which products the technical project
team members will develop and which the users will
develop. These tasks are estimated just as the techni­
cal team tasks are estimated, but they are also sin­
gled out for several reasons. First, the dependencies
should clearly show the split of assignments for the
technical team and users. Second, users should be
allowed to comment on tasks for which they are
responsible. The technical team usually takes
responsibility for the tasks if the users will not
take it.

Develop a list of tasks and define dependencies,
developing a critical path chart for the project.
Assign times to tasks. Compute function points.
Using an estimate of LOC per month per person on
the project, compute a total project time, and com­
pare the FP estimate to your estimate. Adjust your
estimate as required if it is more than 15% less than
the FP estimate. In general, always use a higher
estimate rather than a lower one. Project schedules
have a way of losing time for meetings, nonproject
responsibilities, and other legitimate, but nonpro­
ductive uses of time.

Now, let's go through each step to using com­
bined techniques for estimating. To develop a critical
path diagram, list the tasks on a sheet of paper. Begin
with high level tasks, or tasks of a single phase,
adding lower level tasks as they come to mind.
Development of the task list requires some experi­
ence and is always done more easily by several peo­
ple rather than one who is likely to forget some
critical task. The task list, in critical path method
terms, is called a work breakdown.

Define durations for each task. Durations may be
an absolute number or a range of time. The critical
path method recommends the identification of opti­
mistic, likely, and pessimistic estimates. Then, the
weighted formula ((Optimistic + 4(Likely) + Pes­
simistic) I 6) is applied to develop one number for
use in financial analysis and software planning tools.
Use either method for developing the time. Planning

Feasibility Activities 183

software packages allow early, most likely, and latest
possible dates to be entered. For some software you
enter the project completion date and the software
computes the early and late dates for tasks based on
their durations.

Extend the times to develop dates at which each
task is expected. A work breakdown shows the earli­
est start and end dates for each task, plus the latest
start and end dates per task. The early dates assume
that each preceding task took the minimum esti­
mated number of days. The latest start and end dates
assume that each preceding task took the maximum
estimated number of days.

Next, create the CPM chart (see Figure 6-16). List
all tasks on a piece of paper. Draw lines from later
tasks to early tasks on which they are dependent. By
dependent tasks, we mean those tasks that cannot
be begun until information (or products or ap­
provals) from the previous task are complete. The
early task feeds the later one.

When the diagram is complete, compute the time
to complete each leg of the diagram. The leg with the
longest time is the critical path, that is, the tasks on
which meeting the deadline for the project depends.
If anyone of the critical path tasks is late, the proj­
ect will be late. When monitoring the project, the
critical tasks get priority. When assigning staff to
tasks, the critical tasks should be assigned the most
experienced and skilled personnel.

Some sensitivity analysis on critical path and on
task dependencies might be done, if using an auto­
mated tool for the analysis. Manual analysis is so
time-consuming that it may not be worth the effort.
The impact of different end dates is analyzed. For
instance, if the user were to mandate a date two
months earlier than the estimated end date, what is
the impact on the project and tasks? Does the criti­
cal path change? Can other tasks, not fully analyzed,
be made more parallel? Can any dependencies be
removed by altering the plan or tasks? If the project
suffers penalties (loss of revenue) from not meeting
deadlines, the risks for each task might be reassessed
to ensure that nothing is missed. The project man­
ager continues this type of analysis until he or she is
comfortable with the result.

After the critical path is identified, staff should be
assigned to each task to complete project planning.

184 CHAPTER 6 Application Feasibility Analysis and Planning

---------------~

FIGURE 6- 16 Sample Critical Path Method Chart

Assign people to minimize the amount of slack time
for which they have no assignments, but allow some
slack time in case problems arise. Assign the criti­
cal tasks first, allocating them to the best, most
experienced people. A general rule of thumb is that,
in absence of artificially short deadlines, people can
be assigned to develop a whole leg of the critical
path. The purpose for assigning sequential tasks in
a leg are to leverage the knowledge gained from
early tasks to later tasks, and to provide each indi­
vidual a sense of contribution to the overall project
by allowing them to take responsibility for a large
chunk of work.

When the estimates are complete, develop a func­
tion point estimate, or have someone else do it in
parallel. Weight the FP estimate by the answers to
the 14 questions. Lookup the lines of code (LaC)

Lines of Code/FP
25
25

100

language
4 Gl
Sal

Cobol

FIGURE 6-17 Example of LOCIFP for
Different Languages

per function point (FP) in a table (see Figure 6-17).6

Estimate your productivity in LaC per month; for
instance, 1000 LaC/Month for a 4GL is not uncom­
mon. If your company keeps statistics, use its his­
torical numbers for project type and language.
Compute total person-months for the project using
the formulae in Figure 6-18. Compare the FP esti­
mate to your estimate and adjust as needed. Don't
just blindly take the higher number. Rather, a dif­
ference means that information was interpreted dif-

6 Refer to Capers Jones' 1986 book, Programming
Productivity, for extensive tables with this information.

Number of Lines of Code per Function Point *
Number of Function Points = Total Lines of Code

Example 25 lOC/FP (4Gl) * 100 = 2500 laC

Total Lines of Code I Lines of Code per Month
= Number of Person Months

Example 2500 laC I 1000 per Month = 2.5 Person
Months

FIGURE 6- 18 Function Point Computations
for Total Person Months

ferently by the two methods of estimating. See if
you can find what is different and which estimate is
more realistic.

Use the 40-20-40 rule to check if the effort looks
like it is reasonable across the phases. Analysis/
design should be about 40% of effort if manual and
55% if using CASE. Code/unit test is about 20%
effort if manual and 5% if a CASE tool generates
code. System testing shoulq be 30-40%. Testing
estimates are usually low. If testing is the diff~rence,
ask if there is some reason to be optimistic, for
instance, a skilled programmer. If the difference
cannot be found, and the percentages are allocated
about right, then changing your estimate is a judg­
ment call.

For manual allocation of staff to a project, a list of
tasks in CPM legs should be created and a person's

Scheduled Task 1 2 3 4 5 6 7

Interviews
J. Smith SB SB S
C. Jones SB SB B
M. Mayhew SB SB S

Develop DFDs S- --- -- --- --- S

Define Data
and ERD B- -- --- --- --- B

Review and
Revise DFD

8

and ERD SB SB

Begin Data Dict.

Define Problems
w/Current System

Define Business
Opportunities

Legend:

B = Barbara James, SE
S = Stan Smits, PM/SE

SB- -- --- --- --- --- --

SS

Feasibility Activities 185

name assigned to each task. This allows easy track­
ing of assignments and dates at which people rotate
on anq off the project. If using an automated tool,
allocation of staff usually requires entry of the per­
son's name ap.d assignment of tasks by CPM ID. In
either case, as people are assigned to tasks, note who
they are and when they begin (and end) project
work. Make sure you do not change the critical path
by the assigmllent of personnel to overlapping or
conflicting duration tasks.

Upoq co~pletion of task assignments, a Gantt
Chart is developed to summarize the project. A
Gantt Chart shows the entire set of project tasks,
people assigned, and completion times estimated for
the development effort (see Figure 6-19). A list of
people and amount of time assigned to the project is
created for use in the costing activity.

Day

9 10 11 12 13 14 15 16 17 18 19

--- --- -- --- --- --- --- -- SB

BB

Where initials alternate, both Barbara and Stan p~rticipate in the activity.

FIGURE 6-19 Sample Gantt Chart

186 CHAPTER 6 Application Feasibility Analysis and Planning

ABC Video Implementation Plan

ABC's rental application is a fairly average project
with no obvious complexities, no state-of-the-art
technologies, and a single, small organization. Mary,
the PM, and Sam, the SE, decide to use a combina­
tion of analogy, top-down, and bottom-up and to
check their estimate with function points based on
the estimate of 25 LOC/FP for a 4GL. Before Mary
and Sam begin, they first decide their approach and
assumptions on which the estimates are based.

The project is expected to be implemented on a
Novell ethernet LAN using PCs as workstations and
a superserver (50 Mhz, 486-based machine). The
software environment will be some SQL language
with custom application software. There will be four
main files, corresponding to the four main entities
in the ERD. The main processing centers around

Application Item Count

Inputs (i.e., Trans Types)

Outputs (i.e., Reports, Screens)

Programmed Inquiries

Files / Relations

5

6

6

8

Application Interfaces (9)

Factor Questions

Reliable backup and recovery
Data communications

Distributed functions

Critical performance

High volume operations environment
On-line data entry

Multiple data entry screens or operations
On-line file update
Complex queries, screens, reports, or files
Complex processing

Reusable code design
Conversion and installation

Multiple installations and/or multiple organizations

User change; ease of use

Total

Simple

3

4

7

5

FIGURE 6-20 ABC Function Point Estimate

rental activity with standard maintenance procedures
for the other files. Other files, which will be main­
tained during rental processing, include history and
an end-of-day summary of transactions. The appli­
cation will accommodate up to ten concurrent users
for all processing.

If two people are estimating, as Sam and Mary
are, a good approach is to split the two types of esti­
mates between the individuals. Sam would do one
and Mary the other. Then they compare and rational­
ize their work.

First, we develop a function point estimate for the
work. The function point estimate (see Figure 6-20)
shows that the project is not very complex in any of
the key inputs or outputs. The weighting questions
identify the on-line, interactive, and multiuser char­
acteristics as contributing the greatest complexity to
the application. The total function points are esti-

Score

4
o
o
4

4

5
5
4

o
4
o
4

o
3

37

Average Complex FP = Count * Weight

0 6 20

@ 7 30

4 6 18

@ 15 80

7 10 0

Total 148

FP = Total Weighted Count *
(.65 + (.01 * :L(Complexity Adjustments)))

= 148 * (.65 + (.01 * 37))
= 148 * (.65 + .37)
= 151 Function Points

mated at 151. Carrying the FP analysis through, at
25/LOC per function point, there are about 3775
LOC (i.e., 25 * 151) for the project. At a productiv­
ity rate of 2000 per month, the total number of per­
son months for the project is about 1.9 months (i.e.,
3775/2000). The estimate of 2,000 LOC/month is a
company statistic based on the average productivity
of each of the project participants.

Mary, in parallel, creates a task list which she
converts into a work breakdown. The work break­
down identifies the tasks to complete the project, and
the optimistic, likely, and pessimistic times for each
task (see Table 6-16). The most likely time for each
task is then computed and a total time for the
project is estimated.

At this point, the two sets of estimates should be
compared. The FP estimate suggests 1.9 person­
months, while the work breakdown estimate of
172 hours translates into slightly under one month
(25 days). The FP estimate is almost twice as high.
Let's see where the differences might lie. At the end
of Table 6-16, the total times for each phase are
shown with percentages of the total computed for
each number. The percentages do not follow the
40-20-40 rule closely. The realistic estimate shows
46% of time for analysis and design, 32% for cod­
ing and unit testing, and 22% for system testing. The
estimate for system testing is low relative to the rule
while the other estimates are somewhat inflated.
Mary knows she and Sam are the only two people
who are expected to work on the project and she
based her estimates on their ability to debug and test
quickly. But even she cannot defend this low number
to Sam. Sam also points out that, if Vic wants much
documentation, her estimates for all the tasks might
be low. Mary has assumed that Vic, being a small
company owner, will opt for less documentation to
save on the expense.

On the other hand, Sam identified several com­
plexities with which Mary takes issue, in particular
with the difficulty of on-line update and the difficulty
of interactive programming. Both of these were
given a '5' rating of complexity. Mary feels that if
the application were on a mainframe and using
mainframe software and tools, the fives would be
justified. Since the application platform is a LAN
with which they have extensive experience, she feels

Feasibility Activities 187

that the highest rating should be a four. This would
then reduce the FP estimate. Both Mary and Sam
discuss their estimates, defending their reasoning
processes and subjecting them to criticism by their
partner. In the end, they confirm with Vic that he
does want only minimal documentation, and they
decide to split the difference on their estimates
adding a total of 90 hours to the project. Of that time,
18 hours (20%) is allocated to code/unit test and the
remaining 72 hours (80%) to testing of the project.
The final estimates would then show code/unit test
time of 73 hours (28% of total) and testing time of
110 hours (42% of total). While these percentages
are now slightly skewed away from analysis and
design, which is now 30% of the total, these per­
centages are in line with the 4GL need to do less
analysis and design. The total estimated project time
used in the financial estimates will be 262 hours or
1.5 person-months.

The final work breakdown is converted into a
CPM diagram to identify the critical path of work
(see Figure 6-21 for the Analysis CPM). Based on
the critical path, contingencies are planned to
ensure meeting of the schedule. Figure 6-22 is a
Gantt chart for analysis showing how Mary and Sam
split their responsibilities.

If project planning software were used, the CPM
is built first, then selection of an option converts the
CPM into the work breakdown. To create either dia­
gram, the tasks and durations must be known.
Sophisticated software supports the insertion of a
start date for the project and, based on the optimistic
and pessimistic task durations, and on the depen­
dencies from the CPM, the software computes all the
dates for the project.

Evaluate Financial Feasibility
Financial Feasibility Analysis

Financial feasibility analysis evaluates the firm's
ability to pay for a project, and compares recom­
mended alternatives to determine which is more
economically attractive. In general, projects are eco­
nomically feasible when the sum of all IS projects
plus the proposed project is less than 10% of firm net

188 CHAPTER 6 Application Feasibility Analysis and Planning

TABLE 6-16 ABC Work Breakdown with Durations

Task: Analysis Optimistic Likely Pessimistic (O+4L+P)/6

Define Customer Maintenance Processing 2 3 4 3

Define Video Maintenance Processing 2 3 4 3

Define Rental Process 1 2 3 2

Define Return Process 1 2 3 2

Define How Intertwined 2 3 4 3

Define History 1 2 3 2

Define EODay, Audit, Trans Log 2 3 4 3

Define Cust Create, Video Create in Rental 1 2 3 2

Define Error Msgs, Abort Procedures 1 2 3 2

Define Screen Contents 2 4 6 4

Define Flow of Processing 1 2 3 2

Define Start-up/Shutdown 1 2 3 2

Define File Purge .5 1 1.5 1

Define Backup/Recovery .5 1 1.5 1

Define Conversion/Training 1 2 3 2

Analysis Total Time 19 34 49 34

Task: Design Optimistic Likely Pessimistic (O+4L+P)/6

Cust Maint Process 2

Video Maint Process 2

RentlReturn
Includes: Display, Data entry, Retrieval,
Payment, Accounting, File Update,
History, EOD, Audit, Controls 7

Screens 10

Start-up/Shutdown 4

Backup/Recovery 1

Conversion, Training 2

Design Total Time 28

income. This uses industry averages as the guideline.
To compare alternatives, several methods discussed
in this section are used.

Cost-benefit analysis is the comparison of the fi­
nancial gains and payments that would result from

3 4 3

3 4 3

11 21 12

14 16 15

6 12 6

1 1 1

5 8 5

43 66 45

selection of some alternative. The analysis facilitates
comparison of alternatives for one project or alterna­
tive projects.

Criteria used in alternative comparisons might
be maximizing benefits, ratio of benefits to costs, net

Feasibility Activities 189

TABLE 6-16 ABC Work Breakdown with Durations (Continued)

Task: CodelUnit Test Optimistic Likely Pessimistic (O+4L+P)l6

Cust Maint Process 2 4 6 4

Video Maint Process 2 4 6 4

Rent/Return
Includes: Display, Data entry, Retrieval,
Payment, Accounting, File Update,
History, EOD, Audit, Controls 8 14 28 15

Screens 5 10 15 10

Start-up/Shutdown 8 10 12 10

Backup/Recovery 1 2 3 2

Conversion, Training 5 10 15 10

Code/Unit Test Total Time 31 54 85 55

Task: Testing Optimistic Likely Pessimistic (O+4L+P)/6

Scaffolding 2 4 5 4

Screen test 2 4 6 4

Subsystem Test 7 14 21 15

System Test 7 14 21 15

Testing Total Time 18 36 53 38

Project Totals by Phase Optimistic Likely Pessimistic (O+4L+P)/6

Analysis Total Time 19
19%

Design Total Time 28
29%

CodelUnit Test Total Time 31
32%

Testing Total Time 18
19%

Project Total Time 96
100%

benefits, minimizing costs for given level of benefit,
or maximizing project internal rate of return. The
most popular criterion is maximizing net benefits,
which requires analysis of the present value of ben­
efits and costs.

34 49 44
20% 19% 20%

43 66 45
26% 26% 26%

54 85 55
32% 34% 32%

36 53 38
22% 21% 22%

167 253 172
100% 100% 100%

Three types of costs are considered: acquisition,
development, and operating costs are all considered
in the development of the cost-benefit analysis. Sev­
eral different sources of costs relate to each of these
cost types:

190 CHAPTER 6 Application Feasibility Analysis and Planning

3

Define
Customer

Maintenance

3

Define
Video

Maintenance

Define
Startup /

Shutdown
Processing

4

Define
Rental/Return

Processing
Relationship

Video in
Rental Works

Define Screen
Contents and
Process Flow

Define Backup
and Recovery
Requirements

*Bold line indicates the critical path.

2

2

Define
History

Processing

Define Error
Messages/

Abort

2

Define
Conversion

and Training
Requirements

Realistic

DUin

27

\
Task

Define File
Purge / History
File Creation

Not Done in Rental

Milestone

2 I
Review

Requirements
with Vic

FIGURE 6-21 ABC CPM Chart for Analysis Activities

Acquisition Costs
Consulting
Equipment
Software
Site preparation
Installation
Capital
Management staff assigned to acquisition

Development Costs
Application development

Education of personnel
Testing
Conversion
Losses relating to changeover, downtime,

reruns
Aggravation cost

Operating Costs
Personnel allocated for maintenance
Hardware operating expense (e.g., air

conditioning, electricity, etc.)

1/2

Sam

Mary

Vic

1/3 1/4

Assigned time (white area)

Slack Time (gray area)

1/5

Feasibility Activities 191

1/6 117 1/8 1/9

Vic

Vic

Vic

FIGURE 6-22 ABC Gantt Chart for Analysis Phase

Lease/rental costs
Depreciation on related capital acquisitions
Operating personnel overhead

In general, any time you spend money, a cost is gen­
erated. Whether the money is for salaries, personnel
benefits, copy machine rental, PC acquisition, oper-

ating system acquisition, DBMS acquisition, and so
forth, a cost is generated. The breakdown of costs
into acquisition, development, and operating cate­
gories allows managers to do sensitivity analysis on
alternatives. For instance, Alternative A might have
a high acquisition cost relating to hardware site
preparation and expense, whereas Alternative B has

192 CHAPTER 6 Application Feasibility Analysis and Planning

none. If the benefits are greater with Alternative A,
we might ask if the acquisition of hardware is justi­
fied by the extra benefits relating to Alternative A.

All of the costs of each alternative are assembled
according to type for the analysis. Depreciation
schedules, leasing schedules, and any ancillary
information relating to how costs are generated over
time are also used in the analysis.

Similarly, all information about benefits expected
from the application are assembled for the analysis.
Benefits are identified as 'one time' or as continuous
improvements. If a stream of revenues is generated
over time by the application, these are identified as
annual revenues.

The net present value formula is applied to the
benefits and costs to develop a net present value for
the application (see Figure 6-23). The formula
accounts for the time value of money in computing
the net benefits over costs. If inflation or fluctuating
interest are expected, the interest rates might be
changed for each time period to account for such

where: t is the time period, varying from 1 to n
d is the discounted interest rate
B is the value of period benefits
C is the value of period costs

Example: d = .08

2

3

4

o
10,000

30,000

50,000

50,000

5,000

5,000

5,000

NPV = -(50,000/1)
+ 5,000/1.08
+ 25,000/1.1664
+ 45,000/1.2597

= -50,000 + 4,629 + 21,433 + 35,722
=$11,784

(1 + d)t

1.0000

1.0800

1.1664

1.2597

FIGURE 6-23 Net Present Value Formula and
Computation

fluctuations. Keep in mind that exactly the same
analysis is required for all competing alternatives to
ensure consistent NPVs. The example shown in Fig­
ure 6-23 shows a project for which the benefits out­
weigh the costs; such a project would be desirable.

The problems arise when a project does not gen­
erate a favorable NPV, but numbers alone do not
express project value. Benefits may be insufficient to
pay for the project. For instance, in complying with
government regulations, there may be no specific
benefits to the company. Similarly, when responding
to a competitive need, the benefits might not out­
weigh the costs, but the cost of not doing the project
might be the loss of the business. Start-up companies
frequently build applications to support anticipated
work; the applications might not be profitable until
they are several years old. Benefits from such appli­
cations are difficult, if not impossible, to quantify
because of the uncertainty associated with a new
business. Finally, companies wishing to gain signif­
icant competitive advantage must frequently under­
take a financially unjustifiable project to obtain their
goals. American Airlines, for instance, in developing
their $1 billion airline reservation system was bet­
ting that their ability to gain market share would out­
weigh their expenses. The financial analysis could
not justify the project because of the high level of
intangible benefits and the difficulty in estimating
their worth. The risk paid off, but could just as easily
have backfired. That is the nature of risk and why
good managers develop skill in knowing when such
a risky project is worth attempting.

Make/Buy and Other Types of Analysis

Other types of analysis that might be developed are
make/buy, internal rate of return, and payback
period. Each of these uses NPV as a starting point
for determining the value of a project. Each develops
a different analysis. Make versus buy decisions eval­
uate two types of development alternatives. First,
makelbuy compares the value of a customized appli­
cation to the purchase of a software package. This
sounds like a simple comparison, when in fact,
it is not. Purchasing software for a complex appli­
cation usually requires customizing and alteration.
Packages are rarely used off-the-shelf. Consequently,

the analysis concentrates on the extent to which
changes to the package are required and the cost
of purchase plus changes versus the cost of custom
development.

Second, makelbuy is also used to compare the
competitive value of building a software product
internally versus development by a consulting firm.
Occasionally companies which charge for iIi-house
IS development services begin to overcharge their
users. Users are then justified in obtaining competi­
tive bids from consulting companies and using their
services when the cost is less.

Internal rate of return (IRR) is a financial analysis
of NPV such that positive cash flows (i.e., benefits)
are equated to negative cash flows (i.e., costs). This
means that the d, discount rate, in the NPV formula
is found. This gives the true cost of funds for this
particular project. When projects have similar NPVs,
an IRR analysis identifies differences in cost of
money based on when the cash flows are generated
that might differentiate the alternatives.

Payback period is the number of years required to
recover the investment (acquisition and develop­
ment) costs from projected benefit cash flows. The
payback period might decrease revenues for the time
value of money or might use a simple analysis of
payback. Payback analysis is popular because it is
easily understood. It can discriminate against proj­
ects which have a long lead time to realizing bene­
fits, but should not be the primary criterion for
project selection decisions. In the example shown in
Figure 6-23, the payback period would be 3 years
and 2.4 months. This number is arrived at by identi­
fying $10,000 in year 4 as contributing to the pay­
back along with all benefits in years 2 and 3. 10,000
is 20% of 50,000, the fourth year's projected return.
Therefore, 20% of 12 months is 2.4 months. The
payback, rounded, is 3 years and 3 months.

Document the
Recommendations
The documentation of the feasibility study pulls
together all information relevant in developing the
final recommendation. The purpose of the summary
document is to provide managers a basis for decid-

Feasibility Activities 193

ing whether or not to continue with the development
effort. With this thought in mind, the feasibility doc­
ument should contain mainly supporting diagrams,
lists, and summary analyses. Text should be kept to a
minimum to explain the attached diagrams and
analyses. An outline of a feasibility document is pro­
vided in Tab Ie 6-17.

TABLE 6-17 Feasibility Report Outline

1.0 Management Summary

2.0 Current Environment

2.1 Business Environment

2.2 Work Procedures

2.3 Evaluation of Strengths and Weaknesses of
Current Procedures

3.0 Proposed Solution

3.1 Scope of Proposed Solution

3.2 Functional Requirements Overview

4.0 Technical Alternatives

4.1 Alternative 1
4.1.1 Description of Alternative
4.1.2 Benefits of Alternative
4.1.3 Risks of Alternative

4.2 Alternative 2 ...

4.n Alternative n

5.0 Recommended Technical Solution

5.1 Comparison of Alternatives
5.1.1 Technical Comparison
5.1.2 Benefits Comparison
5.1.3 Risk Comparison
5.1.4 Recommendation and Risk

Contingency Plan

6.0 Project Plan

6.1

6.2

7.0 Costs

7.1

7.2

7.3

Critical Path Chart

Staffing Plan

Cost of Recommended Alternative
Hardware/Software

Projected Staffing Cost

Analysis of Alternatives (if necessary)

194 CHAPTER 6 Application Feasibility Ar:alysis and Planning

The Management Summary section is the most
important because it is the only item read by most
of the audience. Therefore, it should be brief, less
than two pages, and should summarize the remainder
of the document. In particular, the cost, NPV, other
financial analyses, scope, purpose, technical recom­
mendation, and importance of the project to the
organization are highlighted in the summary section.
All organizations involved in the development
effort and the nature of their involvement should
be highlighted.

The remaining sections summarize each of the
main activities completed during the feasibility
study. The current environment and proposed alter­
natives are described in sufficient detail to give the
reader an understanding of the differences proposed.
This section identifies hardware, operating environ­
ment, software, items for custom development, and
requirements met by the alternative. Benefits and
risks associated with each alternative are also listed
and discussed to trace the reasoning leading to
a selection.

The section on the recommended technical solu­
tion is more detailed than the alternatives discussion
and discusses different topics. The tasks, key fea­
tures, and development life cycle, methodology, and
concept are highlighted in the proposed application
section. In addition, the discussion lists constraints,
assumptions, level of security, recovery, and audit­
ability for the recommended solution. A contingency
plan for minimizing the probability and for dealing
with risks of the recommended alternative are
detailed. Potential impediments to successful devel­
opment, such as decisions or information not cur­
rently available, are identified. Ideally, the person
responsible for resolving the outstanding issues is
named and dates for resolution are identified.

The project plan section summarizes the plan­
ning effort. A critical path chart and staffing plan
are presented with any attendant assumptions and
requirements. Finally, the costs of the recommended
alternative(s) and the financial analysis are detailed.
Any assumptions, for instance, the discount rate for
NPV, are listed. If sensitivity analysis was per­
formed, the extent to which the estimates are sensi­
tive and the source of sensitivity are identified.
Sources of sensitivity might include, for instance,

interest rates, economic fluctuation, or the presence
of a key salesperson.

AUTOMATED __________ __
SUPPORT TOOLS ____ _
FOR FEASIBILITY ____ _
ANALYSIS ____________ _

There are two classes of tools that support the work
performed during feasibility analysis: planning tools
and analysis tools. Analysis tools can span any of the
three methodologies covered in this text and are
discussed in the respective methodology analysis
section.

The planning tools might include project estimat­
ing products, project scheduling products, risk
analysis products, or spreadsheets for financial
analysis. Spreadsheets are general purpose and are
not discussed here. Estimating products are based on
an algorithmic method from those discussed above.
Products based on CoCoMo estimating, Rayleigh
curve, and function point techniques are included in
the list. The tools assume that the underlying input
information, for instance, KLOC, is known by some
other, unspecified technique.

Planning products assume that a work breakdown
with task duration assignment exists. The work
breakdown planning tools support the definition of
tasks, task interrelationships, assignment of staff,
determination of early and late start dates, expected
end dates, and cost of resources. From this informa­
tion, the tool can generate Gantt Charts, critical path
networks, cost summaries, and manpower planning
guides. There are many good project management
software products of both types on the market, sev­
eral of which are listed in Table 6-18.

Two risk analysis products are included in the
summary list. These products walk you through the
assignment of risk types, probability of risk occur­
rence, and cost of the risk to develop a monetary
value of risks r~lated to the project. The cost of
risk is factored into the financial analysis. More
products of this type should be expected to be avail­
able as companie& become more sophisticated in

Summary 195

TABLE 6-18 Automated Tools to Support Project Planning

Product

DEC Plan

ESTIMACS

Harvard Project Manager

MacProject

ProMap V

RISNET

SLIM

SPQR/20

Time Line

WINGS

Company

Digital Equipment Corp.
Maynard, MA

Computer Associates, Inc.
Long Island, New York

Harvard Graphics Corp.
Boston, MA

Apple Computer
Cupertino, CA

LOG/AN, Inc.

J. M. Cockerman Associates

Quantitative Software Management

Software Productivity Research, Inc.
Cambridge, MA

Symantec Software
Cupertino, CA

AGS, Inc.
New York, NY

Technique

Co CoMo Based
Estimation Tool

Function Point
estimates extrapolated to
include staffing, cost, risk,
hardware configuration,
and cost estimating

Pert, CPM, and Gantt Charts
Resource Allocation
and Tracking

Pert, CPM, and Gantt Charts
Resource Allocation
and Tracking

Risk Analysis

Risk Analysis

Costing Software based
on Rayleigh curve
and LOC

Multiple choice
approach to
function point
estimation

Pert, CPM, and Gantt Charts
Resource Allocation
and Tracking

Pert, CPM, and Gantt Charts
Resource Allocation
and Tracking

their assessment of the risk associated with capital
projects.

are: collect data, define scope and functions, define
technical alternatives, define benefits and risks of
each alternative, analyze organizational and techni­
cal feasibility, select technical alternative(s), define
project plan, assess financial feasibility, and select
final alternative. Data collection most frequently
uses interviews or JAD-like sessions to define cur­
rent work environment, problems, and desires for the
new application. From the information collected, the
team and user define the scope of the activity,
including all departments involved. Then, the func­
tions to be kept from the current work environment

SUMMARy ____________ __

Feasibility analysis is an important activity that gives
a development project a scope and refined defini­
tion of application purpose, while providing infor­
mation that allows the determination of technical,
organizational, and financial readiness of the organi­
zation. The steps to performing feasibility analysis

196 CHAPTER 6 Application Feasibility Analysis and Planning

and functions to be added to provide the new func­
tionality are defined at a high level.

Technical alternative definition begins with an
assessment of the project's criticality to the organi­
zation and the need for different departments to
share data. Based on that information, existing com­
puter resources are analyzed to determine their use­
fulness for the proposed application. If existing
resources are not adequate, new computer equip­
ment, software, or packages are defined for acquisi­
tion. In general, the smallest size computer (orLAN)
that can do the work and provide a migration path for
growth is selected. Distributed resources might be
identified as an option but are not fully analyzed at
this time. Several technical alternatives are devel­
oped and analyzed to select one or two that meet the
most requirements, provide for the greatest benefits,
and pose the fewest risks.

The next activity is to define a project plan. There
are many different estimating techniques for project­
ing time to complete a project: algorithmic, top­
down, bottom-up, price-to-win, Parkinson's Law,
expert judgment, function point analysis, and anal­
ogy. Of these, CoCoMo and function point are the
most popular when a history of project development
is maintained by a company. Function point analy­
sis complements CoCoMo in developing an estimate
of LaC. Co CoMo can use the LaC estimate as input
to its formulae to develop total person-month, total
development time, and project staffing estimates.
Parkinson and price-to-win are not recommended.
When other techniques are used, they are best used
in combination. So, top-down, bottom-up, and
expert judgment might be combined to develop best
guesses of the time and effort involved in a devel­
opment project. The project plan is used to develop
personnel costs and computer resource usage. These
and the other costs are factored into the financial fea­
sibility assessment.

Financial feasibility techniques most commonly
used include net present value analysis which
accounts for the time value of money, internal rate of
return which identifies the real interest rate of a proj­
ect, and payback analysis which identifies the time at
which net revenues equals net costs of project.
Financial analysis also supports the comparison of

make versus buy alternatives for a project. Two
types of make!buy analysis can be developed. First,
custom development of software versus purchase of
a package can be evaluated. Second, in-house versus
contractor development can be evaluated. Finally,
alternative selection is based on financial value of
the alternative(s) when more than one technical
alternative for a project exists. Also, from the finan­
cial analysis, managers can evaluate several different
projects using an objective method and can identify
the project with the fastest, strongest returns.

REFERENCES __________ __

Albrecht, Albert J., and James E. Gaffney, "Software
function, source lines of code and development effort
prediction: A software science validation," IEEE
Transactions on Software Engineering, November,
1983,pp.639-648.

Boehm, Barry W., Software Engineering Economics.
Englewood Cliffs, NJ: Prentice-Hall, 1981.

Charette, Robert N., Software Engineering Risk Analysis
and Management. NY: McGraw-Hill, 1989.

Collins, Eliza G. c., and Mary Anne Devanna, eds., The
Portable MBA. NY: John Wiley & Sons, 1990.

De Marco, Tom, "An algorithm for sizing software
products," Performance Evaluation Review, ACM
SIGMetrics Publication, Vol. 12, #2, Spring-Summer,
1984, pp. 13-22.

Gause, Donald c., and Gerald M. Weinberg, Exploring
Requirements Quality Before Design. NY: Dorset
House Publishing, 1989.

Jones, Capers, "Program Quality and Programmer
Productivity: A Survey of the State of the Art," Pre­
sentation through Software Productivity Research,
Inc., Boston, MA: March 15, 1989.

Jones, Capers, Programming Productivity. NY: McGraw­
Hill, 1986.

Kendall, Ken E., and Julie E. Kendall, Systems Analysis
and Design, 2nd Ed. Englewood Cliffs, NJ: Prentice­
Hall, Inc. 1992.

King, John L., and Edward L. Schrems, "Cost-benefit
analysis in information systems development and
operation," Computing Surveys, Vol. 10, #1, March,
1978, pp. 20-34.

Rubin, Martin S., Documentation Standards and Proce­
dures for On-line Systems. NY: Van Nostrand Rein­
hold Company, 1979.

KEy TERMS _______ _

algorithmic estimating
alternative approaches
analogical estimating
application leverage

point
benefit
bottom up estimating
business leverage point
Co CoMo estimating
competitive environment
contingency planning
cost/benefit analysis
critical success factor
customer environment
delivered source

instructions
Delphi method of

estimating
discounted cash flow
embedded project
expert judgment

estimating
feasibility
financial feasibility
flexibility
function point
function point analysis
Gantt Chart
goal
imaging

industry environment
intangible benefits
internal rate of return

analysis
KDSI
leverage point
make/buyanalysis
net present value (NPV)
objective
organic project
organizational feasibility
Parkinson's Law
payback period analysis
pert chart
platform
portability
price to win strategy
project mode
project plan
quick analysis
reliability
risk
risk assessment
semidetached project
tangible benefits
technical feasibility
top down estimating
vendor environment
work breakdown
work flow management

EXERCISES _______ _

1. Using Table 6-6 as a guide, develop a CPM for
the design phase of ABC's project. While you
do the diagram, reason through the dependen­
cies. Assuming Sam and Mary do the project
alone, how should the work be allocated
between them to (a) allow Mary to do project
management tasks, and (b) leverage the work
they did during analysis?

2. Using Table 6-6 as a guide, develop a more
detailed task list for some phase or portion of a
phase (e.g., all rental/return processes, or con­
version/training). Then, develop an estimate of
the work based on your expertise and the idea

Study Questions 197

that you would perform the work. How does
your estimate differ from Table 6-6? Why? Are
the differences completely justifiable? Present
your estimates to a group of classmates and pro­
vide your reasoning for the changes.

STUDY QUESTIONS ____ _

1. Define the following terms:
Benefits Function point
Net present value Leverage point
Risk Technical feasibility

2. Why is feasibility analysis performed?
3. What are the three main types of feasibility and

why are they important?
4. List the steps to performing feasibility analysis.
5. What are the main data collection techniques

used during feasibility analysis?
6. What is a leverage point?
7. How do business and application leverage

points differ? How do they complement each
other?

8. List five sources of benefits.
9. Discuss the differences between tangible and

intangible benefits.
10. List five sources of risk and give an example of

each.
11. Why is risk analysis performed? What do you

do with the risks once they are identified?
12. How are technical alternatives generated?
13. Once technical alternatives are complete, how

are they assessed? What is the basis for select­
ing one alternative as the preferred one?

14. Compare the advantages and disadvantages of
algorithmic, function point, and combined top­
down, bottom-up estimating.

15. What is the major weakness of Co CoMo
estimating?

16. What is the major weakness of function point
estimating?

17. Why do we have so many estimating tech­
niques? Is one better than another?

18. What is the major financial analysis used to
analyze project alternatives? Why is it the pre­
ferred method?

198 CHAPTER 6 Application Feasibility Analysis and Planning

19. What is the purpose of make/buy analysis?
20. Describe the two types of make/buy analysis. * EXTRA-CREDIT QUESTION

1. The Office Information System described in the
Appendix is an application that automates the
support division of a large company. The units
involved include a typing pool, copy center,
print shop, and graphic arts department. Other
projects are being developed in the IS Depart­
ment that will cost approximately $2.4 million
per year, and an additional $1.5 million in oper­
ating expenses.

The proposed budget for the OIS is $200,000
for a Cobol, mainframe application using a
DBMS to store the data. Is this a reasonable
amount? Develop one to three alternatives that
are more financially attractive. One of the alter­
natives might be on the mainframe but can use
different resources; at least one alternative
should use different technology. Who should
develop the application? Under what circum­
stances would you recommend to do/not do
the application?

PAR

ANALYSIS
----------------------------~---------------__ ~D--------------------______ ~---

DESIGN ----- --. ~-------

INTRODUCTION ________ ___

Analysis is the act of defining what an application
will do. Design is the act of defining how the re­
quirements defined during analysis will be imple­
mented in a specific hardware/software environment.
The next eight chapters define and describe func­
tional analysis and design. Each set of analysis­
design chapters uses major representation techniques
from the methodology class it presents. In a tradi­
tional application development, there are many more
analysis and design activities than we address here
(see Tables III-1 and III-2). Most of these topics
should already be part of your knowledge base from
a systems analysis and design course. Many activi­
ties we do cover in this text are also in a systems
analysis and design course. The difference is that
here we develop three methodologies instead of one
as in systems analysis. In this text, we concentrate on
the activities which differ across the methodologies.
Chapter 13 summarizes the similarities, differences,
and automated support across the methodologies. It
also discusses the future based on current research in
methodologies. Chapter 14 discusses the forgotten
activities in most methodology-related books and

many systems analysis texts. These activities include
human interface design, input/output design, conver­
sion design, and user documentation design.

At the end of the next eight chapters, you should
be able to do the following:

1. Understand the conceptual foundations of the
three classes of methodologies and how they
are similar and how they differ.

2. Represent the functional requirements of
an application using each of the three
methodologies.

3. Be able to translate a functional requirements
definition into a SOL-based design for an
application using each of the three method­
ologies.

4. Compare the advantages, values and dis­
advantages of methodologies' uses for
analysis.

5. Develop a critical understanding of the diffi­
culties of translating what users want into
representations that convey meaning.

6. Know some computer-aided and organiza­
tional supports for completing analysis and
design work.

199

,

200 PART III Analysis and Design

TABLE 111-1 Representative Project Development Analysis Activities

Recurring activities/tasks
Initiate phase
Plan next phase
Prepare report
Review phase products

Analysis Phase Activities

Initiate hardware/software evaluation (as required)
Initiate prototype development (as required)

Define current system (as required)
Document and files
Data elements
Compile data dictionary
Processing
Controls
Volumes and timing
Interfaces with other systems
Responsibilities
Work distribution
Operating costs

Assess current system
Review project objectives and scope
Compare system in operation with recommended

solution
Identify opportunities for immediate improvements
Assess organizational design appropriateness for

application

Define proposed application's business requirements
System concept and overview

Major functions
Scope
User organizations involved
Interface organizations
Interface application systems
Context diagram
System concept-technology (i.e., DBMS, LAN,

distribution plan, etc.)
Major issues, unresolved problems that might hinder

application development
Schedule summary by phase
Staffing summary by phase

Assess proposed system requirements
Identify alternatives for system design [e.g., data­

base environment(s), hardware platform, software
platform, special technology, packaged software,
4GLs, user software (e.g., Lotus)]

Discuss and, as necessary, reassess technical, orga­
nizational, and economic feasibility as each re­
lates to the alternatives identified

Define processing requirements
DFD (or analogous graphic for the methodology)
Steps (i.e., procedures to be followed; should match

methodology)
Required sequences of processing only
Constraints (e.g., timing, memory, concurrency,

other applications, etc.)
Accuracy (e.g., to x decimal place, or timing as of

y minutes)
Formulae
Performance criteria (e.g., volume, timing, response

time)
Inputs-name, source, frequency, volume, data

elements, media
Outputs-name, purpose, frequency, screen format,

copies, elements, sequence, media
Database-data requirements as expressed in

methodology, relations, user views, organization,
required reviews, access, security

Reports-name, purpose, destination, frequency,
form/screen, data elements, sequence

User acceptance criteria

Define interface requirements
Identification-name of interface, sending system/

organization, receiving system/organization
Responsibility/approvals
Interface schedule-testing schedule and responsi­

bilities, conversion schedule and responsibilities,
delivery to production

Requirements
Inputs-name, purpose source, frequency, media,

form #, components using each input, data ele­
ments, data controls, data descriptions, formu­
lae for computation
Input layout-data direction, terminal devices,

comm software, time outs, modem require­
ments, line use, data characteristics, line
characteristics, line protocol

Output-name, purpose, frequency, format/screen
#, copies, elements, sort sequence, media, com­
ponent generating the output, source of data
and name, data description, layout (transmitted
output should have same information as input
layout above)

Introduction 201

TABLE 111-1 Representative Project Development Analysis Activities (Continued)

Files-system name, system ID, file name, file
ID, type of file (I/O), purpose, source, update
cycle, sequence, frequency, volume, growth,
media, usage (R, W, R/W), retention character­
istics, security, blocking factor, file records
types, components using file, file control char­
acteristics

Record description-record name, file ID, record
type (fixed, variable, spanned), record size,
update cycle, form # for input, data elements
and characteristics (definition, purpose, use in
computation, formulae, precision, edit criteria,
defaults, required/optional data, etc.)

Define control requirements
Batch totals, item counts
Hash totals, record counts
Operation intervention and inquiry logs
Exception reporting and responsibilities
Processing controls-equipment failure
Document control (e.g., for prenumbered checks)
Transaction logging and on-line controls

Define security and backup requirements
Recovery requirements data criticality, recovery plan

in event of emergency
Password and internal security checks

Define conversion requirements
Data clean-up
Clerical effort
Systems effort-automated and manual files to be

converted
Volume and growth of files as it impacts conversion
Alternatives for implementation
Overall conversion timing requirements
Conversion impact on user areas
Conversion impact on operations
Facilities alteration/site preparation

Changes or additions to desks, tables, work spaces,
cabinets, charts, etc.

Forms, tapes, manuals, etc.
Construction-walls, floors, ducts, etc.
Cabling and electrical-outlets, switches, cables,

lighting, other wiring, etc.
Safety-extinguishers, alarms, first aid kits, etc.
Security-badge-entry, guard service, etc.
Environmental-air conditioning, humidification,

dust, etc.

Maintenance-cleaning, equipment maintenance, etc.
Contingency--disaster plans, backup procedures, etc.

Define training
Type of training, recipients, and details for all training,

including but not limited to on-line data entry, remote
location data input, native language manuals, general
introduction to new system

Define system acceptance criteria
Test data input by user
Parallel runs
Pilot runs
Phased cutover
Depending on acceptance criteria, include the

following:
Amount of test data to be entered, and number of

clerks involved
Size of pilot parallel (e.g., number of accounts,

cycles, etc.)
Length of time
Performance criteria
Impact on clerical staff
Impact on operations

Define hardware
Acceptable limits of downtime
Average or maximum terminals down at the same time
Inquiry response time
Update response time
Batch turnaround time
Maximum percent of transmission errors
Backup 'firedrills' plan and frequency
Maintenance/reliability
Peak and average time requirements
Geographic constraints on terminal location
Purchased hardware required costlbenefit analysis and

RFP selection process
List of hardware for this system, type, location, 'own­

ership,' system role, backup, criticality (This list
should include terminals, PCs, controllers, modems,
transmission lines, mini-computers, workstations,
mainframes, peripherals, disks, CDs, tapes, etc.)

Define software/system/misc.
Volume of each transaction type
Growth
Delivery time constraints

(Continued on next page)

~------------ --

202 PART III Analysis and Design

TABLE 111-1 Representative Project Development Analysis Activities (Continued)

Number of reruns
Backup 'firedrills' plan and frequency
Distribution of output messages
List of hardware for this system, type, location, 'own­

ership,' system on which it runs, backup, criticality
[This list should include DBMS, operating system,
LAN, communications, remote access (e.g., Carbon
Copy), on-line help, etc.]

Define initiate request for proposal (RFP)
Determine criteria for decision
List requirements for proposal
Select vendors
Prepare RFP report

In this section, we introduce the general charac­
teristics of analysis and design that all methodolo­
gies have in common.

APPLICATION _____ _
DEVELOPMENT AS ___ __
A TRANSLATION ____ _
ACTIVITY ----------------

The process of building applications is a series of
translations. Historically, we first examine and trans­
late the current physical system to develop an
abstract, logical definition of the current system (see
Figure III-I). Then, with the application users, we
define the requirements of the new logical system
which retains the aspects of the old system while
incorporating the new requirements defined by users.
The new logical system definition is the basis for
translating to a working physical application.

This historical strategy is useful only sometimes.
The strategy works when a new application will
maintain 50% or more of the old application's func­
tions. For example, we might redevelop an account­
ing application to move from batch to on-line, but
to perform all the same functions. Another use of
this strategy is when study of the old application can
save time in providing code tables. For instance,
state abbreviations, zip codes, and customer name

Define data requirements
Data dictionary should be an appendix to documenta­

tion if it is not automated. For automated application
documentation, print the information from the dic­
tionary. For manual applications, include the follow­
ing for each data element:

Field name, alternative name, description, pur­
pose, use in computation, use in determining
conditions (with other fields), code reference,
length, decimal positions, type, unit of mea­
sure, optional/required, allowable values
(range, code structure, meaning of values), de­
fault value, external data source

abbreviations all might be retained from an old
application.

In many situations, however, the existing applica­
tion is antiquated, full of obsolete design or riddled
with errors. To study it is to learn erroneous design
and procedures that must be unlearned. Why learn
it in the first place? Rather, a frequently better
approach is to begin analyzing the requirements of
the new application. This is called 'essential' sys­
tem analysis l and requires only that you, the ana­
lyst, attend to what relates to the new application.
The old application or procedures may be studied for
specific information, code tables, or crucial steps in
the process; but in general, the old application and
procedures are ignored.

The essential approach is used in this text. We
ignore the details of the manual method of perform­
ing rental processing because the computerized
method will completely replace the manual method.
The major value of studying, for instance, what man­
ual forms are filed and when they get retrieved, is to
help get a sense of file processing in the new appli­
cation. When the old procedures are being replaced,
you may want to use the old methods as a way to
confirm your thinking after you have developed the
application concepts.

Whichever analysis method you use, translations
performed during analysis all have the following five

1 See McMenamin and Palmer, 1984.

Application Development as a Translation Activity 203

TABLE 111-2 Representative Design Phase Activities

Recurring activities/tasks
Initiate phase
Plan next phase
Prepare documentation
Review phase products

Design Phase Activities

Initiate business system design

Design functional outline
Review business functions
Review interface requirements
Develop alternative functional outlines
Select best alternative
Design data structure/database

Normalize, optimize, then ... denormalize as
required

Design interprogram flows and controls

Design input, output, and data
Design output screens/documents
Design input requirements/screens
Design screen dialogue and system navigation

Design processing
Design computer processing
Design non computer processing

Design controls
Describe business control procedures
Define security and backup procedures

Design business system test plan
Identify acceptance criteria
Prepare tentative user acceptance strategy
Identify critical resource requirements
Prepare testing overview
Develop system test plan

Complete business system design
Complete data dictionary with elements, processes,

messages, objects, modules, files/relations, data flows
Define proposed organization
Review conversion requirements
Prepare operating schedule
Perform program design as outlined below

Evaluate business system design
Assure technical, operational, and economic feasibility
Review risks

User procedures
Define manual procedures

Define user manual procedures
Define computer operations manual procedures
Prepare manual procedures test plan

Complete forms, documents, and screens
Prototype forms, screens, reports
Complete input documents/screens
Complete output forms/screens
Complete screen designs, error codes, screen inter­

action process

Develop training
Determine pedagogical training requirements
Determine training methods
Prepare training sessions and software
Prepare training schedule
Pilot test training

Prepare for installation
Prepare and test user manual
Verify readiness of user environment
Train user personnel
Test manual, backup, and disaster procedures

Design the physical database
Define user views
Define logical DB to DBMS
Map logical DB to media, deciding specific access

method, extra space allocation, algorithms, etc.
Build and test a sample DB
Work with test planners to build the test DB

environment
Work with conversion team to implement the produc­

tion DB environment

Build conversion subsystem
Work with user to translate and validate current data
Specify, write, and test conversion programs
Train conversion personnel
Execute conversion plan to build permanent DB

Program design
Develop modular program structure

Study data structure
Develop logical program structure

Complete methodology-related graphics
Specify subprograms, modules, functions

Document programs/modules individually and as a
collection. Pay special attention to document inter­
modular relationships and message passing between
programs

(Continued on next page)

204 PART III Analysis and Design

TABLE 111-2 Representative Design Phase Activities (Continued)

Develop and unit test physical code
Implement programs top-down using stubs
Prototype as needed

Plan program testing
Prepare program test plan
Create program test data
Create test dialog for single user, multiple users,

multiple functions

Similar plans for subsystem, system, stress, multiuser,
and acceptance testing are required and planned at this
point. (If the application is on a tight deadline, testing
and immediate conversion to production can be
planned and implemented together.)

Define program development plan
Determine development method

common subactivities (the activities are summarized
in Table 111-3).

1. Identification-Find the focal things that
belong. Identification, for instance, in the
definition of the new logical system requires
finding requirements. Things to be found
include, for instance, entities, objects,
relationships, functions, processes, and
constraints.

2. Elaboration-Define the details of each
thing identified. For instance, a requirement
might be to provide consolidated customer
account information for ad hoc reporting.
During elaboration, you seek to answer ques­
tions like:

What information should be consolidated
about a user? Does it currently exist?

What does ad hoc mean to the user?
What type of queries do the users ask now?
What types of questions do the users want to

ask that they cannot ask now?
What kinds of data analysis do users need?
What form (for example, screen or paper)

does output take?
Where (geographically) are the users asking

the questions?

Define development sequence
Revise schedule and budget for programming phase

Create source library members
Write record descriptions for source library (This is

not done if an active dictionary is used or if the dic­
tionary for the DBMS monitors all interactions to
the database. Instead, copy books or analogous code
are included to describe user views.)

Write standard program code to source library

Refine operational requirements
Revise computer run procedures
Produce tentative production control cards (JCL)

Where (centralized/distributed/decentralized)
is the data? and where should it be?

3. Synthesis-Build a unified view of the appli­
cation, reconciling any parts that do not fit
and representing requirements in graphic
form. The representation can be either man­
ual (i.e., on paper) or automated, using
computer-based tools.

4. Review-Perform quality control. At the end
of the phase (either analysis or design), rean­
alyze feasibility, schedules, and staffing.
Revise them as needed based on the more
complete, current definition of the new
application.

S. Document-Create useful documents from
graphics and supporting text either manually
or with computer-based tools.

Each of the three methodologies begins analysis
by defining requirements, but each has a different
starting (and ending) perspective for its analysis
process. Similarly, for each of the other analysis
activities, the results of the activity differ because the
perspective at the start focuses your attention to dif­
ferent aspects of the application.

Keep in mind that even though we discuss these
methodologies as fairly linear, sequential processes,

Application Development as a Translation Activity 205

Define Current
Translate from

Define New ..
Logical System 'Old' Logical to Logical System

New Logical
System

Translate from Translate from
Physical to Logical to

Logical System Physical System

r

Define Current Define New
Physical System Physical System

FIGURE 111-1 Application Development Translations

they are not. You get application requirements in a
nonlinear fashion, usually through interviews. Fre­
quently, you get high-, low-, and medium-level
information all at the same interview. Your job, as
the SE, is to make sense of the information received.
The sense-making activity is part of the process of
building your mental model of the application
domain. Since you receive information at different
levels over time, your mental model of the domain
gets fleshed out at different levels over time, too.
You constantly have to reevaluate the information
you currently have against new information to deter­
mine if adjustments to the current mental model
are necessary.

A second point about the nonlinear aspect is that
specification and implementation are never really
separated completely in your thinking process. In
systems analysis class you usually learn not to think
about the language or implementation environment
while you are performing analysis. You are told only
to think about functional requirements. You must
think of the implementation environment periodi­
cally in the real-world, however, because some
desired function might not be able to be done (or
done easily) in the planned environment. When

expensive or complex functions are requested, you
must alert the user/sponsor to be sure they agree with
the desired function. An expensive change is one
that adds more than 10% to the cost of the applica­
tion. A complex change is one that convolutes an
otherwise simple process (see Example III-1).

Just as analysis is a translation activity, so too, is
design. The goal of design is to map the functional
requirements from analysis into a specific hardware
and software environment. In design, the same five
general sub activities are done, but they have differ­
ent definitions.

1. Identification-Design is the act of mapping
how logical requirements will work in the
target computer environment. This means
that we identify the system design structure
(if not already decided). The system structure
is the underlying design approach. Possible
approaches include the following:

• Batch, on-line (portions of complete), or
real-time

• Which functions are connected and how
... how the application will work in the
production environment

206 PART III Analysis and Design

TABLE 111-3 Summary of Analysis and Design General Activities

Activity

Identification

Elaboration

Synthesis

Review

Document

Analysis

Find the focal things that are in the
application. This includes, but is not
limited to, entities, objects, relationships,
functions, constraints, data elements,
control, legal requirements, etc.

Define the functional details of each
thing identified. Users provide
definitions for all terms and describe
all procedures, formulae, and pro­
cessing. This elaboration is inde­
pendent of hardware, software, or
location.

Develop a unified view of the
application. Develop and document
a representation of the application.
Graphics, tables, and other techniques
are preferred representations.

Review and walk-through the analysis
with peers and project members. Walk­
through the analysis with users. Review
and revise schedules and costs as

necessary.

Develop 'final' forms of graphics and
supporting text for all analysis activities.

• General user interface as menu-driven,
windows-icons-menus-pointers (WIMP),
command-driven

• Mode of operation, that is, is user an ex­
pert, novice, or somewhere in between

2. Elaboration-Each requirement from the
analysis phase is expanded into greater detail

Design

Refine the system concept and apply it
to the functional requirements. Identify
any compromises of requirements that
might be necessary to work around
implementation environment limitations.
Define the general standards and rules for
the implementation environment to which
all remaining work must adhere.

For each function, map the function to the
hardware and software environment.
Identify reusable modules. Finalize details
of message processing and intermodule
communications.

Develop a unified mapping of the appli­
cation to the intended hardware and
software environment. Determine geo­
graphic and package locations for all data
and processes. Graphics, tables, and other
techniques are preferred representations.

Review and walk-through design compo­
nents, test plan, conversion plan, and
DB design, with peers and project
members, program specifications
with the programmer and other peers, and
screenswith users. Review and revise
schedules and costs as necessary.

Develop 'final' forms of graphics and
supporting text for all design activities.

and mapped to hardware and software within
the system design structure. Questions re­
late to:

How should the database be designed to
provide, for instance, the best possible
response time with the greatest
efficiency?

Application Development as a Translation Activity 207

CARTER CORDUROY-YOU SHOULD HAVE ASKED AGAIN
Carter Corduroy, a $100 million company,
wanted to install an integrated database
application to perform order entry, inventory
control, and manufacturing control. During
the analysis of the application, George Dare
was the user contact who approved all re­
quirements, acted as liaison to the rest of the
company, and provided many requirements.

The analYSis phase of the project com­
pleted on time and all ten project team mem­
bers felt they had a good understanding of
the process required and what the resulting
application would do. The two people pre­
paring most of the documentation and all
of the program specifications were Maria
Martinez, SE/project manager for 10 years
who had done two other such integrated
order-inventory systems, and Charlie Chou,
SE with 12 years of experience who had de­
veloped applications using all of the software
involved.

During the middle of the analysis phase,
the systems manager was replaced with a
newly hired person, Robert Blake. Mr. Blake
came from a larger fabric manufacturer and
wanted to make a name for himself quickly
in his new environment. He quickly forged a
liaison with Harry Crater, the plants' manager.
The application would be installed in his two
finishing plants: one in Virginia and one in
Arkansas.

Crater and Dare were political enemies.
Dare had once worked for Crater and had
not gotten along with him. Dare was young
and highly proficient at his job and soon sur­
passed Crater. Crater now reported to Dare
for purposes of developing the application­
the biggest in the company's history.

These circumstances did not affect the
application team until late in design, after
programming had begun. Six weeks before
the application was supposed to go into pro-

duction, Dare was on vacation. Crater had
a validation meeting for reporting require­
ments with Martinezond Chou. At the meet­
ing, he said that planned reports could not
identify 'reworks: goods that were defective
and reentered into the finishing process a
second time. He was adamant that he must
have some way of knowing if a lot of goods
were a 'first work' or a 'second work.' It was
the first mention of anything other than
one-time-through manufacturing. Maria said
this constituted a major change to the re­
quirements and a nontrivial change to all pro­
grams already begun. It was so significant
that the end date of the project was in jeop­
ardy. She decided to examine the spe­
cific impact, then talk to George about the
change.

Mr. Blake heard of the meeting and, that
afternoon, began pressuring Maria and Char­
lie to 'do what Crater wants.' After aiL he was
the real user.

Maria talked to the team and asked for an
assessment of effort to change their programs
to allow the same lot order to be processed
more than once. She and Charlie then did
their own assessment. The team was unani­
mous. The change would add four to six
weeks time for programming and testing, all
documentation would have to be modified,
and all databases would be changed. In
short, the change could add as much as
$90,000 to the $225,000 contract-a 40%
increase. Maria decided to speak to George
before committing to the change.

Mr. Blake coerced the team, as their
immediate boss no matter who the user of
the application was, to begin work on the
change. When George got back, he was
immersed in another special project that was

(Continued on next page)

208 PART III Analysis and Design

CARTER CORDUROY-YOU SHOULD HAVE ASKED AGAIN, Continued
taking most of his time, When Maria finally got
to him, he said, "Yeah, if Blake approves and
Crater insists, we probably need it, H Still, Maria
had doubts.

She put the changes with cost estimates in
a memo to Blake, He never signed-off on the
change, but verbally agreed again, The ap­
plication was three weeks late when every­
one at Carter exploded, Suddenly, no one
remembered that the application would be
late, No one remembered being warned that
this one, small change would cause so many
problems, Maria was to blame for a poor de­
sign that could not be made to work, Crater
now said that he 'requested' the change but
that it was not absolutely 'necessary,' Blake
forgot the conversations, memo, and ap­
provals. Dare was furious because his special
project was now overbudget and late,

When the written memo and other docu­
mentation from the meetings held at the time

How should programs be packaged to fulfill
processing constraints? Examples might
be to provide five-second response time;
to provide completion of reporting within
a three-hour period daily; or to provide
24-hour access to information that is up­
to-the-minute.

Other elaboration activities to be decided
include common routines for commonly
used processes. For instance, how will
screen processing be performed? Will
each programmer write his or her own
version of screen interface or will there be
common modules for screen interactions?
The scope and details of system 'utility'
programs to be used by all programmers
are defined.

The last major elaboration activity is to
examine the application constraints. We
ensure that each constraint is considered

were produced, Dare's comment to Maria
was, "You are the expert, you should have
asked again whether or not the change was
necessary, You were the only one who knew
how big it really was! H

In the end, the application was put into
production with only one run through the fin­
ishing plant per work order, Reworks were
assigned a new number and tracked as if
it were the first time through the process,
The costly change and insufficient whistle­
blowing by the project manager led to un­
happy clients, overworked project team
members, and a less than optimal applica­
tion, Could they have been avoided? Prob­
ably not, The client should have been made
to realize the magnitude of the change, how­
ever. Maria and Charlie should have been
more insistent on a detailed review of the
request and sign-offs for this major change,

in the design and that processing is within
the prescribed limits.

3. Synthesis-Build a unified physical design
of the application, reconciling any parts that
do not fit and representing requirements in
more detail. We may add functions to the
application that are environment specific. For
instance, in a mainframe IMS database envi­
ronment, applications require user views,
data base definitions (DBDs), data control
blocks (DeBs), and data service blocks
(DSBs). These control blocks are not re­
quired if using dBase IV on a Pc. The repre­
sentation can be either manual (i.e., on paper)
or automated, using computer-based tools.

4. Review-Perform quality control. At the end
of the phase, conduct a design walk-through,
comparing design to logical requirements to
validate completeness and correctness. Rean-

alyze schedule and staffing for coming stages
of implementation, testing, conversion, train­
ing, and turnover, revising them as required.

5. Document-Create useful program specifi­
cations and an overall design document. The
design document describes the database,
application structure, constraints, and so on.
Graphics and supporting text document the
design. The program/module specifications
include the details of processing, all inter­
face designs, and any specific information
required to develop the program.

As in analysis, these activities vary by methodol­
ogy because the ending point of analysis, which pro­
vides the input to design, is different. However, the
intention of all methodologies is to define the appli­
cation such that programming and implementation
can be started after the design is complete. Program/
module specifications, in some form, are the desired
output of the design phase.

Keep in mind that even though we discuss design
as a straightforward mapping of 'what' to 'how,' it is
not a one-to-one mapping. You might need to com­
promise analysis requirements during design. Com­
promise of requirements means that they may be
rescoped, manipulated, dropped, or otherwise
changed to fit the environment's limitations.

Prototyping is an important activity in design to
minimize the amount of requirements compromise
that takes place. Especially when you use a package
or language for the first time, proto typing should be
used because prototypes frequently find the lan­
guage's limits. You must verify that the application
structure and concept can be implemented using the
software as planned. Frequently in a PC environ­
ment, you will find you are bumping into language/
package limitations that cause you to rethink the
design. Vendors call this process 'work around.' You
are finding a way to work around the built-in
limits of the language. Vendors will usually help find
a work around if the application cannot be built in
known ways. They also challenge users to find work
arounds and broadcast them to others who have sim­
ilar problems.

The linkage between analysis, design, and pro­
gram design is looser or tighter depending on the

Organizational and Automated Support 209

methodology and implementation environment. For
instance, data information required differs if we use
dBASE IV2 or if we use IMS DB/DC.3 Level of
requirements detail differs if we use the Focus4 lan­
guage or if we use C-Ianguage.5 Where possible, we
point out specific instances of these linkages.

You, as the SE, must constantly check your men­
tal model of functional requirements when building
a mental model of how they will be implemented. Do
not be afraid to try different ways of thinking. Fre­
quently the old way was not too good. We get
trapped in our thought processes and don't even
remember to do the out of the box thinking6 that is
necessary for innovative designs.

Before we discuss methodologies, some organi­
zation and automated supports that facilitate ap­
plication development regardless of methodology
are discussed.

ORGANIZATIONAL ___ _
AND AUTOMATED ___ _
SUPPORT ________ _

Organizational innovations that are useful with
all methodologies are joint user-IS application
development activities, user managed application

2 dBASE IV is a trademark product of Ashton-Tate, Inc.

3 IMS DB/DC is a trademarked mainframe product of the IBM
Corporation. IMS, Information Management System, is a
hierarchic database product. DB stands for database; DC
abbreviates data communications.

4 Focus is a trademarked database, query, application generator,
expert system product of Information Builders, Inc. Focus is
thought of as a 4th-generation language because of its power­
ful query capabilities.

5 C-language is a trademark product of Bell Labs; C++ is a
trademarked product of Borland International; and there are
other versions of C-language.

6 Out of the box thinking means to rethink the entire process as
if the current methods, procedures, and policies did not exist.
Put yourself in the shoes of a caveman (or an intelligent child)
who just walked into the company, and redesign the work as
they might. Question everything. For instance, who says you
need to keep a copy of an order? What is the real, i.e., legal
requirement?

210 PART 111 Analysis and Design

development, structured walk-throughs, and data
administration. The goal of these organizational
innovations is to speed the development process,
foster user participation, and improve the quality
of the resulting application. Automated support
for structured analysis and design comes from
computer-aided software engineering (CASE) tools.
Each chapter will identify CASE tools that relate to
the phase and activities. In this section we describe
the characteristics of CASE tools and the ideal
CASE environment.

Joint Application Development
Several techniques have been developed to describe
the joint, intensive definition of application require­
ments-Joint Requirements Planning (JRP) ,
Joint Application Design Development (JAD),7
and Fast-Track. 8 They are all similar in that the goal
is a collaborative, user-IS definition of application
requirements. The planning and execution of a joint
session are also similar. The differences are the level
of participants, subject matter, and level of detail
of the discussions. These are more fully described
below.

JRP is an executive level user-IS activity to iden­
tify overall requirements at the enterprise level. Fast­
Track and JAD both are designed to produce a
functional requirements specification. If a JRP report
exists, the Fast-Track/JAD uses the JRP report as
constraining or defining the business environment
within which the application is defined.

JRP, Fast-Track, and JAD activities are

• designed to shorten the application develop­
ment process

• productivity tools
• structured to improve the quality of the appli­

cation development deliverables.

These characteristics of the joint development
activities can also provide opposite results if the ses­
sions do not adhere to the guidelines defined by their

7 JRP and JAD are design techniques of the IBM Corporation.

8 Fast-Track is a design technique of the Boeing Computer
Company.

developers. However, these techniques do not sub­
stitute for experience, good project management, or
knowledge about the application! Even with user
involvement in analysis and design, application
developers must develop knowledge and shared
mental models of both the application and problem
domain. One purpose of the joint sessions is to be
sure of a common mental model for all participants.

Requirements for a joint session relate to:

• the team
• the session
• joint structured process
• the meeting facility
• documentation tools.

The Team

The team is composed of client representatives,
facilitator, systems representatives, and support per­
sonnel (see Table III-4). The clients must include
decision makers at a high enough level to resolve
conflicts and make decisions that affect the scope
and content of the application. They must also be at
a low enough level to be conversant and able to
explain the daily functions and procedures. Finally,
clients must represent every functional area affected
by the application. You must also keep the number of
client participants less than 15 and ideally between
three to four people. The more people, the longer
the process and the more difficult the decisions. Ide­
ally, the whole session team is about seven people.

Systems representatives should include the proj­
ect manager, an SE, and one to two analysts with
technical expertise. The systems representatives
must be able to assess feasibility of requested
requirements and the expected complexity of imple­
menting the requirements in the target environment.
The main role of the system representatives is to
learn the problem domain area during the sessions
and ensure accurate problem restatement in sys­
tem terms.

The facilitator is a specially trained individual
who runs the session. The facilitator has several
roles:

• Elicit information from participants
• Keep the meetings moving

Organizational and Automated Support 211

TABLE 111-4 Joint IS-User Team and Responsibilities

Role Job Title

Facilitator Consultant
IS Manager
Senior SE
Facilitator

User Manager
Professional
Clerk

IS Representative Project Manager
Project Leader
SE

Support

Systems Analyst

Secretary
Systems Analyst

Keep the discussion from becoming monopo­
lized by one individual
Identify and resolve conflicts
Keep the meeting on a business (rather than
personal) level.

Frequently in joint sessions, organizational dis­
agreements on goals and objectives arise. Such con­
flict is to be expected and is normal. The facilitator's
job is to identify and ensure resolution of disagree­
ments during the sessions. The conflicts are poten­
tially explosive and can lead to personal conflicts.

Responsibilities

Elicit information.
Keep meeting moving.
Minimize monopolization by one or few individuals.
Identify and resolve conflicts.
Maintain professional atmosphere.

Make decisions about compromises, changes, or other
aspects of the application requirements that require
managerial approval.

Participate in and contribute to discussions about
requirements.

Provide information, requirements ideas, and
suggestions on the meeting topic.

Maintain open, professional atmosphere.
Interpret and explain application problem domain to

IS personnel.

Learn the application problem domain.
Assist in interpreting requirements into graphical

representations.
Determine technological capabilities and limitations

as they relate to the application requirements.
Interpret and explain technical IS domain to users.

Take notes as requested.
Plan for coffee, meals, etc.
Act as liaison with outside world.
Take notes as requested; assist in transcribing and

documenting daytime work.

The facilitator must recognize such situations and
defuse them. Occasionally, defusing means asking
for a participant to be replaced.

The facilitator is a cheerleader, meeting leader,
and ring leader who keeps the session moving. Usu­
ally facilitators are senior staff from the information
systems organization who already know how to de­
velop application requirements, but who are specifi­
cally trained to facilitate joint user-IS sessions.

Finally, support personnel are individuals who
take notes during the day and provide liaison with
the outside world. The notes include data-related

212 PART III Analysis and Design

information and process-related information. Data
information includes identification, naming and
definitions of entities, elements, and entity relation­
ships. Process information includes decision ration­
ales, process identification, procedural details of
processes, and policies that constrain processes. The
actual results of the data and process discussions are
reflected around the room (see the photo in Figure
111-2) on flip-charts, blackboards, and other visual
aids that are always accessible to the entire group.

A second kind of support is administrative assis­
tance, which includes documenting the information
during evening sessions, coordinating coffee and
meals, and ferrying messages to and from work for
participants.

Preparation

A meeting to prepare session attendees should be
held for all participants. The primary purpose is to
give participants a list of tasks to complete before
they attend the joint session and to train participants
in the completion of the tasks.

The meeting includes an orientation, document
examples, data requirements, and training in devel­
opment of graphical techniques being used to docu-

ment processing. The orientation discusses the ex­
pectations of the organization and normal results of
such sessions. Then participants are given an
overview of the joint structured process: what it is,
how it is conducted, proper behavior, and decision­
making necessity. The scope and purpose of the
application are discussed and agreed upon again by
all participants. If there is disagreement or problems
with the scope, they are revised at this meeting so
everyone has a shared understanding of what work
functions and information are in, and what are not in,
the application.

If data flow diagrams are the graphical technique
being used, for example, the users are trained to
develop a context diagram and first-cut data flow
diagram of their current job. The list of tasks for
data flow diagrams would include the following
activities:

• Define the scope and functions of your
position

• Document the 'what is' in a data flow diagram
• Try to draw a context diagram of all the

departments, groups, and applications with
whom you exchange information in your job

• Define all data used in your job

FIGURE 111-2 Photo of Joint User-IS Session Room

• Collect statistics-how often, how much,
when-for all data and processes

• Collect samples of all input and output
documents.

Frequently these sessions are taught by an in­
house facilitator, but they may be taught by a con­
sultant who knows the techniques.

The Joint Structured Process

The ideal joint user-IS session is full-time, off-site,
lasts three to five days, and has five to nine partici­
pants. All of these ideal characteristics can be loos­
ened somewhat and still maintain the momentum
that comes from intensive work sessions. The idea
is to do the work intensively and quickly because
no one has time to spend in months of meetings. Par­
ticipants become very close and frequently become
good friends as a result of working together. At best,
the users and IS team realize they are business part­
ners in the application development and that rela­
tionship prevails throughout the project's life.

Joint sessions are divided into mainly daytime
and nighttime sessions. The word mainly is used
because the activities can be done at any time. In
general, daytime, when people are most alert, is
devoted to creating new information; evening is
devoted to documenting the new information.

During the day, activities are the following:

• Confirm business functions
• Identify and analyze specific requirements

(processes by function, inputs and outputs for
each process). For each process, identify what
is done, how frequently, exception and error
processing, periodic processing, problems
with current procedures, policies that might
need to be changed, and any new business
requirements relating to the processes.

• Identify general requirements for the applica­
tion. For data, how accessible and accurate
does the information need to be? Can it be
accurate as of close of business yesterday or
must it be up to the minute? Can answers take
one or two hours, or must the answer be
within seconds?

Organizational and Automated Support 213

Application constraints are a second type
of general requirement. Constraints place lim­
its on the application. For instance, upper
bounds of cost and time are allocated for de­
velopment, hardware, software, language, or
DBMS. These constraints are general, but
they place strict boundaries on how the appli­
cation will be designed. They also identify, to
the technical staff, activities that need to be
further elaborated during the detailed design
to accommodate the implementation environ­
ment. Constraints from the first chapter dis­
cussion also apply. They include time, pre­
and postrequisites, structural, control, and in­
ferential constraints.

• Identify the likelihood of requirements change
over the next three to five years. If require­
ments are identified as changing within the
expected implementation time of the project,
then the expected requirements become the
current requirements for the application.

For instance, users ma~' currently need data
up to the close of business yesterday. They
discuss the industry as moving rapidly toward
instant access of up-to-the-minute informa­
tion and expect this requirement within 12-
18 months, and the application will be imple­
mented in 12 months. Build the new require­
ment into the application now to be an early
leader and avoid costly redevelopment of the
new application .

• Have the support staff record all processes,
functions, data, outputs, data elements, terms
of processing, names given to items, and
so on.

Figure 111-3 shows the first-cut data flow diagram
developed by an accountant in a major company
for a JAD/Fast-Track session. The user, after one
training session, developed a DFD that was about
90% correct. Figures 111-4 and 111-5 show the related
Level 0 and Levell diagrams, respectively, from
the JAD which had minor changes during IS design.
Figure 111-6 shows the DFD level 2 as decom­
posed by the project team during design. Only one of
the processes changed: General Ledger was elabo­
rated to be Accounts Receivable and Accounts

214 PART III Analysis and Design

Accounts .- Expenses Payable

j

I

Purchases

Accounts - Sales Receivable

FIGURE 111-3 User-Developed First-Cut DFD

Payable. The other changes were to files and external
entities.

The evening sessions do the following:

Define all elements and terms
Document all processes
Draw formal DFDs
Document general application requirements
and write an executive summary
Review documentation output of other mini­
teams.

The group works together during the day to create
information. In the evening, the group splits into
mini-teams to perform one of the above activities.
Documentation should be done using automated
tools, including word processors, CASE tools, or
other automated support tools that might be avail­
able. The goal is easily modifiable documents that
can be formatted and printed.

When the mini-teams complete their work, they
jointly review each others' work products. This
review fosters the shared common view of the
application and ends the participants' day with each
having a clear sense of what was accomplished.

r

Financial ..
Reporting

1
Inventory

i

The Meeting Facility

The location should be at least 20 miles from the
main work site of the participants to minimize inter­
ruptions and preclude people being pulled out of the
sessions. The facility should provide above average
meeting, sleeping, and eating arrangements in the
same building. Phone access must be available but
must be removed from the meeting room(s). The
facility must provide computer accessibility. The
location must be easily accessible for managers, who
are not participants, to attend sessions for resolving
conflicts. The facility must allow use of walls in the
meeting room. The room should be equipped with
flip-charts, overhead projector, markers, slide pro­
jector, and other meeting equipment as needed.

Documentation Tools

Documentation tools should include some word pro­
cessing capability, dictionary support, and some
graphical form support. All of these should ideally
be in a computer-aided software engineering
(CASE) tool. The CASE tool should allow cus­
tomized reports of the information and should

Organizational and Automated Support 215

2.0

Purchases \--_______ +-____ ---,

FIGURE 111-4 JAD Team First-Cut and IS Final DFD Summary Level 0

Stock
Reports

Consignment I----.J
Areas

Controllers 14----l

Cost of
Sales Rpt.

Inv. Cost
Variance Rpt.

FIGURE 111-5 JAD Team First-Cut and IS Final DFD Levell

Controllers

216 PART III Analysis and Design

Blending Factor File

Inventory File Reference Files

Revised Rates/Blends w/ Stock
Location, Product, Pkg. P&L, Group

Validation Std. Cost
Calculation
Revisions

.------, rrors
Valid Updates
Rates/Blends Std. Cost

Calculations

Std. Cost
Report Blending Factor File

C1 4.3.3

Cost
System

Computer

Record
Rates!
Blends

Inventory File

Rev.lnv.
Rates

FIGURE 111-6 IS Level 2 DFD for Updating Standard Costs

provide some intelligence on checking and cross­
checking both completeness and accuracy of the
information entered.

At a minimum, word processing should be pro­
vided via some tool such as WordPerfect,9 Word
Star,lO MS Word,l1 and so on that allows graphics to
be imbedded in text, creates tables easily, and does
full text manipulation.

An active data dictionary is desirable for docu­
menting the objects (e.g., entities, files, flows,
objects) and object relationships defined during the
sessions. An active dictionary is one that allows cus­
tom report development, provides intelligent assess­
ment of completeness, and identifies potential
duplicates based on name and definition. If a passive
dictionary (i.e., has only vendor reports and no
intelligence) is an option, you are better off using a
word processor to document the information.

9 WordPerfect is a trademark of WordPerfect, Inc.

10 Word Star is a trademark of Word Star, Inc.

11 MS Word is a trademark of Microsoft, Inc.

A graphical drawing tool is the third type of soft­
ware needed. The tool should allow the type of
drawing you are using with your methodology. An
automated graphical tool is preferred to manual
drawing because automated drawings are more eas­
ily changed and maintained. The joint groups fre­
quently do several iterations of a drawing before
they are satisfied with the result.

To summarize, joint user-IS sessions are a way
to obtain quick results with a high degree of user par­
ticipation in the development of requirements plans
and application requirements. Joint sessions are
intensive and require high commitment from partici­
pants. The rewards are a user-centered requirements
document that frequently leads to more satisfied
users and high user involvement throughout project
development.

User-Managed Application
Development
Joint sessions are designed to bring users and IS per­
sonnel together with the underlying understanding

that users will always know more about their jobs
than IS people. Joint sessions foster commitment to
the IS development effort and give users a sense of
participation. The user aspects of application devel­
opment should not stop there. A user manager
should be appointed for the application and should
be the person ultimately responsible for the success­
ful completion of both the application software
and the organizational changes that accompany a
new application.

The need for user-centered design seems obvious.
User-managed applications foster a sense of busi­
ness partnership; IS-managed applications foster a
sense of them-and-us. User-managed applications
provide a regular, natural communications line
between the technicians and users; IS-managed
applications provide a way for IS people to only talk
among themselves. User-managed applications tend
to require less IS involvement in application train­
ing, because users do their own training; IS training
is notoriously condescending, inappropriate, and
ireffective. Users 'own' the application and train
their own staffs.

Not all is rosy with user managed applications.
If the IS project manager is not used to working
for a user, she or he will have to adjust some aspects
of work. For instance, conversations will use busi­
ness terms rather than technical terms. Variances in
time and budget will require explanation and
discussion. Rather than running the whole show,
the project manager is clear~y relegated to a support­
ing roll and only manages the actual software
development.

User-managed development can also be sub­
verted by un supportive IS personnel. For instance,
user teams can meet to develop functional reqllire­
ments, but IS teams may not use them. IS groups
have been notorious in ignoring user requirements.
The comment heard is, "They Can tell me anything,
I'll give them what I want." The attitude is that mere
users could never define as good a system as an IS
person. How someone who does not know the busi­
ness could make such a statement defies logic, but it
is made. IS developers frequently need indoctrina­
tion that the business partnership aspect of applica­
tion development does extend to the users.

Organizational and Automated Support 217

Structured Walk-Throughs
Have you ever had a program bug that you spent
hours trying to locate? You give up in frustration and
tum to a friend for help. The friend takes a sideways
glance and says, "Oh yeah, this period is out of
place." Just like that, your hours have been a waste.
That type of easily seen error is not a fluke. Your
friend is not necessarily a genius, just as you are not
necessarily stupid for not finding the error. The phe­
nomenon at work is that you are too close to the
problem to see the 'big picture.' At some point, we
all reach this stage regardless of where on a project
we work. Walk-throughs were designed to formal­
ize the 'friendly review' described above.

A walk-through is a semiformal presentation of
some work product for the sole purpose of finding
errors. Work products might include all or part of
the following:

• Functional requirements specification
• Project plan
• Design specification
• Logical or physical database design
• Program specification(s)
• Program code
• Test plan
• Test design.

This list is not complete. Its purpose is to give
you an idea of the range of items that can be the sub­
ject of a walk-through. Virtually any work product,
or piece of a work product, can be reviewed using
the walk-through technique.

Ideally, a walk-through should not be scheduled
for more than two hours at a time. If more time is
needed, then additional walk-throughs are sched­
uled. Like all rules of thumb, this one is frequently
broken. Participants who do not work on the devel­
opment team sometimes have a difficult time
walking-through application requirements in bursts.
When they focus on the application, they like to see
everything at once. So, occasionally you might have
a marathon session that runs a whole day.

Walk-throughs are formalized in that there is
preparation, a team with members having different
responsibilities, and a process. Preparation for the

218 PART III Analysis and Design

session is as follows: The team is identified and
approved by an SE or project manager. The day,
place, and time are agreed upon. A memo of meeting
details is sent to all participants several days in
advance. Attached to the memo is the work product
to be reviewed.

All participants are expected to review the work
product, annotating questions and potential errors in
the margins. They must come to the session already
having some understanding of the work product.

Participants in a session include the facilitator,
work producer, one or two peers who are on the
same project, one or two outsiders, and a scribe. Ide­
ally, the number of participants is between five and
seven. The facilitator is much like a lAD facilita­
tor. He or she keeps the meeting moving, makes sure
no personal or blaming remarks are allowed, and
maintains focus on the work product.

The producer presents his or her work. First, an
overview focuses attention on the purpose of the
product. Then, the work is reviewed in a page-by­
page or line-by-line manner following the logic of
the document. The peers and outsiders are there to
question the correctness, completeness, efficiency,
and effectiveness of the product. Questions, com­
ments, or errors are discussed as the presentation is
made. When an issue is raised and appears legiti­
mate, the scribe notes the problem and its location
(see Table 111-5).

Possible 'outsiders' who might attend a walk­
through include representatives from auditing, qual­
ity assurance, operations, or other project teams who
need to approve or work with the final product.

After the session, the scribe types the notes and
presents a memo to the author for resolution. The
author then responds to each item (see Figure 111-7).
If an item is an error, the response details how and
when it was fixed. If the item is an efficiency or
effectiveness issue, the response describes what
research was done and the resolution. Depending on
the extent of problems or the importance of the prod­
uct, another walk-through might be held. Usually, if
the products are for analysis or design, two or three
walk -throughs are held. If the product relates to pro­
gram or test design, then the number of walk­
throughs is determined by the number of errors. With

less than 10 errors, only one walk-through would
be needed.

Data Administration
Data administration is the management of data to
support and foster data sharing across multiple divi­
sions' and to facilitate the development of database
applications. The principle activity for the organiza­
tion is the development of a data architecture
which depicts the structure and relationships of
major data entities, such as customer, vendors, and
orders. A data architecture is similar to the frame of
a building. Once the frame is constructed, the siding
and fa~ade are added. The frame provides the skele­
ton to which the other substructures, such as electri­
cal wiring and plumbing, are added. In information
systems, the data architecture defines automated and
nonautomated data and how they are used in the
organization. The architecture provides a 'frame' for
defining new applications and documents all data
uses and responsibilities for existing applications.

The other major organization level activity is
defining, with users, data that is 'mission critical' for
the organization. Critical data is defined as that data
required to maintain the organization as a going con­
cern. As such, critical data is subject to management
and standards through the data administration func­
tion. Noncritical data is data that, while useful, is not
required to maintain the organization in event of a
disaster. Noncritical data does not require the same
degree of management as critical data.

At a more detailed level, data administrators
develop, administer, and maintain policies and stan­
dards regarding data definition, sharing, acquisition,
integrity, and security for the corporation's data
resource. Data administration provides guidance to
project teams on storage, access, use, disposition,
and standardization of data. Data administrators are
responsible for maintaining corporate definitions in
addition to the creation and maintenance of the data
architecture representing the enterprise.

Historically, the motivation for data administra­
tion relates to a maturing organization. When DBMS
software was installed in most organizations, a data­
base administration (DBA) group was created to

Organizational and Automated Support 219

TABLE 111-5 Example of Errors Found in Walk-Throughs

Walk-Through Type

Feasibility

Analysis

Logical Data Model

Design

Physical Data Model

Program Specification

Acceptance Test Plan
(This could be any
test plan)

Code

Representative Errors Found

1. One of organization, technical, or financial analyses is missing.
2. Financial analysis has mathematical errors.
3. Typos or poor English render the document (or some part) incomprehensible.
4. Analysis contains incorrect information.

1. Data elements for data store, file, or other structure are incomplete.
2. Data items do not have formal names or names do not conform to standards.
3. Subsystem specification unclear.
4. Obvious 'holes' in the system as specified.
5. Graphical representations contain syntactical errors or confusing, ambiguous terms.
6. Nature of application interfaces not fully specified.

1. Logical data model (LDM) is not in third normal form (3NF).
2. Names do not conform to standards or are ambiguous.

1. Mapping to implementation environment does not include all functional requirements.
2. Implementation as specified will be difficult to operate, maintain, or implement.
3. Design is incomplete ... one or more screens are missing, screen dialog is incomplete,

allowable navigation not provided, etc.

1. Physical mapping does not provide necessary user views and security simultaneously.
2. Numerous user views may be unwieldy in implemented environment.
3. Physical model does not provide growth anticipated.

1. Program specification does not clearly say what the program is to do.
2. Program specification does not map to design or functional requirements.
3. File requirements not specific ... missing user view, copy lib name, JCL, etc.
4. Logic specification incomplete.
5. Faulty logic.
6. Access control for secure data not present.

1. Test plan does not test that all requirements are met.
2. Test case x data cannot perform as specified.
3. Missing/erroneous predicted results for reports, screens, file contents, or messages.
4. Missing on-line test dialog for single user functions.
5. Missing scenario and test dialogs for multiuser test.
6. Results predicted cannot be attained with current test design.
7. Test for breach of security missing.
8. Specific audit control tests missing/faulty.

1. Logic error-missing, extra, or wrong logic.
2. Nonstructured format will make maintenance difficult and expensive.
3. Comments do not identify module linkages.
4. Comments on user view copy books do not clearly identify the database, user view,

or JCL.
5. Access control for secure data not present.
6. Control totals for end of program counts missing.
7. Format error on report.
8. Misspelled word on screen, report, etc.

220 PART III Analysis and Design

Consolidated NY Bank

InterOffice Memo

DATE: December 7,1992

TO: Ms. Sandra Jones,

Walk-Through Facilitator

FROM: Mr. John James,

Producer

The following table includes all errors found during the Requirements Walk-Through on December 1 (see H. Hines, Scribe

memo of 1212). Each item has either been resolved or found not to be an error as indicated. One item, #5, identified an

audit problem for which I am awaiting Audit Dept. resolution. They are supposed to respond by next Friday, December 11.

Since we decided not to have another walk-through, I will proceed with finalizing the analysis phase.

Error

Error # Page

2

3
4

5

2

10

63
125

127

Description

Overview inconsistent in treatment of

errors for transactions.

System access code design not clear.

Test of screens is incomplete.

Security for accounting data not clear.

Interface to accounting system has

inadequate control counts and security.

Resolution

Rewritten

The lack of clarity was deliberate to prevent general

access to security procedures. The group felt that the

document should contain all of the information.

Upon reviewing this request with Mr. Fields, Project

Manager, we decided, for security reasons, not to

include the information. Mr. Fields has a detailed

description of security procedures and the document

now refers individuals requesting the security information

to him.

Missing information was added.

Same as #2.

Referred to the Audit Dept. for recommended action.

FIGURE 111-7 Sample Walk-Through Error Resolution Memo

maintain and monitor the DBMS' use. There was no
necessity for other data-related organizations be­
cause applications, for the most part, were isolated
from one another and data sharing across organiza­
tional boundaries was low. Most industry followed
this pattern of development.

In the normal process of maturation, companies
realized that sharing and consolidation of databases

across organization boundaries was desirable. The
need to share data frequently accompanies the real­
ization that individual division and work groups
have their own vocabulary which often overlaps or
conflicts with the vocabulary and terms used by
other work groups. When divisions automate data,
they incorporate local rules, policy, and definitions
in their applications. Data, while having the same

name, then, may have several different meanings,
uses, formats, and connotations across an organiza­
tion. Conversely, data may have different names but
the same definitions. This lack of consensus about
terminology and data characterizes pre data admin­
istration organizations.

The lack of consensus about data definitions leads
to the realization that data standards pertaining to
definitions, usage, ownership, security, access, and
maintenance are not only desirable, but mandatory,
in large-scale development of shared databases. This
need for standardization increases with the recogni­
tion of data as a shared resource of the organization.

A formal data administration function is needed
to define and manage data company-wide. Data
administration requires recognition and commitment
to the notion that data is a resource of the corpora­
tion. As a critical corporate resource, data requires
the same careful planning and on-going management
as cash on hand, office equipment, or personnel.

Commitment to DA is sometimes difficult to
develop because data are fundamentally different
than other resources. Data are abstract and nonphys­
ical, do not decay, and are easily replicated as the
need arises. They are also subject to different confi­
dentiality, accuracy, and access requirements. Data
are all of these things. In service industries, espe­
cially, information is a primary product, and the
quality of the data resource directly affects the com­
pany's bottom line and how customers perceive the
quality of service delivered. Data administration
consolidates information across the organization to
simplify the development of applications to service
customers.

Benefits of data administration outweigh the frus­
trations and difficulties of establishing the function.
Some of the benefits include:

1. Creating and documenting a data architecture
leads to formal recognition and agreement of
business rules and relationships which are
inherent in the data. This agreement im­
proves communications and understanding
of corporate data.

2. By defining and documenting data only once,
efficiencies are realized throughout the sys­
tem development life cycle. All subsequent

Organizational and Automated Support 221

application-using previously defined data
items-identify data required and obtain
access to already automated data. The data
design and documentation phases are short­
ened. Edit routines are reused, just like the
data definitions, and ultimately the cost of
program code is reduced.

3. Data administration leads to faster response
to changing business conditions. The devel­
opment of applications to support new prod­
ucts, for instance, can be speeded due to fully
specified definition of data required to sup­
port a product.

4. Data administration provides a means for
deciding what data must be controlled as part
of the corporate data resource, and what data
can be user-owned and controlled (including
data that is off-loaded to PCs and LANs).

5. Data administration maintains definitions of
all data in the corporation regardless of hard­
ware platform or criticality. The central
repository for this information, then,
becomes the focal point of data-related
activities.

6. By fostering data sharing, the cost of creat­
ing, sorting, updating, and backing up multi­
ple copies of the same data items is reduced,
if not eliminated. That is, we only introduce
planned data redundancy. Just as DBMSs
allow us to minimize intraapplication data
redundancy, DA allows us to minimize inter­
application data redundancy.

In summary, the creation of data administration is
recommended to guarantee minimal redundancy,
shared understanding of data item definitions, and a
managed approach to providing for future data­
base environments. Data administration should not
be confused with DBA data management which
includes physical DB design, disk space alloca­
tion, and day-to-day operations support for actual
databases.

Data administration has numerous interfaces both
within and outside of the IS area. Therefore, data
administration interfaces occur at all levels of all
divisions specifically to perform user liaison and
application liaison.

222 PART III Analysis and Design

User Liaison

The data administration function works with busi­
ness areas to define the data which that area uses to
perform its function. All data, whether it is under
the control of a current information system or not,
is subject to data administration review. Thus, all
data on any hardware platform is subject to review.
During the review, critical data entities and data
items are defined, maintained, and managed by data
administration. Applications with critical data will
be required to comply with standards on data,
access, and security.

The person performing user liaison must be able
to understand and converse in business terminology,
not technical jargon. He or she should have problem­
solving and analytical skills but also should have
excellent communication/negotiation skills, user ori­
entation, and understanding of the role and functions
of data administration. The individual must be able
to translate user data, definitions, and rules into
information in the corporate data repository.

Application Liaison

Data administration works with application project
teams to define the data requirements of the appli­
cation. The data administration analyst identifies
what data is already automated and works with the
project team to define logical descriptions of the
data. The DA analyst, DBA, and project analyst
together transform the logical database definition
into a specific database's logical definition. The DA
analyst down-loads the data definitions from the cor­
porate central repository for use by the project team
and DBA. DBA then works to develop a physical
database definition of how best to store the data.

In project-oriented work, the project analyst and
DA analyst reconcile all data requirements with
existing information in the corporate repository. For
instance, if a team needs a "plan" field, but their
definition varies from that of the corporate defini­
tion, one of three actions is possible:

1. The corporate definition is changed to
accommodate the new information.

2. The application redefines its use to be consis­
tent with the corporate definition and usage.

3. A new data item is defined by the project
analyst and DA; the new item is entered
into the corporate central repository by
the DA.

The skills, then, needed to perform application
project liaison include analytical, communication,
problem-solving, negotiation, data analysis, and
modeling skills.

Where in the Organization is
Data Administration

Ideally, the recommended organizational location of
the DA function is independent of the corporate IS
area, reporting to the president of the business
entity it supports. DA affects and interacts with all
departments and areas of the organization, includ­
ing all of the application development groups as well
as users, regardless of organizational position or
hardware platform. The DA group could be part of
an internal consulting/technology-related organiza­
tion whose mission is to provide services across the
entire organization. The DA group should be neu­
tral about hardware, software, development, or man­
agement of applications as long as the data is not
defined as critical.

CASE Tools
Computer-aided software engineering (CASE) is
the automation of the software engineering disci­
pline. You will find descriptions of ICASE, Upper
CASE, and Lower CASE. These are variations on
the theme with'!, standing for 'integrated,' 'Upper'
standing for conceptual or logical design only, and
'Lower' standing for programming support only.
While these differences do exist, this text concen­
trates on CASE tools that support at least the analy­
sis phase and may support others; they are all called
'CASE' here. We will identify which phases are now
supported (of course, this might change by publica­
tion time).

The typical CASE environment includes a repos­
itory, graphic drawing tools, text definition software,
repository interface software, evaluative software,

Human
Interface

FIGURE 111-8 CASE Architecture

Graphic
Processing

Tool

Text
Processing

Tool

and a human interface (see Figure III-8). A reposi­
tory is an active data dictionary that supports the
definition of different types of objects and the rela­
tionships between those objects. Graphic drawing
tools support the development of diagram types and
evaluates the completeness of the diagram based on
predefined rules. Text software allows definition of
names, contents, and details of items in the reposi­
tory. The interface software is the interpreter which
determines the form the data should take (either
graphic or text). Evaluative software is the intelli­
gence in CASE. Evaluative software analyzes the
entries for a diagram or repository entry and deter­
mines if they are lexically complete (i.e., conforms
to the definition of the item type), and if they are
compatible with other existing objects in the appli­
cation. The human interface provides screens and
reports for interactive and off-line processing.

In this section, we discuss the characteristics of
the ideal CASE environment. This is just an ideal

Organizational and Automated Support 223

Repository
Manager Repository

Intelligent
Analytical
Software

and is the author's own invention. 12 No commer­
cially available products and no research prototypes
are known to embody this ideal.

The ideal CASE should provide complete auto­
mated support for the entire project life cycle, begin­
ning with enterprise level analysis and working
through to maintenance and retirement. The ideal
CASE then becomes the focal point for all work that
takes place in software engineering, and the work
of the SE concentrates on the logical aspects of
design. The ideal CASE tool would provide for the
technical, data, and process architectures of the
organization, project planning and monitoring,

12 The ideal CASE in this section is partially the result of re­
search done with Judy Wynekoop, UT San Antonio and
Nancy Russo, U of Northern Illinois, published in
Wynekoop and Conger [1991], Conger [1989], Conger and
Russo [1990]. It also results from 10 years offrustration in
using CASE tools and waiting for vendors and researchers to
build decent products.

224 PART III Analysis and Design

group work on applications, application and manual
procedure definition, normalization of data, DB
schema generation, generation of bug-free code in a
user-selected language, automatic testing of gener­
ated code against the application logic, and intelli­
gent assessment of completeness and correction
along the way. Really advanced CASE would rec­
ognize components already in the repository for
reusability of analyses, designs, and code.

The repository of CASE determines both what is
supported and, to some extent, how much support
can be provided. The repository is something of a
super dictionary that captures and maintains meta­
data. Meta-data is information about data (see Chap­
ter 1). For example, a data element in an application
is data, and its attributes constitute the meta-data that
would be stored in the dictionary. Attributes of an
element include, for instance, data type, size, vol­
ume, frequency of change, and edit criteria. A CASE
repository acts as the DBMS for the engineering
effort, provides the capability for expanded meta­
data capture, and maintains all components and their
interrelationships.

The ideal repository should allow customizing of
the methodology supported and enforcement soft­
ware that can evaluate the correctness of user­
defined repository entries. To do this requires some
decoupling of the repository from a specific method­
ology and an abstracting of methodology compli­
ance rules within the repository. These are not trivial
tasks! This decoupling would allow organizations
to adopt and use the components of methodologies
that work for them, and ignore those that don't. The
initial sacrifice for this capability will be less intelli­
gence. But, decoupling the intelligence from a spe­
cific methodology and type of repository entry will
also allow customizing of evaluation software and
enforcement of local rules.

Intelligence in CASE comes in two major forms:
intelligence of the interface and intelligence of the
CASE product itself. The interface should provide
both novice and expert modes of operation. It should
allow work to be saved and restarted as part of the
functionality. The tool should be customizable by
individual users. For instance, if I want yellow print
on a blue background, and I call a data flow diagram

a DFD, I should be allowed to change the defaults
to use my terms and formats.

Alternate forms of inputs should be reflected
throughout the diagram sets. This means that if a
user enters entities and attributes in a repository,
when she or he moves to developing a graphical
entity-relationship diagram, the information in the
repository should be reflected on the diagram.

Intelligence of the CASE product includes analy­
sis within and between both diagram types and
repository entries. Ideally, application A's require­
ment that conflicts with enterprise goal Z, should be
flagged for management consideration.

The ideal CASE should allow users to separate
and integrate different applications easily. For
instance, the company may want to document
already operational applications and begin to man­
age them electronically. Users defining a new appli­
cation may want to integrate it with an old
application. They should be allowed to create an
integrated third definition that highlights the over­
laps, redundancies, inconsistencies, and other prob­
lems that the integrated pair have.

According to the 40-20-40 rule of systems devel­
opment, 40% of project time is used for analysis and
design, 20% is devoted to programming, and a full
40% is devoted to testing. 13 The current direction of
vendors is to eliminate code, thereby cutting 20% off
development time. But, the ideal CASE would cut
the 40% devoted to testing as well. The urgency for
CASE testing tools is low relative to other current
concerns (like getting the products to work bug­
free). At some point in the 1990s, vendors will
begin to provide testing support in their CASE
environments. Ideally, such support will include
black- and white-box tests with human intervention
allowed but not required. Black-box testing is for
correctness of output based on inputs; white-box
testing is for specific logic paths in a program.
Intelligent software will analyze the type of process
and determine the most appropriate testing strategy.
Additional intelligent software will develop test data
based on logical requirements, conduct the tests, and
maintain test results. Test results will be integrated

13 Pressman [1987].

across test runs, phases of testing, versions of the
software, and even hardware platform environments.
When bugs are found, backtracking to find its
source, possibly across modules, will be provided.
Since the software built the bugs, it should be able to
fix them; but, if the source is a logical, human speci­
fication, notice to the SEs will require correction of
the errors.

Future products will eventually tackle the
remaining 40% of project time by providing intelli­
gence to identify reusable components of applica­
tions. Reusability of designs will have the most
payback but is also the most difficult. Initially,
reusable code modules will be enabled, then reusable
designs, and finally, reusable logical analyses. Code
reusability recognition should be available in CASE
tools by the mid-1990s; the others will take until the
tum of the century to surface.

This description of ideal CASE characteristics
concentrates on what CASE should do rather than on
what it currently does. For that, we discuss CASE
as it supports each methodology and phase of
development in the coming chapters. Although
CASE and artificial intelligence (AI) are both in their
infancy, the developments described above are cur­
rently feasible with current state-of-the-art technolo­
gies. The CASE repository will become the hub for
all of the work that takes place in IS organizations.
The limits to CASE intelligence that can be built are
only due to human limitations.

SUMMARY

----------------In this section preview, we identified the major ac­
tivities of analysis and design. Analysis identifies
what the application will do; design describes how
the application will work in production. Both analy­
sis and design have the same five generic activities:
identification, elaboration, synthesis, review, and
documentation. These activities are constrained and
guided by a methodology. Each methodology takes a
different perspective of an application leading to dif­
ferent phase-end results.

The organizational supports facilitate application
development regardless of methodology. Organiza-

References 225

tional supports described in this chapter included
joint requirements definition, joint application
design, user-managed application development, data
administration, and walk-throughs.

Software support that most facilitates application
development is computer-aided software engineer­
ing (CASE). The ideal CASE environment has both
expert and novice modes, can be customized for
hybrid methodology use, and provides many addi­
tional intelligent functions beyond analyzing com­
pleteness of work. Future environments will identify
reusable components of previous work to further
reduce application development time.

The next six chapters discuss the analysis and
design phases using the following example meth­
odologies:

Process-Structured Analysis (Chapter 7) and
Design (Chapter 8)

Data-Information Engineering-Business
Area Analysis (Chapter 9) and Business Sys­
tem Design (Chapter 10)

Object-abject-Oriented Analysis (Chapter 11)
and Object-Oriented Design (Chapter 12).

Chapter 13 summarizes and compares the meth­
odologies and their CASE support. Chapter 14 dis­
cusses forgotten activities of systems analysis and
design.

REFERENCES __________ __
Blum, B., Software Engineering: A Holistic View. NY:

Oxford University Press, 1992.
Conger, S., "The active dictionary in a CASE environ­

ment," Data Base Management, #25-01-20, NY:
Auerbach Publishers, 1989, pp. 1-12.

Conger, S., and N. Russo, "A Taxonomy of Applications:
A Framework for Selecting and Designing Method­
ologies," Georgia State University Working Paper
#90-0201, 1990.

Couger, J. D., M. A. Colter, and R. W. Knapp, Advanced
System Development/Feasibility Techniques. NY: John
Wiley & Sons, 1982.

McClure, c., CASE is Software Automation. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

McMenamin, S. M., and J. F. Palmer, Essential Systems
Analysis. NY: Yourdon, Inc., 1984.

226 PART III Analysis and Design

Pressman, R, Software Engineering: A Practitioner's
Approach, 2nd ed. NY: McGraw-Hill, 1987.

Olle, T. W., J. Hagelstein, I. G. MacDonald, C. Rolland,
H. G. Sol, F. J. M. Van Assche, and A. A. Verrijn­
Stuart, Information Systems Methodology: A Frame­
workfor Understanding. Workingham, England:
Addison-Wesley, 1988.

Swartout, W., and R Balzer, "On the inevitable inter­
twining of specification and implementation," Com­
munications of the ACM, Vol. 25, #7, July, 1982,
pp. 438-440.

Wynekoop, J. L., and S. Conger [1991], "A review of
computer-aided software engineering research meth­
ods," in Information Systems Research: Contempo­
rary Approaches and Emergent Traditions, (H-E.
Nissen, H. K. Klein, and R Hirschheim, eds.). NY:
North-Holland, 1991, pp. 301-326.

KEY TERMS _______ _

active data dictionary
analysis
CASE repository
compromise of

requirements
computer-aided software

engineering (CASE)
critical data
data administration (DA)
data architecture
database administration

(DBA)
design
document
elaboration
facilitator

Fast-Track
identification
IS-managed application
joint application design

(JAD)
joint requirements planning

(JRP)
out of the box thinking
repository
review
synthesis
user-managed application
user manager
walk-through
work around

CHAPT ER7

PROCESS-
------------------------~ ______ .r----

ORIENTED
-------------------------,--------------ANALYSIS

INTRODUCTION ____ _

In this chapter, we review process-oriented analysis
using structured analysis following DeMarco
[1979], Yourdon [1989], and McMenamin and
Palmer [1985]. Structured analysis was the first well­
documented, and well-understood method of
describing application problems. While the tech­
niques have changed as our understanding and
application types have changed, the techniques will
remain useful for many years to come. This mate­
rial should be a review, and for that reason, you
might want to skim or skip it altogether. You might
rate your know ledge by tracing the development of
the ABC Rental Processing case. If you understand
and can reproduce the work, skip the chapter.

CONCEPTUAL _____ _
FOUNDATIONS _____ _

Structured analysis (and design) follow the archi­
tectural notion that "form ever follows function."l
Functions of an information system are the processes

1 Sullivan, Louis, "The Tall Office Building Artistically Con­
sidered," Lippencott's Magazine, March, 1896.

that transform application data. Therefore, we em­
phasize processes and the flows of data into and out
of those processes in structured analysis.

Structured analysis also is based on systems the­
ory which assumes inputs are fed into processes to
produce outputs. To complete the systems model
(see Figure 7-1), there must be some sort of feedback
to eliminate system entropy, that is, to keep the sys­
tem from 'running down.'

To conceptually analyze complex systems as we
have in IS, pieces of a problem are analyzed in iso­
lation. We might look at inputs, outputs, and pro­
cesses separately, then integrate them to produce a
unified system. As system processing gets more
complex, we study pieces of processes separately
then integrate them. The pieces of the processes

Input
System

Output

Feedback

FIGURE 7-1 Systems Model

227

228 CHAPTER 7 Process-Oriented Analysis

must themselves be self-contained, small systems.
These smaller systems comprise a hierarchy of sys­
tem components, such that a component at any level
is itself a system of components. Each system, re­
gardless of level, has its own inputs, processes, out­
puts, and feedback. At the lowest level of the
hierarchy are the elementary components which
can no longer be subdivided and retain their system
characteristics.

Structured development provides heuristics,
guidelines, and diagram sets for dividing an infor­
mation system into a hierarchy of logical component
parts.

SUMMARY OF -------------------
STRUCTURED -------------------
SYSTEMS ANALYSIS -------
TERMS -----------------------------
Structured analysis begins with two assumptions.
First, we assume that we are most interested in what
the application is to do. That is, what are its func­
tions or processes? A function or process is some
activity that transforms an input data flow into an
output data flow. Second, we assume that we will
treat the problem in a top-down manner. In top-down
analysis, we analyze the external interfaces of the
application first, then high level functions, and
finally, lower level functions.

At the highest level, we define the scope of proj­
ect activity. The scope defines the boundaries of the
project: what is in the project and what is outside of
the project. We document the scope of the project in
a context diagram. A context defines a setting or
environment. In structured systems analysis, the
context diagram defines the interactions of the
application with the external world. External world
interactions occur between external entities and the
application via the data flows that pass between
th~m. A~ external entity is a person, place, or thing
wIth whIch the application interacts, such as

Accounts Receivable Application
Citibank
Customer

Customer Service Department
Medicaid Processing Application
Medicaid Administration
The Federal Reserve Bank
The Internet (or other public network)
U.S. Internal Revenue Service

A data flow is data or information that is in transit.
A data flow might be a piece of paper, a report, a
diskette, or a computer message. Data flows in a
diagram are directed arrows that depict data move­
ment from one place to another.

A context diagram depicts the scope of the proj­
ect, using circles, squares, and arrows. A large cir­
cle designates the application (see Figure 7-2).
Squares identify external entities with which the
application must interact. Directed lines (i.e., with
arrows) are the data flows which indicate movement
of data between entities and the application.

At the next lower level of analysis, we look inside
the circle representing the application to define the
major functions and files. Again, the functions are
the major transformations triggered by input data
flows to create output data flows. Files or data
stores are relatively permanent collections of
data. Data flows are distinct from data stores in
their time orientation. Data flows are temporary
and cease to exist once they are acted upon by a
process. Data stores are persistent and maintained
over time. Data stores may represent one or more
data structures.

A data flow diagram (DFD) (see Figure 7-3) is a
graphic representation of the application's compo­
nent parts. Notice in Figure 7-3 that the entities and
data flows from the context are all present. Also
notice that data flows may connect processes to other
processes, data stores, or external entities. Data
stores and external entities do not interact directly
with each other. If we compare the context to the
data flow, we can perform quality assurance for com­
pleteness and consistency. Completeness checking
ensures that all data flows and entities are included.
Consistency checking ensures that only expected
data flows and entities are included and that they are
in the correct locations in the diagram set.

We do several iterations of DFD process analysis.
At the highest level of analysis, the DFD is said to

Summary of Structured Systems Analysis Terms 229

External
Entity Name 1

Application Name

FIGURE 7-2 Sample Context Diagram

describe Level 0 of the application. Each iteration
is a deeper level of analysis to look into the pro­
cesses from the previous level, analyzing the sub­
processes, their constituent data flows, and their data
stores. We link DFD levels through the process num­
bering scheme (see Figure 7-4). For example,
process 1.0 from the level 0 diagram is decomposed
into processes 1.1, 1.2, 1.3, and so on to describe
the Levell DFD. In Figure 7-4 Process 1.0 is de­
composed into two subprocesses. Notice that a new
file and an entity are other details added to the dia­
gram. Levell DFDs may be further decomposed. To
continue the example, process 1.1 might be decom­
posed into processes 1.1.1, 1.1.2, 1.1.3, and so on,
until we reach the primitive, basic level. The primi­
tive level is the level of each process at which no fur­
ther decomposition can be done without fracturing
the function. In other words, the decompositions at
each level fully define the function, but may not

Incoming
Data Flow 2

External
Entity Name 2

define all of the functional details. At the primitive
level, all files, flows, entities, and individual func­
tions have been defined. There is no right level of
definition; level is usually related to the type of
application and target implementation language. You
may do only two or three levels of decomposition for
a nonprocedural, fourth generation language; you
may do six or seven levels of decomposition for as­
sembler or low level procedural languages (e.g.,
COBOL or Pascal).

The structured decomposition technique is a
mechanism for coping with application complexity
through the principal of 'divide and conquer.' A
large, complex application problem is divided into
its parts for individual analysis. Each part is further
divided and individually analyzed. Complexity is
reduced by allowing us to analyze small parts of the
problem in isolation. The difficulties in structured
decomposition are in correctly identifying the

230 CHAPTER 7 Process-Oriented Analysis

External
Entity Name 1

Outgoing
Data Flow

2.0

Generate
Results

Incoming
Data Flow 1

1.0

Get Input
Flow 1

File
InpuVOutput

Data

File A

Inter-Process
Flow 1

3.0

Get Input
~----I Flow 2

Inter-Process
Incoming

Data Flow 2
Flow 2

FIGURE 7-3 Sample Data Flow Diagram

isolated parts, and keeping the level of abstraction
consistent.

After each analysis, the current level of DFDs is
balanced with the previous level. Balancing is the
act of checking entities, data flows, and processes
across the levels of the diagram set. All entities and
data flows from the higher level processes must be in
every more detailed diagram. The names of entities
and data flows must be consistent across the levels of
the diagrams. We also balance processes. Lower
level processes 'explain' or provide the details of
higher level processes. Lower level processes are
checked to be sure that they all relate to one, and
only one, of the processes named at the higher level.
They are then checked to be sure that they are in the

External
Entity Name 2

diagram set for their related higher level process.
When complete, processing is fully documented in
a leveled set of DFDs.

While a set of balanced DFDs is being created,
the secondary documentation is also being created.
The secondary documentation includes creation of
a data dictionary and optional graphics for real-time
applications called state-transition diagrams. The
data dictionary2 compiles detailed definitions for
each element in a DFD (see Figure 7-5 for contents
for each entry type). The dictionary entries for
processes contain details of how to accomplish the

2 See DeMarco [1979] and Yourdon [1989].

External
Entity Name 1

\

\

\

~
1.1

Structured Systems Analysis Activities 231

I File A

Validate
and

Create
A Data Code Validation File

3.0

1.2
Get Input

_ _ _ _ -r- Flow 2

Generate _ - -
A Report I- - -

Output '\.
Report "-...-...;:a ___

Entity
In

Application

FIGURE 7-4 Example of Decomposed DFD

process. For instance, a process description for order
creation might contain requirements for data entry,
customer validation, item validation, order printing,
and order filing. Since you get information on data
piecemeal throughout the analysis (and design), it is
easiest to document what you know as you go along.
Surfacing assumptions, misconceptions, and data
conflicts can be easier with this approach because the
dictionary is always up to date with information and
its source. If you collect pieces of paper and create
the dictionary late in the analysis phase, identifying
the source of conflicting information can be difficult.

Although not originally part of structured analy­
sis, state-transition diagrams are frequently used to
supplement DFDs in structured analysis for on-line

Boldface items show new information on
detailed, decomposed diagram that is
omitted on the higher level diagram. The
dotted lines mirror the net inflows and
outflows of the level 0 diagram. Process
3.0 is only here to show the net outflow
connection.

(and real-time) applications. A state-transition
diagram shows the time ordering of processes and
identifies relationships between processes. State­
transition diagrams are an integral part of object­
oriented analysis and are deferred until that
discussion in Chapter 11.

STRUCTURED __________ _
SYSTEMS ANALYSIS __ _
ACTIVITIES ______ _

The specific activities in structured systems analy­
sis are:

232 CHAPTER 7 Process-Oriented Analysis

1. Develop a context diagram
2. Develop a set of balanced data flow diagrams
3. Develop a data dictionary
4. Optionally, develop a state-transition

diagram if building an on-line or real-time
application.

Data File or
Data Base

Data Field or
Attribute

Data Flow

Process

External Entity

File/Database Name
Aliases
Primary Key
Alternate Keys
Size of Relations/Records
Growth Percentage per Year
Security
Data Structure
Organization

User Name
System Name
Aliases
Definition, if needed
Creating Process(es)
Length
Data Type
Allowable Values and Meanings
Validation Method (e.g., cross-

reference file, code
check, etc.)

Name
Aliases
Timing (e.g., daily, weekly, as

occurs, etc.)
Contents
Constraints (e.g., requires

5 second response; only oc­
curs for sales orders, etc.)

Process Name
Process Number
Description
Constraints (e.g., must be

complete within 20 seconds or
Process x times out.)

Entity Name
Aliases
Definition
Relationship to Application
Contact (if entity is an

organization)

FIGURE 7-5 Data Dictionary Contents by
Type of Entry

Structured analysis can be likened to a video cam­
era with a zoom lens. At a distance, with no zoom,
the item being examined is abstract and fuzzy. It has
shape but no details. We can tell the photo is a build­
ing but little else (see Figure 7-6). When we draw a
context diagram, we are examining the abstract
shape of the item, in our case an application. Next,
we zoom in with the camera to identify a greater
level of detail about the object. In the photo, colors
are distinct and some features of objects stand out.
Pieces of the structure, for instance, columns, can
be discussed in isolation of other pieces. Internal
photos might show position, size, and type decor of
rooms. There are still details which remain indis­
tinct. When we develop the Level 0 diagram, we
zoom in a level to expose more details of the prob­
lem. At this level, we describe the major normal
processes, data flows, and files, and how they inter­
relate with external entities from the context.

In the third photo, we see all of the details: loose
tiles on a roof, a crack in a foundation. Internal
photos at the same level might detail construction
materials (e.g., hardwood or concrete floors), and
windows and doors to the outside. We can describe
the context and surroundings, as well as the photo
item, in as much detail as needed to suit our purpose.
Similarly, at each additional level of application
problem decomposition, we are zooming in to
examine ever more detailed layers of the item, until
we arrive at the essential processes in the applica­
tion. At the lowest level of decomposition, we
analyze not just the normal processing but all
exceptions, errors, and details of reporting that
accompany the normal processes. From systems the­
ory, we know we are finished decomposing when we
can no longer identify minisystems as the compo­
nents of subprocesses.

The problem with the photographic zoom anal­
ogy is that the activities in structured analysis are not
strictly top-down. First, we do not think in a strictly
top-down manner. We jump back and forth between
levels of detail to 'test' how a higher level decision
might look at a lower level, to get details of a new
process so we are sure how it 'fits' with the other
processes, and so on. When we are developing an
application similar to something we have already
done, we have a good understanding of familiar parts
and little understanding of new parts. We spend time

Structured Systems Analysis Activities 233

FIGURE 7-6 Zoom Analogy to Structured Analysis

analyzing the new parts of the application to see how
they fit with what we already know. We have to
change our preconceptions based on the new infor­
mation, and alter our 'mental model' at all levels of
detail to accommodate the new information. We may
go into great detail on a new aspect of the applica­
tion, ignoring the known aspects temporarily. Then,
when we understand the new parts, we can go back
up to a high level of abstraction to document how the
parts fit together.

Second, application analysis is iterative. We have
already discussed planned iterations to move to
lower levels of detail in documentation. We also
reiterate through analysis when we find some unex­
pected, unknown, or changed requirement to ensure
that it fits what we already know. To decide that fit,
we must walk-through the entire process top to bot­
tom. Recall that a walk-through is a formal review
of analysis, design, program code, test design, or
some other component of application development
work. A walk-through can be used to determine

where the new requirement fits
what other processes, flows, stores, or entities

are involved in the change

what are the ripple effects of the change through
the set of DFDs.

Another analogy for structured analysis, as
equally applicable as the photo zoom, is fr.om ge~l­
ogy (see Figure 7 -73). If we are trying to dnll for 011,
we might find a variety of different formations and
even have different drilling results, depending on the
depth and angle. So, too, in structured analysis our
results depend on our approach and the information
we obtain from interviews and information gather­
ing. The information differs for each user because
their perspective of the problem, their job goals, and
their personal aspirations all distort their view. We
require multiple approaches, multiple intervie~s
with both the same and different people, and multI­
ple perspectives of analyzing the info~ation. Fi~ure
7 -6 shows unfocused probing. The pIeces and VIews
do not fit together. We know we are at the end of
analysis when all users agree and all the disparate

3 This analogy is from Gary Moore, University of Calgary, who
originally used it to describe research in information systems.
It fits the application development context as well.

234 CHAPTER 7 Process-Oriented Analysis

Drilling Lines _

-.,.

Earth Surface

FIGURE 7-7 Geologic Analogy to Structured Analysis

views fit together coherently. Recall that triangula­
tion is a data gathering technique comparing multi­
ple verifying sources of all information. The purpose
of triangulation is to ensure that our resulting view
of an application accurately depicts the requirements
of the work process it supports. So, we analyze top­
down, sideways-out, bottom-up, and do them all
more than once in the analysis process.

Now, we turn to the discussion of how to
actually develop the documentation in structured
analysis.

Develop Context Diagram
Rules for Developing Context Diagram

The context diagram summarizes the scope of the
project. The rules for developing the context dia­
gram are listed below for easy reference.

1. Define the boundaries (i.e., scope) of the
application. Specifically, define what the
application will do and what it will not do.
Draw the circle identifying the application
and write the application name in the center.

2. Using the application boundary as a starting
point, identify all external entities with which
the application must interact. For each entity,
draw one square on the diagram and label the
square.

3. For each entity, create a definition in the data
dictionary.

4. For each external entity, identify the specific
data flows that define the interface.

5. For each data flow, create a definition and list
of tentative contents in the data dictionary.

Scoping may take place before analysis actually
occurs and is usually part of the feasibility study as

discussed in Chapter 6. Some organizations which
might not perform feasibility analysis still require a
bounding of the application. Review that portion of
Chapter 6 if you do not remember the political and
organizational issues involved. Here·, we assume that
boundaries are defined and that the application and
its interfaces to external entities are reasonably well
defined.

Definition of external entities is next. External
entities are people, places, or things which interact
with the application. Usually, we identify titles/roles
(e.g., Customer), departments (e.g., Accounts Re­
ceivable), organizations (e.g., Medicare Adminis­
tration), or applications (e.g., Accounts Receivable
Application) as entities. The phrase 'interact with the
application' has a very specific meaning. The entity
is outside the control and/or processing being mod­
eled for the current application. That is, external
entity processing, procedures, and data are not sub­
ject to analysis or change. Relationships between
external entities are not shown on the diagram(s)
(i.e., external entities cannot connect to each other).
For example, if you are modeling an order process­
ing application that does not do inventory control,
the warehouse would be on the context diagram. If
inventory control and warehouse processing are
within the scope of the application, the warehouse
would not be on the context diagram.

After entities are identified and drawn on the
diagram, they should be defined in the data dictio­
nary. The entries for an entity include a name and
definition (see sample Figure 7-8). This step is
important for two reasons: to develop a common
vocabulary, and to develop documentation as analy­
sis proceeds. Frequently, individuals might believe
they have a common vocabulary because they use
the same words in their discussions. Only when they
develop a common definition of the terms can they
be sure that their shared terminology also means
they share the meaning of the terms (see Example
7 -1). Finally, in organizations having a data admin­
istration function, a dictionary (or repository) of
'corporate' data is an integral part of the organiza­
tion's data architecture (see Chapters 9 and 10 for
more on this topic). The name and definition of each
entity (and, eventually, each attribute) should be
matched against the organizational definitions to

Structured Systems Analysis Activities 235

Entity Name

Aliases

Definition

Relationship
to Application

Contact, if entity
is an organization

Entity Name

Aliases

Relationship
to Application

Contact, if entity
is an organization

Customer

None

A company, government
agency, nonprofit organization,
or individual who orders goods
and services from X Company

Order goods, return goods,
receive invoice

None

Medicaid Administration

Medicaid

Receives claims, sends
claim reconciliation, payment

Mary Jones 202-445-0011 ,
NY State Claims Adjustor
Medicaid Administration
1401 Avenue C, NE
Washington, D.C. 01010

FIGURE 7-8 Example of External Entity
Description

ensure consistency with other uses of the same
name, or uniqueness of the name if a new definition
is developed.

There are several reasons for documenting defin­
itions in the dictionary as work proceeds. First, the
dictionary provides the basis for intraproject com­
munication. Whenever a definition is developed and
added to the dictionary, the more the team builds a
shared view of the application reflecting the dictio­
nary contents. Second, documentation is best done
as the project progresses to ensure that it gets done.
If documentation is delayed until after implementa­
tion, it rarely includes the wealth of detail and his­
tory of decisions that can be incorporated if done
instream.

The next action in developing the context dia­
gram is to define data flows b~tween the application
and each external entity. The questions you ask your­
self to identify data flows are, "What information
do I (as the application) need from this entity?" and
"What information do I feedback or provide to this
entity?" Frequently, but not always, input flows (to

236 CHAPTER 7 Process-Oriented Analysis

A CASE OF NO SHARED MEANING

The XYZ Annuity Company was developing a
new application to define the institutions
which defined its customer base. The exercise
was prompted partially by a lament from the
head of marketing who claimed, \\There are
6,400,7,500, or 9,650 institutions, depending
on who I ask and which application they are
getting the numbers from. Can't I have one
number of institutions?"

A newly founded Data Administration
team decided that the first \\corporate" defi­
nition they would tackle was institution. The
data analyst assigned first asked appli­
cation developer colleagues, \\What is an
institution?"

The replies were varied and generally,
unsatisfactory:

Anyone we do business with.
An organization we do business with.
Any legal entity we do business with.
A school, research and development

institution, not-for-profit foundation, or
other organization which is approved
by the IRS to contract for annuity busi­
ness with XYZ Annuity.

An organization that has a plan defining a
group of annuity contracts.

Then the analyst asked the users, \\What is
an institution?"

Some organization that remits annuity
payments (a remittance clerk's
definition)

An organization with a plan defining a
group of contracts (a accounting man­
ager's attempt at a generic
definition)

An approved organization which mayor
may not have a contract plan (a mar­
keting definition)

An organization to whom annuity and
pension product counseling is provided
(a counselor's definition)

A target audience for marketing and seil­
ing annuity products (a marketing
definition)

The analyst then asked the senior manager
in charge of institutional relations to please
define an institution. His response was a three­
page, single-spaced memo that defined six
major variants and over 30 different situa­
tional definitions for an institution.

Two important ideas here are, first, all of
these definitions are correct, and second,
each definition has some generally ac­
cepted component. Definitions relate to per­
spective. A systems person defines an
institution in relation to the application's use
of the term. A user defines the term in rela­
tion to their job's use of the term. The man­
ager tried to synthesize all perspectives and
highlighted the variation and divergence
that had evolved throughout the organiza­
tion. Third, all of these definitions have some
element that appears important to defining
"institution. "

When asked about the differences in the
definitions, one user said, \\Oh, yes, we know
we don't all mean the same thing when we
use the term institution. I even mean different
things depending on the topic."

Resolution of the differences took over six
months of part-time work, resulted in the defi­
nition of 20 new attributes of an institution,
and required the approval of 72 managers in
the process. Several applications under
development that were using an institu­
tional billing code as the primary key identi­
fier underwent substantial redefinition as a
result of the development of a shared term,
'institution. '

Structured Systems Analysis Activities 237

Summary Context

Inflows Context

FIGURE 7-9 Example of Complex Context Diagram

the application) are matched with output flows to the
same entity. For instance, customers place orders;
the application sends an invoice (and goods) back
to the customer. Check for reciprocating input­
output flows such as these. When you identify single
flows to/from an entity, you want to double check by
asking, "How do I know they got this output?" or
"Do I have to tell them I got this input?" As you
define each data flow, draw the directed arrow on the
context diagram, and label the flow. For a complex

application, you might need two levels of context
diagrams (see Figure 7-9). One level summarizes
all entities with directed arrows that are unlabeled.
The other level shows input flows on one diagram,
and output flows on the other diagram with labeled
data flows on both diagrams.

Data flows are information about some business
event being tracked by the application. They do not
identify physical items. For example, an invoice is
information about an order that would also have

238 CHAPTER 7 Process-Oriented Analysis

Name

Aliases

Timing

Contents

Constraints

Order

None

As Occurs

Customer Name
+ [Address I Customer ID]
+ Shipping Instructions
+ 1 {Item name

+ (Item number)
+ (Color)
+ (Size)
+ Quantity ordered}m

80% must be billed and
shipped within 24 hours

100% orders in by noon must
be billed and shipped the same
day

FIGURE 7-10 Example of Data Flow
Dictionary Description

actual goods. A data flow to a customer shows the
invoice but not the physical goods.

Last, for each data flow, create a definition in the
data dictionary. The dictionary information provided
for a data flow is its name, contents, and contents'
source when it is not obvious (see Figure 7-10 for
sample data flow description).

ABC Video Example Context Diagram

The scope of the project for ABC Rental Processing
system is to provide rental/return processing for
videos, including customer maintenance, video
inventory maintenance, historical information main­
tenance, and reports to management. At the end of
the day, accounting totals of sales information are
generated, but there is no automated accounting
interface. There is no purchase order processing
in this application. The application's main function
is rental processing, so we will call it 'ABC Rental
Processing.' We draw the circle for the application
in the context diagram and label it 'ABC Rental
Processing. '4

4 The names of items from a diagram are in italics to set them
off from the rest of the discussion and, hopefully, minimize
your confusion.

Then we define the entities. Possible entities are
customer, video vendor, ABC management, ABC
accountants, and the Internal Revenue Service (IRS).
The IRS is omitted because there is no tax -related
processing performed in the application. ABC ac­
countants are included because they receive an end­
of-day report of receipts. How management and/or
accountants use that information is beyond the scope
of the application. ABC management could conceiv­
ably be on the diagram. Now, we ask ourselves, "Do
we have control over what ABC management does
with respect to the Order Processing application?"
The answer, in this case, is yes, because ABC is so
small. In other circumstances, the answer could be
no. For instance, with a large application generating
reports for many levels of management or for other
departments' management, the answer might be no.
Here, ABC management is not on the context dia­
gram; in other companies or contexts it might be.

The entities left are Customers, Video Vendors,
and video. Customers should be obviously correct.
All rental and return processing relate to interactions
of the application with customers. ABC has no con­
trol over customers' rental choices.

Vendors as an entity might be less obvious. Even
though there is no automated purchase order process,
the videos entered into the application come from
somewhere, so video vendors should be identified as
the source of video information.

Last, we deal with video. Is video an entity that
the application interacts with? The answer is yes. Is
video an entity that the application can control? The
answer is again yes. Video is not on the context dia­
gram because it is in the application. In effect, the
video is within the circle that describes the ABC
Rental Processing.

As a result of this analysis, we add three external
entity squares to the context diagram labeled Cus­
tomer, Video, Vendor, and Accountant (see Figure
7-11), and define the entities in the dictionary (see
Figure 7-12).

Next, we define the data flows and document
them in the dictionary. What happens in this applica­
tion? When a customer selects a video, they first tell
the clerk their phone number. The clerk uses the
phone number to 'look up' the customer and validate
their rentals. If the customer is new (i.e., not on file),

Structured Systems Analysis Activities 239

Accountant

... 7
Customer -:J ABC Rental

I------~ - Video
Vendor

__ 1 Processing
14-------4

FIGURE 7-11 Skeleton ABC Rental Processing Context Diagram

the customer information is entered and stored. After
phone number processing, the customer either gives
the clerk the cardboard shell, or tells the clerk the
video name (see Chapter 2). This sentence identifies

Entity Name Customer

Aliases None

Relationship Rents and Pays for Videos,
to Application Provides New Customer

Information, Returns Videos

Contact None

Entity Name Video Vendor

Aliases Vendor

Relationship Provides New Videos
to Application

Contact None

Entity Name Accountant

Aliases None

Relationship Part-time employee receives
to Application end-ot-day reports

Contact None

FIGURE 7-12 ABC Rental Processing Data
Definitions for External Entities

a data flow: rental request. After entering the infor­
mation into the computer system, the clerk needs to
provide some record with customer signature that
the rental took place. This record accounts for the
transaction and establishes customer liability for the
rental property. This information identifies a recipro­
cating outward flow to the customer: rental receipt.
When the tape is returned, the charges are com­
puted based on the due date of the rental(s). This
identifies another incoming data flow for a video
return. So we have identified four data flows be­
tween the ABC Order processing application and
customers:

• New Customer to store customer information
• Rental request (analogous to placing an order)

from the customer to create a video rental and
payments

• Rental Receipt from the application to confirm
the rental

• Video Return to determine late charges, if any,
and payment due.

For these four flows, there are four arrows be­
tween customer and ABC Rental Processing. Three
arrows are from customer for new customers, rental
requests, and returns. One arrow is to customer for
the rental receipt.

240 CHAPTER 7 Process-Oriented Analysis

New Customer ..

Video Rental, Payment • (

Rental Receipt \
Customer

--
Video Return

Accountant

I

End of Day
Rental Summary

ABC Rental
Processing

... New Video
Video

Vendor

FIGURE 7-13 ABC Order Processing Context Diagram

The data flow relating to vendors is somewhat
obscure, but is identified by the need to enter new
video information. Since new video information
comes from somewhere, its source must be identified
as the entity. There is one data flow from vendor to
ABC Rental Processing for video information.
There are no data flows back to vendor because
the scope does not include ordering videos from
the vendor.

Last, we define the data flows to and from the
accountant. The accountant does not feed any infor­
mation into the application, and receives only an
end-of-day rental summary. So, there is one data
flow to accountant for the' end-of-day rental sum­
mary.' Next, we draw the data flows on the context
diagram and label them (see Figure 7-13).

While we label the flows, we evaluate the names
of the data flows to ensure their meaningfulness.
Rental request implies a request for assistance in
rental processing and is a weak name. Stronger,
more meaningful names are 'Video rental' or 'Video
rental information.' Either of these might be used.
Here, we use Video rental since the word 'informa­
tion' is not particularly meaningful. Also, rentals
are always accompanied by payments which are
added to the name to be more explicit.

Novice analysts frequently have trouble differ­
entiating between the thing, and information about
the thing. Keep in mind that what we document on
DFDs is always information about the thing. So,
when we name a data flow 'Video Rental' we really
mean information about 'Video Rental.' That is why
the word 'information' is weak in the data flow
name. The other names: Rental Receipt, Video Re­
turn, New Customer, New Video (not New Video
Information), and End-of-day Rental Summary are
all acceptable. Again, there are no 'right' or 'wrong'
names for data flows. Some names are more descrip­
tive than others, and, therefore, stronger. Many com­
panies define their own conventions, or local rules,
for naming data flows, entities, and processes.

Last, we define data flows in the dictionary (see
Figure 7-14). Keep in mind that just because the
information is in the dictionary does not mean it is
cast in concrete. It is subject to review and change
throughout the life of the project. The goal is to
define the application at a level of detail so that
changes can be made before they become costly, that
is, during analysis.

Upon completion of the context diagram, you are
ready to do the next level of analysis, opening up
the circle, to define a data flow diagram.

Structured Systems Analysis Activities 241

Name New Customer

Aliases None

Timing As Occurs

Contents Name + Address + Phone
Number + Credit Card Type
+ Credit Card Number
+ Credit Card Expiration Date

Constraints None

Name Rental, Payment Name New Video

Aliases None Aliases None

Timing As Occurs Timing As Occurs

Contents Phone Number + 1 {Video ID}m Contents Video ID + Video Name
+ Total Amount of Order + Date + Rental Price

Constraints None Constraints None

Name Copy of Order Name End of Day Summary

Aliases Printed Order Aliases EOD Rental Summary

Timing One per rental transaction Timing Close of Business

Contents Phone Number + Customer Contents Videos Rented + Total Fees
Name + Customer Address Collected + Videos Returned
+ 1 {Video ID + Video Name + On-Time Returns + Late
+ Rental Charge + Due Date}m Returns + Total Late Days
+ Total Amount + Total Amount + Late Fees Collected
Paid + Total Amount Due (should Constraints None
be zero)

Constraints Must be signed by customer.
Optional that customer takes a
copy.

FIGURE 7-14 ABC Video Data Flow Definitions-Tentative

Develop Data Flow Diagram
Rules for Developing
a Data Flow Diagram

To develop a data flow diagram, iterate through the
following steps until a primitive level is reached:

1. Define the processes.
2. Define the files and other data flows required

to support the processes.
3. Draw a Level 0 DFD. At level 0, ignore

trivial error paths and data stores. If you
define a validation process, you must eventu­
ally identify an error path. Define the error

path at the primitive level. Similarly for data
stores, define files when they are shared
between processes. Introduce files that are
only used within a given process at the level
at which the file is shared between two or
more subprocesses.

4. Balance the DFD with the context diagram.
Compare the net inputs and outputs to exter­
nal entities on the DFD to the net inputs and
outputs on the context diagram. There should
be a one-to-one correspondence between the
diagrams.

5. Iterate through this procedure until the primi­
tive level of DFD is reached for all processes.

242 CHAPTER 7 Process-Oriented Analysis

Always balance the current level DFD's net
inputs and outputs with those of the previous
level.

First, we will discuss how to identify the Level 0
processes that are within the circle of the context
diagram, without defining any data stores. The diffi­
culty of this activity varies with your understanding
of the problem domain and the scope of the project.
One of the hardest parts of this activity is to decide
the 'right' level of abstraction. What is right in one
instance may not be right in another. For instance, if
you have a multidepartmental, multiapplication en­
vironment you are trying to describe, the Level 0
diagram might link departments and the net data
flows of the context diagram (see Figure 7-15). If
you have a multidepartmental, single application
environment, you might identify major functions
and their relationships (see Figure 7-16). Or, if you
have a single department, single function applica-

1.0

Counsel
Patient

6.0

Accounting

2.0

Maintain
Patient

Records

tion, such as ABC Rental Processing, you try to
define the general functions to be performed. The
approach in this text is to define the simple environ­
ment, discussing the common features for all levels
of abstraction.

During the information gathering stage of the
application, you discussed with users what they did
and how they did it (see Chapter 4). The individual
steps that each user performs in the tasks relating to
the application are components of the applications'
processes. There are a variety of ways to identify
processes; some examples are:

1. Direct identification: If you have similar
experience and either know the processes, or
have articulate users who know the pro­
cesses, identify them directly.

2. Top-down: Decompose the problem into its
constituent parts. The functions at each level
should completely define the problem and

3.0

Create
Government

Reports

FIGURE 7-15 Multidepartment, Multiapplication Level 0 DFD

Doctor

Structured Systems Analysis Activities 243

1.0

Maintain
Psychiatric
Counseling

Visit Information

Visit
Date,
Time,

Patient
ID

Maintain
Psychiatric
Counseling
Information

Diagnosis

Notes

_, Newand
,-------, Update

3.0

New and Update
Patient

Information

Patient Patient
Information

Maintain
Patient

Information

FIGURE 7-16 Multidepartment, Single-Application Level 0 DFD to Maintain Patient Records

should be as independent of each oth~r as
possible. The resulting independent functions
can be analyzed in isolation of the other parts
to develop each part's subprocesses. Decom­
position continues until atomic levels of pro­
cessing are identified.

3. Bottom-up: Do bottom-up analysis starting
with the details of task steps and procedures
described by users, synthesizing and combin­
ing the steps to define processes.

4. Outward-in: Use context diagram entities
and data flows to identify 'boundary'
processes with which they directly interact.
Work outward-in to define what other trans­
formations are required to link the input and
output boundary processes.

5. Functional sequence: Examine the input
data flows from external entities to identify

the 'first process' in a sequence of processes.
From that first process, define the other trans­
formations that are required to go through
each function from beginning to end.

All of these approaches can work. None is more
right than another. We all use one or more of these
in performing analysis without thinking about how
we actually do it. A good approach is to use two or
three of the methods as a way of double-checking
that all processes are defined and connected prop­
erly. For ABC, we will combine the last two
approaches, using the information from the context
diagram.

Once processes are identified, you draw them and
connect them to the external entities via the named
data flows. Other data flows and processes are iden­
tified to connect the initial ones defined until you feel

244 CHAPTER 7 Process-Oriented Analysis

the diagram completely describes the overall pro­
cessing. Keep in mind while you are performing this
activity that you do not pay attention to timing or
sequencing of processes. You do not show start-up or
shutdown activities on a data flow. If you have end
of day, end of month, or other periodic processing,
the DFD shows the processes without necessarily
identifying the timing of the processing. As the
processes are drawn, name each with a verb and the
data they create, and number them. Numbering of
processes is not meant to sequence them, even
though we unconsciously tend to do this.

Also, at Level 0, ignore exception processing.
You might have a data flow named' Valid X' without
a matching 'Invalid X.' The exception process is
added at the next lower level. This avoids unneces­
sary clutter at the highest level.

Mter the processes are identified, next define file
locations on the Level 0 data flow diagram. You
could leave files for a lower level of analysis as
many texts and companies do by convention. In that
case, you are ready to draw the diagram. Here, we
will develop the thoughts that are used to identify
data stores.

To identify data stores, first consider each pro­
cess. Can the process be completed without reading
or writing to a data store? If your answer is yes, then
you do not need a file at this level. If the answer is
no, you need one data store for every required read
action and every required write action. Many times,
the reads and writes are to the same data store. Then,
you have one data flow per input/output action. As
these required reads and writes are identified, you
add to the DFD to include the data store name and
data flow(s). When you do this part of the drawing,
make sure that each flow and store has a name.

Finally, when you have reviewed each process for
determining whether to include data stores, review
the diagram to make sure that its DFD syntax con­
forms to the rules. The first seven rules relate only to
processes and their connectivity. Processes with con­
nection errors are called 'pathological' processes
because they do not follow the philosophy of DFDs
that processes are connected via flows, files (data
stores), or entities.

The next four rules check that all connections in
the diagram are legal. The rule about no dangling

arrows5 is our own. Work and teaching experience
have proven that novices use dangling arrows to hide
their lack of understanding of what they are doing.
The final two rules deal with balancing, error han­
dling, and the introduction of files.

The DFD syntax rules are:

1. All processes are connected to something
else.

2. All process have both inputs and outputs.
3. No processes have only outputs or only

inputs.
4. Processes may connect to anything: other

processes, data stores, or entities.
5. All processes have a unique name and

number.
6. Each process number is used once in the

diagram set.
7. Only subprocesses of a process shall follow

the numbering scheme of the parent
process.

8. Entities and data stores may connect only to
processes. Another way to state this is that
each data flow must have at least one end
connected to a process.

9. Data flows are the only legal type of con­
nection between entities, processes, and
data stores.

10. Make sure there are no dangling arrows.
11. The net data flows to and from context dia­

gram external entities must balance, that is,
be present, in each level of DFDs.

12. Trivial errors and exceptions are not han­
dled until Ll or lower in the DFD set.

13. Trivial data stores show up in the diagram
set the first time they are referenced by a
process.

When the Level 0 DFD is complete, walk through
the DFD with your peers, then review it with your
user. Keep in mind that you are teaching the users

5 I realize that this is contrary to DeMarco, Yourdon, and many
undergraduate texts. For novices, dangling arrows frequently
mean you have no clue about what attaches at the other end.
In addition, most companies want all terminators identified to
ensure accuracy and to simplify quality assurance. Until you
are proficient, draw the entire diagram!

Maintain
Counseling
Information

Doctor

3.0

Patient

Maintain
Visit

Information

FIGURE 7-17 Context Expansion of Level 0
Processes: Maintain Patient Records

as well as having them review your work. If they do
not understand what you are showing them, they
cannot adequately comment on it. So, use a top­
down approach to the presentation, too. First, show
the users the context diagram. Define all of the items
in the diagram. Once they agree on the external
entities, show them a blowup of the context diagram
that includes the inside of the circle: the major
processes and the data flows connecting them to
external entities (see Figure 7-17). Then, replace that
diagram with a Level 0 DFD showing the entities
and processes. Use overlays, adding the data stores
and remaining data flows. Finally, review the
detailed definitions from the data dictionary for each
process, data flow, data store, and entity. If you take
a step-by-step approach, users can more easily
accept and assimilate the information.

Structured Systems Analysis Activities 245

Do not expect to have agreement on the first, or
even second, review. One benefit of data flow dia­
grams is focusing thoughts on the problem. Users
will frequently 'see' what is missing when they look
at a diagram that they could not 'see' when they dis­
cussed the topic verbally. When they begin a sen­
tence, "Well, what about ... " pay close attention;
the subject is usually some variation, exception, or
forgotten information that they did not discuss
previously.

As you understand and users agree on the con­
text and Level 0 processes (see Figure 7-18), begin
work on the lower level DFDs. For each Level 0
process,

1. Draw the input and output flows and the
icons to which they connect from the higher
level diagram. This forms the skeleton of the
diagram (see Figure 7-19). These are called
the net6 inflows and outflows.

2. Define the subprocesses by asking, "What are
the steps required to do this process?" Then
for each step, "Can I separate this from the
other steps and do it in isolation?" For each
subprocess you isolate, draw a process rec­
tangle on the lower level diagram.

3. Identify whether data stores are required or
not. Add them and, if they are new, name
them.

4. Identify data flows to complete the diagram
(see Figure 7-19). Make sure you provide all
and only the information required to perform
the process.

5. Review the diagram for unnecessary connec­
tions and, if found, remove them.

6. Update the data dictionary with all new
information.

The goal of subprocess identification is to de­
compose the upper level processes into what will
eventually be programmable modules. A good, that
is, correct, design has certain characteristics that are

6 Net, from accounting, means remaining after all necessary
deductions. Here, net means remaining data flow and data
store connections after the higher level process is removed.
The net data flows in and out of a higher level process may
connect to different subprocesses at the lower level.

246 CHAPTER 7 Process-Oriented Analysis

Doctor

Patient

New and
Update ..

Patient
Information

Maintain
Counseling
Information

3.0

Maintain
Patient

Information

Diagnosis

Notes

1.0

Maintain
Visit

Information

Visit
Date,
Time,
Patient

ID

New and Update
Patient

Information

FIGURE 7-18 Completed Level 0 DFD to Maintain Patient Records

traceable back to a properly decomposed DFD. The
two most important characteristics are maximal
cohesion and minimal coupling. Cohesion measures
the internal strength of a process (this is also called

Doctor

intraprocess strength). We want modules that result
from process descriptions to have exactly the logic
required to perform the task, and nothing more. Min­
imal coupling measures the interprocess connec-

FIGURE 7-19 Skeleton Levell DFD with Net Inflows and Outflows for Process 1.0: Maintain
Visit Information

Structured Systems Analysis Activities 247

1.1

Review
and Code
Visit Info

Unreconcilable

Errors

Doctor

Patient File

CCD
Time

Keeper

FIGURE 7-20 Completed Levell DFD: Maintain Visit Information

tions. Ideally, we want data flows and stores to con­
tain exactly the information needed to trigger or per­
form each task, and nothing more. The questions and
evaluation of processes in the decomposition
process, if done properly, result in cohesive, mini­
mally coupled processes.

Three types of quality checking are performed
on the analysis results. First, correctness checking
determines that the syntax and connections used in
diagrams, charts, and so forth are accurately used.
Next, completeness checking is performed with
the users to validate the meanings of all terms
and to verify the semantics used in all documenta­
tion. Last, consistency checking ensures con­
sistency and correctness of all entries that span
multiple diagrams, text, charts, and so on. Consis­
tency checks evaluate the interitem syntax and
semantics. These checks are first performed by the
project team during walk-throughs or other quality
assurance evaluations. Then, they may be reviewed
by independent quality assurance analysts as an
added check.

If you find data flows that are identical, with no
transformations, going to many processes, reassess

the processes definitions (see Figure 7-21). On the
other hand, if you have a transaction processing
application in which each transaction has its own
version of some process, this type of diagram is cor­
rect (see Chapter 8). If the processes all do different
transformations and have either unique inputs or
unique outputs, leave them separate. If the transfor­
mations have an if-then-else logic, they are at too
Iowa level and should be combined (see Figure
7-22). If they all do different transformations to the
incoming data, are the processes' outputs going
to the same place? If so, you may have over­
decomposed and should combine the processes. Fig­
ure 7-23 shows two possible corrections to the over­
decomposition. Either correction may be acceptable
depending on the 'Y.y' data complexity and their
processing complexity. Semantic (i.e., interpreting
problem meaning) DFD problems are discussed
again in the next section.

At Level 0, we did not concern ourselves with
exception processing. At the lower levels, when a
data flow is named 'Valid X,' you must balance that
flow with another one called 'Invalid X.' In other
words, you do define errors and exceptions at the

248 CHAPTER 7 Process-Oriented Analysis

AFTER

YFile

FIGURE 7-21 Example 1 of Excessively Detailed Processes

same level at which you define the split of valid and
error/exception processing.

Let's examine how to apply these thoughts to
develop a set of DFDs for ABC Rental Processing.

ABC Example Data Flow Diagram

We said above that in ABC Rental processing we are
combining the analysis of context with analysis of
the sequence of actions for each data flow. So, we

start with a customer placing a video rental request.
Customer and video information trigger a 'Create
rental' process. The first check in 'create rental' is
to validate the customer; if the customer does not
currently exist, we want to 'add new customer' to the
company's files before rental processing. Here, we
have a decision to make. We just described two input
data flows to the create rental process. We need to
decide if they are related or not. In this case, the is­
sue is whether we can add new customers as a sub-

BEFORE

AFTER

Y2

FIGURE 7-22 Example of If-then-else Logic
inDFD

process of rental processing, or whether they are sep­
arate. If we separate the two, we have the two data
flows we defined. If we combine them, we only have
one data flow that optionally contains new customer
information with rental information. If you do not
know how the user wants the processing performed,
you go back and ask. So, we will set this
issue aside for the moment and finish defining what
it means to 'create rental.'7

7 Postponing decisions that are noncritical to the main logic is
an important problem-solving behavior. Notice that we first
identify alternatives and implications of the postponed item
before setting it aside. If there are more side effects we have
not identified, we are more likely to notice them with alterna­
tives and implications than without.

Structured Systems Analysis Activities 249

Mter customer validation, we Ilext have to vali­
date the video and get a rental price. This requires
reading some sort of video inventory file. Again, we
ignore invalid video information for the moment.
Once we have found the information on all the
videos to be rented, we compute the total amount
due. Again, we have a decision. At this point, how
do we know whether late fees have been paid or not?
Do we assume that people always return videos as
they come into the store, and rent videos on their
way out of the store? The rule is, never assume any­
thing. If we know how to deal with this issue from
the data gathering, we continue; otherwise, we add it
to the list of questions for the user and continue.

Mter the rental amount is created (whatever it is
and however it is computed), payment information is
entered and customer change is computed. Then, the
rental 'order' is written to a file and a paper copy is
created for customer signing.

So, we have a process, 'Create rental,' and we
have several subprocesses, 'Validate customer,'
'Validate video,' 'Compute rental total,' 'Process
payment,' 'Write rental,' and 'Print rental.' We also
have several questions and decisions that we
deferred. We can create the Create rental process on
the Level 0 diagram whether we deal with the
deferred issues or not. But we cannot identify the
other processes, with certainty, until the issues on
new customers and late fees are decided. So, we
review the interview information and go see Vic for
the detailed answers.

Mary goes back to Vic and says: "We are talking
about the options for entering rentals and we
have several questions. The first question is
about new customers. One option is to separate
the functions, that is, add new customers in a
separate process from rental processing. A sec­
ond option is to allow adding a new customer as
part of video rental processing. A third option is
to allow both. Do you have a prefere~ce?"

Vic: "I don't know. What will the cost differences
be?"

Mary: "No matter what, you want to be able to
add, change, and qelete customers. It seems
desirable to do that without being tied to the
rental process. However, rental processing is

250 CHAPTER 7 Process-Oriented Analysis

BEFORE

• May have excessive detail

• Definitely has excessive detail

AFTER 1

AFTER 2

~ Ext. PX.1-
Ent 5 Y File

Y,A,S NewY

FIGURE 7-23 Example 2 of Excessively Detailed Processes

90% of your activity and you don't want to slow
it down by having to leave that process to add a
new customer. The slow-down for going from
rental processing to add customer and back will
range from 4 to 30 seconds depending on the
PC's speed and the software we use. Unless you
have a business reason for separating the two
processes, I would suggest that you allow both.
If we decide this direction now, there is no
added cost. If we change direction in a few

weeks, there will be a cost, as high as several
thousand dollars."

. Vic: "OK, let's do both, then. It sounds more con­
venient this way anyway."

Mary: "OK, we will allow entry of new cus­
tomers as a process to be run by itself, or as part
of rental processing.8 My second question

8 Notice that Mary reconfirms the decision by repeating the
agreed upon solution.

relates to video returns. When we collected our
information, we observed people returning
videos in several ways. First, they can put them
into a slot and pay the fee the next time they rent
a video. Second, they can return them and pay
when they come in to get a new rental. Third,
they can return them and rent a new video both
at the same time. Do you want all of these
options in the new system?"

Vic: "Yes, why wouldn't I?"
Mary: "It is easier for us if we have a somewhat

fixed method of returns. But, if you want no
changes, then we allow for all return methods.
This may have a cost implication, but I can't tell
right now. Should we talk about this again when
I know what the cost of the options are?"

Vic was a little upset: "I told you at the beginning,
NO bureaucracy and changes only if it improves
convenience to my customers. If we don't allow
them to return in all three of these ways, some­
one will get mad. Besides, don't customers pay
when they rent? So, my only risk is on the 10%
of customers who have late fees.

"Also, if I limit the ways they can return
tapes, I lose my edge over Ajax Video's chain
up the street. If there is a cost to allowing all of
these things, why can't you tell now, and, if you
can't tell now, when will you know?"

Mary tried to placate Vic somewhat but is still com­
pletelyhonest: "Usually, there is little incre­
mental cost when all variations are known at this
stage of the analysis. But I can't tell until we've
proceeded a little further and have a sense of
how many different programs will result from
the most flexible design. I will know when we
get to about two more levels of detail which will
be in a few days. If there is no added cost, we
will go for the flexibility. If there is an added
cost, I will let you decide and give you an esti­
mate for the different choices.

"Let me summarize: We will analyze for
returns through the drop box, returns as a person
coming in, or returns as part of rentals, and get
back to you with cost implications, if any."

From the application perspective, maximum flex-
ibility for both customer and return processing

Structured Systems Analysis Activities 251

means, at least, that the rent and return screens and
processing must be closely linked to each other. Now
we need to guard against having the processes too
closely coupled. Ideally, we want to accommodate
Vic's wishes and still have processes separated as
much as possible. To obtain this goal, we need to
decide the minimum information needed to link cus­
tomer and rental processing, and rental to return pro­
cessing. Then, visualizing an implementation, we
might be able to use, for example, windows for each
process. We might open a new window to add a cus­
tomer during rentals and maybe open another win­
dow to process returns during rentals. Also, with
minimal coupling, we maintain separation even
though the processes are interleaved.9 This decision
process is another example of how not top-down a
top-down process is. We are going to an implemen­
tation level of detail to jump back up and define the
data at the higher, more abstract level. Don't think
this is the final answer. It is one way to reason
through the problem and figure out how it might
work at the computer level. Then, we back off to the
logical level to describe that possible model.

We said before that the first step in create rental is
to validate customer. If either the phone number or
customer name is not retrieved, we know we have a
new customer and can switch to that process. Once
the new customer information is entered and saved,
we can pass it back to rental processing as if it were
in answer to an original request. Once we have the
customer information in the create rental process,
we can automatically check outstanding rentals. If
there are any, we can ask if they want to return them
or add the new rentals to the list. Our problem is
solved unless Vic wants late fees processed whether
or not the outstanding rentals have been physically
returned. This decision, however, does not affect us
until we try to define the details of processing. At the
moment, we will assume late fees are only processed
when the physical tape is returned.

9 Interleaving means weaving pieces of multiple processes to­
gether to give the appearance of parallel processing. Each
process progresses a little. First, we switch to a process and
do some of its function. Then we switch to another, then back
to the first process, and so on.

252 CHAPTER 7 Process-Oriented Analysis

Accountant

End of Day
Rental Summary

::::::....

2.0 1\
L1 1.0 1 Create

I---------+l~ reate R , ,
New Customer C J EOD

I Customer ~_
Customer I r 5 0 'I New Video

Video Rental, Payment _ r-----:--jooI;lt--------t
Video

Vendor
Rental Receipt .. 3.0 Create II

~----,---I.o4-------_\~~ ~ Video 1/

Video Return rocess I \ Rental p. 17'-----0
~ Returns

FIGURE 7-24 ABC Video Expanded Context Diagram

The result of this discussion so far is that we have
three processes identified: create rental, create cus­
tomer, and process returns. Each process could be
initiated by the create rental process, or could be ini­
tiated by a customer action. We draw these processes
(see Figure 7-24) and attach them to the correct data
flows. Within the context circle expansion, do not
show connections between processes. Processes still
unaccounted for are 'create video' and 'Create end
of day report' for summary totals. We know we have
to get video information into the system, so we add
that process and connect it to the data flow from
video vendor. Since we must print an end-of-day
summary for the accountant, we add the process to
the diagram. '

Figure 7-24 shows our high level processes of
ABC Video Rental Processing, expanding the con­
text diagram within the circle. The processes are
shown in small circles or in rounded vertical rectan­
gles, depending on local customs. This text uses
rounded vertical rectangles. Notice that the data
flows to/from each external entity are attached to a
process, and all data flows are labeled and have a
directional arrow showing which way the data is
flowing. Also notice that the processes each have an

action name beginning with a verb, and each process
has a numeric identifier.

The next step is to expand to a Level 0 DFD,
defining the data stores 10 in the application and link­
ing processes, as required (see Figure 7-25). Data
store identification usually occurs naturally during
the identification of proceSSes and subprocesses. For
instance, what actions are done to enter a rental?
First, you would check to verify that the customer
is, in fact, a customer. This means checking some
permanent 'list' or file for presence of the customer.
Then, you would ask for each video they want to rent
and verify the description and its price. To retrieve
the description arid price, we need a permanent file
of the video inventory. When the rental is complete,
it is stored somewhere (in a rental file), completing
the process. Following this logic, we need at least
three files at this level of analysis: customer file,
video inventory file, and rental file. At this stage, we
don't concern ourselves too much with the file con-

10 Other names fat data stores are files, relations, or databases.
The term data store means data relating to this name and
does not imply normalized form. Data stores can contain
more than one data structure [Gane, 1990].

New Customer
1.0

Customer I--------I~
Create

r---~ Customer

Create
Rental

Order

Structured Systems Analysis Activities 253

Accountant

End-ot-Day
Rental Summary

2.0

Create
EOD

Report

Today's
Rentals

Return, Late Fee Payment
Process
Returns

Video
Vendor

New Video
5.0

Create
Video

FIGURE 7-25 ABC Video First Cut Level 0 DFD

tents, although we identify the contents throughout
analysis as they become known. As attributes, or
fields, are discussed, it is a good practice to add to an
attribute list for each file. The linkage between cre­
ate rental and create customer is shown on the DFD
as a data flow. The details of initiating create cus­
tomer processing when a customer is not found are
deferred to the next level of detail.

Before showing the DFD to Vic for his com­
ments, we evaluate its level of abstraction and cor­
rectness (see Figure 7-25). Are create customer,
create rental, create video, and Process Returns all
on the same level of abstraction? The first clue that
they are is that the first three processes all have the

same verb. Process returns is the removal of rentals
just as create rental is the creation of rentals; they
are reciprocal processes. The reciprocal processes
also appear to be at the same level. The name pro­
cess returns is not the best we could choose to show
reciprocity; return rental is a stronger name that does
and we change the process name.

Next we evaluate correctness of the diagram. Are
all the connections legal? Yes. Are there any patho­
logical connections? No. Is there a flow through the
application? Yes, the main flow is for rental and
return processing.

Now, we could return to Vic and ask his opinion,
giving him a verbal presentation of the details

254 CHAPTER 7 Process-Oriented Analysis

TABLE 7-1 Decision Table for Decomposing Another Level of Detail

Conditions

Domain Knowledge H H

Language 4GL 3GL 3GL 3GL

Similar Experience Y N N

Simple Process/
Few Files
or
Complex Process or S C
Many Files

Recommended Decomposition Levels

Level 0 X X X X

Levell Opt. X X X

Level 2 Opt. Opt. X

Level 3 ... n X

Legend:

H Extensive experience
L Little experience
4GL Fourth Generation Language, e.g., SQL
3GL Third Generation Language, e.g., COBOL
2GL Second Generation Language, e.g., Assembler
Y Yes
N No
S Simple
C Complex

underlying each of the processes, and in the details,
getting verbal agreement to the next lower level
of subprocesses.

At Levell, we first decide which, if any, pro­
cesses need decomposition. What happens when you
create customer? A quick definition of fields and the
type of validations required is necessary. According
to the information (see Chapter 2), we need customer
phone, customer name, customer address, and credit
card ID, number, and expiration date. Validation for
these fields is that the data are present and legal for
the data type. For complex validation, you fre-

H H H L L L L

2GL 2GL 2GL 4GL 4GL 3GL 2GL

Y N N

S C S C

X X X X X X X

X X X Opt. X X X

Opt. X X Opt. X X X

Opt. X Opt. X X

quently use extra cross-reference files to contain the
legal codes and their meanings.

Do we also need to provide modify and delete
processing for customers? Always is the answer,
... and query processing as well. Now, we need to
know the implementation language to decide
whether or not to decompose further. The decision
table shown in Table 7-1 summarizes the decision
criteria and the most likely outcomes. Keep in mind
that you can always go to another level of detail and
can always get some benefit from the exercise. But,
why do the work if you don't have to?

New Customer
1.0

Customer 1---------1~

Create
Rental

Return, Payment

Maintain
Customer

Order

Structured Systems Analysis Activities 255

Accountant

2.0

Create
EOD

Report

End-ot-Day
Rental Summary

Today's
Rentals

Return
Rental

Video
Vendor

New Video

5.0

Maintain
Video

FIGURE 7-26 ABC Video Final Level 0 DFD

We are planning to build this application for a
LAN environment, using a 4GL-nonprocedurallan­
guage. For create customer there are no other data
stores needed for validation. There will be add,
change, delete, and query processing. The corre­
sponding decision cell-4GL, simple process, one
file-shows Level 1 to be optional. The decision
depends on who is doing the programming. Is the
person experienced with similar applications? Is the
person involved in analysis fully knowledgeable
about the requirements for this application? If the
answer to either of these questions is 'no,' the next
level of DFD should be developed with the details
entered in the dictionary.

For ABC Rental Processing, we will opt not to
discuss development of the Level 1 DFD for create
customer. We will change the process name to
'maintain customer' to denote the more general and
expanded processing. The final Level 0 DFD is Fig­
ure 7-26; the Levell DFD is shown as Figure 7-27
for reference.

A similar set of arguments for Process 4.0, 'create
video,' is possible. We also rename that process
'maintain video' to denote the expanded process­
ing, and omit the levell DFD.

Both rental processing and return processing
should be expanded regardless of the implementa­
tion language because they are fairly complex and

256 CHAPTER 7 Process-Oriented Analysis

New Customer
Customer t----------i~

ABC

1.0

Create
Customer

Query
Customer

FIGURE 7-27 ABC Rental Levell DFD for Maintain Customer

we have not discovered how they work yet although
we have described rental processing in some detail.
First we examine the DFD from our knowledge so
far, then expand it as required (see Figure 7-26). In
the level 0 DFD, the create rental process interacts
with customers twice and with all three data stores.
To untangle and clarify the processing of these five
interactions, we decompose the process further.

The first interaction is to get rental information
from the customer. The' rental information' includes
customer ID (or name) and video IDs (or names).
The customer ID is used to validate the customer and
get the rest of the customer information for the
rental. Similarly, the video ID is used to validate the
video and get the rest of the video information for
the rental. Customer ID is also used to check for late
fees and to retrieve outstanding rentals. We also
know that if the customer is not on file, we want to
initiate process 3.0, maintain customer. When com-

bined, this processing is fairly complex and some­
what extensive. It is complete when the clerk does
something to show that entry of rentals is complete.
We can group these processes together and call them
'get valid rental' (process 1.1) because once these
actions are complete, the rental is ready for the next
step of processing. The detailed steps we identified
are either used to create another level of DFD or are
documented in the dictionary for process 1.1.

A valid rental is totaled by adding all of the rental
fees for the current set of entries and any late fees
outstanding from past rentals. Once the total is dis­
played, the amount of money paid by the customer is
entered into the system by the clerk. The total paid is
subtracted from the total due to get the change due to
the customer. When the change and total due
amounts are both zero, the rental is complete and
ready for the last part of the process. Because this
stage is discrete, beginning with the successful vali-

Customer

Create
and Print

Rental

Structured Systems Ahalysis Activities 257

Customer File

Video File

Rental File

FIGURE 7-28 ABC Rental Processing Levell DFD

dation and ending when the change and total due are
zero, we group these actions together and call them
'process fees and money' (see Figure 7-28).

Finally, a rental is completed by saving all the
information in the rental file and printing the receipt
for customer signature. When these actions are com­
plete, the create and print rental process is complete
(see Figure 7-28).

Notice that we have decomposed the data flows
as well as the processes. Where we group rental and
payment on the level 0 diagram, we separate them on
the level 1 diagram. We add change to the process
because now we are dealing with the details. Simi­
larly, the data flows connecting to the data stores are
decomposed to show details of data passing back
and forth. On a DFD, we assume all data can be

passed when the data flows are not labeled, and it
is okay to summarize on level O. At levell, we
become specific and show the interface accurately
and in detail.

When you are drawing the OFD, you have to
guard against being too detailed. This is difficult,
especially for novice analysts. If your drawing has
these symptoms, you are too detailed and must com­
bine processes to a higher level of abstraction. The
semantic process problems to look for are listed with
examples below. These problems violate one or
more of the DFD Semantic Rules and Heuristics:

1. Processes that have only one data flow
from the previous process as its input are
probably overspecified. The solution is to

258 CHAPTER 7 Process-Oriented Analysis

BEFORE AFTER

-Gn
~

FIGURE 7-29 Example of Pathological
Data Flow

combine the data flows (see Figure 7-29).
Another solution may be the addition of a
missing external entity (see Figure 7-30).

2. When several processes have interactions
with the same external entity and at least
one process has no other interactions,
check that the data flows and transforma­
tions are different. If any two processes
have the same outflow or are closely
related, that is, passing one's input data to
the next, they are probably overspecified.
It may be possible to localize all external
entity interactions in one process, and to
perform all processing on the information
obtained in the other process (see Fig-
ure 7-31).

3. When several processes have interactions
with the same file and at least one process
has no other interactions, check that the file
contents read/written and transformations
are different. One goal of all application is
efficiency. If you read the same data more
than once, it is inefficient. It is somewhat
better to pass the data between processes. If
you are identifying only logical processing
and have the reading to show where data is
used, make a note that during design you
will need to redevelop the DFD to show

physical reads of the file. It may save time
to redevelop the DFD at this stage rather
than wait. Several solutions are possible
(see Figure 7-32). In the first solution, all
file interactions are localized in one process;
in the other, inputting from the external en­
tity and file are in one process and out­
putting is in the other. Both of these
solutions require rethinking of the func­
tional decomposition.

4. If several processes have more than one
write to the same file, check that the
processes are distinct and that the data must
be written disjointly. Again, to have effi­
cient file processing, minimal reading and
writing is desired. The alternatives are to
localize reading and writing as in the first
solution (see Figure 7-33), or to combine

BEFORE

AFTER

FIGURE 7-30 Example of Spontaneous
Process

BEFORE

AFTER

FIGURE 7-31 Example of Overspecified
Entity Processes

some of the processing but include writing
in more than one process as in the second
solution.

5. Any imbedded if-then-else logic that
describes process interaction is wrong.
Remove the logic by consolidating the
processes. The logic belongs inside the
process box, not outside; one solution is
shown as Figure 7-34. If this problem
occurs, make a note to include the control
on the structure chart for the if-then-else
logic, as required.

6. Processes that do only one very minor
process, for instance, check customer num­
ber for validity, may be overspecified. A
better process would check the customer

Structured Systems Analysis Activities 259

information, do a credit status check, and
identify outstanding late fees (see Figure
7-35). This example is an improvement
because it is reading and validating all cus­
tomer data only once.

7. Make sure that no physical entities, such as
cash register or bar code reader, have
sneaked into the DFD. Also make sure that
no immediate users of the application are
identified on the DFD. The solution to this
problem is to remove all physical entities on
any diagram in which they occur (see
Figure 7-36).

8. Make sure that data flow names are field
contents being passed or some group name
for field contents that clearly identifies the
information (see Figure 7-37). Unnamed
data flows are frequently masking overspec­
ified processes. If you cannot develop a
unique, meaningful name, reevaluate the
process they attach.

9. Data stores may show up on diagrams
multiple times with the same name. To
show that you know it is repeated, place a
vertical bar down the left side of the file
symbol.

10. Similarly, data flow names may show up
multiple times with the same name. This
condition is okay if, and only if, the contents
are identical. This condition is rare, so when
multiple data flows with the same name are
present, there is frequently an error. Double
check any data flows with the same name
and give any unique data flows their own
descriptive name (see Figure 7-38).

11. To simplify the design phase activities,
make sure that process names include the
transformation name and identify the data
being transformed.

12. If data stores have only one input or one
output, check that it is correct. This condi­
tion may be okay on the input side as long
as maintenance is performed in some other
application, or for files that are cross­
reference tables only. The condition for
output-only connections may be correct, for
instance, for temporal databases in which

260 CHAPTER 7 Process-Oriented Analysis

BEFORE

AFTER 1 or AFTER 2

FIGURE 7-32 Example of Overspecified Read File Processing

nothing is thrown away. Check the business
rules relating to the data and verify the
processing.

For return processing, we need to walk-through
the process to define if we need subprocesses. A
video ID is entered and used to retrieve the rental.
The system assigns today's date as the return date.
Late fees, if any, are computed. The total amount due
is computed. The total amount due is displayed, an
amount of money received from the customer is
entered, and change is computed. When both total
amount due and change are zero, payment process­
ing is complete. If no late fees are owing or payment

is complete, the open rental record is removed from
the open rental file and history information is up­
dated. If late fees are owed but not paid, the open
rental record is rewritten with return date and late
fee information. Return processing has several steps,
but each is simple, requiring at most one file per step.
There is little need for a Levell DFD for this pro­
cess at this time.

Notice that the process fees and money is identi­
cal to the same p:rocess for rental processing. We can
develop a common, reusable module for both rental
and return processes. Also, notice that we introduce
history here. If we decide to have a history file, it
would show at this level of DFD.

At this point, we are ready to reevaluate the new
DFDs and proceed to development of dictionary
entries for all DFD information. Check the final
DFDs for legal connections, similar levels of ab­
straction, and balanced net inflows and outflows be­
tween levels. Then, continue to the data dictionary.

Develop Data Dictionary
In this section we briefly discuss the contents and
rules, if any, for each type of dictionary entry. Then,
we will document the information from the ABC
rental application. Since you have seen examples of
each type of entry, this section is short.

BEFORE

AFTER 1 or

Structured Systems Analysis Activities 261

Data Dictionary Contents
and Rules-Entities

The contents of the dictionary for external entities
are listed in Table 7-2. The most important are the
name and the definition of the entity. In organiza­
tions with data administration functions, this infor­
mation must conform to the 'corporate' dictionary
definitions or must be reconciled with it to define
new terms. The SEs work with users and data
administrators to name and define the entities for the
organization. IS personnel do not name and define
the terms by themselves. Most external entities are
people, job titles, organizations, or applications with

AFTER 2

FIGURE 7-33 Example of Overspecified Write File Processing

262 CHAPTER 7 Process-Oriented Analysis

BEFORE

AFTER

FIGURE 7-34 Example of If-then-else Logic in DFD

TABLE 7-2 Data Dictionary Entity
Contents

Entity name

Aliases

Definition

Relationship to application

Contact, if entity is an
organization

which the application under development interacts.
Choose a meaningful business name that describes
the entity accurately and completely. If you have a
data administration function, use their name. The
definition should be a business definition and should
be completely independent of any technology.

Make sure you include in the definition any
aliases or names used in your application that do not
conform to the corporate standard. Describe the
entity's relationship to the application in terms of
the nature and timing of the interaction. If the entity

is an organization, include the name, address, and
phone number of the person most frequently
contacted.

Figure 7-39 shows the notation to be used in
describing the contents of an entity to a dictionary.
Keep in mind that this convention works well if you
are using a manual method. Automated tools have
their own format and notation for repository con­
tents. There is one notational structure for each type

Cust#
Customer I------II~

AFTER

Structured Systems Analysis Activities 263

of entry: optional information, multiple repeating
information, required information, selection between
attributes, and primary keys.

ABC Example Data Dictionary-Entities

The external entities in ABC Rental are customer,
vendor, and accountant. The entries for each of these
are shown in Table 7-3. If the accountant is an

BEFORE

Customer File

Customer File

FIGURE 7-35 Example of Excessive DFD Detail

264 CHAPTER 7 Process-Oriented Analysis

BEFORE

FIGURE 7-36 Example of Physical Entities

employee, you would not include his or her name in
the dictionary. If the accountant is an outside firm,
you would include the information.

Data Dictionary Contents
and Rules-Processes

The contents of the dictionary for processes are
listed in Table 7-4. For processes, we include the
process number from the DFD to allow quality
assurance, and to easily link back to the process
model. In a computer-aided software engineering
tool (CASE), if you used one, you usually have
automatic linkage between the diagram and the

Customer History File

Customer File

Rental File

Video Inventory

Customer History File

Customer File

Rental File

Video Inventory

dictionary entries. The name of the process should
be exactly the same as the process name used in
the DFD.

The process description details the steps to com­
plete the process and can take several forms. The
most common are pseudo-code and structured Eng­
lish, supplemented by decision trees or decision
tables as needed. Pseudo-code uses the syntax from
a language in abbreviated form for easy translation
into the target language. Structured English is
a computer-language independent description of a
process using only simple verbs and terms from the
dictionary; no adjectives or adverbs are used. Struc­
tured English is used here.

BEFORE

AFTER

Valid
Rental

Structured Systems Analysis Activities 265

Customer History File

Customer File

Rental File

Video Inventory

Customer History File

Customer File

Rental File

Video Inventory

FIGURE 7-37 Example of Weak Data Flow Names

ABC Example Data Dictionary­
Processes

The process entries for ABC are all included at the
level 0 detail level (see Table 7-5). To document the
entire application, you would create a data dictionary
entry for each lower level process, then refer to that
process in the higher level dictionary entries. In this
way, the hierarchy of processing and linkages
are documented.

Notice that there are some uneven levels of
detail in the process entries. For instance, the process
fees and money routine is fairly detailed, while the
reference to create history in return rental is not

detailed at all. You document the information you
have, replacing the high level abstract thoughts with
the details as you come to know them. The dictio­
nary is constantly evolving and changing as more
information becomes known.

Data Dictionary Contents and Rules­
Data Stores

The data store defines persist ant data; contents of a
data store dictionary entry are listed in Table 7-6.
There is a significant amount of detail that is even­
tually documented. You begin completing the infor­
mation as it becomes known and complete the rest

266 CHAPTER 7 Process-Oriented Analysis

BEFORE

r-----, Cust Info,
Video Info

Customer f-------1~

Customer History File

AFTER
Cust#,
Video # for
Previous Rentals

...----......., Cust #,
Video #

Customer I------I~

Customer History File

~-------1 Customer File

Cust
Summary

Rental File

FIGURE 7-38 Example of Nonunique Data Flow Names

when it is available. Also, some of the information
may not be relevant in your organization (for
instance, if all projects always use DB2 relational
files, you may not need detailed documents because
the information already exists). The goal of the doc­
umentation is to present necessary information with­
out much verbiage. Keeping that in mind, trim the
dictionary entries to fit your situation.

ABC Example Data Dictionary­
Data Stores

The dictionary entries for data stores are in Table
7-7. For now, we know very few of the details about,
for instance, volume, growth, and security. Those
entries are left blank.

Above, we said that you trim the contents of the
dictionary entries to fit the project. In a consulting
situation, such as Mary and Sam are in at ABC, the

likelihood of them also maintaining the application
is unknown. So, the more detailed the documenta­
tion, the more you simplify future maintenance.

Data Dictionary Contents-Data Flows

Data flow contents are important pieces of docu­
mentation because they cause the creation and
change of files and determine the data each process
actually accesses. The data flow contents are shown
in Table 7-8. Contents have a primary key to
uniquely identify the data. The difference between
primary key for a data flow and for a data store is one
of time. What period of time is the flow 'alive'? Data
flows usually have a short life which means that less
data is required for a unique ID. For instance, the
flow payment is a money amount which is accept­
able here. At the implementation level, that field
might also require a terminal ID or a transaction ID

Symbol

+

()

n{ }m

[]

Definition

is composed of

and

Parentheses show an optional entry
which mayor may not be present

Braces show iteration
n is minimum entries
m is maximum entries
If no limit to entries, the maximum is
shown as m.

Square brackets identify selection
from among alternatives

Vertical bar is a separator of alterna­
tive choices within square brackets

Comment

Underline identifies a component of
a primary key

* Adapted from Yourdon, Edward, Modern Software En­
gineering. Englewood Cliffs, NJ: Prentice-Hall, Yourdon
Pres~ 1989,p. 191.

FIGURE 7-39 Data Dictionary Notation*

to be unique; implementation requirements are not
dealt with in analysis. Data flow constraints are most
often present in real-time applications or in applica­
tions with contingent processing of data. The source
of the data flow is a cross-reference back to the
entity, process, or file from which it flows.

ABC Example Data Dictionary­
Data Flows

The data flows for ABC rental processing are shown
in Table 7-9. There is nothing difficult about any of
them. Keep in mind that these definitions are not cast
in concrete; they can change whenever the need
arises. It is important to keep this information up to
date, because programmers use the dictionary to
check that their modules are receiving the correct
information.

Structured Systems Analysis Activities 267

TABLE 7-3 ABC Entity Dictionary
Entries

Entity Name: Customer

Aliases: None

Definition:

Relationship:

Contact:

Entity Name:

Aliases:

Definition:

Relationship:

Contact:

Entity Name:

A Customer is any individual, organi­
zation, or other entity authorized by
ABC management to rent videos.

Rents and pays for videos

Signs rental order

Provides new customer information

Returns videos

N/A

Video Vendor

Vendor

A Video Vendor is any organization or
individual from which ABC purchases
or otherwise acquires videos.

Provides new video information

N/A

Accountant

Aliases: None

Definition:

Relationship:

Contact:

The employee providing accounting
services for ABC video.

Gets end-of-day summary accounting
reports

N/A

TABLE 7-4 Data Dictionary Process
Contents

Process ID Number

Process Name

Process Description

Constraints (e.g., concurrence, sequential
with another process, time-out, etc.)

268 CHAPTER 7 Process-Oriented Analysis

TABLE 7-5 ABC Process Dictionary Entries

Process Number:

Process Name:

Description:

1.0

Create Order

For each customer,
Enter customer ID (or name)
Read customer file using

customer ID (or name)
as key

If NOT present display
'Customer not currently on
file, switching to create
customer'
Call New-customer

routine.
Display all customer infor­

mation.
Read Rental file using customer

ID
If rentals exists, display

rentals
If returns

Call Return routine
else

continue
else
If late fees outstanding add

late fees to total.

For each video,
Read inventory file using

video ID (or description)
as key
If NOT present display

'Video not on file,
switching to create
video'

Display video description
(or number), price.

Add all extended price to total.
Perform process-money

routine.

Data Dictionary Contents-Attributes

Attributes, or fields, are facts about an entity. At­
tribute definitions are tedious and tend to be over­
documented unless you are using a CASE tool. As
you can see from Table 7-10, there is a large amount

Constraints:

Process Number:

Process Name:

Description:

Constraints:

Write order to order-file.
Print order confirmation.
Return.

Process money routine
Display total.
Get amount.
Subtract total from amount

giving change.
Display change.
If change and total = zero,

return,
else go to process money.

None

2.0

Return Rental

For each video,
Enter video ID
Retrieve rental

If NO rental,
display error message and
return.

Use Customer ID to retrieve
other rentals.

Display entire rental.
Move to today's date to return

date.
If return-date-rental-date > 2

compute late charges
display late charges
add late charges to total.

Create history.
If new rentals,

return
else

call process money routine.

None

of information about attributes that is needed to
fully document them. In organizations with a data
administration function, much of the information
for the type of attributes used here would already
be documented, and you would just copy that
documentation.

Structured Systems Analysis Activities 269

TABLE 7-5 ABC Process Dictionary Entries (Continued)

Process Number:

Process Name:

Description:

Constraints:

Process Number:

Process Name:

Description:

3.0

Maintain Customer

If new
create new customer

else
If modify

prompt customer ID
retrieve customer record
get changes and verify
rewrite customer

else
if delete

prompt customer ID
retrieve customer record
prompt "Are you sure you want

to delete?"
If yes,

delete customer
else

else
if query

call query routine.
Return.

None

4.0

Maintain Video

If new
create new video

else
If modify

prompt video ID
retrieve video record
get changes and verify
rewrite video

else
if delete

prompt video ID

ABC Example Data Dictionary­
Attributes

As the two examples provided in Table 7-11 show,
the contents get quite long and take quite a bit
of paper. In the interest of saving a few trees, and

Constraints:

Process Number:

Process Name:

Description:

Constraints:

retrieve video record
prompt "Are you sure you want

to delete?"
If yes,

delete video
else

else
if query

call query routine.
Return.

None

5.0

Create EOD Report

Read rental file
count today's rentals
total today's rental receipts

Read cash register
count today's returns
count today's late returns
total today's late fees
count today's rentals
total today's rental receipts

Format and print end-of-day
summary report.

None

keeping the dictionary useable, when using a paper
dictionary, capture only the essential information
about attributes and put it in a short-form attribute
table as shown in Table 7-12. Essential informa­
tion is usually the user name, system name, data
type, data length, and edit rules. If there is other

270 CHAPTER 7 Process-Oriented Analysis

TABLE 7-6 Data Dictionary Data Store Contents

Data Store Name

Aliases

Definition

Data Attributes (Contents in normalized
form)

Data Structure (e.g., relation,
hierarchy)

Organization (e.g., Vsam entry
sequenced)

Sequence and sequence attributes

Size of Relations/Records

Primary Key

Alternate Keys

Index Attributes

information required, such as security restrictions
or cross-reference file names, you would add it for
that attribute but not all of the others. The short form
is used in this text to document ABC's attributes.

AUTOMATED _____ _

SUPPORT TOOLS ____ _

Structured analysis and process methods, in general,
are the oldest and most widely used methods.
Because they are most widely used, a large number
of CASE tools to support structured analysis are
available on the market. All of the tools support
DFDs; all have a dictionary (although they are not
all 'active'). A table of representative CASE tools
supporting structured analysis is listed below in
Table 7-13.

If you did not get the impression that CASE tools
represent a 'buyer beware' situation, perhaps some
comments from a recent survey will prove that it is.
Data flow diagrams in 12 CASE environments were
compared on DFD correctness checkingY The

11 See Vessey, Jarvenpaa, & Tractinsky [1992].

Volume

Percent change per cycle

Frequency of cycle (e.g., as occurs, daily,
weekly, etc.)

Growth percentage per year

Allowable actions (read, write, or
read/write) by process

Security access restrictions

Backup/recovery requirements

Special processing considerations

If in a distributed environment, form of
partitioning, schematic showing
number/location of replications for each
partition.

authors developed 19 rules by which automated
DFDs might be evaluated. The most checked by any
of the CASE tools evaluated was 13 (by two CASE
tools); the least rules checked was three; the aver­
age was eight. The extent of intelligence in CASE
obviously varies and is inconsistent with the collec­
tive wisdom about how DFDs should be developed
and drawn.

Thus, there are many CASE tools available which
'support' structured analysis. The tools vary widely
in the diagrams supported and in the extent to which
rules about developing DFDs and other diagrams
are enforced.

SUMMARY ____ ~ __ _
Process-oriented structured analysis originated
in the work of DeMarco, Gane and Sarson, and
Yourdon. In structured analysis, we first define
the application context then follow a top-down
approach to progressively more detailed levels
of process analysis. The application is documented

(Text continues on page 274)

Summary 271

TABLE 7-7 ABC Data Store Contents

Data Store Name: Customer File Data Store Name: Rental File

Aliases: None Aliases: None

Definition: A computer file of information Definition: A computer file of rental orders
about customers who are outstanding. When a rental is
allowed to rent from ABC. made, it is added to the file.

Data Attributes: Customer Phone =
When it is returned, if there are

[Area code + exchange
no late fees, it is removed. If

+ number]
there are late fees, the rental

+ Customer Last Name
stays on file until the late fees

+ Customer First Name
are paid.

+ Customer Address line 1 Data attributes: Customer Phone
+ Customer Address line 2 + Customer Last Name
+ Customer City + Customer First Name
+ Customer State + Rental Date
+ Customer Zip+4 + Video ID
+ Credit Card Type + Video Title
+ Credit Card Number + Date Due
+ Credit Card Expiration Date + Date Returned
+ Date of entry + Rental Price

Data Structure: Relational + Late Fees

Organization: Random Data Structure: Relational

Sequence: Entry Organization: Random

Sequence Attributes: N/A
Sequence: Entry

Record Size: 198 Bytes decompressed
Sequence Attributes:

File Size: Size: 134

Primary Key: Customer Phone
Primary Key: Customer Phone + Video ID

Alternate Keys: Address line 1
Alternate Keys:

Index Attributes: Customer last name, Customer Index Attributes: Customer Last Name, Customer

zip, Credit Card Number,
Phone, Video ID, Customer

Address line 1
Phone+ Video ID, Video Title

Volume: Volume:

Percent Change: Percent Change:

Cycle Frequency: Cycle Frequency:

Growth: Growth:

Allowable actions Allowable actions

by process: by process: Rental = Add, Change, Read
Return = Change, Delete, Read

Security Access:
Security Access:

BackuplRecovery:
Backup/Recovery:

Special processing:
Special processing:

TABLE 7-8 Data Dictionary Data
Flow Contents

Data Flow Name

Aliases

Timing (e.g., as occurs, daily, weekly, etc.)

Contents

Constraints (e.g., requires 5-second
response; only occurs for sales orders, etc.)

Source

TABLE 7-9 ABC Data Flow Dictionary Entries

Data Flow Name: New Customer Data Flow Name:
Aliases: None Aliases:
Timing: As occurs Timing:
Contents: Customer Phone = Contents:

[Area code + exchange
Constraints:

+ number]
+ Customer Last Name Source:

+ Customer First Name
+ Customer Address line 1 Data Flow Name:
+ Customer Address line 2 Aliases:
+ Customer City

Timing:
+ Customer State
+ Customer Zip+4 Contents:

+ Credit Card Type Constraints:
+ Credit Card Number Source:
+ Credit Card Expiration Date
+ Date of entry Data Flow Name:

Constraints: None Aliases:
Source: Customer Timing:

Data Flow Name: Rental Contents:

Aliases: Rental Information Constraints:

Timing: As Occurs Source:

Contents: [Customer Phone I Customer Name] Data Flow Name:
+ l{[Video IS I Video Name]}m

Aliases:
Constraints: None

Source: Customer
Timing:

Contents:

Constraints:

Source:

272

Payment

Money

One per complete rental transaction

Total Paid

None

Customer

Copy of Order

Printed Rental Order

One per complete rental transaction

= Rental

None

System

Return

Video Return

As Occurs

Video ID + (Customer Phone)

None

Customer

Late Fee Payment

None

As Occurs

Total Late Fee

May be included within rental
payment

Customer

Summary 273

TABLE 7-10 Data Dictionary Attribute Contents

Attribute User Name

System Name

Aliases

Attribute Definition

Data Type

Data Length

Allowable values and meanings

Creating Process(es)

Primary Data Store

Other files where stored

Flows where used

EditNalidation Rules

Validation Method (e.g., cross­
reference file, code check, etc.)

Security access restrictions

Special processing considerations

TABLE 7-11 Sample ABC Attribute Dictionary Entries

User Name:

System Name:

Aliases:

Attribute Definition:

Data Type:

Data Length:

Allowable values
and meanings:

Customer Phone

CPhone

None

The customer's phone
number

Numeric

10, Area code (3), exchange (3),
and number (4)

Numeric

Creating Process(es): Add custor

Primary Data Store: Customer

Other Files: Rental File

Flows: New rental order
Customer record
Rental
Return rental information

EditNalidation: Numeric

Validation Method: Software check

Security Access: None

Special processing: None

User Name:

System Name:

Aliases:

Attribute Definition:

Data Type:

Data Length:

Allowable values

Video ID

Video ID

None

The numeric identifier for a spe­
cific videotape. Uniquely identi­
fies a copy of a group of tapes
with the same title.

Numeric

15

and meanings: Numeric

Creating Process(es): 4.1 Create video

:Primary Data Store: Video File

Other Files: Rental File

Flows:

EditNalidation:

Validation Method:

Security Access:

Video Information,
Rental Information,
Return rental information,
New Rental Order

Numeric

Software check

None

Special processing: None

274 CHAPTER 7 Process-Oriented Analysis

TABLE 7-12 ABC Attributes-Short Form Dictionary

User Name System Name Data Type Length EditNalidation Rules

Customer Phone CPhone N

Customer Last Name CLast A

Customer First Name CFirst A

Customer Address CLine 1 A/N
Line 1

Customer Address CLine2 A/N
Line 2

Customer City City A

Customer State State A

Customer Zip Zip N

Credit Card Type CCType A

Credit Card Number CCNo N

Credit Card Expiration CCExp N
Date

Date of Entry EntryDate N

Credit Rating CCredit A

via graphical forms including a context diagram, lev­
eled set of data flow diagrams, a data dictionary, and,
optionally, a state-transition diagram. Diagram sym­
bols and their meanings include (1) circle, entire ap­
plication; (2) square, external entity; (3) rounded
vertical rectangle, process; (4) open ended rectangle,
data store, and (5) directed arrow, data flow. Each di­
agram symbol has a formal definition that is docu­
mented in a data dictionary. DFDs identify processes
and the flow of data through those processes to
achieve some business function. DFDs start at a high
level of abstraction to summarize the processing tak­
ing place. At successively more detailed levels, pro­
cedural and data are added to describe the processing

10 Must be present, Check for
numeric

50 Must be present, Check for
alpha

25 Must be present, Check for
alpha

50 Must be present

50 None

30 Must be present, Check for
alpha

2 Post Office Abbreviation

10 Must be present, numeric

1 A=AmExpress
V=Visa
M=Mastercard

17 Must be present, numeric

8 Valid Date, Format
YYYYMMDD

8 Valid Date, Format
YYYYMMDD

1 o = OK, 1 = not OK

in more detail. Graphical representation replaces
much of the text, but does not completely replace
text descriptions of individual processes. The data
dictionary (or repository) is used to maintain defini­
tions of all DFDs and other analysis information,
including files, fields, flows, and external entities, in
addition to processes.

The reasoning process for defining the applica­
tion context and the detailed levels of data flow dia­
grams was presented. The definitions and contents of
data dictionary entries were described. All diagrams
and dictionary entries were developed using the
ABC rental processing application to show varia­
tions and nuances in the thought processes.

TABLE 7-13 CASE Support for Structured Analysis

Product

Analyst/Designer Toolkit

Anatool

Deft

Design/1

The Developer

Excelerator, Telon

lEW

MacAnalyst,
MacDesigner

Maestro

MetaSystem Tool Set

Company

Yourdon, Inc.
New York, NY

Advanced Logical SW
Beverly Hills, CA

Deft
Ontario, Canada

Arthur Anderson, Inc.
Chicago,IL

ASYST Technology, Inc.
N apierville, IL

Intersolv
Cambridge, MA

Knowledgeware
Atlanta, GA

Excel Software
Marshalltown, IA

SoftLab
San Francisco, CA

Meta Systems
Ann Arbor, MI

Summary 275

Technique

Context Diagram
Data Flow Diagram (DFD)
State-Transition Diagram

DFD
Structured English

DFD

DFD
Warnier-Orr Diagram

DFD
Matrix Diagram (for decision
tables and real-time systems)

DFD
State-Transition Diagram
Matrix graph (for real-time
systems)

DFD
Database diagram

DFD
Decision Table
State Transition Diagram
Structured English

DFD

DFD

(Continued on next page)

276 CHAPTER 7 Process-Oriented Analysis

TABLE 7-13 CASE Support for Structured Analysis, Continued

Product

Multi-Cam

PacBase

ProKitVVorkbench

ProMod

Silverrun

SVV Thru Pictures

System Engineer

Teamwork

Transform

Visible Analyst

vs Designer

Company

AGS Management Systems
King of Prussia, PA

CGI Systems, Inc.
Pearl River, NY

McDonnell Douglas
St. Louis, MO

Promod, Inc.
Lake Forest, CA

Computer Systems Advisers, Inc.
VVoodcliff Lake, NJ

Interactive Dev. Env.
San Francisco, CA

LBMS
Houston, TX

CADRE Tech. Inc.
Providence, RI

Transform Logic Corp.
Scottsdale, AZ

Visible Systems Corp.
Newton, MA

Visual Software Inc
Santa Clara, CA

Technique

DFD
State-Transition Diagram
Matrix graph (for real-time
systems)

Context Diagram
DFD

DFD

DFD
State-Transition Diagram

User-Controlled Modeling

Data Structure
DFD
State Transition Diagram

DFD

Decision Table
DFD
State Transition Diagram

Uses Pro Kit, Excelerator

DFD

DFD
VVard-Mellor Diagram for real­
time systems

REFERENCES -------.---
Curtis, B., M. I. Kellner, and J. Over, "Process model­

ing," Communications of the ACM, Vol. 3S, #9, Sep­
tember 1992, pp. 7S-90.

DeMarco, Tom, Structured Analysis. New York: Yourdon
Press, 1979.

Frances, B., "A window into CASE," Datamation, March
1, 1992, pp. 43-44.

Gane, C., and T. Sarson, Structured Systems Analysis:
Tools and Techniques. Englewood Cliffs, NJ: Pren­
tice-Hall, 1979.

Gane, Chris, Computer-Aided Software Engineering:
The Methodology, The Products and the
Future. Englewood Cliffs, NJ: Prentice-Hall,
1990.

Krasner, J., J. Terrel, A. Lindhan, P. Arnold, and W. H.
Ett, "Lessons learned from a software process model­
ing system," Communications of the ACM, Vol. 3S,
#9, September 1992, pp. 91-100.

Lee, T., "Bridging the CASE/OOP gap," Datamation,
March 1, 1992, pp. 63-64.

Lindholm, E. "A world of CASE tools," Datamation,
March 1, 1992, pp. 7S-8l.

Martin, James, Systems Design from Provably Correct
Constructs. Englewood Cliffs, NJ: Prentice-Hall,
1985.

McClure, c., The Three R's of Software Automation:
Re-Engineering, Repository and Reusability. Engle­
wood Cliffs, NJ: Prentice-Hall, 1992.

McMenamin, Stephan M., and John F. Palmer, Essential
Systems Analysis. NY: Yourdon Press, 1984.

Slater, D., "PacBase, IEF lead rising CASE satisfaction,"
Computerworld, August 3, 1992, p. 8l.

Sullivan, Louis, "The tall building artistically
considered," Lippincott's Magazine, March
1896.

Vessey, I., S. Jarvenpaa, and N. Tractinsky, "Evaluation
of vendor products: CASE tools as methodology com­
panions," Communications of the ACM, Vol. 3S, #4,
April 1992, pp. 90-10S.

Yourdon, Edward, Modern Structured Analysis.
Englewood Cliffs, NJ: Prentice-Hall, Yourdon Press,
1989.

KEy TERMS
attribute
balancing

bottom-up
cohesion

completeness checking
consistency checking
context
context diagram
correctness checking
coupling
cross reference file
data attribute
data dictionary
data flow
data flow diagram (DFD)
data store
direct identification
elementary components
external entity
field
file
function

Study Questions 277

functional sequence
level 0 DFD
level 1 ... n DFD
leveled set of DFDs
net inflows and outflows
outward-in
primitive level
process
process description
pseudo-code
quality assurance
structured decomposition
structured English
structured systems analysis
systems model
systems theory
top-down

EXERCISES _______ _

1. Complete the level 1 DFD for 2.0 Rental return
process and discuss it in class. Compare several
of the answers. Are they the same? Why, or
why not?

2. Make a list of outstanding and deferred issues to
discuss with Vic.

The next three questions have bothered my stu­
dents for several years. For each question, identify
and discuss the issues and ramifications of each
decision, technical issues, user issues, legal or other
issues.

3. How should customers be identified to the appli­
cation? What are the security issues? What are
the bureaucracy issues? Is there a way to 'mini­
mize bureaucracy' and still have good security?

4. Should late fees relate to a person or a tape or a
rental? What are the issues? How do you
decide? Can Vic be helpful in deciding this
issue?

5. Where should history get created-at tape rental
time? or at tape return time? Can Vic be helpful
in deciding this issue? How do you decide?

278 CHAPTER 7 Process-Oriented Analysis

STUDY QUESTIONS ____ _

1. Define the following terms:
balancing external entity
context function
data flow net inflow
data store top-down
direct identification

2. How do you define the scope of a project?
Who should define the scope?

3. What is a leveled set of DFDs? How do you
know you have that?

4. Why is the strategy of using net inflows and
outflows from the previous level of DFD
as a starting point for a new level of detail a
good idea?

5. Is structured process analysis more like analyz­
ing with a zoom feature on a set of photos or
more like analyzing a geologic formation?

6. Define structured decomposition. Why do you
use this technique?

7. What is the purpose of the data dictionary?
8. Discuss the reasoning process used in struc­

tured analysis. Does it guarantee that everyone
will get the same analytical result? If not,
why not?

9. How might the process of structured analysis
be improved to be more rigorous, i.e., guaran­
tee the same results regardless of who performs
the analysis?

10. Evaluate the following diagram. What type of
diagram is it? What is its purpose? Label
errors and list all reasons why they are wrong.
Redraw the diagram correctly.

1.0 1.1
Cust Info

Customer .. Maintain Customer p

Customer Reporting

Error \ValidCust/ Cust
Info Records

~I Customer File

11. What are the major diagrams in the analysis
phase? How are they derived?

12. List and briefly describe the five approaches to
identifying processes.

13. Describe all data dictionary entries and give an
example of each.

14. Why might CASE tools be useful in structured
analysis?

15. Draw and identify five common DFD errors
and their corrections.

16. Discuss the three types of quality checks done
on DFDs. * EXTRA-CREDIT QUESTIONS

1. The example used in Figures 7-15 through 7-20
refers to a psychiatric clinic and processing
performed for Medicaid claim processing. Per­
form a structured analysis of this problem as
described in the Appendix Case: The Child
Development Clinic. Refer to the figures in the
text to help you if you get stuck.

2. Perform a structured analysis of any of the prob­
lems in the Appendix. Decide what information
in the problem description is relevant to an auto­
mated application. Then, build a context dia­
gram, a levels set of DFDs and a data dictionary.

CHAPT ER8

PROCESS­
ORIENTED ---------------------------. __________ r-----

DESIGN
--

INTRODUCTION ____ _

Structured design is the art of designing system
components and the interrelationships between those
components in the best possible way to solve some
well specified problem. The main goal of design is to
map the functional requirements of the application to
a hardware and software environment. The results of
structured design are programming specifications
and plans for testing, conversion, training, and in­
stallation. In addition, the design may result in pro­
to typing part or all of the application. This section
discusses the mapping process and the development
of program specifications. The other topics are dis­
cussed in Chapter 14.

The goals of structured design, as first docu­
mented by Yourdon and Constantine [1979], have
not changed much over the years. They are to mini­
mize cost of development and maintenance. We can
minimize the cost of development by keeping parts
manageably small and separately solvable. We can
minimize the cost of maintenance by keeping parts
manageably small and separately correctable. In
design we determine the smallest solvable parts as a
way of managing application complexity.

Conceptual Foundations
The concept 'form follows function' that informed
analysis is again the basis for structured design. The
application processes determine the form of the
application. The divide and conquer principle guides
the definition of the smallest solvable parts while
keeping the general goals of maintainability and low
cost in mind. Partitioning and functional decomposi­
tion are the basic activities used in dividing pro­
cesses into modules. The basic input-process-output
(IPO) model from the DFD results in a structure
chart that adds a control component to the IPO
model (see Figure 8-1).

Principles of good structured design are informa­
tion hiding, modularity, coupling, and cohesion.
Information hiding means that only data needed to
perform a function is made available to that function.
The idea is a sound one: You cannot mess up what
you don't have access to. Modularity is the design
principle that calls for design of small, self­
contained units that should lead to maintainability.
Following systems theory, each module should be a
small, self-contained system itself. Coupling is a
measure of intermodule connection with minimal

279

280 CHAPTER 8 Process-Oriented Design

IPO Model

Becomes the ControllPO or CIPO Model

FIGURE 8-1 Input-Process-Output Model and Structure Chart

coupling the goal (i.e., less is best). Cohesion is a
measure of internal strength of a module with the
notion that maximal, or functional, cohesion is the
goal. These principles are related to the process of
design in the next section.

DEFINITION OF ____ _
STRUCTURED ______ _
DESIGN TERMS ________ _

The major activities of structured design are:

1. Transform or transaction analysis of DFD
2. Refine and complete structure chart
3. Identify load units and program packages
4. Define the physical database
5. Develop program specifications

The terms associated with each of these activities are
defined in this section and summarized in Table 8-1.

In design we partition the application to divide
subprocesses into codifiable program modules. Par­
titioning is the divide and conquer strategy by which

we divide existing subprocesses from the DFD into
groups for implementation. The two methods of par­
titioning used are transform analysis and transac­
tion analysis.

DFD processes transform data from one form to
another; these transformations will eventually be
automated by programs each containing several
modules. Transform analysis is the process of iden­
tifying the c1usterings of subprocesses based on their
major functions. The functions are either input, out­
put, or transform-oriented. The input-oriented pro­
cesses are called afferent flows. Afferent means
bringing inward to a central part. Afferent processes
read data and prepare it for processing. The output­
oriented processes are called efferent flows, where
efferent means moving away from the central part.
Efferent processes write, display, and print data. The
remaining processes are collectively called the cen­
tral transform. The central transform processes
have as their major function the change of informa­
tion from its incoming state to some other state.

An example of a data flow diagram with its
afferent and efferent flows and its central transform
identified is shown in Figure 8-2. Notice that multi­
ple afferent or efferent flow streams may be found.

TABLE 8-1
Definitions

Term

Stepwise
refinement

Program
morphology

Data structure

Modularity

Abstraction

Information
hiding

Cohesion

Coupling

Structured Design Concept

Definition

The process of defining functions
that will accomplish a process;
includes definition of modules,
programs, and data

The shape of a program, including the
extent of fan-out, fan-in, scope of
control, and scope of effect

The definition of data in an application
includes logical data definition and
physical data structure

A property of programs meaning they
are divided into several separate
addressable elements

Attention to some level of g~neraliza­
tion without regard to irrelevant low­
level details

Design decisions in one module are
hidden from other modules

A measure of the internal strength of
a module

A measure of the intermodule strength
ofa module

The streams are partitioned off from the rest of the
diagram by drawing arcs showing where they end.

Examples of transform-centered applications
include accounting, personnel, payroll, or order
entry-inventory control. For these applications, get­
ting data into and out of the system is secondary to
the file handling and manipulation of n~mber& that
keep track of the information. In accounting, for
instance, balancing of debits and credits takes place
at end-of-day, end-of-month, and end-of-year pro­
cessing. These periodic process transfor-mations
summarize and move data, erase some information,
archive other information, and write data to the gen­
eral ledger to summarize the details in the re­
ceivables and payables subledgers. All of these
transforms process data that is already in the files.

Definition of Structured Design Terms 281

These processes are the heart of accounting process­
ing. Without these processes, the application would
be doing something else.

Not all applications are transform-centered. Some
applications do simple processing but have many
different transaction types on which the simple
processes are performed. These systems are called
transaction-centered. Transaction analysis re­
places transform analysis for transaction-centered
applications with partitioning by transaction type,
which may not be obvious from DFDs. Figure
8-3 shows an example of a partitioned DFD for a
transaction-centered application. This detailed DFD
looks like it contains redundancy because many of
the same processes appear more than once. Look
closely and you see that each set of processes relates
to a different type of transaction.

When the high-level partitioning is done, the
information is transferred to a first-cut structure
chart. We will develop the structure chart from Fig­
ure 8-2. A structure chart is a hierarchic, input­
process-output view of the application that reflects
the DFD partitioning. The structure chart contains
one rectangle for each lowest level process on the
DFD. The rectangles are arranged in a hierarchy to
show superior control and coordination modules.
Individual process modules are the lowest in their
hierarchy. The rectangles in the hierarchy are con­
nected via undirected lines that are always read top­
down and left to right. The lines imply transfer of
processing'from the top to the bottom of the hierar­
chy. Diamonds overlay the connection when a con­
ditional execution of a module is possible using
if-then-else logic. Reused modules are shown in one
of two ways. Either they are repeated several times
on the diagram and have a slash in tqe lower left cor­
ner to signify reuse, or they are connected to more
than one superior module via the linking lines.

The identification of afferent flows, efferent
flows, and transforms results in chains of processes,
each its own 'net output.' If we look at Figure 8-2
again, we see the net afferent output is data flow
Good Input. For the central transform, the net out­
put is Splution. For the efferent flows, the net output
is Printed Solution. These net outputs are used to
determine the initial structure of the structure chart,
using a process called factoring.

282 CHAPTER 8 Process-Oriented Design

Input

Afferent Flow

I
Output Stream I

•

Central
Transform

Efferent Flows

FIGURE 8-2 Transform-Centered DFD Partitioned

Factoring is the process of decomposing a DFD
into a hierarchy of program components that will
eventually be programmed modules, functions, or
control structures. Each stream of processing is ana­
lyzed to determine its IPO structure. When the
structure is identified, the processes are placed on
the structure chart and named until all low-level
DFD processes are on the structure chart (see Fig­
ure 8-4).

N ext, data and control information are added to
the structure chart. Data couples identify the flow of

data into and out of modules and match the data
flows on the DFD. Data couples are identified by a
directed arrow with an open circle at the source end
(see Figure 8-5). The arrowhead points in the direc~
tion the data moves.

Control couples identify the flow of control in
the structure. Control couples are placed to show
where the control data originates and which mod­
ule(s) each couple affects. A control couple is usu­
ally a program switch whose value identifies how a
module is activated. Control couples are drawn as

Trans
Customer t------1~

Afferent Flow

Definition of Structured Design Terms 283

Central
Transform

Efferent Flow

Updated File

Thing
Data

Process
Coordinator

FIGURE 8-3 Transaction-Centered DFD Partitioned

directed arrows with a closed circle at the source end
(see Figure 8-6). The arrowhead points in the direc­
tion the control travels. If a control couple is in, set
and reset in the same module, it is not shown on the
diagram. A control couple that is set and reset in one
place, but used in another, is shown. If a control cou­
ple is set in one module and reset in another, it is
shown as both input and output. Control is 'designed
into' the application by you, the SE, based on the
need for one module to control the processing of
another module. The goal is to keep control to a min-

imum. Figure 8-4 shows the completed structure
chart for the DFD in Figure 8-2.

Next, we evaluate and revise the structure chart to
balance its morphology. Morphology means form or
shape. The shape of the structure chart should be bal­
anced to avoid processing bottlenecks. Balance is
determined by analyzing the depth and width of the
hierarchy, the skew of modules, the span of control,
the scope of effect, and the levels of coupling and
cohesion. When one portion of the structure chart is
unbalanced in relation to the rest of the diagram, you

284 CHAPTER 8 Process-Oriented Design

FIGURE 8-4 First-Cut Structure Chart

modify the structure to restore the balance, or pay
closer attention to the unbalanced portion to ensure
an efficient production environment.

The depth of a hierarchy is the number of lev­
els in the diagram. Depth by itself is not a measure of
good design nor is it a goal in itself. Rather, it can
indicate the problem of too much communication
overhead and not enough real work taking place (see
Figure 8-7). Conversely, adding a level of depth can
be a cure for too wide a hierarchy.

1 Data Couple

Incoming <P
Data ,

The line between the modules
shows transfer of processing.

• Outgoing
cb Data

FIGURE 8-5 Data Couple Notation

The width of the hierarchy is a count of the
modules directly reporting to each superior, higher­
level module (see Figure 8-8). Span of control
is another term for the number of immediate sub­
ordinates and is a synonym for the width of the
hierarchy. Width relates to two other terms: fan­
out and fan-in. Fan-out is the number of imme­
diate subordinate modules. Too much fan-out can
identify a processing bottleneck because a supe­
rior module is controlling too much processing.

Incoming ~
Control

Info

Control
Couple

1
The line between the modules
shows transfer of processing.

Outgoing
Control

Info

FIGURE 8-6 Control Couple Notation

FIGURE 8-7 Excessive Depth of Hierarchy

While there is no one number that says 'how wide
is too wide,' seven ±2 is the generally accepted
guideline for number of fan-out modules. One solu­
tion to fan-out processes that are functionally
related is to factor another level of processing
that provides middle-level management of the low­
level modules. Another solution to fan-out problems
that are factored properly, but not functionally re­
lated, is to introduce a new control module at the
IPO level.

FIGURE 8-8 Excessive Width of Hierarchy

Definition of Structured Design Terms 285

Fan-in, on the other hand, is the number of
superior modules (i.e., immediate bosses) which
refer to some subordinate module (see Figure 8-9).
Fan-in can be desirable when it identifies reusable
components and reduces the total amount of code
produced. The major tasks with fan-in modules are
to ensure that they perform a whole task, are highly
cohesive, and are minimally coupled.

Skew is a measure of balance or lopsidedness of
the structure chart (see Figure 8-10). Skew occurs

DD

286 CHAPTER 8 Process-Oriented Design

FIGURE 8-9 Example of Fan-In

when one high-level module has many subordinate
levels and some or most of the other high-level mod­
ules have few subordinate levels. Skew can indicate
incorrect factoring. If factoring is correct, then skew
identifies a driver for the application that might
require special consideration. If the skew is on the
input side, we say the application is input driven or
input-bound. Similarly, if the skew is on the output
side, the application is output-bound. If the input
and output are skewed with little transform process­
ing, the application is I/O-bound (for input/output).
Finally, if the application has little input or output,
but lots of processing, the application is process­
bound. The special considerations of each of these
occurrences deal with ensuring correct language se­
lection and meeting I/O and process time constraints.

The scope of effect of a module identifies the col­
lection of modules that are conditionally processed
based on decisions by that module (see Figure
8-11). The scope of effect can be identified by count-

ing the number of modules that are directly affected
by the process results of another module. High scope
of effect relates to fan-out, fan-in, and coupling in
that it may identify potential problems with debug­
ging and change management. Ideally, the scope
of effect of anyone module should be zero or one.
That is, no more than one other module should be
affected by any processing that takes place in any
other module.

The last measures of structure morphology which
are analyzed throughout the remainder of structure
design are coupling and cohesion. Cohesion is a
measure of the intramodule strength. Coupling is a
measure of the intermodule linkage. Maximal, func­
tional cohesion and minimal coupling are the ideal
relationships. Coupling and cohesion are related in­
versely (see Figure 8-12). If cohesion is high, cou­
pling is low, and vice versa; but, the relationship is
not perfect. That means that if you have strong co- .
hesion, you may still have strong coupling due to

Process-Bound

'Process-Skewed'

Output-Bound

'Output-Skewed'

Definition of Structured Design Terms 287

Input-Bound
Application

'Input-Skewed'

FIGURE 8-10 Examples of Skewed Structure Charts

288 CHAPTER 8 Process-Oriented Design

Pathological Connection

End-of-file Sw

End-of-file Sw

Normal Connection

FIGURE 8-11 Example of Scope of Effect

High

Cohesion

Low

Low

Coupling

FIGURE 8- 12 Relationship between
Coupling and Cohesion

High

poor design. So, attention to both coupling and co­
hesion are required.

Factoring and evaluation are followed by func­
tional decomposition, which is the further division
of processes into self-contained IPO subprocesses.
Balanced structure chart subprocesses might be fur­
ther decomposed to specify all of the functions
required to accomplish each subprocess. Fan-out,
span of control, and excessive depth are to be
avoided during this process. 1 The decision whether

1 Some companies have as a local convention (a policy in their
company) that a lower-level DFD is developed to describe
programmable individual functions before partitioning. This
is decomposition at the DFD level and has the same effect as
decomposition here.

to decompose further or not relates to the details
needed for the implementation language and how
well the SEs understand the details.

Structure charts are only one of many methods
and techniques for documenting structured design
results. Most of the alternatives would replace, rather
than supplement, structure charts. Each technique
has its own slightly different way of thinking about
the processes to finalize a design, even though
the goals are the same. Several alternatives are
IBM Hierarchic input-process-output diagrams
(HIPO) (see Figure 8-13), Warnier diagrams (see

Definition of Structured Design Terms 289

Figure 8-14), Nassi-Schneiderl11an diagrams (see
Figure 8-15), and flow charts (see Figure 8-16).

To complete design, program specifications (spe­
cifications is abbreviated to 'specs') must be devel­
oped, but before specs can be developed, several
other major activities are required. First, the physical
database must be designed. Then, program package
units are decided. Several activities not discussed
here (these are covered in Chapter 14) are per­
formed, including verification of adequate design for
inputs, outputs, screens, reports, conversion, con­
trols, and recoverability.

In all methods of documentation, the starting point is a structure chart.

IprodLlce X I

I I
I Get input II Make X II

Visual Table of Contents
1.0 Produce X

1.1 Get Input
1.2 Make X
1.3 Put X

1.3.1 Format
1.3.2 Write

INPUT

Input Data

I
~ Format

PROCESS

Get Input

Make X

PutX

I
PutX

I

I

I I
Print I

OUTPUT

Output File

Output Report

FIGURE 8- 13 Other Structured Program Documentation Methods: IBM's Hierarchic Input­
Process-Output (HIPO) Diagram Example

290 CHAPTER 8 Process-Oriented Design

Get Input
(n)

Produce
X

Make X
(n)

PutX

{

{

Disk

Format .;)

Write --
Disk
(0,1)

Legend:

EB
Name
Name

Either/or

Not Name to be performed
Name to be performed

(1) Execute () times, here 1
(0,1) Execute zero or one times
(n) Execute n times

1. Warnier, J-D., Logical Construction of Systems. NY:
Van Rostrand Reinhold Company, 1981.

FIGURE 8-14 Warnier Diagram l

Do while

General Form of Nassi-Schneiderman

Physical database design is concurrent with fac­
toring and decomposition. Several common physical
database design activities are:

• design user views (if this is not already done)
• select the access method
• map user views to the access method and

storage media
• walk-through the database design
• prototype the database
• document and distribute access information to

all team members
• train team members in access requirements
• develop a test database
• develop the production database

Keep in mind that many other activities may be
involved in designing a physical database for a spe­
cific implem~ntation environment.

While the details of physical database design and
decomposition are being finalized, project team
members are also thinking about how to package the
modules into program units. A program unit or a
program package is one or more called modules,

Do until end-of-file = 1

Example of Nassi-Schneiderman Diagram

2. Nassi, L, and B. Schneiderman, "Flowchart techniques for structured programming,"
ACM SIGPLAN Notices, Vol. 8, #8, August 1973, pp. 12-26.

FIGURE 8-15 Nassi-Schneiderman2 Diagram Example

Flowchart Symbols

o
D
D
()

Iteration

Selection (If ... then ... else)

Process or Module

Input/Output

Terminator,
i.e., start/stop

Secondary Storage,
e.g., disk

Definition of Structured Design Terms 291

Structured Constructs

Sequence

Selection

Flowchart Example

FIGURE 8-16 Flowchart Symbols, Structured Constructs, and Example

292 CHAPTER 8 Process-Oriented Design

functions, and in-line code that will be an execute
unit to perform some atomic process. In nonreal­
time languages, an execute unit is a link-edited load
module. In real-time languages, an execute unit
identifies modules that can reside in memory at the
same time and are closely related, usually by mu­
tual communication. The guiding principles during
these design activities are to minimize coupling and
maximize cohesion (see Tables 8-2 and 8-3 for defi­
nition of the seven levels of coupling and cohesion).

code is the structured program code that controls and
sequences execution of modules and functions. For
instance, a 'read' module might do all file access; a
screen interaction module might do all screen pro­
cessing and have submodules that perform screen
input and screen output.

A function is an external 'small program' that is
self-contained and performs a well-defined, limited
procedure. For example, a function might compute
a square root of a number. Functions usually do not
call other modules but there is no rule against it.
Even though the definitions of modules and func­
tions are similar, they are different entities. Func­
tions sometimes come with a language, for instance,
the mathematical and statistical functions that are
part of Fortran. Modules are usually user-defined
and have a broader range of applicability, such as a

An atomic process is a system process that can­
not be further decomposed without losing its system­
like qualities. An execute unit is a computer's unit
of work (i.e., a task). A module is a 'small program'
that is self-contained and may call other modules.
Modules may be in-line, that is, in the actual pro­
gram, or may be externally called modules. In-line

TABLE 8-2 Definition of Cohesion Levels

Type of Cohesion

Functional

Sequential

Communicational

Procedural

Temporal

Logical

Coincidental

Definition

Elements of a procedure are combined because they are all required to complete one specific
function. This is the strongest type of cohesion and is the goal.

Elements of a common procedure are combined because they are in the same procedure
and data flows from one step to the next. That is, the output of one module, for example, is
passed in sequence as input to the next module. This is a strong form of cohesion and
is acceptable.

Elements of a procedure are combined because they all use the same data type. Modules that
all relate to customer maintenance-add, delete, update, query-are related through com­
munication because they all use the Customer File.

Elements of a common procedure are combined because they are in the same procedure and
control flows from one step to the next. This is weak cohesion because passing of control
does not mean functions in the procedure are related.

Statements are together because they occur at the same time. This usually refers to program
modules, for example, 'housekeeping' in COBOL programs to initialize variables, open
files, and prepare for processing. Temporal cohesion is weak and should be avoided wher­
ever practical.

The elements of a module are grouped by their type of function. For instance, all edits, all
reads from files, or all input operations are grouped. This is undesirable cohesion and should
be avoided.

This is the random or accidental placement of functions. This lowest level of cohesion
occurs when there is no real relationship between elements of a module. This is undesirable
cohesion and should be avoided.

Process Design Activities 293

TABLE 8-3 Definition of Coupling Levels

Level of Coupling

Indirect relationship

Data

Stamp

Control

External

Common

Content

Definition

No coupling is possible when modules are independent of each other and have neither a
need nor a way to communicate. This is desirable when modules are independent. An
example of no direct relationship is a date translate routine and a net present value rou­
tine. There is no reason for them to be related, so they should not be related.

Only necessary data are passed between two modules. There are no redundant parame­
ters or data items. This is the desirable form of coupling for related modules.

The module is given access to a complete data structure such as a physical data record
when it only needs one or two items. The module becomes unnecessarily dependent on
the format and arrangement of data items in the structure. Usually, stamp coupling
implies external coupling. The presence of unneeded data violates the principal of
'information hiding' which says that only data needed to perform a task should be avail­
able to the task.

Control 'flags' are shared across modules. Control coupling is normal if the setting and
resetting of the flag are done by the same module. It is a pathological connection to be
avoided if practical when one module sets the flag and the other module resets the flag.

Two modules reference the same data item or group of items such as a physical data
record. In traditional batch applications, external coupling is unavoidable since data are
passive and not directly relating to modules. External coupling is to be minimized as
much as possible and avoided whenever practical. External coupling violates the princi­
pal of information hiding.

Modules have access to data through global or common data areas. This is frequently a
language construct problem but it can be avoided by passing parameters with only a
small amount of additional work. Common coupling violates the principal of information
hiding.

One module directly references and/or changes the insides of another module or when
normal linkage mechanisms are bypassed. This is the highest level of coupling and is to
be avoided.

screen interaction module. Functions are usually
reusable across applications without alteration; mod­
ules are not.

tions) relationships and communication; the other
documents intraprogram processing that takes place
within the individual program. Another term for
interprogram relationships is interface. When program packages are decided, program

specifications are developed. Program specifica­
tions document the program's purpose, process
requirements, the logical and physical data defini­
tions, input and output formats, screen layouts, con­
straints, and special processing considerations that
might complicate the program. Keep in mind that the
term program might also mean a module within a
program or an externally called function. There are
two parts to a program specification: one identifies
interprogram (including programs in other applica-

PROCESS ____________ __
DESIGN ____ -----'-____ _
ACTIVITIES ______ _

The steps in process design are transform (or trans­
action) analysis, develop a structure chart, design the
physical database, package program units, and write

294 CHAPTER 8 Process-Oriented Design

program specifications. Each of these steps is dis­
cussed in this section.

Since both transform and transaction analysis
might be appropriate in a given system, the first
activity is to identify all transactions and determine
if they have any common processing. This activity
can be done independently from the DFD and func­
tional analysis, or it can be done as a side activity
while you are doing functional analysis as the pri­
mary activity. If you cannot tell which is more
appropriate, do a rough-cut structure chart using
both methods and use the one which gives the best
overall results in terms of coherence, understand­
ability, and simplicity of design.

Transaction Analysis
Rules for Transaction Analysis

The basic steps in transaction analysis are to de­
fine transaction types and processing, develop a
structure chart, and further define structure chart ele­
ments. A detailed list of transaction analysis activi­
ties follows.

1. Identify the transactions and their defining
actions.

2. Note potential situations in which modules
can be combined. For instance, the action is
the same but the transaction is different-this
identifies a reusable module.

3. Begin to draw the structure chart with a high­
level coordination module as the top of the
transaction hierarchy. The coordination mod­
ule determines transaction type and dis­
patches processing to a lower level.

4. For each transaction, or cohesive collection
of transactions, specify a transaction module
to complete processing it.

5. For each transaction, decompose and create
subordinate function module(s) to accom­
plish the function(s) of the transaction. If a
transaction has only one unique function,
then keep the unique action as part of the
transaction module identified in the previous
step.

6. For functions that are not unique, decompose
them into common reusable modules. Make
sure that the usage of the module is identical
for all using transactions. Specifically iden­
tify which transactions use the module.

7. For each function module, specify subordi­
nate detail module(s) to process whole detail
steps as appropriate. If there is only one func­
tional detail step, keep it as part of the func­
tion module defined in step 5.

A typical transaction application is money trans­
fer for banks. Transactions for money transfer all
have the same information: sending bank, receiving
bank, sender, receiver, receiver account number, and
amount. There might be other information, but this is
required. What makes money transfer a transaction
system is that transactions can come from phone,
mail, TWX!felex, fax, BankWire, FedWire, and pri­
vate network sources. Each source of transaction has
a different format. Phone, mail, and fax are all es­
sentially manual so the application can require a per­
son to parse the messages and enter them in one
format. The other three are electronic messaging sys­
tems to be understood electronically. TWX/telex,
which are electronic free-form messages, may have
field identifiers but have no required order to the
information. A summary DFD for a money transfer
system might look like Figure 8-17, which shows a
deceptively simple process. What makes the process
difficult is that the data entry-parse-edit processes
are different for each message type, having differ­
ent edit criteria, formats, and acceptance parameters.
The partitioning for the transaction DFD can be
either a high-level summary or detailed. The sum­
mary partition (see Figure 8-17) shows afferent
flows on the summary DFD, which is annotated that
structuring is by transaction type. The detailed DFD
(see Figure 8-18) shows each type of transaction
with its own set of afferent and efferent flows.

To create a first-cut structure chart, one control
module is defined for each transaction's afferent
stream and efferent stream; there may be only one
transform center. For each transaction, the afferent
data flows are used to define data couples. The
control couples relate to data passed between
modules. When control is within a superior mod-

Afferent Flow

Raw Id'd
Trans

Customer

Process Design Activities 295

4.0

Process t--t--~
Edited
Trans

Central
Transform Ack

Trans

Efferent Flow

FIGURE 8-17 Summary Money Transfer DFD Partitioned

ule, it is shown via a diamond to indicate selec­
tion from among the transaction subprocesses (see
Figure 8-19).

ABC Video Example Transaction
Analysis

The first step to determining whether you have a
transaction application or a transform centered
application is to identify all sources of transactions
and their types. Table 8-4 contains a list of transac­
tions for ABC Video. As you can see from the list,
there are maintenance transactions for customer and
video information, there are rental and return trans­
actions, and there are periodic transactions. The only
common thread among the transactions is that they
share some of the same data. The processing in
which they are involved is different and there are no
commonalities except reading and writing of files.
Therefore, we conclude that ABC Video Rental pro­
cessing is not a transaction-centered application and

move to transform analysis to complete the struc­
ture chart.

Transform Analysis
Rules for Transform Analysis

In transform analysis we identify the central trans­
form and afferent and efferent flows, create a first­
cut structure chart, refine the chart as needed at this
high level, decompose the processes into functions,
and refine again as needed. These rules are summa­
rized as follows:

1. Identify the central transform
2. Produce a first-cut structure chart
3. Based on the design strategy, decompose the

processes into their component activities
4. Complete the structure chart
5. Evaluate the structure chart and redesign as

required.

296 CHAPTER 8 Process-Oriented Design

Mail, Phone
Transaction

TWX!Telex
Transaction

BankWire
Transaction

FedWire
Transaction

Afferent Streams Efferent Streams

FIGURE 8-18 Detailed Money Transfer DFD Partitioned

To properly structure modules, their interrelation­
ships and the nature of the application must be well
understood. If a system concept has not yet been
decided, design cannot be finalized until it is. The
concept includes the timing of the application as
batch, on-line or real-time for each process, and a
definition of how the modules will work together in
production. This activity may be concurrent with
transform analysis, but should have been decided to
structure and package processes for an efficient pro­
duction environment. This activity is specific to the
application and will be discussed again for ABC
rental processing.

First, we identify the central transform and affer­
ent and efferent flows. Look at the DFD and locate
each stream of processing for each input. Trace each
stream until you find the data flow that identifies
valid, processable input that is the end of an affer­
ent stream. The afferent and efferent arcs refer only
to the processes in the diagram. During this part of
the transform analysis, files and data flows are ig­
nored except in determining afferent and efferent
flows.

After identifying the afferent flows, trace back­
ward from specific outputs (files or flows to entities)
to identify the efferent flows. The net afferent and

FIGUI<E 8-19 Sample Transaction Control Structure

TABLE 8-4 ABC Transaction List

Transaction General Process

Add Customer Maintenance

Change Customer Maintenance

Delete Customer Maintenance

Query Customer Periodic

Add Video Maintenance

Change Video Maintenance

Delete Video Maintenance

Query Video Periodic

Rent Video Rent/Return

Return Video Rent/Return

Assess special charges Rent/Return

Query Periodic

Create History Periodic

Generate Reports Periodic

Process Design Activities 297

Data

Customer

Customer

Customer

Customer

Video

Video

Video

Video

Video, Customer, History

Video, Customer, History

Customer

Video, Customer, History

Video, Customer, History

Video, Customer, History

298 CHAPTER 8 Process-Oriented Design

Afferent
Flows

Process
Coordination

6.0
Update
Master

from Tran

Central
Transform

New
Master
Record

Efferent
Flow

FIGURE 8-20 Master File Update DFD Partitioned

efferent outputs are used to determine the initial
structure of the structure chart, using a process called
factoring. Factoring is the act of placing each
unbroken, single strand of processes into its own
control structure, and of creating new control
processes for split strands at the point of the split.
The new control structure is placed under the input,
process, or output controls as appropriate.

A master file update is shown as Figure 8-20 to
trace the streams. In this diagram, we have two
afferent data streams which come together at Match
Trans to Master. The first input, Trans Data flows
through process Get Trans and through Edit Trans to
become Edited Trans. Successfully edited transac­
tion parts flow through Collect Transactions to
become Logical Trans Record.

The second input stream deals with the master
file. The Master Record is input to Get Master
Record; successfully read master records flow
through the process. Once the Logical Trans Record
and Master Record are both present, the input trans­
formations are complete. These two afferent streams
completely describe inputs, and the arc is drawn over
the Logical Trans Record and Master Record data
flows (see Figure 8-20).

The two streams of data are first processed to­
gether in Match Trans to Master. Information to be
updated flows through Update Master from Trans to
become Updated Master. The error report coming
from the match process is considered a trivial out­
put and does not change the essential transform na­
ture of the process. The argument that Match Trans

to Master is part of the afferent stream might be
made. While it could be treated as such, the input
data is ready to be processed; that is, transactions
by themselves, master records by themselves, and
transactions with master records might all be pro­
cessed. Here, we interpret the first transformation
as matching.

The data flow out of Update Master from Trans is
a net outflow, and Write New Master is an efferent
process. The efferent arc is drawn over the data flow
Updated Master.

Next, we factor three basic structures that relate
to input-process-output processing (see Figure 8-21).
If there is more than one process in a stream, get­
ting the net output data may require some inter­
process coordination. The coordination activities are
grouped and identified by a name that identifies the

Process Design Activities 299

net output data. So, in the example, the input stream
is Get Input; the transform stream is Process; the
output stream is Write New Master. Each stream rep­
resents the major elements of processing. Because
the process and input streams both are compound,
each has at least two streams beneath them-one for
each sequential process stream to reach the net out­
put data.

Notice that the DFD process names identify both
data and transformation processes. Make sure that
the lowest-level names on the structure chart are
identical to the name on the data flow diagram to
simplify completeness checking.

Notice also that there is transformation process­
ing within the afferent and efferent streams. Modules
frequently mix input/output and transform process­
ing, and there is no absolute way to distinguish into

Master File
Update

Get Input

Edited
Trans

Get
Complete

Transaction

Get
Trans

Process

; Master
EOF

Master 1 Master 1 1 Record Record

1 Master 1 Edited
EOF Trans

Get Master Match Trans
Record to Master

Card cp .. Edited EditeJP .. Edited
Image, cb Card Card-' cb Trans

Edit
Trans

Collect
Transactions

FIGURE 8-21 Master File Update Structure Diagram

Updated
Master
Record

1
t Write New

Master

Master
EOF

Updated
Master
Record

Update
from

Master

300 CHAPTER 8 Process-Oriented Design

which stream the module belongs. The rule of thumb
is to place a module in the stream which best
describes the majority of its processing.

Once the module is on the structure chart, we
specifically evaluate it to ensure that it meets the
principles of fan-out, span of control, maximal cohe­
sion, and minimal coupling. If it violates even one
principle, experiment with moving the module to the
alternative streams and test if it better balances pro­
cessing, without changing the processing. If so,
leave it in the new location; otherwise note that the
unbalanced part of the structure chart may need spe­
cial design attention to avoid production bottlenecks.

Decompose the structure chart entries for each
process. The three heuristics to guide the decompo­
sition are:

• Is the decomposition also an IPO structure? If
yes, continue; if no, do not decompose it.

• Does the control of the decomposed process­
ing change? If yes, do not decompose it. If no,
continue.

• Does the nature of the process change? That
is, if the process is a date-validation, for
instance, once it is decomposed is it still a
date-validation? If no, continue. If yes, do not
decompose it. In this example, I might try to
decompose a date-validation into month-vali­
date, day-validate, and year-validate. I would
need to add a date-validate to check all three
pieces together. Instead of a plain date-vali­
date, I have (a) changed the nature of the
process, and (b) added control logic that was
not necessary.

The thought process in analyzing depth is simi­
lar to that used in analyzing the number of organi­
zationallevels in reengineering. We want only those
levels that are required to control hierarchic com­
plexity. Any extra levels of hierarchy should be
omitted. Now let us turn to ABC rental processing to
do transform analysis and develop the structure
chart.

ABC Video Example Transform Analysis

The decisions about factoring are based on the prin­
ciples of coupling and cohesion, but they also

require a detailed understanding of the problem and
a design approach that solves the whole problem. In
ABC Video's case, we have to decide what the rela­
tionships of rent, return, history, and maintenance
processing are to each other. If you have not done
this yet, now is the time to do it. Before we continue
with design of transform analysis, then, we first dis­
cuss the design approach and r~tionale.

DESIGN APPROACH AND RATIONALE. In
Chapter 7, Table 7-5 identified the Structured Eng­
lish pseudo-code for ABC's rental processing and
we did not discuss it in detail. Now, we want to
examine it carefully to determine an efficient, cohe­
sive, and minimally coupled decomposition of the
process. When we partition the ABC Level 0 DFD
from Figure 7-26, customer and video maintenance
are afferent streams, reports are efferent, and rental
and return are the central transform& (see Figure
8-22). We will attend only to create and return
rentals since they are the essence and hardest portion
of the application.

There is a design decision to have return process­
ing as a subprocess of rental processing that needs
some discussion. Then we will continue with the
design. The overall design could be to separate
rentals and returns as two different processes, but are
they? Think in the context of the video store about
how the interactions with custpmers takes place.
Customers return tapes previously taken out. Then
they select tapes for rental and pay all outstanding
fees, including current and past returns that gener­
ate late fees. To have late fees, a tape must have been
returned.2 Rentals and returns are separated in time;
they have separate actions taken on files. ABC has
any combination of rentals with returns (with or
without late fees) and open rentals. All open rentals
are viewed during rental processing, but need not
be during r"eturn processing. Adding a return date
and late fees is a trivial addition. Returns could be

2 In a real video rental system, you would also have a delin­
quent or exceptional charges process to add fees for lost and
damaged tapes. We do not consider that complexity here as it
does not materially add to the discussion.

3.0

Create
Rental

Return, Payment

Order

Central Transform

Return
Rental

Process Design Activities 301

End of Day
Rental Summary

5.0
New Video Video

Vendor Maintain
Video

Afferent

FIGURE 8-22 ABC Video Level 0 DFD Partitioned (same as Figure 7-26)

independent of rentals, so there are three design
alternatives:

• Returns are separated from rentals.
• Rentals are a subset of returns.
• Returns are a subset of rentals.

If returns are separated from rentals, there would
be two payment processes-one for the return and
one for the rental. If a rental includes a return, this
is not 'minimal bureaucracy' and is not desirable.

However, since returns can be done independently
from rentals, the system should not require rental
processing to do a return. This alternative is an
acceptable partial solution, but the rest of the solu­
tion must be included.

The second alternative is to treat rentals as part
of the return process. This reasoning recognizes that
a rental precedes a return. All returns would need a
rental/no rental indicator entry and assume that more
than 50% of the time, rentals accompany returns.

302 CHAPTER 8 Process-Oriented Design

Which happens more frequently-returns with
rentals, or rentals without returns? Let's say Vic does
not know and reason through the process. Since
returns can be any of three ways, only one of which
is with rentals, coupling them as rental-within-return
should be less efficient than either of the other
two choices.

Last, we can treat returns as part of the rental
process. If returns are within rentals, we have some
different issues. What information identifies the
beginning of a rental? What identifies the beginning
of a return? A customer number could be used to sig­
nify rental processing and a video number could sig­
nify a return. If we do this, we need to make sure
the numbering schemes are distinct and nonoverlap­
ping. We could have menu selection for both rental
and return that determines the start of processing;
then return processing also could be called a sub­
process of rentals. Either of these choices would
work if we choose this option. For both alternatives,
the software needs to be reevaluated to maximize
reusable modules because many actions on rentals
are also taken on returns, including reading and dis­
play of open rentals and customer information.

Having identified the alternatives and issues, we
conduct observations and collect data to justify a
selection. The results show that 90% of returns, or
about 180 tapes per day, are on time. Of those, 50%
are returned through the drop box, and 50% (90
tapes) are returned in person with new rentals. The
remaining 10% of returns also have about 50%
(10 tapes) accompanying new rentals. So, about
100 tapes a day, or 50% of rentals are the return­
then-rent type. These numbers justify having returns
as a subprocess of rentals. They also justify having
returns as a stand-alone process. We will allow both.

Deciding to support both separate and return­
within-rental processing means that we must con­
sciously decide on reusable modules for the
activities the two functions both perform: reading
and display of open rentals and customer informa­
tion, payment processing, and writing of processing
results to the open rental files. We will try to design
with at least these functions as reusable modules.

DEVELOP AND DECOMPOSE THE STRUC­
TURE CHART. To begin transform analysis, we

start with the last DFD created in the analysis phase,
and the data dictionary entries that define the DFD
details. Figure 7-28 is reproduced here as Figure
8-23, with a first-cut partitioning to identify the cen­
tral transform.

First, we evaluate each process. We will use the
pseudo-code that is in the data dictionary (see Figure
8-24). The DFD shows three rental subprocesses:
Get Valid Rental, Process Fees and Money, and Cre­
ate and Print Rental. Each of the subprocesses might
be further divided into logical components. Try to
split a routine into a subroutine for each function or
data change. First, evaluate the potential split to
make sure the subroutines are all still needed to do
the routine. This double-checks that the original
thinking was correct. Then, evaluate each potential
split asking if adding the subroutine changes the
control, nature, or processing of the routine. If yes,
do not separate the routine from the rest of the logic;
if no, abstract out the subroutine.

For ABC, Get Valid Rental is the most complex
of the routines and is evaluated in detail. Get Valid
Rental has three subroutines that we evaluate: Get
Valid Customer, Get Open Rentals, and Get Valid
Video. These splits are based on the different files
that are read to obtain data for processing a rental.
Without all three of these actions, we do not have a
valid rental, so the original designation of Get Valid
Rental appears correct. Figure 8-25 shows refined
pseudo-code for ABC rental processing with clearer
structure and only structured constructs. Subroutines
are shown with their own headings.

If we are to accommodate returns during rental
processing, we have to decide where and how rentals
fit into the pseudo-code. We want to allow return
dates to be added to open rentals. We also want to
allow returns before rentals and returns within
rentals. This implies that there are two places in the
process where a rental Video ID might be entered:
before or after the Customer ID. If the Video ID is
entered first, the application would initiate in the
Return process; from there, we need to allow addi­
tional rentals. If the Customer ID is entered first, the
application would initiate rental; from there, we need
to allow returns. To allow both of these actions to
lead to rental and/or return processing, we need to
add some control structure to the pseudo-code (see

Process Design Activities 303

Customer File

Video File

Rental File

FIGURE 8-23 ABC Video Levell DFD Partitioned (same as Figure 7-28)

Figure 8-26). The control structure also changes the
resulting structure chart somewhat even though the
DFDs are not changed.

Next, we evaluate the refined pseudo-code and
inspect each subroutine individually to determine if
further decomposition is feasible (see Figure 8-27).
For Get Valid Customer, does the processing stay the
same? That is, are the detail lines of procedure
information the same? By adding the subroutine we
want to add a level of abstraction but not new logic.
In this case, the answer is yes. Now look at the
details of Get Valid Customer. The subprocesses are
Get Customer Number-a screen input process,
Read and Test Customer File-a disk input process
with logic to test read success and determine credit
worthiness, and Display Customer Info-a screen
output process. Again, we have decomposed Get

Valid Customer without changing the logic or adding
any new functions.

The results of the other evaluations are presented.
Walk-through the same procedure and see if you
develop the same subroutines. Here we used the
pseudo-code to decompose, but we could have used
text or only our knowledge of processing to describe
this thinking. When the decomposition is complete
for a particular process stream, it is translated to a
structure chart.

Complete the Structure Chart
Rules for Completing the Structure Chart

Completion of the structure chart includes adding
data and control couples and evaluating the diagram.

304 CHAPTER 8 Process-Oriented Design

Get Valid Rental.
For all customer

Get customer #
Read Customer File
If not present,

Cancel
else

Create customer
Display Customer info.

Read Open-Rentals
For all Open Rentals,

Compute late fees
Add price to total price
Display open rentals
Display total price.

For all video
Read Video file
If not present

Cancel this video
else

FIGURE 8-24 ABC Rental Pseudo-code

Get Valid Rental.
Get Valid Customer.

For all customer
Get customer #
Read Customer File
If not present,

Cancel
else

Create customer
Display Customer info.

Get Open Rentals.
Read Open-Rentals
For all Open Rentals,

Compute late fees
Add price to total price
Display open rentals
Display total price.

Get Valid Video.
For all video

Read Video file
If not present

Cancel this video
else

Call Create Video

FIGURE 8-25 ABC Rental Pseudo-code Refined

Create Video
Display Video
Add price to total price
Display total price.

Process Fees and Money.
Get amount paid.
Subtract total from about paid giving change.
Display change.
If change = zero and total = zero,

mark all items paid
else

go to process fees and money.

Create and Print Rental.
For all open rentals

if item paid
rewrite open rental.

For all new rentals
write new open rental.

Print screen as rental confirmation.

Display Video
Add price to total price
Display total price, change.

Process Fees and Money.
Get amount paid.
Subtract total price from about paid giving
change.
Display total price, change.
If change = zero and total = zero,

mark all items paid
else

go to process fees and money.

Create and Print Rental.
Update Open Rentals.

For all open rentals
if item paid

rewrite open rental.

Create New Rentals.
For all new rentals

write new open rental.
Print screen as rental confirmation.

Get Valid Rental.
Get entry.
If entry is Video

Call Return
else

Call Rental.

Rental.
Get Valid Customer.

For all customer
Get customer #
Read Customer File
If not present,

Cancel
else

Create customer
Display Customer info.

Get Open Rentals.
Read Open-Rentals
For all Open Rentals,

Compute late fees
Add late fees to total price
Display open rentals
Display total price.

Get Valid Video.
For all video

Read Video file
If not present

Cancel this video

Process Design Activities 305

else
Call Create Video
Display Video
Add price to total price
Display total price, change.

Process Fees and Payment.
Create and Print Receipt.

Return.
Get Open Rental.

Read Open-Rentals
Read Customer
Display Customer
Display Open Rental
Add return date.

Using customer ID, Read Open Rentals.
For all Open Rentals

Display open rentals.
For all return request

If rental

Add return date to rental.
Compute late fees
Add late fees to total price
Display total price.

Call Get Valid Video.
Call Process Fees and Payment.
Call Create and Print Receipt.

FIGURE 8-26 Get Valid Rental Pseudo-code with Control Structure for Returns

Structure chart completion rules are:

1. For each data flow on the DFD add exactly
one data couple. Use exactly the same data
flow name for the data couple.

2. For each control module, decide how it will
control its subs. If you need to refine the
pseudo-code to decide control, do this. Add
control couples to the diagram when they are
required between modules.

3. For modules that select one of several paths
for processing, show the selection logic with
a diamond in the module with the logic at­
tached to the task transfer line.

Rules of thumb for developing the structure chart
are:

1. Evaluate the diagram for cohesion. Does
each module do one thing and do it
completely?

2. Evaluate the diagram for fan-out, fan-in,
skew, and redesign as required, adding new
levels of control. Note skewed processing for
attention during program design.

3. Evaluate the diagram for minimal coupling.
Is the same data used by many modules? Do
control modules pass only data needed for
processing? Do control modules minimize
their scope of effect?

These are all discussed in this section.
First, the structure chart is drawn based on the de­

composition exercises. Then data couples are added
to the diagram for each data flow on the DFD. If the

306 CHAPTER 8 Process-Oriented Design

Get Valid Rental.
Get entry.
If entry is Video

Call Return
else

Call Rental.

Rental.
Call Get Valid Customer.
Call Get Open Rentals.
Call Get Valid Video.

Return.
Call Get First Return.
Call Get Open Rentals.
If rental

Call Get Valid Video.

Process Fees and Money.

Create and Print Rental.
Update Open Rentals.
Create New Rentals.
Print receipt.

Get Valid Customer.
Get customer #
Read Customer File
If not present,

Create Customer.
If CCredit not zero, display CCredit
Display Customer info.

Get Open Rentals.
Read Open-Rentals
For all Open Rentals,

Compute late fees
Add late fees to total price
Display open rentals
Display total price, change.

For all return request
Call Update Returns.

Get Valid Video.
For all video

Read Video file
If not present

Cancel this video
else

Call Create Video
Display Video
Add price to total price
Display total price, change.

Get First Return.
Read Open-Rentals
Read Customer
Display Customer
Display Open Rental
Call Update Returns.

Update Returns.
Move return date to rental.
Update video history.
Compute late fees.
Add late fees to total price.
Display total price.

Process Fees and Money.
Get amount paid.
Subtract total price from about paid giving change.
Display total price, change.
If change = zero and total = zero,

mark all items paid
else

go to process fees and money.

Update Open Rentals.
For all open rentals

rewrite open rental.

Create New Rentals.
For all new rentals

write new open rental.

FIGURE 8-27 Complete Pseudo-code for Rentals and Returns

structure chart is at a lower level of detail, use the
data flow as a starting point and define the specific
data passed to and from each module. Show all
data requirements for each module completely.
Make sure that all names are exactly as they are in
the dictionary.

Next, for each control module, decide how it will
control its subprocesses and add the control couples
to the diagram. Decide whether the logic will be in
the control module or in the subprocess. If the logic
is in the control module, the goal is for the controller
to simply call the subordinate module, pass data to

Process Design Activities 307

...
If data = x move 1 to go-sw.
If data = y move 2 to go-sw.
If data = z move 3 to go-sw.
Call GO-MOD

Pathological
Control

Structure
G

Go-Data f
o-sw;

... GO-MOD
If go-sw = 1 do go-1.
If go-sw = 2 do go-2.
If go-sw = 3 do go-3 .

Go
Da ;a f

Go-1

Solution 1

Control

L-<>-

G~ f Data

Go-2

... Return

Solution 2

Go- f
Data

g~a 11
Go-3

... GO-MOD
If data = x do go-1.
If data = y do go-2.
If data = z do go-3 .
... Return

FIGURE 8-28 Pathological Control Structure and Two Solutions

transform, and receive the transform's data back. If
any other processing takes place, rethink the control
process because it is not minimally coupled.

A control couple might be sent to the subprocess
for it to determine what to do. This mayor may not
be okay. Where is the control couple 'set' and
'reset'? If in the control module, this is acceptable. If
somewhere else, rethink the control process and sim­
plify it. Any time you must send a control couple for
a module to decide which action to take, you identify
a potential problem. The lower-level module may
be doing too many things; otherwise it would not
need to decide what to do, or the control may be in
the wrong module.

An example of this problem and two solutions are
illustrated in Figure 8-28. If the lower level is doing
too many things, then decompose them to create sev­
eral single-purpose modules. If the lower level is
not doing multiple functions, then move control for
the module into the module itself. In both cases, the
goal of minimal coupling is attained.

Next, the diagram is evaluated for cohesion, cou­
pling, hierarchy width, hierarchy depth, fan-out, fan­
in, span of control, and skew. Evaluate the diagram
for cohesion (see Table 8-2 for definition of cohesion
types). Check that each module does one thing and
does it completely. If several modules must be taken
together to perform a whole function, the structure is

308 CHAPTER 8 Process-Oriented Design

excessively decomposed. Regroup the processes anq
restructure the diagram.

Evaluate the diagram for width, depth, fan-out,
fan-in, and skew. These are visual checks to see if
some portion of the structure is inconsistent with the
rest of the structure. The inconsistency does not nec­
essarily mean that the diagram is wrong, only that
there may be production bottlenecks relating to the
out-of-balance processes. For a wide structure, dou­
ble check that the subprocesses really aU relate to
one and only one process. If not, add a new control
module, else leave as is.

For deep structures, check to see if each level of
depth is performing some function beyond control.
Ask yourself why all the levels are needed. If there is
no good reason, get rid of the level and move its
functions either up or down in the hierarchy, prefer­
ably up. Ask yourself if fewer levels can accomplish
the same process. If the answer suggests reducing
the levels of hierarchy, restructure the diagram and
keep only essential levels.

For fan-in modules, check that each using module
has the same type of data being passed and expects
the same type of results from the fan-in module. If
there are any differences, then either make the
using modules consistent, or add a new module to re­
place the fan-in module for the inconsistent user
module. .

Skewed diagrams identify a fundamental imbal­
ance of the application that may have been hidden
before: that it is input-bound, output-bound, 1/0-
bound, or process-bound. Skew is not necessarily a
problem that results in restructuring a diagram.
When skewed processing is identified, you should
verify that it is not an artifact of your factoring. If it
is, remove the skew from the diagram by restructur­
ing the modules.

Skew is not always a problem. When a skewed
application is being designed, the designers normally
spend more time designing the code for the bound
portion of the problem to ensure that it does not
cause process inefficiencies. For instance, Fortran is
notoriously inefficient at physical input/output (i.e.,
reading and writing files). For anything but a
process-bound application, Fortran is not the best
language used. For a process-bound Fortran appli­
cation, with many I/Os, another language, such as

assembler or Cobol, might be used to make read/
write processing efficient. The opposite is true of
Cobol. Cobol is not good at high precision, scien­
tific, mathematical processing. In a Cobol applica­
tion, process-bound modules and their data would be
designed either for another language, or to minimize
the language effects.

Finally, evaluate the diagram for minimal cou­
pling. First look at data couples. If you see the same
data all over the diagram, there may be a problem.
Either you are not specifying the data at the element
level, or data coupling is the least coupling you will
be able to attain. Make sure that only needed data is
identified for passing to modules. Data coupling is
not the best coupling, but it is tolerable.

Next look at control couples one last time. Make
sure that they are set and reset in the same or
directly-related modules, and make sure that, if
passed, they are passed for a reason. If either of these
conditions are violated, change the coupling.

To summarize so far, decide the system concept;
partition the DFD; develop a first-cut structure chart;
decompose the structure chart using pseudo-code of
the functions as needed to guide the process; add
data couples; add control couples; evaluate and
revise as needed.

ABC Video Example Structure Chart

ABC's structure chart will begin with the Levell
DFD factoring and progress to provide the detail for
modules as expressed in the pseudo-code. There are
three first level modules: Get Valid Rental, Process
Fees & Money, and Create and Print Rental (see
Figure 8-~9). To get the next level of detail, we use
the pseudo-code or decomposed structure charts. In
our case, we use the pseudo-code. In Figure 8-27, the
high level pseudo-code has only module names. We
simply transfer those names to modules on the struc­
ture chart, attending to the control logic present in
the diagram.

For each if statement, we need to decide whether
that statement will result in a direct call (our choice,
here) or whether it will result in a control couple
being passed. Direct calls are preferred to minimize
coupling. When a direct call is used, the module is
executed in its entirety every time it is called.

Legend:

Reused from
another diagram

Reused on this
diagram

Process Design Activities 309

FIGURE 8-29 Rent/Return First-Cut Structure Chart

We identify reused modules by a slash in the
lower left corner of the rectangles to show the com­
plete morphology of the diagram. The first-cut struc­
ture chart shows that the processing is skewed
toward input. Because there are three data stores
affected by every process, there is no way to get rid
of the skew without getting rid of the control level. Is
the control level essential? If we omit the control
level is the processing the same? Do we violate fan­
out if we remove the control level ? The answers are
no, mostly, and no, respectively. If we remove the
control level, its logic must go somewhere. The logic
can move up a module and not violate fan-out. The

change may have a language impact, so we will not
change it until we decide program packages.

We note it for attention during packaging and pro­
gramming. There are no other obvious problems
with the first-cut structure chart. Since we have
developed it bottom-up, using the pseudo-code as
the basis, it is as good as our pseudo-code.

Next, we add the data and control couples needed
to manage processing. The final diagram is shown in
Figure 8-30, which we evaluate next.

Each module appears to do only one thing. The
diagram is input -skewed as already discussed. The
span of control and fan-out seem reasonable.

310 CHAPTER 8 Process-Oriented Design

Legend:

OR Open Rental
C Customer
V Video

VR Valid Rental
Upd. OR Updated OR

FIGURE 8-30 Completed Rent/Return Structure Chart

The reused modules each have the same input data.
The hierarchy is not unnecessarily deep, although
the control code for Get Valid Rental, Rent, and
Return might be able to be combined depending on
the language. Coupling is at the data level and is
acceptable. Next, we turn to designing the physical
database.

Design the Physical Database
Physical database design takes place concurrently
with factoring and decomposition. A person with
special skills, usually a database administrator
(DBA), actually does physical database design. In

companies without job specialization, a project team
member acts as the DBA to design the physical data­
base. Physical database design is a nontrivial task
that may take several weeks or even months.

Rules for Designing the Physical Database

The general physical database design activities are
summarized below. Keep in mind that many other
activities may be involved in designing a physical
database that relate to a specific implementation
environment.

1. Define user views based on transaction types
and data accessed for each transaction.

2. Identify access method if choices exist.
3. Map user views to access method and storage

technology to optimize disk space and to
minimize access time.

4. Build prototype and test, revising as
indicated.

5. Develop database for application testing.
6. Document physical database design and dis­

tribute user view information to all project
team members.

7. Work with conversion team to build produc­
tion databases.

Designing user views means to analyze the trans­
actions or inputs of each process to define which
database items are required. In general, the data
items processed together should be stored together.
These logical design activities constrain the physical
design and help the person mapping to hardware
and software.

In selecting the access method, the physical data
designer seeks to optimize matching available access
methods to access requirements. Access method
choices usually are data sequenced (i.e., indexed),
entry sequenced (i.e., direct), inverted lists, or some
type ofb-tree processing. Each DBMS and operating
system has its own access methodes) from which
selection is made. The details of these access meth­
ods are beyond the scope of this text. 3

User views are mapped to the access method and
a specific media. Media mapping seeks to optimize
access time for individual items and sets of items.
It also seeks to minimize wasted space while provid­
ing for growth of the database. Since media have
become one of the major expenses in the computing
environment, there may be political issues involved
with physical database design. At this point, a data­
base walk-through reviews all database design
before a prototype is built.

The DBA documents and trains team members
in data access requirements. The DBA, working
from the application specification, maps data re-

3 For more on access methods and storage considerations, see
references to Fabbri and Schwab [1992], Codd [1990], Bohl
[1981], and Claybrook [1983] in the references.

Process Design Activities 311

quirements to user views to processes. Each process,
then, has specific data items assigned. Every team
member must know exactly what data items to
access and how to access them. If a module or pro­
gram accesses the wrong data item, an inconsistent
database might result. Also, minimal data coupling
requires that each process access only data that it
requires. Incorrect use of access methods can lead
to process bottlenecks or an inconsistent database.
To assure that programs are using the data correctly,
the DBA may participate in walk-throughs to moni­
tor data access.

The DBA works with the test team to load the
data needed for testing. The DBA also works with
the conversion team to load the initial production
database. These activities may be trivial or may
require hiring of temporary clerks to input informa­
tion to the database. The DBA and the two teams
work together to verify the correctness of the data, to
provide program test database access to the rest
of the development team, and to provide easily
accessed backup when the test database is compro­
mised. After the test database is loaded, the backup
and recovery procedures, transaction logic proce­
dures, and other database integrity procedures are all
finalized and tested.

To summarize, a person who intimately knows
the technical production data environment acts as a
DBA, mapping the database to a physical environ­
ment and building both test and production data­
bases. The DBA provides training and guidance to
the other team members for data access, and partici­
pates in data related walk-throughs.

ABC Video Example Physical
Database Design

In order to do the physical database design, a DBMS
must be selected. We will design as if some SOL
engine were being used. SOL's physical design is
closely tied to the logical design so the design activ­
ity becomes less DBMS software sensitive. In addi­
tion, SOL data definition is the same in both
mainframe and micro environments so the design
activity does not need to be hardware platform sen­
sitive. The amount of storage space (i.e., number of
tracks or cylinders) will vary, of course, since disks

312 CHAPTER 8 Process-Oriented Design

on PCs do not yet hold as much information as main­
frame disks.

Beginning with the logical design from Table
7 -7, we define the relations and data items that are
required to develop user views. Remember from
database class, that the logical database design can
map directly to the physical database. The relations
defining the actual database mayor may not be
accessed by users. For security reasons, user views
may be used to control access to data and only the
DBA would even know the real relation names.

To define user views, we examine each process
and identify the data requirements. List the require­
ments by process (see Table 8-5). Match similar data
requirements across processes to identify shared user
views. The problem is to balance the number of
views against the number of processes. Ideally a
handful of user views are defined; a heuristic for
large applications is about 20 user views. Beyond
that, more DBAs are required and database mainte­
nance becomes difficult. In a large application, keep­
ing the number of user views manageable may be
difficult and require several design and walk-through
iterations.

For ABC rental processing, we need a user view
for each major data store: Customer, Video Inven­
tory, and Open Rentals. We also need user views for
the minor files: Video History, Customer History,
and End Of Day Totals. If data coupling and memory
usage are not an issue, using a SQL database, we can
create one user view for each of Customer, Video,
and Open Rental, and create one joined user view
using the common fields to link them together. The
individual views are used for processes that do not
need all of the data together; the joined view can be
used for query processing and for processes that
need all of the data. The resulting data definitions for
customer, video, open rentals, and the related user
views are shown in Table 8-6. We also need sepa­
rate user views for the history files and EOD totals.
They are included in the table.

At this point, with SQL software, we are ready
to prototype the database. If either access method
selection or storage mapping is an issue, a prototype
should be built. Otherwise, the next step is to map
user views to access methods and storage media.
This activity depends on the implementation envi­
ronment and is beyond this text. The database may

be walked through again at this point to verify pro­
cessing requirements for the database. The database
is then prototyped and documented. The information
needed for each program is included in program
specifications. Team members are usually given an
overview of the database environment either as part
of the last walk-through or as a separate training
session. When the prototype appears complete
and workable, test and production databases are
developed.

Design Program Packages
Rules for Designing Program Packages

The activities for grouping modules into program
packages are listed below; as you can see, they are
general guidelines, not rules. There are no rules for
packaging because it is an environment-dependent
activity. Packages for firmware or an 8K micro
computer are entirely different than packages for a
mainframe. Also, the implementation language de­
termines how and when some types of coupling are
done. With these ideas in mind, the guidelines apply
common sense to identifying program execute units.

1. Identify modules that perform functionally
related activities, are part of iteration units, or
which access the same data. The related mod­
ules identified should be considered for pack­
aging together for execution.

2. Develop pseudo-code for the logic functions
being performed. Use only structured pro­
gramming constructs: iteration, selection, and
sequence. Document complex logic using
decision tables or decision trees.

3. Logically test the user views developed with
the DBA to reevaluate their usefulness for
each program package.

4. Design each module to have one entry and
one exit.

5. Design each module such that its contents are
unchanged from one execution to the next.

6. Design and document messages for called
modules. Reevaluate the messages to mini­
mize coupling.

7. Draw a diagram of the module and all other
modules with which it interacts.

TABLE 8-5 ABC Data Requirements by Process

Process

Get Valid
Customer

Get Open
Rentals

Get Valid
Video

Get First Return

Get Valid Video

Update Rentals

Process Fees
and Money

Create Video
history

Create Customer
history

Update Open
Rentals

Create New
Rentals

Print receipt

Customer

Customer Phone,
Name, Address,
Credit Rating

Video Inventory

Video ID, Copy ID,
Video Name,
Rental Price

Video ID, Copy ID,
Video Name,
Rental Price

Process Design Activities 313

Open Rental

Customer Phone,
Video ID, Copy ID,
Video Name,
Rent Date, Return
Date, Late Days,
Fees Owed

Customer Phone,
Video ID, Copy ID,
Video Name, Rent
Date, Return Date,
Late Days, Fees Owed

Customer Phone,
Video ID, Copy ID,
Video Name, Rent
Date, Return Date,
Late Days, Fees Owed

Customer Phone,
Video ID, Copy ID,
Video Name, Rent
Date, Return Date
Late Days, Fees Owed
Customer Phone,
Video ID, Copy ID,
Video Name
Rent Date, Return Date,
Late Days, Fees Owed

Other

End of Day Totals
Total Price +

Rental Information
Video History File:
Year, month,
Video ID, Copy ID
Customer History
File: Customer Phone,
Video IP

Customer Phone,
Name, Address,
For each Video:
Video ID, Copy ID,
Video Name,
Rent Date, Return
Date, Late Days,
Fees. Owed,
Total Price

314 CHAPTER 8 Process-Oriented Design

TABLE 8-6 SQL Data Definitions and User Views

Create Table Customer

(Cphone
Clast
Cfirst
Cline I
Cline2
City
State
Zip
CCtype
Ccno
Ccexp
CCredit
Primary key

Create Table Video

(VideoID
VideoNam
VendorNo
TotCopies
RentPrice
Primary key

Create Table Copy

(Vide olD
CopyID
DateRecd
Primary key
Foreign Key

Char(lO)
VarChar(50)
VarChar(25}
VarChar(50)
VarChar(50)
VarChar(530)
Char(2)
Char(lO)
Char(l)
Char(17)
Date
Char(l),
(Cphone));

Char(7)
Varchar(50)
Char(4)
Smallint
Decimal(I,2)
(videoID);

Char(7)
(Char(2)
Date

Not null,
Not null,
Not null,
Not null,
Not null,
Not null,
Not null,
Not null,
Not null,
Not null,
Not null,

Not null,
Not null,

Not null,
Not null,

Not null,
Not null,

(VideoID, CopyID),
((VideoID) References Video);

A program package is a collection of called mod­
ules, called functions, and in-line code that does
some atomic process, and that will become an exe­
cute unit. The hierarchy of criteria for designing
packages is to package by function, by iteration clus­
ters, or by need to access the same data. At all times,
you must keep in mind any production environment
constraints that must also be part of the design. For
instance, if the application will be on a LAN, you
may want to design packages to minimize the possi­
bility of multiple users for a process.

Functional grouping is, by far, the most impor­
tant. Functional grouping ensures high cohesion for
the program. Any modules that are required to per­
form some whole function should be grouped

Create Table Rental

Cphone Char(lO) Not null,
RentDate Date Not null,
VideoID Char(7) Not null,
CopyID (Char(2) Not null,
RentPaid Decimal(2,2) Not null,
FeesOwed Decimal(2,2)
Primary Key (CPhone, VideoID, CopyID),
Foreign Key ((VideoID) References Video)
Foreign Key ((VideoID, Copyld) References

Copy),
Foreign Key (CPhone) References Customer);

Create view VidCrsRef
as select VideoID, CopyID, VideoName, RentPric

from Customer, Video, Copy
where Video.VideoID = Copy.VideoID;

Create view RentRef
as select Cphone, Clast, Cfirst, VideoID, CopyID,

VideoNam,
RentPaid, RentPric, FeesOwed
from Customer, VidCrsRef, Rental
where VidCrsRef.VideoID = Rental.VideoID
and VidCrsRef.CopyID = Rental.CopyID
and Customer.Cphone = Rental.Cphone;

together. The other two considerations frequently
apply to functional groups as well.

If a group of activities repeat as part of an itera­
tive sequence, all activities in the group should be
together in the program package. Individual mod­
ules can be coded and unit tested alone, but they
should be packaged for integration testing and
implementation.

Grouping modules that access the same data min­
imizes physical reading and writing of files. The
major goal is to read the same data record in anyone
pass of the processes no more than once. We want
to minimize physical I/O because it is the slowest
process the computer performs. Grouping modules
by data accessed minimizes the frequency of read-

ing. Real-time applications, especially, are vulnera­
ble to multiple reads and writes of the same data,
slowing down response time.

Grouping modules by data access is a form of
data coupling that minimizes the chance of unex­
pected changes to data. If we do not package mod­
ules together, but only read and write data once, the
major alternative to common packaging is to use
global data areas in memory. Global data is not pro­
tected and is vulnerable to corruption.

When the packages are complete, develop Struc­
tured English pseudo-code for the logic functions
being performed. Use only structured programming
constructs-iteration, selection, sequence. Docu­
ment complex logic using decision tables or decision
trees. Include control structures and names for all
modules. Pseudo-code may have been done as part
of analysis, or earlier in design, as we did for ABC
rental and return. Incidental activities, or less cru­
cial activities, may have been overlooked or not
refined. Pseudo-code is completed now and struc­
tured for use in program specifications.

Decision tables and trees might be used to docu­
ment complex decisions. While a discussion of them
is beyond this text, an example of each is shown in
Figure 8-3l.

As we design the program packages, we logically
test the user views developed with the DBA to
reevaluate their usefulness. The questions to ask are:
Is all the needed data available? Is security ade­
quate? Is extra data present? If any of these answers
indicate a problem, discuss it with the DBA and
determine his or her reasons for the design. If the
design should change, the DBA is the person to do it.

Design each module to have one entry and one
exit. Multiple entrances and exits to program mod­
ules imply problems because of selection and go to
logic required to implement multiple exits and
entrances. If each module is kept simple with one of
each, there are fewer testing, debugging, and main­
tenance problems.

Ideally, each module should have its internal data
contents the same before and after a given execution.
That is, the state and contents of the module should
be unchanged from one execution to the next. This
does not mean that no changes take place during
an execution, only that all traces of changes are

Process Design Activities 315

removed when the execution is complete. When a
module must maintain a 'memory' of its last actions,
coupling is not minimized.

Design and document messages for called mod­
ules. Messages should contain, at most, calling/
called module names, data needed for execution,
control couples, and variable names for results of
execution.

You might draw a diagram of the module and all
other modules with which it interacts to facilitate
visual understanding of the module and its role in the
application.

ABC Video Example Program
Package Design

Working with the final structure chart in Figure 8-30,
our biggest decision is whether or not to package all
of rental/return processing together, and how. Do
we write one program with performed modules, one
with called modules, or a combination of the two?

ABC is going to be in a SQL-compatible database
environment, on a LAN, and requires access by PCs.
The choice of language is not limited with these
requirements, but packaging without knowing the
language is not recommended. For this exercise, we
will assume that Focus,4 the 4GL, will be used.

Focus' application generator, called the "Dia­
logue Manager," allows both in-line and called mod­
ules to be used. Calling modules of nonFocus
languages are allowed but can be tricky. The lan­
guage has its own DBMS that is SQL-compatible,
but it is not fully relational. It falls in the category
of DBMSs called 'born again relational,' that is, the
DBMS is hierarchic, networked, or relational at the
DBA's discretion. Relationality is allowed but not re­
quired in Focus. Focus does not support the integrity
rules. We will not redesign the database here since
the SQL code above could be recoded without de­
sign changes in the Focus DBMS language.

At this point, we need to step back and decide
how to package the entire application. What kind
of 'glue' will hold customer maintenance, video

4 Focus is a trademark of Information Builders Inc., New York.
Focus is representative of PC-based application generators,
including Rbase, Dbase IV, Informix, etc.

316 CHApTER 8 Process-Oriented Design

Decision Table Format:

Conditions-Possible occurrences Rules-Specific occurrences

Actions-Possible outcomes Entries-Specific outcomes for rule combinations.

Decision Table Example:

Conditions

Customer Old Old Old Old Old Old Old Old New New

Open Rentals Y Y y y N N N N

Returns Y Y N N Y Y N N

New Rentals Y N Y N Y N Y N y N

Actions

Create Customer N N N N N N N N Y Y

Check Late Fees Y Y Y Y Y Y N N Y N

Process Return Y Y N N Y y N N N N

Process New Rental Y N Y N y N Y N Y N

Process Fees and Money Y Y Y Y Y Y Y N y N

Update Open Rental y y y y y y N N N N

Create Open Rental Y N Y N Y N Y N Y N

Print Receipt Y Y Y Y y Y Y N Y N

Decision Tree Format: Tree structure showing conditions
and actions.

Decision Tree Example:

FIGURE 8-31 Decision Table and Decision Tree

maintenance, end-of-day, and rental/return process­
ing together. We do not discuss screen design here
because it is not in the methodology (it is in Chap­
ter 14), but we would finalize screens while these de­
cisions are being made. We need all of the above
functions to do this application, so all of the func­
tions must be available in a unified environment.
This means that all functions must be available for
execution within the same run environment. Screens
are the 'glue' that users see that unify application
processing. The code behind the screens mayor may
not be unified depending on the design techniques
and language. With Focus, unification is done
through the Dialogue Manager.

4GL and PC-DBMS languages are deceptively
simple. To perform trivial tasks is easy, but to build
application requires expertise. Focus is no different.
The complexities with Focus relate to when, where,
and how often the databases are opened and pro­
cessed, how the databases are related, and how many
concurrent users are allowed. The concurrent envi­
ronment increases DBA complexity but changes the
answers to the questions about databases; it does not
change the application code. So, we will assume one
user at a time for processing.

Skeleton Focus code for the application is shown
in Figure 8-32. Each DFD Level 0 process is ac­
counted for at this level; we even have a query func­
tion that is new. Most applications require interactive
file query and we have not talked about it at all as
part of the rental return application. The trend in
business today is for users to develop their own
reports and queries using some 4GL. When the lan­
guage has a built-in query facility, you can add it to
the processing without any analysis or design work,
as shown here with Focus. User developed queries
allow users to 'stay in touch' with their data and
remove a major design burden from IS personnel.

Now that the application is accommodated within
one execute environment, we return to the problem
of how to package rent/return processing. The ideal
is to code and unit test each lowest level box on a
structure chart as an independent module. Then,
using the 'call' feature of the language, build a con­
trol structure, based on the design of the control and
coordination boxes on the structure chart that calls
modules as needed for execution. We will use this

Process Design Activities 317

approach here as Figure 8-32 shows for the applica­
tion, and Figure 8-33 shows for rental and return
processing.

The alternative to called modules is in-line code
that is 'performed' or executed as a pseudo-called
module. This choice is selected with 3GL languages
such as Cobol, Fortran, or PL/1 because it can be
easier to code, test, and maintain.

Specify Programs
Rules for Specifying Programs

The specification documents all known information
about programs. Program specifications document
the program's purpose, process requirements, the
logical and physical data definitions, input and out­
put formats, screen layouts, constraints, and special
processing considerations that might complicate the
program. Keep in mind that the term program might
also mean a module within a program or an exter­
nally called function, or even a code fragment (e.g.,
DB call). A program specification should include the
items shown in Table 8-7. As with program packag­
ing, there are no 'rules.' Rather there are items that
should be included if they relate to the item being
specified.

There are two parts to a program specification:
one identifies interprogram relationships and com­
munication, the other documents intraprogram pro­
cessing that takes place within the individual
program. Interfaces to other programs generally doc­
ument who, what, when, where, and how communi­
cation takes place. Who identifies who initiates the
communication and who, in the real world, is
responsible for the interface. What identifies the
message(s) content that is used for communication.
When identifies the frequency and timing of the
interface. Where locates the application and system
in a hardware environment; where becomes compli­
cated and is crucial to processing of distributed
applications. How describes the nature of the inter­
face-internal message, external diskette, and
so forth.

Internal program processing information includes
the data, processes, formats, controls, security,
and constraints that define a particular program.

318 CHAPTER 8 Process-Oriented Design

Focus Code

-Set &&Globalvariables

-Include Security

-Run

-*

-Mainline

-Include Mainmenu

-Run

-If &&Choice eq 'R' goto RentRet else
-If &&Choice eq 'V' goto Vidmain else
-If &&Choice eq '0' goto EndOfDay else
-If &&Choice eq 'Q' goto Query else
-If &&Choice eq 'S' goto StopSystem else

-Goto Mainmenu;
-*

-RentRet

-Include RentRet

-Run
-Goto Mainline
-*

-Vidmain
-Include Vidmain
-Run
-Goto Mainline
-*

-Custmain
-Include Custmain
-Run

-Goto Mainline
-*

Query
-Include Tabltalk
-Run
-Goto Mainline
-*

-EndOfDay
-Include Endofday
-Run
-Goto Mainline
-*

Explanation

Set variables needed for intermodule communication.

Check password in a security module.

Check password before any other processing.

Comment indicator

A label identifying the main routine.

The call statement in Focus is 'INCLUDE.' Mainmenu is a
module name.

Perform Mainmenu before any other processing.

Interrogate the choices from Mainmenu to decide what to do
next.

If in error, go back to the Mainmenu screen.

RentReturn Label

Call Rent/Return processing.

When Rent/Ret is complete, return to the Mainmenu.

Video Maintenance Label and Processing

Customer Maintenance Label and Processing

Query Label and Processing

End-of-Day Label and Processing

-StopSystem Stop System Label

-End End Processing

FIGURE 8-32 ABC Video Processing Focus Mainline

Automated Support for Process-Oriented Design 319

RentRet Focus Mainline Code

-Set &&Globalvariables
-*Rental and Return Processing

-Crtform Line 1
ABC Video Rental Processing System <d.&date"

Rentals and Returns"

- Scan or enter a card or video: <&&Entry"
-If &&entry like 't&' goto Return else
-If &&entry like 'c&' goto Rental else
-Include Entryerr;
-Run

-Return
-Include ValidCus
-Include Open Rent
-Include ValidVid
-Goto exit
-Run

-Rental
-Include FirstRet
-Include Open Rent
-Crtform Line 15
- Do you want to do rentals? <&&Rentresp/1"
-If &&Rentresp ne 'y' goto exit else
-Include ValidVid
-Goto exit
-Run

-Exit
-End

FIGURE 8-33 ABC Rent/Return Focus
Mainline

Frequently, program specifications also include a
flowchart of the program logic, a system flowchart
showing the system names of the files, and a detailed
specification of timing and other constraints.

ABC Video Example Program
Specification

The program specification for one program to per­
form Get Valid Customer is shown as an example
(see Table 8-8). Since this is a compilation of already
known information there is no discussion.

TABLE 8-7 Program Specification
Contents

Identification

Purpose

Characteristics

Reference to Applicable Documents

DFD and Structure Chart (possibly also System Flow­
chart and Program Flowchart)

Narrative of procedures in Structured English, Decision
Tables, Decision Trees

Automated Interface Definition

Screen Interface

Screen Design, Dialog Design, Error
Messages

Application Interface

Communications Messages, Error Procedures
Frequency, Format, Type, Responsible person

Input, Output, and System Files

Logical data design

User views, internal name, graphic of physical
data structure

List of physical data structures

Tables and Internal Data

Internal name, graphic of physical data structure

List of physical data structures

Reports

Frequency, Format, Recipients, Special processing

AUTOMATED __________ _
SUPPORT FOR __________ _
PROCESS-ORIENTED ___ _
DESIGN _______ _

Automated support in the form of CASE tools is also
available, although fewer products support struc­
tured design than support structured analysis. Sev­
eral entries provide Lower CASE support that begins

320 CHAPTER 8 Process-Oriented Design

TABLE 8-8 ABC Example Get Valid Customer Program Specification

Identification: Get Valid Customer, (ValidCus)

Purpose: Retrieve Customer Record and verify credit worthiness

Characteristics: Focus Included module

References: See System Specification, Pseudo-code for CustMain

DFD: Attached as Appendix 1

Structure Chart: Attached as Appendix 2

Narrative:

Accept CPhone
Read Customer Using CPhone
If read is successful

If CCredit Ie '1'
continue

else
Display "Customer has a credit problem; rating = <CCredit"
Display "Override or cancel? : <&Custcredit"
If &Custcredit eq 'C'

include Cancell
Return

else
If &Custcredit eq '0'

continue
else
include crediterr
return

else
Include CreatCus.
Set &&ValidCus to 'Yes.'
Set global customer data to values for all fields.
Return.

Screen Interface

Screen Design: None
Dialog Design: None
Error Messages:

"Customer has a credit problem; rating = <CusCredit"
"Override or cancel? : <&Custcredit"

Application Interface

Input:
User views
Internal data names:

Tables and Internal Data

Reports:

None

Customer File
Customer
Customer Contents in Data Dictionary

Global fields correspond to all Customer File fields.
Set all fields to customer record values upon successful processing.

None

Automated Support for Process-Oriented Design 321

TABLE 8-8 ABC Example Get Valid Customer Program Specification (Continued)

Appendix 1: Data Flow Diagram

CPhone
or CustlD

(Clast, 1.0 2.0
Cfirst)

Accept Read • Input CUstomer

Appendix 2: Structure Chart

Appendix 3:

Table Customer

(Cphone
Clast
Cfirst
Clinel
Cline2
City

Accept
CPhone ...

• Cust
cb Record

.----~----,

Get
Customer

User View with Data Names

Char(lO) Not null,
VarChar(50) Not null,
VarChar(25) Not null,
VarChar(50) Not null,
VarChar(50) Not null,
VarChar(530) Not null,

3.0

Check
Credit

Get Valid
Customer

CCredit

Check
Credit

CreditErr

State
Zip
CCtype
Ccno
Ccexp
CCredit
Primary key

Valid Cust
Record 4.0 Return

Set Data
Ack

Values

Cust 9
Record ,.----"-----,

Set Data
Values

Char(2)
Char(lO)
Char(l)
Char(l7)
Date
Char(l),
(Cphone));

Not null,
Not null,
Not null,
Not null,
Not null,

322 CHAPTER 8 Process-Oriented Design

TABLE 8-9 CASE Tools for Structured Design

Product

Analyst/Designer Toolkit

Anatool,
Blue/60,
MacDesigner

Company

Yourdon, Inc.
New York, NY

Advanced Logical SW
Beverly Hills, CA

Technique

Structure Chart

Structure Charts
Structured English

The Developer ASYST Technology, Inc
N apierville, IL

Structure Chart
Operations Process Diagram
Systems Flowchart

Excelerator

lEW, ADW (PS/2 Version)

Maestro

MacAnalyst,
MacDesigner

Multi-Cam

Index Tech.
Cambridge, MA

Knowledgeware
Atlanta, GA

SoftLab
San Francisco, CA

Excel Software
Marshalltown, IA

AGS Mgmt Systems
King of Prussia, PA

with program specification or code generation (see
Table 8-9).

STRENGTHSAND ________ _
WEAKNESSES OF ________ _
PROCESS ANALYSIS ______ _
AND DESIGN __________ __
METHODOLOGIES ____ _

The objectives of structured analysis and design are
reasonably clear; the manner of obtaining the objec­
tives is much less clear. Structured methods rely on
the individual SE's expertise to design the technical

Structure Chart
Flowchart

Structure Chart

N assi -Schneiderman
Hierarchic input -process-output

charts (HIPO)
User Defined Functions

Decision Table
Structured English
Structure Chart

Structure Chart

details of the application. For implementation spe­
cific details, that makes sense, but the heuristics for
evaluation cannot be applied in every situation. Con­
sequently, the SE must know what situations apply
and don't apply. More than the other methods dis­
cussed in this book, you must know when to adhere
to, bend, and break the rules of structured methods.

The methodology's ability to result in minimal
coupling and maximal cohesion is low because of its
reliance on the SE's ability. If coupling and cohesion
are not optimal, maintenance will cost more than it
should, and the application will be difficult to test. In
1972, D. Parnas wrote about maximal cohesion and
minimal coupling as desirable characteristics of pro­
grams. In 1968, Dijkstra wrote about the problems
with 'go to' statements in programs and proposed
goto-Iess programming. In 1966, Bohm and Jacopini

Strengths and Weaknesses of Process Analysis and Design Methodologies 323

TABLE 8-9 CASE Tools for Structured Design (Continued)

Product

PacBase

ProKitVVorkbench

ProMod

SVV Thru Pictures

Company

CGI Systems, Inc.
Pearl River, NY

McDonnell Douglas
St. Louis, MO

Promod, Inc.
Lake Forest, CA

Interactive Dev. Env.
San Francisco, CA

Technique

Process Decomposition
Structure Chart
Flowchart

Structure Chart

Module Networks
Function Networks
Structure Chart

Control Flow
Structure Chart

System Architect Popkin Software and Systems, Inc.
NY, NY

Flowchart
Structure Chart

Teamwork Cadre Technologies, Inc.
Providence, RI

Control Flow
Decision Table
Structure Chart

Visible Analyst

Telon, and other products

vs Designer

Visible Systems Corp.
Newton, MA

Intersolv
Cambridge, MA

Visual Software, Inc.
Santa Clara, CA

proposed structured programming's minimalist con­
tents as sequence, iteration (e.g., if ... then ... else)
and selection (e.g., do while and do until). By the
time structured analysis and design were docu­
mented in books, the notions of coupling and cohe­
sion were understood fairly well; but how to obtain
them was not.

General statements about keeping the pieces
small and related to one part of the problem domain
rely on the analyst to know what to do and when to
start and stop doing it. Unfortunately, only experi­
ence can guide such vague suggestions. While
novices can learn to rely on the methodology to
guide their actions, they have no basis for evaluat­
ing the correctness or incorrectness of their work.
Thus, the apprenticeship approach, with a junior per­
son working with a more senior one to learn how to

Structure Chart

Code Generation for Cobol­
SOL, C and others

Structure Chart
VVarnier-Orr

evaluate designs, is required. The more complex the
application, the more important having experienced
senior analysts becomes.

Another problem is that structured design does
not encompass enough of the activities to make it a
complete methodology. We must have screen de­
signs in order to develop a program specification.
We must know the details of interfaces to other
applications and messages to/from them to be able to
develop program specifications. Structured methods
do not pay any attention to either of these issues. To
develop an application, the SE needs to analyze
requirements and design for control, input, output,
security, and recoverability. None of these are en­
compassed in the process-oriented methods. To sum­
marize, process methods are useful in analyzing and
designing applications that are procedural in nature;

324 CHAPTER 8 Process-Oriented Design

but the methods omit a great many required analy­
sis and design activities.

SUMMARy ____________ __

In this chapter, structured design which follows
structured analysis in development, was discussed.
The results of structured analysis-a set of leveled
data flow diagrams, data dictionary, and procedural
requirements-are the inputs to the design process.
The major results of structured design are program
specifications which detail the mapping of functional
requirements into the production hardware and soft­
ware environment.

First, using either transaction or transform analy­
sis, the DFD is partitioned into afferent, efferent, and
central transform processes. The streams of process­
ing are factored to develop a structure chart. The
processes are further decomposed into system-like
subprocesses until further decomposition would
change the nature of the process. Data requirements
are documented in data couples; control is docu­
mented in control couples. The chart is evaluated
for fan-out, fan-in, skew, cohesion, coupling, scope
of effect, and scope of control. The structure chart
is revised and reevaluated as required.

The physical database is designed. Data needs for
each data flow in the application are listed by
process. Data similarities are matched and used to
define user views. The access method and physical
mapping are then decided. Physical database design
walk-throughs may be held to validate the design.
Test and production databases are created.

Program packages are decided based on the
application concept and timing. The packages de­
fine which modules will communicate and how.
Pseudo-code for processes is finalized and uses only
structured programming constructs-iteration, se­
quence, and selection. Decision tables and trees are
used, as necessary, to document complex decisions.

Finally, program specifications are written to doc­
ument all known information about each module,
function, or program. Specifications include data,
process, interface, constraint, and production infor­
mation needed for a programmer to code and unit
test the work.

REFERENCES __________ __
Alexander, Christopher, Notes on the Synthesis of Form.

Cambridge, MA: Harvard University Press, 1971.
B6hm, Corrado, and Guiseppe J acopini, "Flow diagrams,

Turing machines, and languages with only two forma­
tion rules," Communications of the ACM, Vol. 9, #5,
May 1966, pp. 366-371.

Couger, J. D., M. A. Colter, and R. W. Knapp, Advanced
System Development/Feasibility Techniques. NY: John
Wiley & Sons, 1982.

Curtis, B., M. I. Kellner, and J. Over, "Process model­
ing," Communications of the ACM, Vol. 35, #9, Sep­
tember 1992, pp. 75-90.

DeMarco, T., Structured Analysis and System Specifica­
tion. NY: Yourdon, Inc., 1978.

Dijkstra, Edsgar W., "Go to statement considered harm­
ful," Communications of the ACM, Vol. 11, #3, March
1968, pp. 147-148.

Flaatten, P.O., D. J. McCubbrey, P. D. O'Riordan, and
K. Burgess, Foundations of Business Systems, 2nd ed.
NY: The Dryden Press, 1992.

Frances, B., "A window into CASE," Datamation, March
1, 1992, pp. 43-44.

Krasner, J., J. Terrel, A. Lindhan, P. Arnold, and W. H.
Ett, "Lessons learned from a software process model­
ing system," Communications of the ACM, Vol. 35,
#9, September 1992, pp. 91-100.

Lindholm, E., "A world of CASE tools," Datamation,
March 1, 1992, pp. 75-81.

McClure, c., The Three R's of Software Automation:
Re-Engineering, Repository and Reusability. Engle­
wood Cliffs, NJ: Prentice-Hall, 1992.

McMenamin, S. M., and J. F. Palmer, Essential Systems
Analysis. NY: Yourdon, Inc., 1984.

Olle, T. W., J. Hagelstein, I. G. MacDonald, C. Rolland,
H. G. Sol, F. J. M. Van Assche, and A. A. Verrijn­
Stuart, Information Systems Methodology: A Frame­
work for Understanding. Workingham, England:
Addison-Wesley, 1988.

Page-Jones, M., The Practical Guide to Structured Sys­
tem Design, 2nd ed. Englewood Cliffs, NJ: Prentice­
Hall, 1988.

Parnas, David L., "One of the criteria to be used in
decomposing systems into modules," Communica­
tions of the ACM, Vol. 15, #12, December 1972,
pp. 1053-1058.

Swartout, W., and R. Balzer, "On the inevitable inter­
twining of specification and implementation," Com­
munications of the ACM, Vol. 25, #7, July 1982,
pp. 438-440.

Yourdon, E., and L. L. Constantine, Structured Design:
Fundamentals of a Discipline of Computer Program
and Systems Design. Englewood Cliffs, NJ: Prentice­
Hall, 1979.

Yourdon, E., Modern Structured Analysis. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

BIBLIOGRAPHY ______ _

Boh!, M., Introduction to IBM Direct Access Storage
Devices. Chicago, IL: SRA, 1981.
This booklet gives the clearest explanation of VSAM
and the differences between data sequenced and entry
sequenced storage options that I have seen.

Claybrook, B., File Management Techniques. NY: John
Wiley & Sons, 1983.
This book provides a good general discussion of
indexed, direct, and inverted list files.

Codd, E. E, The Relational Model for Database Manage­
ment, Version 2. Reading, MA: Addison-Wesley Pub­
lishing Co., Inc., 1990.
Codd, the father of relationship database theory,
argues the merits of an almost direct translation of the
logical database to the physical database.

Fabbri, A. J. and A. R. Schwab, Practical Database Man­
agement. Boston, MA: PWS-Kent Publishing Co., 1992.
This book discusses physical mapping for relational
databases and has some discussion of the issues
involved for hierarchic and network databases.

KEy TERMS _______ _

afferent
afferent flows
atomic process
central transform
cohesion
coincidental cohesion
common coupling
communicational

cohesion
content coupling
control coupling
coupling
data coupling
depth of hierarchy
efferent
efferent flows
executable unit

external coupling
factoring
fan-in
fan-out
function
functional cohesion
functional decomposition
HIPO
I/O-bound
indirect coupling
information hiding
in-line code
input-bound
interface
logical cohesion
modularity
module

morphology
N assi -Schneiderman

diagrams
output-bound
partitioning
physical database design
procedural cohesion
process-bound
program package
program specification
program unit
scope of effect

Study Questions 325

sequential cohesion
skew
span of control
stamp coupling
structure chart
structured design
temporal cohesion
transaction analysis
transaction -centered
transform analysis
Warnier Diagram
width of hierarchy

EXERCISES _______ _

1. Complete the design for the ancillary processes
of ABC rental: customer maintenance, video
maintenance, and end-of-day processing.
Develop structure charts, including all of the
required data and control couples. Evaluate the
diagrams and revise as required. Refine the
pseudo-code for these functions from Chapter 7.
Develop program specifications and identify
how the modules will be packaged. Make sure
that you state your assumptions about the pro­
duction environment clearly as part of the expla­
nation of your decisions.

2. What is the linkage between structured analysis
and structured design? How do you use the
information and documentation from analysis to
develop an application design? Do you think
analysts and designers should be separate peo­
ple? Why, or why not?

STUDY QUESTIONS ___ _

1. Define the following terms:
cohesion morphology
coupling partitioning
decomposition program package
factor program unit
function transaction analysis
input-bound transform .analysis
module

2. How does systems theory relate to structured
design?

326 CHAPTER 8 Process-Oriented Design

3. How do you know the difference between a
transform centered application and a trans­
action-centered application?

4. What is the role cohesion plays in the partition­
ing process? in the decomposition process? in
physical database design? in deciding program
packages? in program specification?

5. What is the role coupling plays in the partition­
ing process? in the decomposition process? in
physical database design? in deciding program
packages? in program specification?

6. What are the major diagrams in the design
phase? How are they derived? How do they
relate to the work done in structured analysis?

7. What is the reasoning process for packaging
program elements?

8. What is the purpose of Structured English?
What are alternatives? For what are Structured
English and its alternatives used? Why?

9. List the contents of a program
specification.

10. Who usually does physical database design?
Why would a specialist perform this task? Can
SEs do physical database design as well? Why
or why not?

11. Partition the following DFD and draw a struc­
ture chart. Identify potential afferent and effer­
ent flows. (There are several alternatives for
afferents.) Label the flows you decide best
describe the processes you see. List other infor­
mation you need to decide what the best parti­
tioning should be.

12. Evaluate the following structure chart.
Describe the morphology. Is this diagram final
or does it have problems? If so, what are the
problems and how would you fix them?

Extra-Credit Question 327

* EXTRA-CREDIT QUESTION

1. Perform transform analysis on a case in Appen­
dix A. Design the processing for the central
transform from the high-level DFD. Develop
lower level DFDs as required to assist your
thinking. Factor and develop a first-cut structure
chart. Develop pseudo-code for the processes
you define. Refine the pseudo-code and finalize
the structure chart, giving reasons for your
design decisions. Develop program specifica­
tions and identify how the modules will be
packaged. Make sure that you state your
assumptions about the production environment
clearly as part of the explanation of your
decisions.

CHAPTER9

DATA-________________ ~ ______ ~
ORIENTED

--------------------------~------------~ ANALYSIS

INTRODUCTION ____ _

Unlike process orientation, data-oriented analysis is
not the result of the vision of a small set of people.
Rather, it is the collective wisdom of many sources:
computer vendors, MIS researchers, and consul­
tants. The philosophy that underlies the data­
oriented approach is that data are stable and more
unchanging than processes. Processes can be revised
with every reorganization. Data entities, on the other
hand, rarely change in the lifetime of a business.
Attributes of entities also rarely change. Even
though the values of data do change constantly, the
structure of the data does not. If data are stable, then
they should be examined closely and first.

Data-oriented methodologies teach that data
redundancy is to be minimized to best manage it in
an organization. Database management software is
assumed, but not required, in this approach. Data
administration, that is, the conscious manage­
ment of data as a resource of the business, is also
assumed.

Information engineering (IE) is the methodology
we use to discuss data-oriented analysis. IE teaches
that to know which data should be the focus, we
need architectures of data, business functions, and
even organizational technology to guide the process.
Architectures are conceptual descriptions of the
items they define. Architectures are developed at the

328

enterprise level (see Chapter 5). Data and functional
architectures are defined further during business area
analysis, then are divided into application areas and
prioritized. Therefore, multiple application areas can
result from one or more business areas.

IE methodology defines activities from the strate­
gic organizational level through to implementation
of individual applications. The major phases of in­
formation engineering are:

1. Enterprise Analysis
2. Business Area Analysis
3. Business System Design
4. Construction
5. Maintenance

In this chapter we discuss the Business Area Analy­
sis (BAA) component of information engineering,
which contains the activities that are most similar to
analysis in other methodologies. IE analysis is called
Business Area Analysis (BAA), rather than just
analysis, because the focus is on business data and
functions required to do the work. A departure from
process-oriented analysis is that information engi­
neering specifically ignores the current business or­
ganization, applications, and procedures. IE focuses
on how the business should work, rather than on how
it does work. Reengineering of the organization and
its applications are common adjunct activities to
information engineering (see Chapter 5). In the next

section, we describe the conceptual foundations
of data-oriented analysis. Then, the terminology of
business area analysis is defined. This is followed
by the rules and examples of how to conduct
each activity.

CONCEPTUAL _____ ~
FOUNDATIONS ____ _

Data-oriented analysis is based mainly on theories
about data. Process activities are based on the same
systems theory which was the basis for the process
development paradigm of Chapters 7 and 8.

The data-related theories are semantic informa­
tion theory and relational database theory. Semantic
information theory seeks to understand the meaning
behind the data in applications and is most obvious
in the depiction of meaning underlying entity rela­
tionship diagrams. By understanding the entities, or
things, in the application, we know more about their
domains-the allowable sets of values they may
take. Eventually, rules about domain matching and
entity integrity are applied to include domain pro­
cessing along with data processing of the individual
attributes of entities. Relationships between entities
are as important as entities and domains. By know­
ing allowable business relationships, we can con­
strain processing naturally, by applying business
rules, without regard to organizatiortal design. Rela­
tionship cardinality, or number, is important to
knowing how many of each related item should be
evaluated. Cardinality prescribes either individual
entity instances or sets of instances for processing.
By knowing more about the meaning underlying the
data in an application, constraints can be automated
and made more general, thus, simplifying the appli­
cation development process.

Relational database theory is based on mathe­
matical set theory (or relational calculus) which
describes allowable operations on sets of data items.
Relational theory was developed to support provably
correct processing of data items, something that can­
not be guaranteed by either hierarchic or network
database architectures. Set theory is the basis for re­
lational theory which replaces the notion of 'record'

Definition of Business Area Analysis Terms 329

processing with 'set' processing. Record processing
constrains languages and applications to one-at-a­
time record read-manipulate-write processing
actions even though most records receive identical
treatment in programs. By specifying the rules for
processing orlce and applying those rules to the set of
data records, or tuples as they are called in relational
theory, the individual program no longer does any
read-write processing-it is performed by the
DBMS. Applying set theory, the result of any oper­
ation is always a set. Thus, using mathematically
based rules, the results of database processing can be
known in advance and are provable.

Process activities performed are attributed to con­
sulting practices that work and build on the systems
theory underlying the process development para­
digm. Some problems with DFDs are:

• DFDs do not accommodate time.
• DFDs have no implied sequence to

processing.
• DFDs assign media to data early in analysis

without any real deliberation.

These problems are eliminated in process data
flow diagrams (PDFDs) that are built during IE
analysis. Process methods of decomposition rely on
analyst experience in process orientation. Data meth­
ods, such as information engineering (IE), provide a
business-oriented approach to defining processes.
Structured process constructs-selection, iteration,
and sequence-are not consciously considered in
process methods until structured design. Structured
constructs are used in IE analysis to describe process
relationships.

DEFINITION OF ____ _
BUSINESS AREA ____ _
ANALYSIS TERMS ___ _

The tasks performed during business area analysis
(BAA) are:

1. Data modeling
2. Data analysis
3. Functional decomposition (I.e., process

modeling)

330 CHAPTER 9 Data-Oriented Analysis

4. Process dependency analysis
5. Process data flow diagramming
6. Process/data interaction mapping and

analysis

Throughout the analysis, a data dictionary or repos­
itory is assumed to be used for documentation. The
final step of BAA is completion of the repository
for all information found during analysis.

For data modeling, the two major activities are
the creation and refinement of an entity-relationship
diagram (ERD) and entity structure analysis, along
with an accompanying repository. When complete,
the ERD describes the normalized data environment
and data scope of the application. Each part of an
ERD requires definition. An entity type (shortened
to entity in this discussion)1 is some person, object,

1 Technically, a customer is an entity who is uniquely described
by a set of attributes. The set of all customers describes an
entity type which is described by having the same attri-
butes. A specific entity, e.g., customer 'Wells,' is an entity
instance. In this text we use entity to be synonymous with
entity type.

concept, application, or event from the real world
about which we want to maintain data (see Figure
9-1). There are three kinds of entities: fundamental,
attributive, and associative. A fundamental entity,
for instance, an order, is independent of all other
entities and can be defined without thinking about
other entities. An attributive entity is an entity
whose existence depends on the presence of a fun­
damental entity. If order is the fundamental entity,
then order item would be an attributive entity related
to order (see Figure 9-2). Technically, you wouldn't
have an order without any items, but you cannot
have an order item without an order. Attributive
entities contain repeating information relating to a
fundamental entity. An associative entity is used to
simplify and define complex relationships between
entities. All entities are drawn on the entity relation­
ship diagram (ERD) as rectangles.2

2 One method of diagramming is to show relationships with a
diamond bisecting the line connecting entities. An associative
entity, promoting a many-to-many relationship, is drawn as a
rectangle with the diamond inside.

EXAMPLES

Entity Type

Person

Object

Concept

Event

Organization

FIGURE 9-1

Entity

Fundamental

Attributive

Associative

Insurance

Policyholder

Policy

Policyholder Services

Purchase of Policy

State Bureau of Insurance

Entity Type Examples

ABC Video

Customer

Customer Rental History

Vendor-Video

FIGURE 9-2 Entity Examples

ABC Video

Customer

Video

Accounting Department

Rental of Video

Vendor

Human Resources

Employee

Employee Work History

Employee-Job History

Manufacturing

Customer

Bill of Lading

Order

Shipment of Goods

IRS, OSHA

Manufacturing

Work Order

Work Order Detail Items

Work Order Item-Finished Part

Definition of Business Area Analysis Terms 331

Number Education Examples Manufacturing Examples

One-to-One 1: 1 Student to Transcript Work Order Detail Item to
Machine/DayfTime Operator

Course Section to
Room/DayfTime

One-to-Many 1:N Course to Section Work Order to Work Order
Detail Item

Transcript to Course

Course to Room/DayfTime Customer Order to Work Order

Students to Major Salesman to Customer

Advisor to Student

Many-to-Many N:M Student to Course Part to Work Order Detail Item

Professor to Course Vendor to Inventory Part

Professor to Section

FIGURE 9-3 Relationship Cardinality Examples

A relationship is a mutual association between
two or more entities. It is shown as a line connect­
ing the entities. A relationship has cardinality, or
the number of the relationship. Cardinalities may be
one-to-one, one-to-many, or many-to-many (see Fig­
ure 9-3). Cardinality is shown on a diagram by
crows' feet to indicate a 'many' relationship and a
single line to indicate a singular relationship.

Refinement of the ERD has two activities: attri­
butes are defined, and the ERD is normalized.
Attributes are named properties or characteristics of
an entity which take on values. We use the terms
attribute, field, or data item, as synonyms. An in­
stance is one occurrence of an attribute or relation.
For example, an instance of the attribute customer­
ID is the number 2922951.

Normalization is the refinement of data relation­
ships to remove repeating information, partial key
dependencies, and nonkey dependencies. Normal­
ization can be directly applied to the ERD or can
use a tabular method of data analysis. The direct
method proceeds by examination of the relation­
ship cardinalities and the attributes of entities. For
l:n relationships, and for entities with repetitive
information in the entity, we create (or validate)

attributive entities. For an m:n relationship, the rela­
tionship is promoted to create an associative entity.
A synonym for associative entity is relationship
entity. The cardinalities of m:n are reversed to create
two l:m relationships (see Figure 9- 4).

The tabular method is recommended when data
and relationships are not clearly specified. The tab­
ular method forces explicit definition of all attributes
and their relationships. When these dependencies are
removed, each relation's data are fully, functionally
dependent on the primary keys. An example is
shown in Figure 9-5. By removing repeating infor­
mation (first normal form), we create attributive
entities (for l:n relationships) and associative enti­
ties (for m:n relationships). In Figure 9-5, we create
the items from a purchase order as an attributive
entity. By removing partial key (second normal
form), and nonkey (third normal form) dependen­
cies, we create new fundamental entities. In the
example, the new fundamental entities relate to
items and vendors.

Upon completion of data modeling, entity struc­
ture analysis is performed to determine whether
a class structure applies. This analysis evaluates
each entity to determine if the same processes and

332 CHAPTER 9 Data-Oriented Analysis

Before:

Fundamental Entity Fundamental Entity

After:

Associative Entity

Fundamental Entity
Created by promoting
the NB relationship Fundamental Entity

A /'

"'"

FIGURE 9-4 Direct Normalization of ERD

attributes apply to all entities of a given type. If con­
tingent data usage applies, then classes are defined
and a data hierarchy depicting the structure is
developed.

Next, business functions are identified as a pre­
lude to process modeling. A business function is a
group of activities that accomplish some complete
job that is within the mission of the enterprise. Busi­
ness functions are ongoing and are not related to
organization structure. Functions describe what
is done in the organization from a high level of
abstraction. Business function analysis is usually
performed at the enterprise level, but can be the first
activity of process modeling, if required. Represen­
tative or generic functions that may be present in a
business are listed below. Some of the functions are
specializations, for instance, public protection is usu­
ally a government function. Specialized functions

AlB ~ B

V

Attributive Entity / 1\
Created to
accommodate B's BIC
repeating
mformatlon

included are for banking, retail, governments,
schools, and manufacturing. Other functions are
general, like Finance, which every organization has.

Accounting
Alumni Affairs
Audit
Community Programs
Control and

Measurement
Customer Relations
Data Administration
Distribution
Engineering Support
Facilities, Equipment,

and Supplies
Administration

Finance

Funds Management
Funds Transfer
Health and Hospitals

Services
Human Resources

Administration
Information Systems
Judicial Management
Legal Services
Management
Manufacturing
Marketing
Material Acquisition

(Purchasing)

Definition of Business Area Analysis Terms 333

Un normalized First Normal Form Second Normal Form Third Normal Form Relation Name*

Purchase Order Purchase Order

(PO) Number PO Number PO Number

PO Date PO Date PO Date
PO Vendor ID PO Vendor ID PO Vendor ID
PO Vendor Name PO Vendor Name
PO Vendor Address PO Vendor Address ..
PO Ship Terms PO Ship Terms PO Vendor

PO Vendor 10
PO Payment Terms PO Payment Terms PO Vendor Name
*PO Item Number PO Vendor Address
POI Description PO Number PO Ship Terms
POI Quantity PO Number PO Item Number PO Payment Terms
POI Price PO Item Number POI Quantity
POI Extended POI Description POI Price

Price POI Quantity POI Extended Price
POI Price PO Item

PO Number
POI Extended Price PO Item Number

POI Quantity
Item Number POI Price
Description POI Extended Price X
Price

Item Number Inventory Item
Description
Price

*X indicates deleted items or relations. Relations are deleted if they are duplicates, are consolidated if they have identical
keys or are proper subsets, or are named. Attributes are deleted if they are derived by the application. POI Extended
Price is derived by multiplying POI Quantity by POI Price.

FIGURE 9-5 Tabular Normalization Example

Operations
Planning
Product~anagement

Product/Customer
Service

Public Aid
Public Facilities
~anagement

Public Protection
~anagement

Public Relations

Public Service
Research and

Development
Research
Sales
Scheduling
Service Offering,

e.g., Instruction in
a school

Student ~anagement

Sample business functions for ABC Video are
shown in Figure 9-6.

When the functions applicable to application
development are identified, functional decomposi­
tion is performed. Functional decomposition starts
at the business function level to identify the major
activities of the function, and progresses to identify
the processes and subprocesses for each function
(see Figure 9-6). An activity is some procedure
within a business function that can be identified by
its input data and output data, which differ. The

334 CHAPTER 9 Data-Oriented Analysis

Business {
Function

Analyze
Business

Business
Area
Activities

FIGURE 9-6 ABC Video Business Functions and Activities

activity level must fully define the function. That is,
the activity level is complete when all possible pro­
cedures performed within the scope of the function
are present in the diagram. Full definition is required
to ensure complete data, process, impact, and orga­
nization design analysis.

Activity names are usually of the form verb­
object, where the verb identifies the major transfor­
mation and the object identifies what is transformed.
Exceptions to this rule are accepted when a name
is conventionally called by a different form, for
instance, Cash Management is more common usage
than Manage Cash.

Activities are decomposed into their processes.
A business process identifies the details of an
activity, fully defining the steps taken to accomplish
the activity. Again, full definition is required to
ensure completeness of the ensuing analysis. Proce­
dural steps named by processes are repeated and
have definable beginnings and endings. Decompo­
sition continues until the elementary, or atomic, level
of each process is identified. An elementary process
is a procedure that cannot be decomposed further
without making the procedure lose its identity. Thus,

an elementary process is the smallest unit of work
users identify.

Figure 9-7 is a sample decomposition showing
processes that define the two purchasing activities
within ABC Video. Don't forget that the business
activities and processes in a decomposition fully
define the scope of the parent business function.

Decomposition results are used to develop a
process dependency diagram. A process depen­
dency diagram, like an ERD for data, identifies the
sequence and types of relationships between pro­
cesses. Process relationships describe logical con­
nections that include cardinality, sequence, iteration,
and selection components (see Figure 9-8). Thus, the
process dependency diagram shows the logic of
sequence, iteration, and selection for each process.
The process dependency diagram is then expanded
to include entities and data stores to emulate a data
flow diagram from process analysis. The result is a
process data flow diagram (PDFD).

Connections between procedural steps in a PD FD
are due to data passing from one step to the next and
causing it to activate. This type of connection is
called a process data trigger. A trigger identifies the

Place
Order

Purchasing

Identify Items
& Vendors

Call Vendor to
Verify Availability

and Price

Create and
Mail Order

File Order
Copy by Vendor

Definition of Business Area Analysis Terms 335

Monitor
Order Receipt

Identify
Late or Problem

Orders

Call Vendor
and Inquire
or Reconcile

Verify Receipts
Against Orders

Send Invoices
to Accountant

FIGURE 9-7 ABC Video Partial Functional Decomposition of Purchasing

arrival of some data that causes a business process to
execute. Process data triggers (or just data trig­
gers) identify data that flow from one process to
another to start execution of the receiving process. In
a PDFD, the directed lines between processes signify
a data trigger. In addition, external events can cause
a process to activate. An event trigger signifies data
from some business transaction that causes process­
ing to take place. Event triggers are drawn on the
PDFD by large arrows with words inside the icons to

name the events. For instance, the arrival of a new
video releases list (see Figure 9-9) is an event that
triggers the purchasing process.

Because the components of the process depen­
dency diagram are different from those of a DFD,
the PDFD that results from process dependency
analysis is also different. Several key differences
are important. First, there is a sequence to the pro­
cess data flow. The directed arrows on Figure
9-9 indicate that some output from a process causes

336 CHAPTER 9 Data-Oriented Analysis

Identify Items
&

Until no more items

Until no more videos
Call Vendor

to Verify
Availability
and Price

If vendor, price known

Create and
Mail

Order

Until no more vendors

File
Order Copy
by Vendor

Until no more vendors

FIGURE 9-8 ABC Create Order Process Dependency Diagram

the execution of the next process. Variations in
the directed arrow lines define variations in the
sequence. Second, the media that connect processes
are not implied as in a DFD.3 The information that
passes between processes is identified, but the form
of the data is not. For example, the Identify Items and
Vendors process in Figure 9-9 generates data that
passes to later processes. The shared data might be
mental, paper, an automated data flow, or a file. The
decision of media, or stored form, of data is deferred
until design unless it is fixed. Data files, such as Ven­
dor and Order files on Figure 9-9, are identified
because they are known. Third, data and event trig­
gers identify the cause of execution of each process.

3 Remember, DFDs require identification of either a data flow
or a data store as the data linkages between processes.

In a DFD, this information either is characterized as
a data flow or is hidden within process logic.

The last step of BAA is the development and
analysis of an entity/process matrix, also known as
a CRUD matrix. If no enterprise level ERD exists
first, then an ERD is created. The entity/process
matrix lists entities across the top and business
processes down the side (see Figure 9-10). Each
cell of the matrix, then, points to a process-entity
combination. For each cell, the systems engineers
define Create (C), Retrieve (R), Update (U), Delete
(D), or no (blank) responsibility of each process for
each entity. Subject area databases are defined by
analyzing logical groupings of processes and entities
based on their affinity. Affinity means 'attraction' or
'closeness.' Affinity analysis clusters processes
which share data creation authority for an entity.

Definition of Business Area Analysis Terms 337

Identify Items
& Vendor File

Until no more items

Until no more videos

If vendor, price known

Create and
Mail

Order

Until no more vendors

File
Order Copy
by Vendor

Order File

Until no more vendors

FIGURE 9-9 ABC Create Order Process Data Flow Diagram

These logical groupings become the basis for data­
base design. In Figure 9-10, a partial example of
Create Order and Monitor Order Receipt processes,
and the entities they use, are analyzed in an entity /
process matrix. The matrix shown is clustered by
entity affinity and is ready for analysis. After analy­
sis, the processes and entities are sorted to show
affinity based on the actions taken on the same enti­
ties (see Figure 9-11).

Two sets of analysis are performed on the results
of affinity analysis. The first analysis is to determine
the adequacy of organization design based on who
creates and has responsibility for data. Each cluster

of processes is related back to the organization (in a
similar matrix). Ideally, processes that share data
responsibility should be in the same organization and
report to the same manager. For instance, the ABC
Purchasing processes show three potential group­
ings. If each process is evaluated with all of the data
it uses, the three groupings meld into one based on
the criteria that 70% or more of the data are com­
monly shared. If all of these processes report to one
manager, the organization is probably adequate. If
the three possible groupings all report to different
managers, the organization should probably be
redesigned.

338 CHAPTER 9 Data-Oriented Analysis

Entities = Purchase PO Item Inventory Vendor
Processes Order Item

Identity Items
& Vendors R CRU

Call Vendor to
Verify Avail/Price RU

Create & Mail Order CRUD CRUD R R

File Order Copy
by Vendor R R

Identify Late &
Problem Orders R R R RU

Call Vendor &
Inquire on Order RU RU R R

Verify Receipts
against Order RU RU

Send Invoices
to Accountant RD RD

FIGURE 9-10 Create and Monitor Order Receipt Entity/Process Matrix

The second analysis looks at the data entities
by process cluster to define subject area databases.
A subject area database is normalized across
the organization and provides shared support
for one or more business functions. At the ap­
plication level, one subject database is assumed.
In the ex-ample in Figure 9-11, one database
would support the purchasing function; the database
would have at least two user views to package Pur­
chase Order with Purchase Order Item and
Inventory Item with Vendor. A fourth user view
linking all entities might be used for retrieval
processing.

At the organization level, if the process groupings
are logical and useful, they are the basis for reaf­
firming the scope of applications. At the business
area level, the groupings of processes should be con­
sistent with the scope of the activities defined for
the application. If they are not consistent, then man­
agement review and rescoping of the project are
required.

The last step of BAA is to finalize all informa­
tion found during the analysis in a data dictionary
or CASE repository. Since dictionaries were dis­
cussed in detail in Chapter 7, in this chapter we will
document the information found using the same for­
mat as in Chapter 7, but will not comment again on
the format of entries.

To summarize, business area analysis begins with
an entity-relationship diagram that is fully identified,
normalized, and analyzed for class structure. Busi­
ness functions are identified and decomposed to cre­
ate process hierarchy, process dependency, and
process data flow diagrams. The business proces~es
from the decomposition are coupled to entities from
the ERD. Data-related responsibilities are described
for each process. Affinity analysis of the CRUD
matrix is used to decide organizational and database
groupings for further design and management action.
Next, we turn to a detailed description of how to per­
form each activity, exemplified by the ABC Video
Rental Processing application.

I Entities = Purchase
Processes Order

Create & Mail Order CRUD

Call Vendor &
Inquire on Order RU

Verify Receipts
against Order RU

Send Invoices Subject Area 1

to Accountant RD

File Order Copy
by Vendor R

Identify Late &
Problem Orders R

Identity Items
& Vendors

Call Vendor to
Verify Avail/Price

PO Item

CRUD

RU

RU

RD

R

R

Business Area Analysis Activities 339

Inventory
Item

R

R

R

R
Subject Area 2

Vendor

I
R

R

R

RU

CRU

RU

FIGURE 9-11 ABC Purchasing Process Affinity Analysis

BUSINESS AREA ____ _
ANALYSIS ______ _
ACTIVITIES ______ _

Develop Entity-Relationship
Diagram
Rules for Entity-Relationship Diagram

The steps to building an entity relationship diagram
(ERD) are as follows:

1. Define fundamental entities and their primary
keys.

2. Define the relationships between the funda­
mental entities.

3. identify all attributes of tmtities, including
primary keys.

4. Add attributive entities, where needed, to
simplify one-to-many relationships.

5. Promote all many-to-many relationships to
define associative entities.

6. Normalize the fundamental entities, analyz­
ing if there are other entities which are hid­
den in the current definitions. Place new
entities in the ERD. Define the new entities'
attributes and primary keys.

7. Analyze the entities and their relationships to
determine if a class structure is needed. If
some instances of entities have identifiable
differences in processing, data stored, or rela­
tionship participation, classes probably are
needed.

The first step is to define fundamental entities and
their primary keys. Identifying entities is a difficult
process until you have done it several times. It is
easy to talk about entities, but less easy to define
them. Part of the difficulty is that entities are
context related. An entity for one company/appli­
cation may not be an entity in another company/

340 CHAPTER 9 Data-Oriented Analysis

ENTITY DEFINITION IN XYZ ANNUITY
In Exqmple 7-1, we discussed how at the
annual meeting of the XYZ board of directors
in 1991, the marketing director said that she
had four different, irreconcilable counts of the
numper of institutions the company serviced.
What was worse was that there was a de­
fendable definition of each number.

The board thought that was terrible and
ord~red a redevelopment of the Institutional
Processing application to resolve the prob­
lem. When Diane Smith, the software engi­
neer, began work on the application, her first
task wos to develop an ERD for the informa­
tion, without regard to the cllrrent files (12),

applications (6), interfaces (4), procedures
(28), or time relationships currently used in the
organization. Just in sheer numbers, this was
a significant amount of information to be
ignored.

Twenty-two different people were inter­
viewed, resulting in 22 different definitions of
an institution. They included such descriptions
as:

application. When in doubt, define more entities
rather than less. You can always eliminate unneces­
sary entities when the information for deciding
becomes clear.

It is important to define each entity using terms
that apply for all of its uses in the company. Such
definitions may not match current definitions of the
entity in use in the organization. An example in
defining the terms from an educatiopal pension firm
(see Example 9-1) shows the difficulty dealing with
current thinking about entities and th~ir definition.
Current thinking is frequently imprecise, muddled,
and even inconsistent as the example shQws. Unrav­
eling the spaghetti of definitions imbedded in the
various terms used to describe institutions, colleges,
campuses, plans, and their relationships took t4ree
people much of six months, working with 10 user
departments for the information.

• an organization that pays in to a
pension plan for its employees

• an organization that requires counsel­
ing about products and services
provided by us

• an organization we target for market­
ing campaigns

• an organization that defines a pension
plan

• an organization that is subject to a
pension plan that mayor may not be
of its own definition

• an organization that is subject to legally
defined pension plans by the state
government in which it resides

• an organization that receives informa­
tion about pension plans of the subor­
ganizations for which it administers
plans

Working with a data administrator, Diane
and the key users unraveled the spaghetti of
definitions to uniquely define major entities for

ERDs depict the big picture, capturing the orga­
nization and its constituent activities. For this dia­
gram, we must constantly remember to ask: What
processes and activities are legal in the context of the
business? Not: What is legal based on today s pro­
cedures in our company?

In general, entities define something about which
the business keeps information. An entity can be a
person, object, application, concept, or event about
which the application maintains information. For
example, customer, order, and inventory are all
entities. Entity names are usually nouns, however,
NOT all nouns are entities. First, define a list of pos­
sible entities. Then, examine each entry and ask
yourself the following:

1. Is this a noun? If yes, continue. If not, either
rename it or strike it from the list.

(Continued)

the organization. The following definitions,
which took six months to attain, fully explain
all variations of XYZ Annuity's institutional
processing.

XVZ Annuity Entity Definitions

State Optional Pension Plan (SOPP)-An
optional pension plan(s) defined by
law, governing institution(s) specified in
the law. SOPP institutions must adhere
only and completely to the legal
requirements of the SOPP.

Institution-A legal entity that is governed
by an SOPP or, if not, may define its
own pension plan(s) subject to Internal
Revenue Service limitations.

Campus-A legal entity that is a subunit of
an institution. If an institution defines its
own plan, one of the plan items speci­
fies whether or not campuses are
bound by its definition. If a campus is
not bound by the institution plan, it
may own its own plan(s).

2. Is this potential entity (replace with the name
of the potential entity) unique with a clearly
defined purpose? If yes, continue. If no,
either define the item uniquely from the con­
text that led to its being on the list, or strike it
from the list.

3. Can this potential entity take a value? If yes,
it is an attribute; strike it from the list. If no,
continue.

4. Does the business area need to keep informa­
tion about this potential entity? If yes, con­
tinue. If no, ask why it is on the list. If it trig­
gers processes, continue. If it is a different
form of some other entity (for instance, an
order report is a paper version of an order),
strike it from the list. If it is unique but does
not fit the other criteria, leave it on the list
for now.

Business Area Analysis Activities 341

Plan-A legal description of the
product(s) offered, eligibility and wait­
ing period requirements, and other
pension plan provisions. Usually, and al­
ways after 1992, each plan defines the
offering for one product.

Product-A pension service offered by
Educational Pension Trust, including
individual annuity, group annuity, sup­
plemental retirement, or group supple­
mental retirement accounts. Each
product defined requires definition of
one or more investment types allowed.

Investment type-Annuity, Money Market,
Educational Pension Trust Stock fund,
and Educational Pension Trust Bond
fund.

These six definitions sound simple enough
to be obvious, but they began with a total of
120 different interpretations.

5. Give a formal name to the entity and define
its primary key.

6. Draw one rectangle for each entity to begin
developing the ERD.

Once you are comfortable with the entities,
begin defining their relationships. Relationship
names, describing entity associations, are usually
verbs, however, NOT all verbs describe relation­
ships. The goal is for all rules of association to be
unambiguous. First, define possible relationships.
In general, ask yourself how entities relate to each
other. If I have Entity A, do I also have Entity Bs? If
so, how many are legal? Ask the question without
regard to each entity's current usage in the company.
As with entities, relationships should define what is
legal within a business context. Sometimes, ignoring
current definition is extremely difficult because we

342 CHAPTER 9 Data-Oriented Analysis

and users internalize such definitions and use them
to narrow our focus and simplify the world.

Examine each possible relationship and ask your­
self the following:

1. Is this a verb? If yes, continue. If not, either
rename it or strike it from the list.

2. Is this verb an action? If no, continue. If yes,
remind yourself that relationships do NOT
describe processes or processing. If the verb
is a process, strike it from the list.

3. Is this potential relationship (replace with the
name of the potential relationship, e.g., place
as in customers place orders) unique with a
clearly defined purpose? If yes, continue. If
no, either define the item uniquely from the
context that led to its entry on the list, or
strike it from the list.

4. Is this potential relationship needed to fully
describe the business area's data? If yes, con­
tinue. If no, ask yourself why it is on the list.
If it is not clear what the reason is, continue,
leaving the relationship to be reevaluated
when more information is known. If the rea­
son is not related to the business area, strike
it from the list.

Once you define a relationship, draw a line(s) to
connect the entities participating in the relationship.
Mark the diagram with a verb to describe each
direction of the relationship. The convention is to

Places
Customer

read the relationship above the line from left-to­
right, and the relationship below the line right­
to-left. For instance, customer places order and order
is placed by customer (see Figure 9-12). The words
are placed differently depending on the placement of
the entities on the diagram. By convention, the ac­
tive verb (in this example, 'places') is positioned on
top of the line with the acting entity (' customer'
here) on the left of the diagram.

Next determine the number, or cardinality, of the
relationship. The number of the relationship is one of
three possibilities: one-to-one, one-to-many, or
many-to-many. A one-to-one relationship defines
a situation in which every entity A relates to one and
only one entity B. In a one-to-many relationship
every entity A relates to zero to n, that is, any number
of entity Bs. In a many-to-many relationship all
As can relate to any number of Bs. Decide cardinal­
ity by asking the same questions of each side of the
relationship: If I have one entity A, how many
entity Bs can I have associated with it at any point
in time? Conversely, if I have one entity B, how
many entity As can I have associated with it at any
point in time?

An example of the time issue relates to student
registration and tracking. A student may take many
classes in one semester; this describes a l:n relation­
ship. Over time, students take many courses and
courses contain many students; this is an m:n rela­
tionship. Which is correct? The m:n relation that

Order

Is Placed by

Is Placed by
Order Customer

Places

FIGURE 9-12 Placement of Words on Entity-Relationship Diagrams

Places / Customer
Is Placed by "

Order

FIGURE 9-13 Relationship Cardinality and
ERD Representation

describes the student-course relationship without
regard to time is correct within the context of a stu­
dent registration application.

Draw crows' feet to show cardinality of each
relationship. Crows' feet are reverse arrow heads
that indicate a 'many' numbered relationship.4 The
example in Figure 9-13 shows the relationship of
customer to orders as one-to-many. That is, for
anyone customer, one to many orders may be
associated with it. Conversely, the relationship of
orders to customers is one-to-one. That is, for

4 This is the IE convention. There are other techniques for
drawing ERDs, such as Chen's [1976]. Chen uses multiple
arrow heads for 'many' relationships and uses diamonds to
identify relationships with only one verb. The logic of both
approaches is identical. Martin's notation is used here because
it is automated in CASE tools.

Places
I Customer
I

Is Placed by

Business Area Analysis Activities 343

any given order, it is associated with one, and only
one, customer.

Lastly, for each entity in a relationship, we decide
whether the entity is required or optional in the rela­
tionship. In a required relationship, the entity must
be present for the other entity to exist. In an optional
relationship, the entity described mayor may not
exist when the other entity exists. Either an '0' or a
vertical bar, 'I', shows each side of a relationship as
optional (0) or required (D.

Returning to the order example, customers place
orders at their discretion, so orders are optional. Cus­
tomers are required to have been identified as cus­
tomers to place orders, so customer is required (see
Figure 9-14).

In the order-item relationship, orders do not exist
if there are no items ordered, so order is required.
The vertical bar (' I ') bisects the relationship line
close to the order entity. Examining the items, we
have a similar relationship. For an order to exist,
there must be at least one item, so item is also
required. Both sides of the relationship line have a
vertical bar (see Figure 9-14). 'Read' this entire
relationship as follows:

Orders contain items. For each order, there are one or
more order-items. For an order to exist, at least one
order-item is required. An order-item is contained in
order. For an order-item to exist, an order is required.
For each order-item, there is one, and only one, order.

"'/ '-'" Order

-f-

Contain Is Cont ained
by

/ ~
Order Item

FIGURE 9-14 Required/Optional Relationship Representation

344 CHAPTER 9 Data-Oriented Analysis

M:N Relationship:

~v_endor~>->--fm -----+-in~~_part --'

Promoted and Transformed Relationship:

~vend_or ----l11 m1'----v_endo_r-part_~ n 11 L--_pa_rt ----l

FIGURE 9-15 Many-to-Many Relationship Promotion and Transformation

Similarly, associative entities are created by pro­
moting m:n relationships, joining the primary keys
of each participating entity to identify the associa­
tion. Other fields might also be needed to provide
unique identification. The m:n relationship is con­
verted into two l:m relationships in the promotion
process (see Figure 9-15).

After all known relationships are defined and
entered on the diagram, we define attributes for the
entities and normalize them (Steps 3-6 of list on
p. 339). The goal of this part of the exercise is to de­
fine hidden attributive and associative entities. In the
example above (see Figure 9-14), Order and Cus­
tomer are fundamental entities. Order-Item is an at­
tributive entity. If it had not already been identified,
either normalization would identify it, or it would
be identified by answering the question: Can any of
the attributes relating to entity Order occur more
than once? If the answer to this question is yes, there
are attributive entities to be identified.

Direct normalization of ERDs is possible but
requires detailed understanding of data. When you
have an ERD but are less comfortable about your
understanding of the data and their relationships,

tabular normalization can be used to complement,
validate, or replace direct normalization. Tabular
normalization requires complete definition of data
and relationships, and results in exactly the same
entities as direct normalization.

To use tabular normalization, first describe each
entity and all entity attributes. Cluster attributes
depending on whether they are singular or multiple
occurrences. (Tabular normalization rules are sum­
marized in Table 9-1.) Then, proceed to remove
repeating groups. For each repeating group create a
new relation. The key of the new relation is the key
of the repeating group and the original key. To
remove partial key dependencies, create new rela­
tions of any attributes and the part of the key to
which they relate. The key of the new relation is the
part of the original primary key that functionally
defines the relationship. Finally, remove nonkey
dependencies by creating new relations from the
nonkey attributes that are related. The key to the new
relation is the attribute(s) that define the functional
relationship. In the tabular method, multivalued
dependencies are treated as single attribute, repeat­
ing groups in the nonnormalized set-up stage.

TABLE 9-1 Normalization Rules

For Unnormalized Data

1. Identify all attributes that relate to an entity. Keep in mind that there are several types of attributes.

• Nonrepeating, primary key attributes(s). A nonrepeating attribute is a single fact about an entity type.
A primary key is a unique identifier for all attributes associated with an entity type.

• Nonrepeating, nonkey attributes(s) are single facts about an entity type.
• Repeating attribute(s) are facts that may have more than one occurrence for a specific value of an entity's

primary key. Repeating attributes may be single repeating facts, such as the date of birth of offspring; or may
be groups of repeating fqcts, such as date of birth and name of offspring. Repeating attributes are either
repeating key attributes or repeating nonkey attributes. Repeating nonkey attributes are listed with their
primary key identifier.

2. List all attributes that relate to an entity together. Indent repeating information. Skip a line or leave a space
between entities and between repeating groups. Repeating groups might have only one attribute that repeats; this
is also called a multivalued dependency. Place an asterisk at the first attribute of each repeating group to show
its beginning.

3. Underline the primary key field(s) of the unnormalized relations, including keys of both singular groups and
repeating groups.

4. Proceed to first normal form.

First Normal Form (lNF)-The Goal of INF Is to Remove Repeating Groups

1.1. Examine each relation. If the relation has no repeating groups, it is in INF. Draw an arrow from the unnormal­
ized column to tp.e normalized colpmn to show that the analysis i~ complete, and continue.

1.2. If the relation has repeating groups, build a relation from the single nonrepeating fields. The key of the relation
is the key of the original relation. Contique.

1.3. Next, for each repeating group, build a new relation of the repeating information. Append the key of the original
relation to the repeating information. The key of this relation is the key of the original relation plus the key of
the repeating group.

Second Normal Form (2NF)-The Goal of 2NF Is to Remove Partial Key Dependencies

2.1. Examine each relation independently. If the INF relation does not have a compound key, it is in 2NF. Draw an
arrow from the relation through the 2NF column to show that it is complete, and continue.

2.2 If the INF relation has a compound key for each nonkey field, ask the following question: Do the data field
relate to the whole key? In other words, do YOll need to know the whole key to know the values of the attribute,
or do you only need part of the key to know the value of the attribute? If the answer is that you need the whole
key for all fields, the relation is in 2NF. Draw an arrow from the relation through the 2NF column to show that it
is complete, and continue.

2.3 If by knowing a part of the key we know the value of one or more data fields, then we will build two new types
of relations. First, build a relation with the nonkey data field(s) that are wholly dependent on the compound key.
The key of this relation is the key of the INf r~lation.

2.4 Second, build one new relation for each partial key identified. The new relation(s) include the nonkey data
field(s) and the part of the original !cey on which they are fully dependent.

(Continued on next page)

345

346 CHAPTER 9 Data-Oriented Analysis

TABLE 9- 1 Normalization Rules (Continued)

Third Normal Form (3NF)-The Goal of 3NF Is to Remove Nonkey Dependencies

3.1 If the 2NF relation(s) have only one nonkey data field, it is in 3NF, go to optimization.

3.2 If all data fields in the relation(s) are dependent upon the key and nothing but the key, then the relation is in
3NF. The question here, is "Do nonkey fields relate to the key or do they really relate to each other?"

3.3 If a nonkey dependency exists, build one relation of the nonkey data field(s) that are dependent on the 2NF key
(this include the nonkey field that is the key in the step below).

3.4 Build one new relation for each nonkey dependency identified. The new relation(s) include the nonkey data
field(s) and the nonkey field on which they are dependent. The key of this relation is the nonkey field from the
original relation on which the other field(s) is dependent.

Now, check for anomalies ... conditions that still will cause errors. This is one way of double-checking that
your original relationships were correctly defined. Ask two questions.

1. Given a value for a key(s) of a 3NF relation, is there just one possible value for the data? If the answer is NO,
then multivalued dependencies exist. Check that the correct data relationships are defined, then treat the multi­
valued single fact as a single-attribute repeating group and renormalize the data.

2. All are attributes directly dependent upon their related key(s)? If the answer is NO, then transitive dependencies
exist. Treat the transitive dependency like a nonkey dependency and renormalize the data.

Finally, synthesize and integrate the relations.

1. Remove any fields that are computed in the application. This does not mean that these attributes are not stored in
the physical database; it means that they are not logically required to define the entity.

2. If two or more relations have exactly the same primary key, combine them into one relation. Make sure that each
attribute occurs only once.

At third normal form, synthesis of the resulting
relations is performed to

• combine relations that have identical primary
keys but different nonkey attributes

• eliminate relations which are exact duplicates,
or proper subsets, of other relations

• combine relations for which the primary key
of one is a proper subset of the primary key of
another

Mter normalization and synthesis are complete,
new entities (or relations) and their relationship to

the fundamental entities are added to the diagram as
needed to fully depict the information.

Next, the entities and relationships are analyzed
to determine if a class structure is needed. The rea­
soning process is as follows:

1. Ask if this entity occurs in this, and only this,
form (i.e., with all attributes) for every legal
occurrence of the relationship being exam­
ined? If the answer is yes, continue. If the
answer is no, you must define subclasses that
describe the contingencies of existence for

the entity. This procedure is described in the
next section.

2. Does this relationship hold for all occur­
rences of the entity? If yes, continue. If no,
follow the reasoning below to determine the
subclasses of the entity and their relation­
ships.

3. Is this entity ever optional? If no, continue. If
yes, follow the reasoning below to determine
the subclasses of the entity and their relation­
ships.

4. Can only a subset of occurrences of an entity
participate in a given relationship? If no, con­
tinue. If yes, follow the reasoning below to
determine the subclasses of the entity and
their relationships.

5. Have several types, or kinds, or categories of
an entity been identified? If no, continue. If
yes, follow the reasoning below to determine
the subclasses of the entity and their relation­
ships.

6. Are words like "either, or, sometimes, usu­
ally, generally, in certain cases" ever used in
describing entity behavior? If no, continue. If
yes, follow the reasoning below to determine
the subclasses of the entity and their relation­
ships.

Before
Subclasses:

Customer

Order

Business Area Analysis Activities 347

To determine subclasses, you must determine
which information is kept (or which processing is
done) for which type (or subclass) of orders. Ask
questions about every possible variation of infor­
mation and processing until 'if-then-else' logic sur­
faces. Use the alternative situations to define the
subclasses. That is, one subclass for the if logic,
another subclass for every other else if logic. Ask
questions of each type of information about every
entity. Don't stop just because you find one subclass;
there may be others. When you have found all sub­
classes, verify them with the user and modify the
diagram accordingly.

For instance, in an order fulfillment application, a
legal entity relationship describes 'customers place
orders' (see Figure 9-16), but that information may
not be the same for all customers' orders. Does the
time of day or time of month affect the relationship?
Do the shipping address differences affect the rela­
tionship? Does the sold-to/ship-to arrangement
affect the relationship? Does the type of goods
ordered affect the relationship? Does the type of pay­
ment affect the relationship? In this example, we will
say that Cash Order information kept includes Cus­
tomer ID and Total Amount, where Credit Order
information kept includes Customer ID, Name, Sold­
to/Ship-to addresses, Order Date, Shipping Terms,

After Subclasses:

Customer

-c~-I-c~:

/~j I~
_C~h _I_cr~di~

Order

FIGURE 9-16 Examples of Subclasses in Customer-Order Relationship

348 CHAPTER 9 Data-Oriented Analysis

for each item (Item Number, Item Description,
Quantity, Price, Extended Price), Sales Tax, and
Total. Here, we know there are subclasses because
different sets of data are kept. The next issue is to
decide the entity(s) to which the subclasses relate.

To decide which subclasses apply to orders, we
ask if the entity Order is affected differently by cash
and credit sales. If the answer is yes, different infor­
mation is kept for each. In this example, there would
be subclasses for Cash Order and Credit Order.
Then, we ask if the entity Customer is affected dif­
ferently for cash and credit customers. Are all cus­
tomers either cash or credit? What are the rules for
buying on credit? The common answer is applied
here. Some customers are only cash, thus, creating
a cash customer subclass. Some customers are qual­
ified to buy on credit, but they are not required to
buy on credit. That is, credit customers can pay
either by cash or by credit. Therefore, knowing
which type of order a customer will create is only
possible if the customer is a cash customer. Depend­
ing on the application, these customer subclasses
might be important. Here, we will say they are. The
ERD is altered to show the subclasses of each entity
class and how they now relate to each other. Notice
that the simple before diagram in Figure 9-16 is
more complex with subclass additions.

To summarize, first define entities, then relation­
ships, then attributes. Promote the many-to-many
relationships to associative entity status and modify
the diagram to reflect the new entities. Add attribu­
tive entities as required for repeating information
relating to entities. Identify all new attributes of all
entities. If necessary, do tabular normalization of
the relations. Analyze each entity to determine if
subclasses are required and modify the diagram to
describe them. These activities are best documented
in a CASE tool with repository (or dictionary or
encyclopedia) entries made as the work progresses.
At the end of ERD creation, you have not only the
ERD, but also the repository definitions for all items
in the ERD.

ABC Video Example Entity-Relationship
Diagram

The first step (refer to the list on p. 339) in develop­
ing the ERD is to identify fundamental entities. A

first-cut definition of the potential fundamental enti­
ties in ABC rental processing includes: customer,
video, rental, printed rental, clerk, and system. These
entities are identified from the ABC Rental Process­
ing requirements in Chapter 2. Next we analyze each
potential entity to see if it really is in the business
area and application.

Customer is a noun. It uniquely defines the people
who rent and return videos. By itself, customer does
not take on a value; rather, each customer is de­
scribed by a set of attributes. The business must keep
information about customers renting videos to do
business with them. The formal name is Customer.

Video is a noun. It uniquely defines an item from
inventory that is available for rent. By itself, video
does not take on a value; it has descriptive attributes.
The business must keep information about videos to
conduct its business. The formal name is Video.

Rental is a noun that uniquely describes videos
rented by customers for a specific period. By itself,
rental does not take on a value; it combines attri­
butes of Customer and Video with attributes of its
own. The business must keep information about
rentals to provide an audit trail for tax purposes. The
formal name is Rental.

A Printed Rental is a noun that describes videos
rented by customers for a specific time period. A
printed rental is not unique since its definition mir­
rors that of rental. However, it is unique in that it
shows the customer signature. If there is a legal dis­
pute over charges, the business is required legally to
provide documentation that rental took place, and
the customer knowingly rented. The business does
not keep infortnation about a printed rental, though;
the information is about a rental. 5 Printed rentals are
another medium or form of Rental. Printed Rental
is stricken from the list.

Clerk is a noun uniquely describing the person
who initiates processing for the application. By
itself, clerk does not take on a value. The business
does not need to know who did the entry of infor­
mation unless Vic changes the requirements of the

5 If customer signature was kept, or if we just left printed rental
on the list, when the data were normalized we would find that
the primary keys to the printed rental and the rental were
identical. That would lead us to combine the fields in one rela­
tion called Rental.

Business Area Analysis Activities 349

Customer

Is
Request Requested

by

/\

Contains / Rental

Is Contained in "'"

Video

FIGURE 9-17 ABC Rental Processing-First-Cut Entity-Relationship Diagram

application. Since clerk is not required, we strike it
from the list.

Similarly, system is a noun that uniquely de­
scribes the hardware/software environment that will
do rental processing. The system has no personal
values, and neither do we maintain information
about the system. System is stricken from the list.

N ext we draw a rectangle for each of the three
entities that remain: Customer, Video, and Rental.
Figure 9-17 shows the entities and relationship(s)
between the fundamental entities. Customers request
Rentals. Rentals contain Videos. The relationship
names are unique verbs describing the interactions.
The line connecting Customer and Rental contains
crows' feet at the Rental side to show a one-to-many

Customer

-c-
Is

Request (Requested
) by

/\

relationship. That is, each Customer may place one
or more Rentals. Each Rental is placed by one and
only one Customer.

Similarly, each Rental contains one or more
Videos; each Video can be rented by one and only
one Rental at a time. We have a problem with the
clause at a time in this definition. Relationships are
supposed to be defined without regard to time. How
do we account for this problem? We might defer a
decision on how to deal with this until some later
time, making a note ofthe need for 'date' as an iden­
tifier for the video-rental relationship. Or, we might
remove time from the definition, creating the ERD in
Figure 9-18 which shows a many-to-many relation­
ship with rental and video. That is, each video may

Rental
" ""Contains I /

Video

~s ~ontainedl in"

FIGURE 9-18 ABC Rental Processing-Second-Cut Entity-Relationship Diagram

350 CHAPTER 9 Data-Oriented Analysis

Customer

Request
o
J\

Rental

Is
Requested
by

~I
/1

Contains

Is
Contained (
by)

/""'-

Copy

'\v
(D

Is Described
by

-t-

Video

Describes

FIGURE 9-19 ABC Rental Processing-Third-Cut Entity-Relationship Diagram

be rented more than once, and each rental may
contain more than one video. We take this option
at the moment, knowing that it is an incomplete
definition of the relationships which need to be
refined.

Next we decide the nature of the relationships,
whether they are required or optional. A Customer
must exist to place Rentals. A Video must exist to
be contained in a Rental. Does this make sense; must
you have both a Customer and a Video to do a
Rental? Yes, this makes sense. Now analyze the
other side of the relationships. Are Rentals required
for Customers to exist? No, Customers do not nec­
essarily have rentals every day. Are Rentals required
for a Video to exist? No, Videos can exist without
being related to a Rental. Both relationships of
Rental to the other entities are optional.

Identify attributes and associative entities. The
m:n relationship of Videos and Rentals should be
promoted to make an associative entity. The new
entity relates to each physical tape being rented.
Thus, we have a Video entity and a Copy entity. We
reason through this creation in another way. Video
information is not detailed enough to keep track of
every physical tape in inventory because each video
may have many copies. This leads us to add infor­
mation about copies. Referring to the case in Chap­
ter 2, we find that Vic wants to be able to track the
status of any tape. The minimum copy information
needed is Video ID, Copy ID, Date Received, and
Status. Other information might be considered, for
instance, current month rental counts, but we defer
this for the moment. Figure 9-19 shows the ERD to
this point.

Does the insertion of Copy take care of the many­
to-many relationship? We can still have a Copy on
many rentals over time and Rentals can contain
many items, so the answer is no. Next we look at the
Rental to further examine its details. Rentals are sim­
ilar to orders. Just as an order has one or more items,
each rental can have one or more rental items. There
is a one-to-many relationship of Rental to Rental­
Item which we add to the diagram. By itself, this
does simplify the many-to-many relationship; a
Rental-Item belongs to a specific Rental and relates
to a specific inventory Copy. Now the entities and
relationships look clean with all many-to-many
relationships promoted, and all apparent one-to­
many relationships explained (see Figure 9-20).

To confirm the original and promoted entities, we
will normalize the data using the tabular method. For

Customer

-I-

Is
Request Requested

<D by

/1\

Rental

Contains - - Is
<) Contained

/" by

Business Area Analysis Activities 351

tabular normalization to proceed, first define the
attributes of each entity. From the functional
requirements in Chapter 2, list all attributes of each
entity. The list is shown in Table 9-2, in unnormal­
ized form, with the copy information identified as
repeating within video information. Make a sepa­
rate list for each entity. For each entity, list together
attributes that occur only once. Indent repeating
groups under the related entity, making sure that all
information for each group is together. Underline
primary keys for both nonrepeating and repeating
information. Remember, the primary key uniquely
identifies its information.

Next apply the rules in Table 9-1 to remove
repeating groups, partial key dependencies, and non­
key dependencies. Synthesize the 3NF results to
ensure minimal redundancy. The result of ABC's

Rental-Item
...... Refers to I

Copy
'" '-" I

Is Referenced by

'\v
<D

Is Described
by

-I-

Video

Describes

FIGURE 9-20 ABC Rental Processing Fourth-Cut Entity-Relationship Diagram

352 CHAPTER 9 Data-Oriented Analysis

TABLE 9-2 List of ABC Video Entity Attributes

Unnormalized Form- First Normal Form
Repeating Groups, (lNF)-Repeating
All Primary Keys Groups
Identified

Customer Phone
Customer Name
Customer Address
Customer City
Customer State
Customer Zip
Customer Credit
Card Number
Credit Card Type
Credit Card
Expiration Date

Customer Phone
All Customer Info

from Above
Rental Date
Total Rental Fees

*Video ID
Copy ID

Video Name
Rental Date
Return Date
Rental Rate
Late Fee Due
Fees Due

Video ID
Video Name
Entry Date
Rental Rate

Copy ID
Date Received
Status

normalization is shown in Table 9-3. Now we have
six relations to be synthesized and evaluated.

In the synthesis step, several pieces of informa­
tion are deleted. 'All Customer information' is not
required to maintain rental information; only a Cus­
tomer Phone or ID is required as a cross reference,
or foreign key, to the Customer relation. Total Rental
Fees are calculated and, therefore, not required. The

Second Normal Form Third Normal Form D
(2NF)-Partial Key (3NF)-Nonkey e
Dependencies Dependencies I

e

entire relation containing VideoID, Video Name, and
Rental Rate is deleted because it exactly duplicates
information already in the next relation which has
more attributes.

To reconcile the 3NF results to the ERD, we look
at the Rental relationships again, and use some 'out
of the box' thinking. The relationship we identified
for Rental to Rental-Item is similar for many busi-

Business Area Andlysis Activities 353

TABLE 9-3 ABC Video Normalization Results

Unnormalized Form- First Normal Form
Repeating Groups, (lNF)-Repeating
All Primary Keys Groups
Identified

Customer Phone
Customer Name
Customer Address
Customer City
Customer State ..
Customer Zip
Customer Credit
Card Number
Credit Card Type
Credit Card
Expiration Date

Customer Phone Customer Phone
All Customer Info All Customer Info

from Above from Above
Rental Date Rental Date
Total Rental Fees Total Rental Fees

*Video ID
Copy ID Customer Phone

Video Name VideoID
Rental Date CopyID
Return Date Video Name
Rental Rate Rental Date
Late Fee Due Return Date
Fees Due Rental Rate

Late Fee Due
Fees Due

Video ID
Video ID Video Name
Video Name Entry Date
Entry Date Rental Rate
Rental Rate

CopyID Video ID
Date Received Copy ID
Status Date Received

Status

ness transactions: orders, confirmations, shipping
papers, back-orders, and invoices. The question here
is: Do we need both entities? We require the Rental­
Item entity information because it documents the

Second Normal Form Third Normal Form D

(2NF)-Partial Key (3NF)-Nonkey e

Dependencies Dependencies I
e

• ..

.. • X

X

Customer Phone
VideoID
CopyID
Rental Date
Return Date
Late Fee Due
Fees Due
Video ID
Video Name
Rental Date ..

• •

• •

business transaction. The question then is: Do we
need the Rental information separated? Is it uniquely
different? Customer Phone is also in Rental-Item;
Rental Date is also related to each video the

354 CHAPTER 9 Data-Oriented Analysis

Customer: xxxxxxxxxxxxxxxxxxxx,xxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx, xx xxxxx
(xxx) xxx-xxxx

Open Rentals:

Video Copy Description Rental Pd Late Pd Other Pd

xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxx 9.99
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxx 9.99
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxx 9.99
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxx 9.99

New Rentals

xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxx 9.99
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxx 9.99
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxx 9.99
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxx 9.99
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxx 9.99

Total 99.99

Total Amount Due
Amount Paid
Balance

FIGURE 9-21 Partial Rental Screen

customer has. We eliminate Total Rental Fees as a
computed field but we need to redecide if we will
ever need this information stored in a file.

Continuing this reasoning, think of the processing
to be done. When a customer requests a video, the
system should display all open rentals regardless of
when they were rented. The Rental-Item information
will be listed down the screen in rows, one row per
video (see Figure 9-21).6 A total of all open rental
fees plus any new fees will be near the bottom. From
where will customer information come? If we keep
the Rental relation/entity, we either choose one from
potentially several for display, or, if Customer Phone
is entered first, we ignore them all. This sounds like

6 This is another example of the jumping between levels of
detail required to complete each logical step in the process.

x 9.99 x 999.99 x
x 9.99 x 999.99 x
x 9.99 x 999.99 x
x 9.99 x 999.99 x

x
x
x
x
x

99.99 9,999.99

9,999.99
9,999.99
9,999.99

a kludge, that is, a mess! If we delete this entity /
relation, can we get the information another way?
That is, can we recreate this relationship if we need
to for any reason? The answer in this case is, yes.
Rental-Items all have Customer Phone and the first
one accessed can be used to retrieve customer infor­
mation. We conclude that we can eliminate the
'Rental' entity entirely. The completed, revised ERD
is shown as Figure 9-22. Rental-Item is renamed to
Open Rental to avoid confusion about its contents.

After removing the Rental entity, the relation­
ships and entities now appear minimal. That is, we
must keep all of these entities. If we remove anyone
of these entities, we cannot recreate the desired in­
formation for the removed entity, nor can we com­
pletely describe all data relationships. With these
entities, we can represent the entire problem data

space, and we can accommodate all the processing
required in the application. The ERD now appears
complete. Keep in mind that complete does not mean
cast in concrete; the ERD can be modified as re­
quired to accommodate new information.

The reasoning process we used to eliminate the
rental entity can be used on any similar entities, for
instance, orders. In other applications the higher
level entity analogous to the Rental entity here might
be required. You cannot eliminate an entity when
any of the following conditions is true:

• The entity has unique information of its
own.

• The entity, or its attributes, cannot be recre­
ated through combining other entities.

• The entity is required for legal purposes.

Customer

-f-
Is

Request Requested

(D
/~

by

Business Area Analysis Activities 355

An accurate and complete ERD is crucial to
developing an application that solves a real-world
problem. During development of the ERD, pay par­
ticular attention to entity definitions, making sure
they are distinct, simple, and precise. Analyze each
entity for selectivity in processing, data, or timing
to determine if a class structure is warranted. Also
analyze each entity for its actual need. If an entity
can be recreated from other information, has no
unique attributes of its own, and is not required for
legal purposes, omit it. Analyze every possible rela­
tionship to determine relationship existence. When
defining relationship cardinality and required/
optional status, make sure time and current proce­
dures are ignored. Do pay attention to legal require­
ments and business requirements in defining
cardinality and required status.

Open Rental
" ,..... Refers to I
V 'oJ I

Is Referenced by

Copy

Is Described
by

'\v
<D

-f-

Video

Describes

FIGURE 9-22 ABC Revised, Complete Entity-Relationship Diagram

356 CHAPTER 9 Data-Oriented Analysis

Decompose Business Functions
Rules for Decomposing Business
Functions

If a functional decomposition was not yet developed
at the enterprise level, it is created now. If a decom­
position was developed at the organization level, it is
further decomposed here to define details of pro­
cesses. In either case, decomposition is independent
of the ERD; it can be done before, during, or after
the ERD. IE recommends the ERD first, but while
you gather data for the ERD, you invariably get
process information. Many practitioners concentrate
on data first, but begin to build the decomposition
simultaneously. The steps to functional decomposi­
tion are:

1. Define the enterprise for which the diagram
is being developed. Place the enterprise
name in a rounded rectangle at the top of
the diagram.

2. Define business functions of the enterprise.
Using consistent parts of speech for each
name, place the functions in rounded rectan­
gles on the second row of the diagram. Do
not pay attention to current organization, pol­
icy, or procedures in defining functions. Use
current business practices in the industry to
guide the definition and placement of func­
tions (and activities and processes).

3. Define the activities that fully define each
function. Name them using consistent parts
of speech, usually of the form verb-noun. For
each function, create a separate diagram with
a row depicting the activities of the function.

4. For each activity, fully define the processes
that describe work performed for each activ­
ity. Name each process using the form verb­
noun. Add processes under their respective
activities on the diagram in the sequence in
which they are performed.

5. Continue to decompose the processes and
add them to diagrams depicting successive
levels of detail until the definitions are
atomic.

6. Verify all diagrams with the user.

7. Define the detailed procedures for accom­
plishing each process and document func­
tions, activities, processes, and procedures in
the repository.

First, identify (or verify) the functions applicable
to the BAA activity. An easy way to check functions
is to review the list of generic functions on p. 332
and, for each, determine its applicability to the situa­
tion. Name each function so it relates to the busi­
ness context of the BAA. For example, if the
function deals with finance, but in the client context
finance includes both Finance and Accounting, use
the latter function name. Name each function with a
noun, preferably a nonqualified noun. For example,
Finance is preferred to Corporate Finance. If users
have not participated in this activity, verify the list
with a user. Place each function on the decomposi­
tion under the enterprise identifier in rounded rec­
tangles (see Figure 9-23).

Next, for each function, define the major activi­
ties and place them under the function they describe.
The diagram resembles an organization chart. When
complete, the activities should fully describe each
function. Do not pay attention to organizational
boundaries or current organization policies and pro­
cedures. Do pay attention to legally required actions,
actions that specifically relate to goals of the orga­
nization, and industry practices that are required.
Do identify timing, cardinality, or current business
practices for each activity.

Activity names do not have a specific form, but
should be consistent in the part of speech used for all
names. In the example above, the function Finance
might include several activities, such as Corporate
Finance, Regional (or Subsidiary-name) Finance,
International Finance, Analysis and Reporting, Plan­
ning, Budgeting, and Funds Management. In this
example, Funds Management might have been
called Manage Funds, but the inconsistent part of
speech makes this a weak name.

Next, for each activity, decompose the activity to
define the processes that fully describe the activity.
Processes may have their own subprocesses. Con­
tinue decomposing until the elementary, or atomic
level, of process is identified. Recall that an elemen­
tary process is the smallest unit of work users can

Business Area Analysis Activities 357

FIGURE 9-23 Placement of Functions, Activities, and Processes on a Functional
Decomposition Diagram

identify. Name each process with a verb-object
name. Within Funds Management, for example,
processes might include: Manage Overnight Funds,
Manage Cash, Manage Payroll Accounts, and Man­
age Savings Accounts. Each of these processes can
be further decomposed to identify the details of the
procedure used to perform this process. Continuing
with this example, Manage Overnight Funds might
include: Identify Funds, Identify Options, Analyze
Options, Place Funds, Complete Accounting Entries.
Each of these is a process, too, but these processes
cannot be further decomposed without requiring
interrogation of multiple processes to locate all of its

component parts. Therefore, these processes are
atomic, or elementary. That is, each can be per­
formed as a unit, but cannot be further decomposed
without losing its unit identity.

The difficulties of process decomposition lie in
achieving parallel levels of abstraction and com­
pleteness. The goal is to maintain consistency within
a level of process decomposition. The SE and user
must work together during this definition because the
levels of detail are beyond IS knowledge. Only job
incumbents know exactly what they do and how they
do it. The user is the main person defining the
decomposition, but the SE is the person who actually

358 CHAPTER 9 Data-Oriented Analysis

abstracts the diagram and systems information from
the user-supplied information. The user relates each
process to all of the other processes, describing each
in detail.

Some clues to consistency of abstraction are
amount of work, user comfort, same type of inputs
and outputs, and timing. If all processes appear to
do similar amounts of work, they are probably at a
similar level of abstraction. If the user feels comfort­
able that the information is similar, it probably is.

If the processes have similar types of inputs and
outputs, that is, they have no error processing and
no exception processing at the same level, then they
are probably at a comparable level of abstraction.
Similarly, if one process has error and exception
processing, the others also should have error and
exception processing at the same level.

For concurrent processes, each process must be
performed completely independently of all other
concurrent processes. If concurrent processes are
independent, then the abstraction level is probably
okay. If concurrent processes have dependencies,
then determine the relationship between the pro­
cesses. Either the dependent process is, in fact, a
subprocess, or the processes are not concurrent.

During process identification and definition, mark
the diagram for processes that are used in more than
one place. This identifies both potential reusable
processes for the design activity and possible job
consolidation for organizational analysis. Make sure
that the names assigned to reusable processes are
exactly the same and actually perform the same
work.

The larger the organization, the more likely you
will need more than one level of process decomposi­
tion to describe fully the processes of each activity.
Continue to decompose levels of subprocesses until
you reach processes that can no longer be described
as performing some whole action.

ABC Video Example Process
Decomposition

To begin, we ask ourselves what are the functions
of ABC that relate to this BAA. The functions of
ABC are Purchasing, Rental Processing, Accounting
and Personnel/Payroll as shown in Figure 9-6. This

application is concerned only with Rental Process­
ing, so we decompose only the Rental Processing
function.

First, we define the activities of Rental Processing
and place them on the diagram in rounded rectan­
gles. Return to the case in Chapter 2 and outline the
major activities. If you have difficulty finding activ­
ities, look at the entities and define the actions taken
for each entity. Obvious activities relate to customer
and video maintenance and actual rent/return pro­
cessing. Can you identify any others? If not, add
these to the diagram and decompose them. Activity
identification is not a one-time activity; it is ongo­
ing and other activities might become obvious as
you work through the processes. Keep in mind that
when you identify activities with a user, it is from
their experience and not from written text, so it is
somewhat more direct.

Both maintenance activities are decomposed into
create, read, update, and delete processes (CRUD).
Notice that the activity names are of the form verb­
object. The resulting additions to the decomposition
are shown in Figure 9-24.

Next, we must decide if rent and return are one
activity or two. This is the same issue we dealt with
in process design (in Chapter 8); here we will have
slightly different results because the reasoning
process is different. The questions here are: Can we
define rental without reference to return? Can we
also define return without reference to rental? And,
does this completely define rent/return processing?
The first two answers are yes, the third is no. Both
rentals and returns must accommodate the other
process as a subprocess for completeness. Therefore,
rent and return processing must be combined as one
activity.

An easy way to decompose these processes and
be reasonably sure we are complete and correct is to
decompose the four options separately. The options
are rent without return, return without rent, rent with
return, and return with rent. A table listing the four
options and their subprocesses is shown as Table
9-4. Several issues can be identified for discussion.
First, is Check for Late Fees the same level of
abstraction as the other processes? Second, is Print
Receipt the same type of process and does it belong
on the table? Third, does this look complete? For

Customer
Maintenance

Business Area Analysis Activities 359

FIGURE 9-24 Decomposition for Customer and Video Maintenance

instance, where are Create Customer and Create
Video when the items are not found in a database?
Last, can we consolidate these four lists to develop
one list for the decomposition diagram?

First, Check for Late Fees appears to be at a lower
level of detail than the other processes. To check
this, walk-through the process. To check for late
fees, data from an open rental must be in memory.

If the Return Date is not equal to zero, subtract Rental
Date from Return Date to get Number Of Days
Rented.

If Number Of Days Rented is greater than the allowed
amount (here we use two), multiply (Number Of
Days Rented - 2) by $2.00 (the late charge) to get
Late Fees.

If Late Fees are greater than zero, display Late Fees
and add Late Fees to Total Amount Due.

This is all logic; there is no reading or writing to
files. Thus, this is a simple process that borders on
being too small to be called a process. This logic
could be included in another process if and only if
the other process has the same execution pattern for
each pass of the logic. This means we next look at
how often Check for Late Fees is executed. Check
for Late Fees is in every list, but is it executed for
every rental and return? The answer is that for all
open rentals, this process would execute to check for
fees owed whether there are current returns or not.
Also, for all returns, after the return date is added,
the process Check for Late Fees should be executed.

Next we review the logic to see if exactly the
same procedure is followed in both cases. The
answer to this issue depends on when late fees are
considered. So far, we have talked about late fees for

360 CHAPTER 9 Data-Oriented Analysis

TABLE 9-4 Decomposition of Rental Options

Rental Without Return Return Without Rental

Get Customer ID Get Return Video IDs

Get Valid Customer Get Open Rentals

Get Open Rentals Get Valid Customer

Check for Late Fees Add Return Date

Get Valid Videos Check Late Fees

Process Payment and Update Open Rentals
Make Change

Create Open Rental Update/Create History

Print Receipt Process Payment and
Make Change

Print Receipt

tapes with return dates only. You may be tempted to
charge fees every day as they accrue, whether the
tape is returned or not. If you do this, you need very
complex logic to identify what fees are accrued,
what fees are paid, and what fees are still owed.
Complex logic is frequently wrong and is always
error prone. If possible, use the KISS (Keep It Sim­
ple, Stupid) method and charge fees only when a
return date is present. To continue this thinking, what
rental attributes do we need to deal with late fees?
Do we need a late fees field? A flag when late fees
have been paid? The case does not tell us what Vic
wants; so we need to talk to him about this.

In this case, Vic and the accountant decide that,
for accounting purposes, they want to know all
charges applied to a rental. Information to be kept
includes: regular fees, regular fees payment, late
fees, late fee payment, any extraordinary fees, and
extraordinary fee payment. Notice they do not care
about payment dates. We have two choices for deal­
ing with late fee data. First, we can compute fees and
add them to the file when paid or second, keep two

Rental With Return Return With Rental

Get Customer ID Get Return Video IDs

Get Valid Customer Get Open Rentals

Get Open Rentals Get Valid Customer

Get Return Video IDs Add Return Date

Add Return Date Check Late Fees

Check for Late Fees Get Valid Videos

Get Valid Videos Process Payment and
Make Change

Process Payment and Create Open Rental
Make Change

Create Open Rental Update Open Rental

Update Open Rental Update/Create History

Update/Create History Print Receipt

Print Receipt

sets of fields, one for the fee and a flag for fee pay­
ment. The data and processing for the first option are
simpler, but this now makes the processes creating
and updating open rentals dependent on successful
Process Payment and Make Change. This is not only
an acceptable tradeoff, but a better business practice
since we do not want to update with unsuccessful
payment processing. We note the new attributes and
add them to the repository.

The second issue deals with Print Receipt. Is
Print Receipt the same type of process and does it
belong on the table? The printed rental orders could
be considered an output data flow of Process Pay­
ment and Make Change rather than requiring its own
process. Since ABC defines printing of orders as a
separate process required of the application, we
could leave it on the list. Unfortunately, the method­
ology does not give guidance in the issue of whether
to include or omit data printing processes. In general,
if the printing is incidental to another process, that is,
it is a record of the processing, then it is not separate.
A print process should be distinct if it fulfills legal

obligations, or is independent of all other processes,
or is contingent on other processing. On the job, the
SE, with the analysis team, decides which method of
defining inputs and outputs will be used, then is con­
sistent in their definitions. A related issue is the
relationship of Print Receipt to the other processes.
Does it follow payment processing, does it follow
and confirm file creation and updating, or is it inde­
pendent? At the moment, printing appears related to
payment processing only, but here again is some­
thing we need to ask Vic. A similar problem arises
with data entry procedures that we will discuss later.

Here is a sample dialogue between Mary and Vic
to resolve the relationship issue.

Mary: "We are trying to decide about when to
print receipts and how receipts relate to the rest
of the process. Can you tell me the legal
requirements and if you have any other
business requirements?"

Vic: "Hm, now, we write down all the customer
numbers, video numbers, amount paid, and rea­
sons for each transaction. We don't really give
customers a receipt in the manual system. I'm
not sure what the legal requirements are; I'll get
the accountant in here, too."

The accountant comes in and is asked the same
question. She says, "It would be nice to have a
paper copy of each transaction in which money
is processed so I can locate errors when I do the
bookkeeping. Trying to find an error by query­
ing the computer might be longer than just
adding up the days' receipts in different cate­
gories. It would also provide IRS documentation
if you don't plan to do that on the computer.
Do you?"

This leads to a discussion of the tax processing
possible and the potential costs to the project, which
are negligible at this stage. The final decision is to
require receipts not only for transactions in which
money is processed, but to offer a receipt as an
option to the customer for nonmoney transactions.

The discussion then digresses into the issue of
how long records must be kept on the rental file. If
all money-related transactions are printed, records of
paid transactions could be deleted. Vic wants access
to transaction data for historical analysis but thinks

Business Area Analysis Activities 361

the history files will answer most of his questions. In
his manual system, Vic purges the files once a year at
tax time, but he says there is too much paper to look
at any paper records unless a customer actually dis­
putes a charge. In any case, Vic, the accountant, and
Mary jointly decide to purge the transaction files
monthly and move deleted records to an off-line
archive file. This discussion causes a new activity
to be added to the decomposition under Periodic
Processing.

Next, Mary broaches the subject of keeping track
of file updates and printing the receipt only when the
file updates (or creates) are successful. Vic has two
concerns. He needs the ability to fix a file problem
if one occurs, and he wants the ability independently
of the rental process. Second, he is leery about
using the receipt as notification of a problem. "If
users think there is a problem with the computer sys­
tem, they might not trust the information we give
them about late fees and other charges." Vic decides
that printing is independent of file updates and that
an operator message should be displayed for errors
in writing to files.

The third issue is to evaluate the completeness of
the processing defined. In particular, where are Cre­
ate Customer and Create Video when the 'valid'
items are not found in a database? From a simple
evaluation of process names, the processing appears
complete. To resolve the issue about the two create
processes, we look specifically at those processes.
Again, there are two options for dealing with the
need to create customers and videos: It can be a sep­
arate process or it can be a subprocess to the associ­
ated Get Valid . .. process. The question to answer is:
How important, in the rent/return activity, are create
customer and video? The answer is that they are not
very important. They are performed on an excep­
tion basis to allow processing continuity. Both pro­
cesses are important to the related file maintenance
activity. A related issue is the name given to the
processes--Get Valid Customer and Get Valid Video.
The implication from these names is that both valid
and invalid conditions are dealt with within the pro­
cedure; only valid customers and videos will be
passed for further processing. A missing condi­
tion would lead to the initiation of the create proce­
dure. The resolution, then, is to leave the process

362 CHAPTER 9 Data-Oriented Analysis

FIGURE 9-25 Partial Decomposition with Details of Get Valid Processing

definitions as they are and to treat the Creates as sub­
processes under the associated Get Valid process.
Figure 9-25 shows the details of the two get valid
processes for the next level of decomposition.

The final issue is to consolidate these four lists to
develop one list, completing the decomposition dia­
gram. The consolidated list is shown, with sequence
implied but without selection, in Figure 9-26, the
final decomposition diagram. The fourth activity,
Periodic Processing, has been added. At the mo­
ment, this activity includes archival, end-of-day, and
query processing. Other processes may be added as
we continue through analysis and design. We will

use the separate lists of processes again in the
next activity, developing the process dependency
diagram.

To summarize, process decomposition can be per­
formed independently of ERD development. This
step concentrates on activities, processes, and sub­
processes of all functions in the BAA. First, all
activities are defined, then the processes for each
activity are identified and defined. Both activities
and processes are defined without regard for current
organization, timing of processing, or current pro­
cedure. Emphasis is on processes and procedures
that are required to fulfill business obligations. The

Get Valid Customer

Get Valid Video

Get Return 10

Add Return Date

Get Open Rentals

Check Late Fees

Update Open Rental

Update/Create History

Print Receipt

Business Area Analysis Activities 363

FIGURE 9-26 Completed Decomposition Diagram

final decomposition should be validated through
user review.

Develop Process Dependency
Diagram
Rules for Developing Process Dependency
Diagram

Process dependency relates processes and shows
cyclical, logical, and data connections between pro­
cesses. For each activity and level of processes

decomposed, we examine the processes and se­
quence them by order of occurrence: what happens
first, then second, and so on. A diagram using
rounded rectangles for each process and arrows to
connect them shows the sequencing of the processes.
Processes that are independent of other processes are
placed on the diagram but not connected to anything.
One diagram is created for each activity. The steps
for creating the process dependency diagram (PDD)
are as follows:

1. For each activity, draw the processes on a
sheet of paper.

364 CHAPTER 9 Data-Oriented Analysis

Sequential Connectors:

Singular Connection

Multiple Input Connections

Multiple Output Connections L)
c'---_~ C _____ --.----)

C ______)

Iterative Connections:

'---r-----
I------t.~(Get Return 10) ...

Until
No More
Open Rentals

Martin's Iterative Connections

@et Open Renta0) • (Get Return 10) ...

FIGURE 9-27 Types of Process Dependency Connections

2. Examine each process to determine how it
is initiated. For processes that pass data to
begin work, connect the process to its data
receivers. These connections depict the
sequence of processing.

3. For all connected processes, examine each
to determine the cardinality of execution.
Define iterative processing and document it
on the diagram. Be careful to uncouple to the
maximum extent possible based on business
requirements.

4. For all connected processes, examine each to
determine selection in processing. For mutu­
ally exclusive processes, alter the diagram to
depict exclusivity. For all selected processes,

add the selection conditions under which
processing takes place.

5. For all connected processes, examine
each to determine Boolean connections.
Alter the diagram to include required
Boolean logic.

6. Review all connections with the users to ver­
ify correctness.

The types of connections between processes in a
process dependency diagram differ from those of
data flow diagrams discussed in Chapter 7. In pro­
cess dependency, four types of connections are
allowed: sequence, iteration, selection, and Boolean
(see Figure 9-27). All connections identify the data

Business Area Analysis Activities 365

Simple Selection Connections:

If A

(---p_1---)r~L~~~=·:(:~~~P_2~ __ ~)==:t--~~ If notA
~

Mutually Exclusive Selection Connections: If A
PA)

P1 else if B r,.------.......
PB

else if C ,.------.....
PC

else

\
PD

Boolean Connections:
Or process

(A) • 0 (B)

(C) 0 • (D)
Or process

.. F
E (And processes) .. G

FIGU RE 9-27 Types of Process Dependency Connections (Continued)

passing between processes by writing its name,
when known, above the line.

Sequential connections may be singular or multi­
ple, with many processes feeding another process,
possibly feeding the same data (as in reusable
processes) (see Figure 9-27). Multiple entries into
(or exits from) a single process do not imply any
relationship between the multiple processes. That
is, no control structure is required to ensure correct
order of execution of the processes. In fact, multiple
processes could be concurrent, if needed.

Iterative connections between processes are
shown with feedback loops, with an indication of
how many iterations are performed. A popular
alternative is Martin's notation of iteration which
uses cardinality indicators, i.e., crows' feet. This
notation implies a coupling between processes that
may not exist, so the decoupled, more standard iter­
ation loop is used in this text. Both Martin's nota­
tion and the decoupled notation are in Figure 9-27.

Selection, or conditional, connections show the
alternative choices connected by a solid circle to

366 CHAPTER 9 Data-Oriented Analysis

differentiate Boolean processes. The if-then-else
logic conditions are written on each line.

Boolean connections identify 'and' or 'or' types
of connections. Boolean connectors use connected
lines with an open circle at the junction for optional
(or) processes. Simple connected lines which join (or
split) to show multiple (' anded') entry (or exit) from
processes. That is, any processes not identified as
optional or selected are assumed to be executed fol­
lowing the preceding process.

A comment about multiple required process con­
nections is required. Two options for multiple pro­
cesses, one using multiple directed lines, and one
using multiple lines joining or splitting into one line,
are discussed. These notations have specifically dif­
ferent connotations. The first, multiple directed lines,
shows that any or all of the multiple processes can be
executed and that control over that execution is
imbedded in the processes. The second, multiple
lines joining or splitting into one line, specifically
identifies 'anded' processes and may require logic to
ensure that all are executed.

In addition to showing the logical connections
between processes, the lines connecting processes
identify process data triggers, that is, data flows from
a process to its dependent processes. The last step
to the dependency diagram is to identify, as much
as possible at this stage, the data that triggers the
dependent processes. Attribute names, relation
names, or other identifier names are written on the
connective lines.

ABC Video Example Process Dependency
Diagram

The dependency diagrams for ABC vary in their
complexity. The maintenance diagrams are simple
because all processes are independent (Figure 9-28).
Similarly, the periodic processes are also unrelated
(see Figure 9-29). The processes of rental and
return are complex and are discussed in detail.

The discussion in the preceding sections identi­
fied a dependency of processes in rental/return pro­
cessing that we need to carry forward: Print Receipt
is dependent on Process Payment and Make Change.

There are other dependencies as well. To show
the logic behind the final diagram, we show the

(Create)

(Delete) (Update)

(Retrieve)

FIGURE 9-28 Maintenance Process
Dependency Diagram

process dependencies for each process alternative
as we did above. The four choices, again, are rentals
with and without returns, and returns with and with­
out rentals.

The first diagram lists the processes for rentals
without returns and, informally, draws connections
between them. We draw the informal diagram be­
cause changes are expected and changing an infor­
mal diagram is easier than changing a formal one.

When you start considering the processes, two
apparent features are: first, they are not all sequential
and second, they are not all done only once. Repeti­
tive processes are Get Open Rentals (with Check for
Late Fees in an iterative loop), and Get Valid Videos.
Both of these are performed until there are no more

(Query)

(End of Day)

(End of Month)

FIGURE 9-29 Periodic Process Dependency
Diagram

(Get Customer ID)

(Get Valid Customer

,
(Get Open Rental0

C) Until No
More Open
Rentals

FIGURE 9-30 Get Customer ID and Get
Valid Customer Process Dependency Diagram

of the items being got. Draw a circular line from the
process to itself to show iteration. Is there any data
passed from one iteration to the next? No specific
data except an indicator to keep going and, maybe,
a memory address at which to store the next data, but
this is an implementation detail. We do not identify
it now.

Next, walk-through the processing to identify
dependencies, drawing the appropriate connections
as you proceed. Get Customer ID provides the exter­
nal display and entry processing and passes a Cus­
tomer ID to Get Valid Customer (see Figure 9-30).
We cannot go directly to any other process because
we only want to process valid customers. Conse­
quently, the only dependency is Get Valid Customer.
Get Valid Customer retrieves a customer record, cre­
ating a new one if required, checks credit status, and
passes a valid customer record to the next process:
Get Open Rentals (see Figure 9-30). We already said
Get Open Rentals iterates until there are no more
open rentals, and it proceeds to Get Valid Videos
after it is complete (see Figure 9-31). Could we go
directly from Get Valid Customer to Get Valid
Videos? That is, could Get Valid Videos and Get
Open Rentals be concurrent? We need to jump into
implementation details again to decide, since there is
no business reason why these processes cannot be
concurrent. What do we do in these processes? The
open rentals procedure reads a file, checks late fees,
composes and displays a line, and adds to a total

Business Area Analysis Activities 367

field, as required. The video process gets Video IDs,
reads the Video and Copy relations, composes and
displays lines, and adds to a total field. Both pro­
cesses need access to the screen. So, we need a pro­
tocol, or set of rules, to govern where and when a
process can display information. They cannot both
try to use the same line. The easy method is to force
one process to be first and to create an artificial
dependency. This is what we will do: Get Open
Rentals will be first, because we can also have the
clerk verify late fees with the customer. So Get Valid
Videos will be dependent for screen location infor­
mation (and memory location information, too) on
Get Open Rentals.

To continue, Get Valid Videos iterates until there
are no more videos to be rented, then proceeds to
Process Payment and Make Change (see Figure
9-32). We decided above that both Create Open
Rental and Print Receipt are dependent on payment
processing but independent of each other, so we
draw two lines from Process Payment to each of
these processes (see Figure 9-33). Putting all of these
dependencies together, we arrive at Figure 9-34.

It is important to practice walking through the
diagrams one step at a time to identify dependencies,
considering each process alone and as possibly

(Get Open Rentals 1
r- ~
I ~ ~ UntilNo

,
(Check Late Fees 1

More Open
Rentals

C ~ UntiiNo

(GetVaiCS

More Open
Rentals

Until No
More Valid
Videos

FIGURE 9-31 Get Open Rental and Check
for Late Fees Dependent Processes

368 CHAPTER 9 Data-Oriented Analysis

FIGURE 9-32 Get Valid Videos Dependent
Processes

connected to all other processes. Ask if all of these
processes get done once, or are some iterated?
Can groups of processes that iterate together be
identified?

Draw each connection as you consider it so it is
translated properly. Finally, identify the data triggers
when they are known so that you know what you
don't know when your diagram is 'complete,' mean­
ing it contains all known information.

Figure 9-34 shows the dependency diagram for
Rentals Without Returns. Try to develop the process
dependency diagram for each of the options on your
own, without looking at the answers. The other
process option dependency diagrams are shown as
Figures 9-35-9-37. Keep in mind that iteration and
sequencing required for each alternative way of pro­
cessing are important because we eventually must

Until No
More New
Rentals

consolidate into one diagram-that is, a composite
of the individual diagrams. We only discuss the dif­
ficult connections and connections that change the
way we think about the rent/return process (i.e., may
alter our mental model).

In Figure 9-35, we have several differences from
the first dependency diagram (Figure 9-34). First,
Get Valid Customer is only done for the first return,
so we need a selection connector. If the Video ID
(or Open Rental) is not the first, we proceed to Add
Return Date and Check for Late Fees. We have two
choices on the iteration grouping shown (see Figure
9-38). The first strategy shows coupled logic with
the loop encompassing Get Request, Get Open
Rentals, Get Valid Customer, Add Return Date, and
Check for Late Fees. The second strategy shows sev­
eralloops that may look more awkward, but reflect
required coupling for the processes. This logic is
uncoupled and shows three iterative loops, all iter­
ating for all returns. The first loop is Get Open
Rentals. The second loop is Add Return Date; the
third is Check for Late Fees. Both of these alterna­
tives would be acceptable in program specifications
and selection for one over the other might be based
on the common iteration pattern. At the logical
requirement level, however, the preferred method is
the more loosely coupled one because the iteration
cycles may change when we consolidate the dia-

Until No
More Open
Rentals

FIGURE 9-33 Process Payment and Make Change Dependent Processes

Until No
More New
Rentals

Business Area Analysis Activities 369

Until No
More Open
Rentals

Until No
More Open
Rentals

Until No
More Open
Rentals

Until No
More Valid
Videos

)

FIGURE 9-34 Rentals without Returns Dependency Diagrams

grams. If the diagrams were already consolidated,
we could go to the program design level of detail to
choose the iteration grouping. The more uncoupled
dependency is shown in the completed diagram, Fig­
ure 9-35. The decisions about preferred looping are
deferred until design.

The second difference in Figure 9-35 is that a
receipt has selection criteria applied to its creation. A
receipt must be printed whenever a payment is made,
and may be printed upon request of a customer with
returns but no payments. This selection is shown on
the diagram.

Figure 9-36 shows rentals with returns. In this
procedure, we have two iterative cycles: one for
return processing and one for new rental-item
processing. These, in effect, consolidate the previous
two diagrams. Notice here that the initial input is

from Get Customer ID so returns do not include the
selective execution of Get Valid Customer. Also
notice that we again have coupling options for re­
turn processing (the coupling options for return pro­
cessing are shown in Figure 9-38). In the selected
option we have three iteration cycles. Get Open
Rentals is performed for all open rentals. Get
Return IDs and Add Return Date are performed
together for all returns which may be a subset of
open rentals. Check for Late Fees is performed for
all open rentals whether or not returned today. The
final difference is for history processing which is
selected for open rentals with Return Date equal to
today's date.

The last procedure is for returns with rentals (see
Figure 9-37) which is similar to Figure 9-36 except
for the initial entry of information. If a return is first,

370 CHAPTER 9 Data-Oriented Analysis

Get Valid Customer

Until No
More
Returns

Until No
More Open
Rentals

Until No
More
Returns

Until No
More Open
Rentals

Print Receipt)

Until No
More New
Rentals

FIGURE 9-35 Returns Without Rentals Dependent Processes

Get Return ID is the first process and we need the
selective execution of Get Valid Customer.

Now, we are ready to consolidate the diagrams
into one (see Figure 9-39). The obvious complexity
is in dealing with all of the return options, so they
will be done first. If we look at the first step of each
procedure, the differences are that for returns, Video
IDs are entered first and for rentals, Customer IDs
are entered first. If these are separate processes, we
have a problem knowing which is, in fact, being
executed. If we consolidate these processes, we can
use program logic to figure out which numbers are
for videos and which for customers. This means that
Get Return ID and Get Customer ID are replaced
with one process we will call Get Request. This
process will select either Get Valid Customer or Get
Open Rentals depending on the data entered. This

change is reflected back to the decomposition dia­
gram also.

Next, for returns, we need selective execution of
Get Valid Customer. To consolidate, we need to
know whether we are processing a rental or a return.
Two changes are required. Get Request must call
either Get Valid Customer or Get Open Rental,
depending on the type of entry. This is indicated by
the selection logic in Figure 9-39. Second, Get
Request has to pass some indicator to Get Open
Rentals that it is the caller; this means data is trig­
gering the process.

The last return issue is what to do with Check for
Late Fees. There are three options. First, include it in
both Get Open Rentals and Add Return Date to
ensure complete processing of late fees for old and
new returns. Second, leave it separate and execute it

Until No
More Open
Rentals

Until No
More Open
Rentals

Until No
More
Videos

Until No
More New
Rentals

Get Customer 10

Business Area Analysis Activities 371

Until No
More Returns

Print ReceiPt)

More
Returns

FIGURE 9-36 Rentals with Returns Dependency Diagrams

for all open rentals, including those returned today;
as a separately iterated process. The first option
guarantees double processing for all returns when
rentals are also done. The second option requires
somewhat complex logic for memory loop process­
ing. Both options are acceptable technically and
from a business perspective. The last option
is to defer a decision. Since we have no business
basis for a decision, we leave the process on the
diagram and defer any decision about grouping
until design. The final dependency diagram is shown
in Figure 9-39 and reflects all of the decisions dis­
cussed above.

The dependency diagram for periodic activities
is in Figure 9-40. The diagram is somewhat strange

because there is no necessary connection between
any of the processes. It reflects the independence of
the processes, and is the basis for the PDFD which
completes the dependency diagram. This type of
independence also identifies possible concurrent
processes and is considered a normal diagram.
Notice that even though these processes would be
connected on a menu for processing, no menu
selection options are shown at this logical level. The
reason is that the business requires no menu.

To summarize, to develop the dependency dia­
gram list the processes for an activity, in sequence.
Then, examine each process to determine its rela­
tion to all other processes. If complex processing is
involved, as we have here, separate out the options

372 CHAPTER 9 Data-Oriented Analysis

Until No
More Open
Rentals

Until No
More
Returns

Until No
More Open
Rentals

Until No
More Valid
Videos

Until No
More
Returns

Print ReceiPt)

FIGURE 9-37 Returns With Rentals Dep~ndent Processes

and develop dependency diagrams for each opti,on.
Be careful to couple processes based on business
requirements rather than on convenience. Conve­
nience is decided in design. Consolidate any options
and only change processes if required to support
integrated process interactions. .

Notice also that in going back to the client for
information during this procedure, we obtained
information we would otherwise not have about the
need for pedodic purging of the file ap.d require­
ments for IRS documentation.

Develop Process Data Flow
Diagram

Rules for Developing Process Data Flow
Diagram

This is a three step process:

1. For each process dependency diagram, exam­
ine every process to determine if external
events provide information used in the execu-

Business Area Analysis Activities 373

Tightly Coupled Alternative: Get Open Rentals ----,

Loosely Coupled Alternative (Preferred):

Get Return ID

Add Return Date

Check Late Fees

Until No
More Open
Rentals

Until No
More Open
Rentals

No More
Open Rentals

Add Return Date

Until No
More
Returns

Until No
More Open
Rentals

FIGURE 9-38 Alternative Coupling Strategies in Return Processing

tion of the work. For each external event, add
an event trigger and identify the event (or the
data it provides).

2. For entities from the ERD, examine their use
by processes in each diagram. For known
connections, add one file for each entity to
the diagram and connect them to processes
with arrows depicting the direction of data
flow. For all files, when a relation is not the
unit of data retrieved, list the attributes that
make up the data flow.

3. Review the triggers and files with the user to
verify correctness.

U sing the process dependency diagram, first add
the information about triggers, that is, the data
or events that trigger each process. If arrival of
information from another process is the trigger,
identify the data on the lines connecting the rec­
tangles. Use large arrow outlines for event triggers.
Use single-directed lines for data triggers (see Fig­
ure 9-41).

374 CHAPTER 9 Data-Oriented Analysis

Until No
More Open
Rentals

If First

Until No
More
Returns

Until No
More
Returns

Print ReceiPt)

FIGURE 9-39 Consolidated Process Dependency Diagram

(Query)

(EOO Process)

(EOM Process)

FIGURE 9-40 Periodic Activitied
Dependency Diagram

Each process must be triggered, or initiated, by
either an event or arrival of data. If you have a pro­
cess without either data or event as input, then you
have missed information during data gathering and
should return to the user to obtain the information.

Identifiers for both data and events should link
directly to some entity. The trigger may be the
arrival of some entity or may be some partial data
from an entity. If the identified data does not map
directly to an entity from the ERD, you are also
missing information and should return to the user to
obtain the information.

Next, data files are identified, if they are known.
Not all files are necessarily identified at this point of

Event Trigger

Data Trigger

FIGURE 9-41 Trigger Identification on
Process Data Flow Diagram

the analysis. However, most information that is
required in persistent files will have been identified
as entities on the ERD. The files are connected to
processes with the appropriate arrow signifying the
direction of data flow. If a unit of data other than a
logical relation is required, the lines connecting files
should be labeled with their contents.

PDFD validation is performed last to guarantee
that all functional requirements are satisfied by the
processes depicted. The validation walk-through
uses both the original text or functional specification,
plus the decomposition from the specification, plus
any additional user requirements or information
obtained throughout the analysis activities.

ABC Video Example Process Data Flow
Diagram

To complete the ABC PDFD, begin with the final
process dependency diagram. We examine each pro­
cess sequentially, adding events and data files as
needed to complete the logical processing. For each
process, ask: How does this process know to exe­
cute? What information does it need? Where does
the information come from? Ask these questions
without paying attention to current connections from
other processes. For each process, when you have
the answers, look at the current connections and
decide if they completely define the required list of
information. If not, define the external 'triggers'­
either data or events-that initiate the processing.
The individual chunks of the diagram on which we
are working are shown with the discussion. They

Business Area Analysis Activities 375

are integrated into one diagram at the end of the
discussion.

The first process, Get Request, requires input of
either a phone number or a video ID to begin exe­
cution. The information is provided by the customer
and entered into the computer (either by scanning
or typing) by the clerk. Since the information is
externally generated by a rental or return request, the
data being entered is an event. That is, arrival of a
Customer ID or Video ID into the computer triggers
the Get Request process which begins the sequence
of processes for rental/return processing. The hollow
arrow is added to the diagram to show the arrival of
the Request event (see Figure 9-42).

After the request is entered, the process deter­
mines which data were entered and passes control
to the appropriate process. If the Customer ID was
entered, the Get Valid Customer process would be
triggered. For that process, customer information
from storage is required for validation and credit
checking. A file symbol for a customer information
file with a line indicating data into the process is
added to the diagram (see Figure 9-42). Since there
is a possibility that the customer is new, an arrow
going to the Customer File is also shown.

Next in rental processing, the Open Rentals File
should be read to retrieve all information about Open
Rentals relating to the present customer. These are
formatted and displayed. The file is added as input to
the Get Open Rentals process (see Figure 9-42).

If the request entered had been a Video ID, the
Get Open Rental process followed by the Get Valid
Customer process would have been triggered. The
control of these processes is shown by the selection
arrows from the dependency diagram. The data and
trigger requirements do not change. We might make
a note that, in this execution of Get Valid Customer,
we do not allow new customers to be added. That
is, it should be logically impossible for a new cus­
tomer to have a return.

Return processing takes place next with two pos­
sible variations. First, if the first Request was a Video
ID, there already is a return Video ID in memory and
no Get Return ID is triggered. Instead, Add Return
Date/Late Fees is triggered. The second variation is
in the rental process; returns are entered after open
rentals are displayed. The Get Return ID process is

376 CHAPTER 9 Data-Oriented Analysis

Until No
More Open
Rentals

Open Rental

Until No
More
Returns

Until No
More Open
Rentals

FIGURE 9-42 Process Request 'Chunk' of PDFD

triggered but it now needs the Video ID, external
information, to process. The event trigger added to
the process, then, contains Video IDs (see Figure
9-42). The data is made available to the Add Return
Date process. Get Return ID and Add Return Date
iterate until the Return ID is ended (exactly how is
decided during design). Then all Open Rentals (and
returns) are Checked for Late Fees.

Next, the Get Valid Video process executes to
identify videos requested for rental. The informa­
tion needed for this process comes from an external
trigger, the customer-supplied Video ID. The ID is
validated by reading the Video File and a Copy File.
For rental/return processing, the Video and Copy
files are always used together, so they are shown in
one file symbol. By doing this, we are reminded that
we need a user view that connects the two relations
for rental processing. Customers are to be reminded
when they have already rented a particular video,
therefore, Customer History File is also read during
this process. Its file symbol is added to the diagram.

The Total Amount Due is passed to trigger Pro­
cess Payment and Make Change. The Total Amount
Due is displayed from the previous process and
awaits the external entry of Customer Payment
Amount to compute change. This requires an event
trigger for Customer Payment Amount (see Figure

9-43). The formula used is Total Amount Due - Cus­
tomer Payment Amount = Balance. When the Bal­
ance is zero, the rental/return process is complete
and all files may be updated as required. Each line of
the rental/return, signifying either an existing Open
Rental with/without Return Date or a new Open
Rental is processed separately to determine the next
process to execute. This represents the normal pro­
cess; now we must also think about exceptions:
What if the balance does not go to zero? Can a cus­
tomer ever overpay and leave so fast that they are
owed change? Can a customer ever owe money and
leave without paying? If the answer to either of these
questions is yes, we also need an optional event trig­
ger End of Payment that forces completion of the
Process Payment process and shows that the cus­
tomer is owed money. For the present, we assume
that we iterate through Process Payment until Bal­
ance equals zero. Finally, process payment needs to
provide information for End of Day totals. A file for
EOD data will be created from this process. Notice
that this file is not on the ERD, but should it be? It
does not represent an entity that the company keeps
information about, or does it? When the ERD was
developed, we focused on the rent/return processes
only and ignored nonrental activities. By ignoring
accounting and its needs for rent/return data, we

Business Area Analysis Activities 377

Customer History

~---I Video, Copy
'-----.,......" -===--'

End of Day

FIGURE 9-43 Rental and Payment 'Chunk' of PDFD

missed the entity for financial inform.ation relating to
rent/return. We should recheck with the accountant,
but it appears that the EOD Accounting Information
should be an entity that is added to the ERD, con­
nected to the Open Rental entity.

The last 'chunk' of the PDFD is for file update
and print processes. For each new rental, Create
Open Rental writes the new rental to the Open
Rental File (see Figure 9-44). For each unpaid return
(i.e., existing Open Rental with Return Date not

Copy

null), the Open Rental is rewritten to the file (see
Figure 9-44). For each paid returned video, some
logical delete indicator must be set and the Open
Rental is then rewritten to the file. If an existing
Open Rental had no processing, no action is re­
quired, but it might be easier, and more consistent, to
only look at return and paid criteria to determine
correct writing. No business criteria exist for this
option, therefore, this is a design decision not
made here.

I-------.J End of Day

FIGURE 9-44 File and Update' Chunk' of PDFD

378 CHAPTER 9 Data-Oriented Analysis

Until No
More
Returns

Until No
More Open
Rentals

)4-------; Video, Copy
'------.---r-'" Until No

More Valid
Videos

End of Day

Copy

FIGURE 9-45 Consolidated Process Dependency Diagram

Next, history file processing updates both Video
History and Customer History. Notice that the de­
tails of history processing require another level of
decomposition, which is left as a student exercise.
Last, the receipt is printed. The data trigger from
Process Payment initiates this process; the physical
output is not on the PDFD.

The composite PDFD with all of the chunks
integrated is shown as Figure 9-45. Before you look
at the other diagrams, try to develop one or all of

them yourself. The remaining PDFDs are shown as
Figure 9-46, for query processing, and Figure 9-47
for customer maintenance processing. The PDFDs
for Video Maintenance processing are a practice
exercise at the end of the chapter.

Next we evaluate the PDFD for completeness
based on the decomposition information from the
client and the original statement of the problem
(Chapter 2).

Errors to watch for are:

1. Processes on the decomposition that are
not self-contained are not processes. For
instance, 'end process' is a system action,
not a business process. You do not need a
process to which all other processes feed to
show a termination point on a PDFD (see
Figure 9-48).

2. Processes on the PDFD that are not identical
to the processes on the decomposition (see
Figure 9-49).

3. If process data trigger contents cannot be
identified, there may be no dependency.
Reevaluate the relationship, talking to the

Customer History

Video History

EOD Process

EOM Process

FIGURE 9-46 Periodic Activitied PDFD

Business Area Analysis Activities 379

user if necessary, to determine what data are
required for the dependent process.

4. If a process data trigger exists in a different
time, the connection is probably wrong. For
instance, you might be tempted to connect
query processing to rental/return in some way
(see Figure 9-50). These are disjoint activi­
ties and the only connection is through
the database.

5. For query processing, do not try to simulate a
menu selection process in the PDFD (see
Figure 9-51). Each type of query has its own
event trigger requesting information. Each

Customer

Video

Copy

EODArchive

EOD

Open Rental Archive

Open Rental

380 CHAPTER 9 Data-Oriented Analysis

Add Customer

Update Customer

Delete Customer

Query Customer

FIGURE 9-47 ABC Customer Maintenance PDFD

(Print ~eceipt)

,
(Terminate)

FIGURE 9-48 Nonprocess Problem

(Get Request)

versus

(Do Data Entry)

FIGURE 9-49 Name Names Do Not Match
Decomposition

type of query is distinct and separate from all
other queries. The queries may share files.

6. When more than one activity is shown on a
PDFD, problems are encouraged and the dia­
gram no longer clearly delineates any process
(see Figure 9-52). Place at most one activity
decomposition on a page. Use one side of the
paper only. Keep in mind that most of the
time, the information will be on a CASE tool
until printed for documentation, so there is
not really much wasted paper.

Query Customer

FIGURE 9-50 Data Trigger Timing
Problem

Business Area Analysis Activities 381

(Main Menu)

If Periodic ,
(Periodic Menu

1 , , -
(Query Customer') (Query Video

FIGURE 9-51 Simulated Menu Problem

Develop and Analyze
Entity/Process Matrix
Rules for Developing and Analyzing an
Entity/Process Matrix

This matrix is composed of the results from the ERD
and process decompositions; it requires neither the
process dependency nor the PDFD for completion.
Along the left margin, list each lowest-level process
from the process decomposition diagram. Use the
lowest-level processes, such that all elemental pro­
cesses for the organization and application area are
present. Along the top, list the normalized entities
from the ERD, with one entity in each column.

Completely identify which processes are allowed
to Create, Retrieve, Update, and Delete (CRUD)
each entity. Enter one or more of the letters as
allowed by the current organization's policies and
procedures for each entity.

When the matrix is complete, entities are grouped
by their affinity, or closeness, in processing entities.
If you do this step manually, group processes that
share create responsibility first. If the number of
clusters is reasonable for the size of the project, stop.
When you have analyzed the entire matrix, rearrange
the matrix by its clusters. You may have several clus­
ters that overlap. That is normal and not a cause for
worry. If you have only one cluster, reanalyze as nec­
essary using first update processing, then delete pro­
cessing, then retrieval, as the clustering criteria.
When you obtain a reasonable number of clusters, go
to the next step of the analysis. A reasonable number

)

, ,
(Query Rentals) (End of Day Process)

may be one to five for a small application, such as
ABC, or seven or more for a large application.

To perform manual affinity analysis, perform the
following procedure (here we do create affinity
only). Keep in mind that you are 'normalizing'
process-entity relationships. Look at each process
and its entities. For an entity/process cell, look down
the column and identify other cells in which create
processing is done (C). Make an erasable, colored
mark in those cells. Do this for all entities for
each process.

Even though it is an extra step, and quite a bit of
work, create an interim matrix for each potential
cluster. This interim matrix makes your visual
inspection of relationships easier and actually speeds
the affinity analysis. Iterating, build the interim
matrix, analyze it as described below, and add the
resulting cluster(s) to the new process/entity matrix.
Iteration is required because the interim clusters may
change as the relationships of each potential cluster
are analyzed.

To analyze a potential cluster, start at the first
process and look at the data it shares with the next
process in the list. Do these two processes share
80% 7 or more of their data creation (or update,
delete) responsibility? If yes, mark the original
matrix to show they are together and add the pro­
cesses and their entities to the interim matrix. If the
percentage is less than 80%, circle the second

7 80% is not a hard number. You adjust the percentage affinity
needed to find multiple clusters. If all processes share all
responsibilities, the organizational processes must first be
redesigned, then this analysis is repeated.

382 CHAPTER 9 Data-Oriented Analysis

Customer History

Video History

Add Customer

Update Customer

Delete Customer

FIGURE 9-52 Combined Process Problem

process for potential deletion from this cluster. If
the percentage affinity is between 50-80%, look at
the next process that might be related. Do either of
the two first processes share more than 80% of their
data with the third process? If all three share, clus­
ter them all. If the third strongly relates to the second
process but not the first, or the third relates to the first
but not the second, still cluster all of them for the

Video

Copy

Separate
page

I EOD Archive

J

I End of b (EOD Process

,

I

moment. Continue to do this type of stepwise com­
parison of processes using entity affiliation to deter­
mine process affinity. Each successive process's
functions on the entity are compared to all previous
processes, not just the first. If a new process is
strongly related to all of them, the cluster remains
intact. If the new process strongly relates to some
subset of processes, keep it. If the new process

strongly relates to only one process, consider those
two processes as a second cluster and set them aside
(i.e., create a new interim matrix) with their data for
analysis of that cluster. As you complete analysis of
a cluster, add it to the new process/entity matrix.
Return to the original matrix and draw a line through
each process that has been added to a cluster, to
ensure that there is no replication of a process and
to ensure that processes that are not currently in a
cluster are added to a cluster eventually.

As you create the new process/entity matrix,
leave several lines and columns of space between
each cluster. At the end of the analysis, reanal­
yze processes that have not been assigned to any
cluster. Look at the interim matrices to which each
odd process was compared. Find the cluster to which
it has the most affinity, and add the process to
that cluster. If there is no affinity, leave the entity
separate.

When affinity analysis is complete, the clustered
processes are ready for analysis to determine if they
can be in the same execution unit, and the data
shared by a cluster should be analyzed to determine
the physical design of the database and the needed
user views of data. These activities are done during
the design phase.

ABC Video Example Entity/Process
Matrix

To develop the entity/process matrix, list the lowest
level processes from the decomposition diagram
down the left column. Then, list the entities across
the top, one per column. For each process, add which
functions it has for each entity. Possible functions
are create, retrieval, update, or delete (CRUD,
respectively). The ABC process-entity matrix is
shown as first completed in Table 9-5. In completing
the table refer back to the PDFD. Use the arrows and
names of the processes to identify the type of pro­
cessing. For entities with arrows only going into a
process, the correct code is 'R,' for retrieval. For
entities with arrows only going out of a process, the
correct codes are 'C,' 'U,' or 'D,' for create, update,
or delete, depending on the processing to take place.
For example, Create Video has a 'C' under Copy and
a 'C' under Video because it creates both.

Business Area Analysis Activities 383

First, we check each entity to see if all possible
processing is accounted for. Customer, Copy, and
Video all have CRUD processing and appear com­
plete. Open Rental has CRUD processing during
rent/return and R processing as part of Query. Open
Rental, too, looks complete.

EOD Financial Information is created but not
ever deleted, which is wrong. It should be archived
or deleted at the end of the processing day. We will
assume archival at the moment and add both process
and data changes back to all other diagrams as
needed. We can further assume that the delete
process and create process follow. This is an exam­
ple of what happens with late identified entities. The
processing is not as thoroughly analyzed and some
information could 'fall through the cracks.' The
entity /process matrix helps assure that processing
is completely defined.

Finally, history is only created and retrieved. We
have not yet defined history, so the decision may not
be final. In general, history files are only created and
retrieved. They are permanent records of past trans­
actions or business states, so they can not be updated
or deleted and still be known as 'history.'

When the matrix is complete, we cluster the
processes by their entity affinity (see Table 9-6).
There are five possible clusters, but most of the data
are used by many of the processes. So, the cluster­
ing shown is to give an example of how, at the
application level, affinity analysis can be used to de­
termine user views for DBMS access. For ABC, be­
cause of the extensive retrieval activities, one subject
database would be defined. EOD data are kept sepa­
rate from all other data. Customer, Video, Copy, and
Open Rental data are all used to create individual
relations and joint user views.

First we analyze organizational sufficiency as it
relates to processes. Is each entity created by one
process only? The answer here is yes. Do all pro­
cesses creating, updating, and deleting an entity
report to the same manager? Here the answer is
again, yes. So the organization is sufficient.

Next we look at the entities and their usage to
determine subject area databases. Again, ABC is
a small company, so the data are mostly in one

(Text continues on page 386)

384 CHAPTER 9 Data-Oriented Analysis

TABLE 9-5 ABC Video Process/Entity Matrix

Entities = Open Customer Video Rental
Processes Customer Video Copy Rental History History Archive EOD

Get Request R

Get Valid Customer R

Get Open Rentals R R R

Add Return Date

Check for Late Fees

Get Valid Videos R R R

Process Payment and
Make Change U

Create Open Rental C

Update Open Rental U

Update/Create CU

History

Print Receipt

Query Customer R R R

Query Rental R R R R R

Query Video R R R R

Query History R R R R R R R

Query EOD R

EOD Processing CRD

Rental Archive D C

Processing

Create Customer C

Update Customer U

Delete Customer D

Create Video/Copy C C

Update Video/Copy U U

Delete Video/Copy D D

Business Area Analysis Activities 385

TABLE 9-6 ABC Video Process/Entity Matrix Affinity Clusters

Entities =
Processes

Create Customer

Delete Customer

Get Valid Customer

Query Customer

Update Customer

Create Video/Copy

Update Video/Copy

Delete Video/Copy

Get Open Rentals

Get Valid Videos

Query History

Query Video

Create Open Rental

Update Open Rental

Query Rental

Rental Archive

Processing

Update/Create

History

Process Payment and
Make Change

EOD Processing

Query EOD

Add Return Date

Check for Late Fees

Get Request

Print Receipt

Open
Customer Video Copy Rental

C

D

R

R R

U

C C

U U

D D

R R R

R R

R R R R

R R R

C

U

R R R R

D

Customer Video Rental
History History Archive

R

R

R R R

R

R

C

I CU CU
I

EOD

U

CRD

R

386 CHAPTER 9 Data-Oriented Analysis

Data Entities and Final Attributes

Entity

Customer

Open Rental

Video

Copy

Customer History

Video History

EOO

Rental Archive

Attributes (Key underlined)

Customer Phone ID
Customer Name
Customer Address
Customer City
Customer State
Customer Zip
Customer Credit Card
Number
Credit Card Type
Credit Card Expiration Date

Customer Phone ID
Video ID
CopylD
Rental Date
Return Date
Late Fee Due
LF Paid
Rental Fees Due
RF Pd
Other Fees Due
OF Paid

Video ID
Video Name
Entry Date
Rental Rate

Video ID
CopylD
Date Received
Status

To Be Defined

To Be Defined

To Be Defined

To Be Defined

FIGURE 9-53 Summary Repository Entries

database. Video, Customer, Open Rental, and End
of Day information will be stored together. Video
and Customer are separate from the other entities
because they are only modified by one process. His-

Activities for Rental/Return and All Processes

Activity

Rent/Return

Periodic Processing

Customer Maintenance

Video Maintenance

Processes

Get Request
Get Valid Customer
Get Open Rentals
Add Return Date
Check for Late Fees
Get Valid Videos
Process Payment and Make

Change
Create Open Rental
Update Open Rental
Update/Create History
Print Receipt

Query Customer
Query Rental
Query Video
Query History
Query EOD
EOD Processing
Rental Archive Processing

Create Customer
Update Customer
Delete Customer

Create Video/Copy
Update Video/Copy
Delete Video/Copy

Deferred Items for Decision During Design

Item

Check for Late Fees

History

Decision

Separate or Consolidated
with either/or both
Get Open Rentals
Add Return Date

Is video history updating
going to be done to a history
file or to the current Copy
relations? This requires
monthly update. The history
file requires further decisions
about what is on the file.

torical information could be stored in a separate
database or set of files. In most companies and ap­
plications, history files are kept separate from the
other databases and files. For applications with huge

amounts of data, history is even on a different stor­
age medium. History is frequently kept on tape and
the current databases are on disk. Depending on vol­
ume, we would consider tape storage for history
here, too.

The entity/process matrix analysis completes the
BAA. At this time, all entities, processes, attributes,
and their interrelationships should be known based
on business requirements. All information is docu­
mented in a repository for use in the next phase. The
repository entries, without details, are presented in
Figure 9-53.

SOFTWARE ____________ _
SUPPORT FOR __________ _
DATA-ORIENTED ________ _
ANALySIS ________ _

There are many CASE tools that support data mod­
eling and other data-oriented analysis tasks. Tools
that also support Information Engineering are inte­
grated toolsets that cover the complete development
life cycle. CASE support for Information Engineer­
ing is the best of any methodology. Two CASE
environments support the entire IE life cycle from
enterprise analysis through maintenance. The two
tools are IEFTM8 and ADW. The CASE tools are by
no means perfect, however; interphase linkages are
weak; numerous bugs plague new releases of ADW;
and old releases of IEF were designed so rigidly that
all graphical and definitional forms were required to
use the tool effectively. The positive aspect of both
tools is that they can feed code generators that can
automate development of as much as 70% of the
necessary program code. Both ADW and IEF sup­
port all of the graphical and definitional forms dis­
cussed in this chapter. The list in Table 9-7 includes
many other CASE tools that support some, but not
all, graphical, documentation, or mental models of
IE and data-oriented analysis.

8 IEPM is a trademark of the Texas Instruments Co., Dallas,
TX. ADWTM is a trademark of Knowledgeware, Inc., Atlanta,
GA.

References 387

SUMMARy ____________ _

Data-oriented methodologies are based on the notion
that data are more stable than processes in business.
Organizations and procedures change regularly; the
data on which they work does not. Data-oriented
methodologies, then, concentrate on data as the ini­
tial focus of study. The theory underlying data meth­
ods applies semantic modeling to data and system
theory to business functions.

Information Engineering's business area analysis
(BAA) is the example of data-oriented methodol­
ogy described here. BAAs begin with an entity­
relationship diagram that is fully identified and nor­
malized. Business functions are decomposed to cre­
ate process decomposition, process dependency, and
process data flow diagrams.

Business processes from the decomposition are
coupled to the entities from the ERD to form an
entity/process matrix, also called a CRUD matrix
(for create-retrieve-update-delete). The CRUD ma­
trix defines responsibility for actions on each entity
for each process. Affinity analysis of the CRUD
matrix clusters processes and data into groups. The
affinity groupings are used to decide the need for
additional project scoping, future applications, and
alternatives for subject database design. All infor­
mation from the BAA is documented in a repository.

REFERENCES __________ __

Date, C. J., An Introduction to Database Systems, Vol. 1,
5th edition. Reading, MA: Addison-Wesley, 1990.

Finkelstein, Clive, An Introduction to Information Engi­
neering: From Strategic Planning to Information Sys­
tems. Reading, MA: Addison-Wesley, 1989.

Knowledgeware, Inc., Information Engineering Work­
bench™/Analysis Workstation, ESP Release 4.0.
Atlanta, GA: Knowledgeware, Inc., 1987.

Loucopoulos, Pericles, and Roberto Zicari, Conceptual
Modeling, Databases and CASE: An Integrated View
of IS Development. NY: John Wiley & Sons, 1992.

Martin, James, Information Engineering: Book 2, Plan­
ning and Analysis. Englewood Cliffs, NJ: Prentice­
Hall, Inc., 1991.

Martin, James, and Carma McClure, Diagramming Tech­
niques for Analysts and Programmers. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1985.

388 CHAPTER 9 Data-Oriented Analysis

TABLE 9-7 Data-Oriented Analysis CASE Support

Product

AnalystlDesigner Toolkit

Anatool

Bachman

CorVision

Deft

Design/1

ER -Designer

Excelerator

IEF

IEW,ADW

Company

Yourdon, Inc.
New York, NY

Advanced Logical SW
Beverly Hills, CA

Bachman Info Systems
Cambridge, MA

Cortex Corp.
Waltham, MA

Deft
Ontario, Canada

Arthur Anderson, Inc.
Chicago,IL

Chen & Assoc.
Baton Rouge, LA

Index Tech.
Cambridge, MA

Texas Instruments
Dallas, TX

Knowledgeware
Atlanta, GA

Texas Instruments, A Guide to Information Engineer­
ing Using the IEF. Dallas, TX: Texas Instruments,
1988.

KEy TERMS ______ _

activity
affinity
affinity analysis
architectures
associative entity
attribute
attributive entity
business area analysis

(BAA)

business function
business process
business redesign
cardinality
CRUD matrix
data administration
data trigger
direct method of

normalization

elementary process
entity

Technique

Entity -Relationship
Diagram (ERD)

ERD

BachmanERD

ERD

ERD

ERD

ERD

ERD

Functional Decomposition
ERD
Entity Hierarchy
Process Hierarchy
Process Dependency
Process Data Flow Diagram
Entity!Process Matrix

Functional Decomposition
ERD
Entity/Process Matrix

entity -relationship diagram

optional relationship
process data flow diagram

(PDFD)
(ERD)

entity type
entity/process matrix
entity structure analysis
event trigger
functional decomposition
fundamental entity
instance
many-to-many relationship
normalization
one-to-many relationship
one-to-one relationship

process data trigger
process dependency

diagram
process relationship
relational database theory
relationship
relationship entity
required relationship
subject area database
tabular method of

normalization
trigger

Study Questions 389

TABLE 9-7 Data-Oriented Analysis CASE Support (Continued)

Product

Maestro

Multi-Cam

ProKitVVorkbench

Company

SoftLab
San Francisco, CA

AGS Mgmt Systems
King of Prussia, PA

McDonnell Douglas
St. Louis, MO

Technique

ERD

ERD

ERD

SVV Thru Pictures Interactive Development Environments
San Francisco, CA

ERD

System Engineer

Teamwork

Telon

LBMS
Houston, TX

CADRE Tech., Inc.
Providence, RI

Pansophic Systems, Inc.
Lisle,IL

ERD
Entity Life History Diagram

ERD

ERD

The Developer ASYST Technology, Inc.
Naperville, IL

ERD
Organization Chart
Operations Process Diagram
Matrix Diagram

vs Designer Visual Software Inc
Santa Clara, CA

EXERCISES _______ _

1. Complete the PDFD for Video Maintenance.
2. The Get Valid Video process has as its sub­

processes: Get Video Data, Create Video File,
and feeds into the Check Previous Rental
process. Do a process dependency diagram for
these subprocesses. Then add event triggers and
data files to complete the PDFD.

STUDY QUESTIONS ____ _
1. Define the following terms:

affinity attributive entity

Process Flow Diagram

associative entity m:n relationship
CRUD matrix normalization
elementary process possible number of
entity entity relationships
entity-relationship possible nature of

diagram entity relationships
functional promoted relationship

decomposition trigger
2. Compare data flow diagrams from Chapter 7 to

process data flow diagrams in this chapter. List
five similarities and five differences between
them.

3. Find a small company and develop an entity­
relationship diagram of their data. For each

390 CHAPTER 9 Data-Oriented Analysis

entity, develop an attribute list and normalize
the data. Discuss the problems you have in
developing the answer with your class.

4. What is a 'promoted relationship' in an ERD
and what is the result of the promotion?

5. Normalization assumes that you know the rela­
tionships of data within and between entities.
What happens if you do not have the data rela­
tionships correctly specified in normalization?

6. What does normalization, as performed during
analysis, define? What does it not define?

7. What is the purpose of an entity/process
matrix?

8. Describe the analysis of an entity/process
matrix.

9. What is the significance of subject area data­
bases? What do subject area databases have in
common with normalization?

10. What is the importance of an organizational
ERD? What problems might arise when you
begin the ERD definition for an application
during the business area analysis?

11. Describe the relationships between the dia­
grams developed throughout IE-BAA. That is,
how is each diagram used in the creation of
successor diagrams?

12. What is the purpose of functional decom­
position?

13. What are the three conditions under which you
cannot eliminate an entity?

14. On a process dependency diagram, what is the
significance of directed lines connecting two
processes? Does this meaning change when
the processes are connected on a PDFD? If
so, how?

15. When should printed items be included ort a
PDFD?

16. What is a functional decomposition in IE?
Define the diagram and the contents at each
level of detail. How do you know when the
decomposition is complete, i.e., when to stop?

17. What are the steps to developing a PDFD?
18. Define the allowable inputs to a process on a

PDFD.
19. What is a CRUD matrix? How is it used?
20. What are the allowable connections on a

process dependency diagram?
21. What are the allowable connections on a

process data flow diagram?
22. List four problems and their solutions when

developing a PD FD. * EXTRA-CREDIT QUESTIONS

1. Develop an IE analysis for the accounting (or
purchasing) function at ABC Video. Refer to
other books to obtain details about accounting
applications. One such book is Online Business
Computer Applications, 3rd edition, Alan L.
Eliason, NY: MacMillan, 1991.

2. Compare IE to process analysis. What are the
similarities? What are the differences? How are
the same terms used differently? Which method
has the least ambiguity? Which method results
in a more complete analysis?

3. Do an entity-relationship diagram for the AOS
Tracking System problem in the Appendix. Nor­
malize the data. Compile a list of issues for
future resolution dealing with the data. The
issues should relate to how many relations are
needed, how the data will be used, and how to
minimize the number of relations without hav­
ing many unused attributes in each relation.

4. Do a process decomposition diagram and a
PDFD for the AOS Tracking System described
in the Appendix.

5. What do you not know after BAA is complete?

