- Global Text -

=1 e
o

. L9

¥

)

This book is licensed under a Creative Commons Attribution 3.0 License

The New Software
Engineering

Sue Conger

Copyright © 2008 by Sue Conger

For any questions about this text, please email: drexel@uga.edu

The Global Text Project is funded by the Jacobs Foundation, Zurich, Switzerland

C

This book is licensed under a Creative Commons Attribution 3.0 License

This edition was scanned and converted to text using Optical Character Recognition. We are in the process of

converting this edition into the Global Text Project standard format. When this is complete, a new edition will be

posted on the Global Text Project website and will be available in a variety of formats upon request.

The New Software Engineering 2 A Global Text

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:drexel@uga.edu?subject=Basic%20Political%20Concepts

THE NEW

SOFTWARE

ENGINEERING

CONTENTS

CHAPTER 1

OVERVIEW OF

SOFTWARE ENGINEERING 1

Introduction 1
Software Engineering 2
Applications 3
Application Charactcristics 5
Application Responsiveness 13
Types of Applications 17
Applications in Business 22
Projcct Life Cycles 23
Sequential Project Life Cycle 23
Iterative Project Life Cycle 29
Learn-as-You-Go Project Life Cycle 31

| PARrT]

Methodologies 34

Process Methodology 34

Data Methodology 34

Object-Oriented Methodology 35

Semantic Methodologies 37

No Mcthodology 38
User [nvolvement in Application Development 39
Overview of the Book 40

Applications 40

Project Life Cycles 40

Part E: Preparation for Software Engineering 40

Part II: Project Initiation 40

Part I1[: Analysis and Design 41

Part TV: Implementation and Operations 41
Summary 41

CHAPTER 2

| PREPARATION FOR SOFTWARE ENGINEERING 45

LEARNING APPLICATION

DEVELOPMENT 46

Introduction 46

How We Develop Knowledge and Expertise 46
Learning 46
Use of Learned Information 48
Expert/Novice Differences in Problem

Solving 48

How to Ease Your Learning Process 50

Application Development Case 30
History of the Video Rental Business 51
ABC Video Order Processing Task 51
Discussion 53

Summary 54

CHAPTER 3
PROJECT MANAGEMENT 57

Introduction 57
Complementary Activities 38
Project Planning 58
Asgigning Staff to Tasks 62
Sclecting from Among Different
Alternatives 64
Liaison 67
Projcet Sponsor 67
User 67
IS Management 69
Technical Staff 69
Operations 69
Vendors 69

vi

Contents

Other Project Teams and Departments 70
Personnel Management 70

Hiring 70

Firing 71

Motivating 71

Career Path Planning 72
Training 72
Evaluating 72

Monitor and Control 74
Status Monitoring and Reporting 74
Automated Support Tools for Project

PLANNING 113

Management 79

Completeness 86
Ambiguity 86
Semantics 86
Volume 86

Data Colicction Techniques 87
Single Interview 87
Meetings 92
Observation 94
Temporary Job Assignment 93
Questionnaire 95
Document Review 97
Software Review Y8

Introduction 113
Conceptual Foundations of Enterprise

Reengineering 113

Planning Reengineering Projects 117
Reengineering Methodology
Identify Project Sponsor 120

Assign Staff 121

acape the Project 122
Create a Schedule 123
Identify Mission Statement
Gather Information 124

119

124

Summary 80 Data Collection and Application Type 98
Data Collection Technique and Data Type 98
Data Type and Application Type 99
CHAPTER 4 Data Collection Technique and Application
DATA GATHERING FOR Type 101
APPLICATION DEVELOPMENT 83 Professionalism and Ethics 102
. Ethical Project Behavior 103
Introduction 83 , . .
Ethical Reasoning 106
Data Types 83 Summary 107
Time Orientation 84
Structure 84
_ PArRTII
_ PROIJECT INITIATION 111
CHAPTER 5 Summary of the Architectures 125
ORGANIZATIONAL Translating Information into Architecture 128
REENGINEERING Architecture Analysis and Redesign 133
AND ENTERPRISE Implementation Planning 140

Enterprise Analysis Without Organization
Design 143

Automated Support Toels for Organizational
Reenginecring und Enterprise Analysis 143

Suminary 143

{CHAPTER 6
APPLICATION FEASIBILITY
ANALYSIS AND PLANNING 148

[ntroduction 148
Definition of Feasibility Terms 148

150
150

Feasibility Activities
Gather Information

Contents vii

Evaluate Financial Feasibility 187
Document the Recommendations 193

Develop Alternative Solutions 159 Automated Support Taols for Feasibility
Evaluate Alternative Solutions 170 Analysis 194
Plan the Implementation 172 Summary 195
PART II1
ANALYSIS AND DESIGN 199
Introduction 199 Transform Analysis 295
Application Development as a Translation Complete the Structuze Chart 303
Activity 202 Design the Physical Database 310
Organizational and Automated Support 209 Design Program Packages 312
Joint Application Development 210 Specify Programs 317
User-Managed Application Development 216 Automated Support Tools for Process-Oriented
Structured Walk-Throughs 217 Design 319
Data Administration 218 Strengths and Weaknesses of Process Analysis
CASE Tools 222 and Design Methodologies 322
Summary 225 Summary 324
CHAPTER 7 CHAPTER 9
PROCESS-ORIENTED DATA-ORIENTED ANALYSIS 328
ANALYSIS 227 :
Introduction 328
Introduction 227 Conceptual Foundations 329
Conceptual Foundations 227 Definition of Business Area Analysis Terms 329
Summary of Structured Systems Analysis Business Area Analysis Activities 339
Terms 228 Develop Entity-Relationship Diagram 339
Structured Systems Analysis Activities 231 Decompose Business Functions 356

Develop Context Diagram 234

Develop Data Flow Diagram 241

Develop Data Dictionary 261
Automated Support Toels 270
Summary 270

CHAPTER 8
PROCESS-ORIENTED DESIGN

Introduction 279
Conceptual Foundations 279

279

Definition of Structured Design Terms 280
Pracess Design Activities 293
Transaction Analysis

294

Develop Process Dependency Disgram 363
Develop Process Data Flow Diagram 372
Develop and Analyze Entity/Process
Matrix 381
Software Support for Data-Oriented Analysis 387
Summary 387

CHAPTER 10

DATA-ORIENTED DESIGN 391

Introduction 391

Conceptual Foundations 391

Definition of Information Engineering Design
Terms 392

vill Contents

Information Engineering Design 401
Analyze Data Use and Distribution 401
Define Security, Recovery, and Audit

Controls 410
Develop Action Diagram 424
Define Menu Structure and Dalogue Flow 438
Plan Hardware and Software Installation

and Testing 445

Automated Support Tools for Data-Oriented
Design 4533

Summary 456

CHAPTER 11

OBIECT-ORIENTED ANALYSIS 459

Introduction 459

Conceptual Foundations of Object-Oriented
Analysis 459

Definition of Object-Oriented Terms 461

Object-Oriented Analysis Activities 463
Develop Summary Paragraph 464
Identify Objccts of Interest 468
Identify Processes 473
Define Attributes of Objects 479
Definc Attributes of Processes 483
Perform Class Analysis 486
Draw State-Transition Diagram 492

Automatcd Suppaort Tools for Object-Oriented
Analysis 497

Summary 497

CHAPTER 12

OBJECT-ORIENTED DESIGN 501

Iniroduction 501

Conceptual Foundations 501

Definition of Objcet-Oriented Design Terms 502

Object-Oriented Design Activities 508
Allocate Objects to Four Subdomains 509
Draw Time-Order Event Diagram 512
Determine Service Objects 517
Develop Booch Diagram 521
Define Message Communications
Develop Process Diagram 529
Develop Package Specifications and

Prototype 533

525

What We Know and Don’t Know from OOA
and OOD 334

Automated Support Tools for Object-Oriented
Design 534

Summary 535

Appendix: Unix/C++ Design of ABC Rental 539

CHAPTER 13

SUMMARY AND FUTURE

OF S5YSTEMS ANALYSIS,

DESIGN, AND

METHODOLOGIES 554

Introduction 554

Comparison of Methodologies 554
Information Systems Methodologies Framework

for Understanding 555

Humphrey's Maturity Framework 562

Comparison of Automated Support
Environments 565

Research Relating to Analysis, Design, and
Methodologies 568

Business and Technology Trends that Impact
Application Development 569
Legacy Svstems. 570
Reposilories and Data Warchouses 570
Client/Server 571
Multimedia 572
Globalization 572

Summary 574

CHAPTER 14

FORGOTTEN ACTIVITIES 579

Introduction 579
Human Interface Design 579
Concepiual Foundations of Interface
Design 579
Develop a Task Profile 580
Option Selection 590
Functional Screen Design 601
Presentation Format Design 605
Field Format Design 620
Conversion 625
Identity Current and Future Data
Locations 626

Define Attribute Edit and Validate Criteria 627
Define Data Conversion Activities and
Timing 627
Select and Plan an Application Conversion
Stratcgy 627
ABC Conversion Strategy 629

PART IV

Contents ix

User Documentation 631
Mix of On-Line and Manuwal
Documentation 631
Automated Support Tools for Forgotten
Activities 632
Summary 633

IMPLEMENTATION AND MAINTENANCE 637

Introduction 637

CHAPTER 15

CHOOSING AN

IMPLEMENTATION

LANGUAGE 640

Introduction 640
Characteristics of Languages 640
Data Types 640
Data Type Checking 641
Language Constructs 642
Modularization and Memory Management 645
Exception Handling 646
Multinser Support 646
Nontechnical Language Characteristics 647
Comparison of Languages 650
SQL 650
Focus 656
BASIC 656
COBOL 656
Fortran 657
C 657
Pascal 657
PROLOG 658
Smalltalk 659
Ada 659
Programming Language Evaluation 660
Language Matched to Application Type 6600
Language Matched to Methodology 661
Automated Support for Program Development
662
Summary 662

CHAPTER 16
PURCHASING
HARDWARE
AND SOFTWARE 666

Introduction 666
Request for Proposal Process 667
Develop and Prioritize Requirements 667
Develop Schedule and Cost 667
Develop Request for Proposal 668
Manage Proposal Process 669
Evaluate Proposals and Select Alternatives 670
Informal Procurement 670
Contents of REP 670
Vendor Summary 670
Required Information 671
Schedule of RFP Process 674
Description of Selection Processes 674
Vendor Response Requirements 675
Standard Contract Terms 677
Hardware 677
Functionality 677
Operational Environment 678
Performance 678
Software 678
Needs 679
Resources 679
Performance 680
Flexibility 680
Operating Characteristics 680
RFP Evaluation 681
Genera) Evaluation Guidelines 681
Automated Support Tools for Evaluation 687
Summary 687

X Contents

CHAPTER 17

TESTING AND

QUALITY ASSURANCE 690

Introduction 690
Testing Terminology 690
Testing Strategies 694
Black-Box Testing 695
White-Box Testing 697
Top-Down Testing 699
Bottom-Up Testing 702
Test Cases 702
Matching the Test Level to the Strategy 704
Test Plan for ABC Video Order Processing 706
Test Strategy 706
Unit Testing 710
Subsystem or Integration Testing 718
System and Quality Assurance Testing 723
Automated Support Tools for Testing 729
Summary 732

CHAPTER 18

CHANGE MANAGEMENT 735

Introduction = 735
Designing for Maintenance 735
Reusability 735
Mecthodology Design Effects 738
Role of CASE 740
Application Change Management 741
Importance 741
Change Management Procedures 742
Historical Decision Logging 744
Documentation Change Management 744
Software Management 749
Introduction 749
Types of Maintenance 749
Reengineering 751
Configuration Management 751
Introduction 751
Types of Code Management 752
Configuration Management Procedures 755
Automated Tools for Change Management 756
Collaborative Work Tools 756
Documentation Tools 758
Teols for Reverse Engineering of
Software 759
Tools for Configuration Management 759
Summary 759

CHAPTER 19
SOFTWARE ENGINEERING
AS A CAREER 764

Introduction 764
Emerging Career Paths 764
Careers in [nfermation Systems 765
Level of Experience 765
Job Type 767
Planning a Career 772
Decide on Your Objective 773
Define Duties You Like to Perform 773
Define Features of the Job 773
Define Features of the Organization 775
Define Geographic Location 777
Define Future-Qrienied Job Components 777
Search for Companies That Fit Your
Profile 778
Assess the Reality of Your Ideal Job and
Adjust 778 _
Maintaining Professional Status 780
Education 781
Professional Organizations 781
User Organizations 783
Accreditation 785
Read the Literature 785
Automated Support Tools for Job Search 786
Summary 787

APPENDIX
CASES FOR ASSIGNMENTS 790

Abacus Printing Company 790

AOS Tracking System 791

The Center for Child Development 792

Colirse Registration System 794

Dr. Patel’s Dental Practice System 795

The Eagle Rock Golf League 796

Georgia Bank Automated Teller Machine System
796

Summer’s Inc. Sales Tracking System 797

Technical Contracting, Inc. 798

XY Univetsity Medical Tracking System 799

Glossary 801
Index 811

PREFACE

As we move toward the 21st century, the techriques,
teols, technologies, and subject matter of appli-
cations development are changing radically. Glob-
alization of the work place is impacting 18
development as well, by pressuring organizations to
strive for competitive advantage through auto-
mation, among other metheds. Strategic 1S, reusable
designs, downsizing, right-sizing, multimedia data-
bases, and reusable code are all discussed in the
same breath. Methodologies are being successfully
coupled to computer-aided software engineering en-
virocnments (CASE): vet object-oricnted methodolo-
gies, which are being touted as the panacea for all
problems, have not yet been fully automated . . . or
even fully articulated. Few if any tools, methods or
techniques address the needs of artificial intelligence
and expert system development, which are currently
driven by the program language being used for
development, New technologies for true distribu-
tion of processing arc maturing, and incegration
across hardware and software platforms is the ma-
jor 18 concern in multiple industries [Computer-
worid, 10f/15/90].

IS professionals must be jacks-of-all-trades as
never before, but there is also increased demand for
domain experts who are intimately familiar with all
aspects of a particular business area, such as money
transfer in banking. It is difficult for any one person
to be both expert and generalist. But there are many
systems developers—I call them software engi-
neers—who do possess these attributes. Today's
ideal software engineer is famsliar with the alterna-
tives, trade-offs and pitfalls of methodologies (notice
the plural form), technologies, domains, project life
cycles, techniques, tools, CASE cnvironments, hard-
ware, operaling systems, databasas, data architec-
tures, methods for user involvement in application
development, software, design trade-offs for the
problem domain, and project personnel skills. Few
professionals acquire all these skills without years of
experience including both continuing education and

variations in project assignments, company type, and
problem type. This book attempts to discuss much of
what should be the ideal software engineer’s project-
related knowledge and theoretical background in
order to facilitate and speed the process by which
novices become experts.

The goal of this book, then, is to discuss project
planning, project life cycles, methodologies, tech-
nologies, techniques, tools, languages, testing,
ancillary technologies (e.g.. database), and com-
puter-aided software engineering (CASE). For each
topic, alternatives, benefits and disadvantages are
discussed,

For methodologies, one major preblem is that
most writing on methods of development concen-
trates on what the analyst does. It 1s up to the indi-
vidual instructor and/or student to develop the fow
knowledge. Yet, the what knowledge is easy and
takes very little time to learn. If I say, “The first step
in object-oriented methodology is to make a list of
objects,” that sounds like a simple step. I may
understand what I'm to do, but not sow to do it. This
book is intended 10 shed some light on the how
information. One technique used to facilitate the
learning process is to develop the same case problem
in each methodology, highlighting the similarities,
differences, conceptual activities, decision pro-
cesses, and physical representations. Another tech-
nique is to provide cascs in the appendix thar can be
used throughout the text for many assignments, thus
allowing the student to develop a detailed-problem
understanding and an understanding of how the
problem is expressed in different methodologies and
using different technigues.

A related problem in software engineering texts
is that little information is available on current
research and future directions. Information systems
development is a 30-year old activity that is begin-
ning to show some signs of maturity, but is also con-
stantly changing because the type of systems we
automate is constantly changing. Research in every

Xi

xll Preface

area of software development, from enterprise analy-
sis through reengineering 20-year-old systems, is
taking place at an unprecedented rate. Moreover,
the landscape of system development will change
radically in the next 20 years based on the research
taking place today. This text attempts to highlight
and synthesize current research to identify future
directions.

Many software engineering texts never discuss
problems attendant with methodologies. This text
attempts to discuss methodologies in the context of
their development and how they have evolved to
keep pace with new knowledge about system devel-
opment. Both useful and not-se-useful representa-
tion techniques will be identified. The book may be
controversial in this regard, but at least the knowl-
edge that there are problems with methods should
remove some of the prevailing attitudes that there are
right and wrong ways to complete everything.
Unfortunately, #o methodology is complete enough
to guarantee the same results from two ditfferent
analysts working independently, so interpretations
differ. I try to identify my interprctations and gener-
alizations throughout the text.

The book is case-oriented in several ways. First, a
sample project is described, designed, and imple-
menied using each of the technigues discussed. Sec-
ond, cases for in-class development are provided.
Third, cases for homework assignments are also pro-
vided. Research on learning has revcaled that we
learn best through practice, analysis of examples,
and more practice. For each topic, an example of
bath acceptable and unacceptable deliverables is
provided, with discussion of the relative merits and
demerits of each. Through repeated use of different
cases, students will learn both the IS topics and
something about problem demains that will carry
over inte their professional lives.

Finally, this text has a bias toward planning,
analysis, and design activities even though the
entire life cycle is discussed. This bias is partly due
to practical and space limitations; however, it is also
becanse of the realities of changing software engi-
neering work. CASE promises to remove much of
the programming from business application devel-
opment by automating the code generation process.
Although languages are discussed, the discussion

focuses on how to choose the correct language for an
application based on language characteristics, rather
than on how o program in the language.

The audience for this text includes business. com-
puter information systems, and computer science
students. The courses for which this text is appro-
priate include software engineering, advanced sys-
tem analysis, advanced topics in infermation
systems, and IS project development. Computer
software engineering is moving away from a con-
centration on developing the perfect program to a
realization that even perfect programs never work
in isolation. Program cennecitons are significantly
more importani than individual program code. Thus,
even computer scientists are recognizing a need for
methodologies. techniques for system representa-
tion, and language selection.

The text was originally planned to accommodate
either quarter or semester classes. 1 have taught this
material in both. While the written material is longer
than anticipated, | believe the book can be covered in
one quarter because there are usually more contact
hours with students. One of my goals was a book
that did not require much additional cutside mater-
ia! to supplement the text; I hope this goal was met.
Much of the bulk is explaining the Aow processes in
Chapters 7-12, and these should be covered in class
to discuss alternatives, possible flaws in my think-
ing, and so on. If programming is aiso included in
the course, I suggest development of a two-quarter
(or semester) sequence thal includes software engi-
necring through system design in the first course and
the remaining subjects in the second course.

Every school seems 10 offer courses on “Ad-
vanced Topics in Syslems Development” ot Ad-
vanced Systems Analysis”™ or “IS Development
Project” that frequently use no boek because nothing
covers all the desired 1opics. This book attempts to
provide for these courses. Advanced systems analy-
sis and development courses all tend to concentrate
on alternatives during the design process from which
decisions must be made. The typical systems analy-
sis course might discuss one technique for each
major topic area: enterprise modeling, data modcl-
ing, process modeling, program design. That alter-
natives are available is certainly mentioned, but
there is simply not enough time to teach all topics,

nor are students able to assimilate much informa-
tion about alternatives without becoming hopelessly
confused. Advanced courses try to broaden the
knowledge base of studenis with discussions of
alternatives in each area. Even in these courscs,
without a hands-on orientation and concrete exam-
ples to use for reference, the number of topics and
alternatives is necessarily limited. The use of a sin-
gle case throughout the text, together with cases for
heme/school work practice, should broaden the
number of topic areas that can be covered adequately
in a one-semester course.

ACKNOWI EDGMENTS

No textbook is published without the involvement of
many people and I would like to acknowledge those
who have helped bring this book to fruiticn. I am
grateful, first, to my husband Dave and my daughter
Katie, who have put up with haphazard meals and an
absent-minded wife and mother for a long time.
Baby-sitters were especially important when I com-
muted four hours a day. I thank Elaine Black, Lis
Nielsen, Sarah Cropley, Louise Shipman, Jacquic
Drayvcott, Ellen Crawford, and Angela Moare.

Also, T wish especially to thank Peter Keen for his
unfailingly goed advice and uplifiing moral support.
[have never before worked with someone so free
with great ideas. Frank Ruggirello, who actually got
me moving and enlisted the supportive and helpful
reviewers, played a special part in the project. I want
to thank the reviewers, who put up with my typos
and grammar long enough to read about the ideas |
am attempting to convey. Their comments have ma-
terially enhanced the final quality of this book. These
reviewers include: Donald R. Chand, Bentley Col-
lege; Dale D. Gust, Central Michigan University;
Lavette Teague, California State Polytechnic Uni-
versity—Pomona; Jon A. Turner, New York Univer-

Preface Xl

sity; Douglas Vogel, University of Arizona; Connie
E. Wells, Georgia State University; J. Christopher
Westland, University of Southern California; and
Susan J. Wilkins, California Polytechnic Univer-
sity--Pomona. My thanks for the helpful and sup-
portive comments.

Next, the Wadsworth “family” has been support-
ive throughout the work, including Kathy Shiclds,
Rhonda Gray, Tamara Huggins, Peggy Mehan, Greg
Hubit, and fanet Hansen, Martha Ghent, the copy
cditor, deserves special mention. Having never
worked through the copy process before, I had no
idea what was done. Martha was easy to work with
and taught me how to improve both my writing and
my punctuation,

Friends and colleagues, who have given me anec-
dotes, support, ideas, and comments, were invalu-
able. The friends who have materially contributed
to this project include Peter Keen, Connie Wells,
Judy Wynekoop, Irene Auerbach, Chung Pin
Chuang, Karen Loch, Kuldeep Kumar, Scott Owen,
[ris Vessey, Nancy Russo, Alex Heslin, Paul Halde-
man, Marty Fraser, Eph McLean, Ross Gagliano,
Jim Senn, Mike Palley, Dorothy Dologite, Ronnie
Wilkes, Jong Kim, Seok Jung Yoon, Dennis Strou-
ble, Mary Alexander, Ted Stohr, and the many stu-
dent ‘guinea pigs’ {mine and others) from Georgia
State University, Baruch College (CUNY), Univer-
sity of Texas—Arlington, University of Dallas, and
New York University. Thank you all.

Finally, I would like to thank you, the reader, for
buying this bock and taking the trouble to read even
a portion of it, If you should disagree with my rea-
soning or find errors or omissions that sheuld be cor-
rected, T would be grateful for suggestions and
correspondence.

Sue Conger
Dallas, Texas

OVERVIEW

CHAPT

OF SOFTWARE

ENGINEERING

INTRODUCTION

Businesses around the world depend more and more
on software in the very basics of their operations.
U.S. firms alone have 100 billion lines of program
code in use today. This code cost S2 srillion to ere-
ate and costs $30 billion & year to maintain. The typ-
ical Fortune 1000 company maintains 35 million
lines of code. Quality of softwarc design and qual-
ity of business service are increasingly linked. We
take for granted the everyday convenience we gain
from reservation, telephone, automated teller, and
credit card authorization applications. We can take
these conveniences for granted until they ‘crash” or
have a “bug.’ Software engineers {SEs) developed
those systems. The engineering skills they apply to
developing applications go far beyond the writing
of good programs. The skills SEs need are to deploy
and manage the data, software, hardware, and com-
munications business assets of a corporation. These
computer-related assets now accouont for almost half
of all U.S. business investment.

Software engineers are skilled professionals who
can make a real difference to business profitability.
The word professional is key here. Software devel-
opment is notoriously difficult to manage; software
projects are routinely over budget and behind sched-
ulc. Computer programmers are legendary for their
lack of understanding of, or interest in, business. SEs
who are professionals are more likely to manage and

deliver a quality project on time and within budget.
One goal of this text is to challenge you to set high
staridards for personal excellence: to become a pro-
fessional and to make a difference.

This chapter introduces you to the beok and
the topics to be covered in more detail in later
chapters. The objectives of this chapter are to: (1) re-
view what you might already know, (2) give you a
vocabulary for discussing applications, and (3) in-
troduce the topics of this text. Use this chapter to
learn basic definitions and to begin building a mental
picture of how different approaches to software en-
gineering work. You will learn the details in later
chapters.

Software engineering is the systematic develop-
ment, operation, maintehance, and retirement of
software. Software engineers (SEs) have a mental
‘tool kit’ of techniques to use in developing appli-
cations. As students of information systems, you
know bits and pieces of the tool kit. This text will
show you how to use the tools together, and will add
to what vou already know. For instance, you should
already know data flow diagrams (DFDs). DFDs are
one of many tools, including new diagrams such
as process hierarchies, process dependencies, and
object diagrams. No one tool is ideal or complete.
The SE knows how to select the tools, understanding
their strengths and weaknesses. Most of all, an
SE is not limited to a single tool he or she tries to
force-fit to all situations.

2 CHAPTER 1

Software engineering is important because it
gives you a foundation on which to develop a career
as an information systems development profes-
sional. At the end of the course, you will understand
a variety of approaches to analyzing, designing, pro-
gramming, testing, and maintaining information sys-
tems in organizations. You will know the alternatives
for developing applications, and you will know
how and when to select from among them. You will
be able to compare and contrast methodology dif-
ferences and will know the major computer-aided
software engineering (CASE) tools that support each
methodology. Finally, you will have an appreciation
of the roles of software engineers and how they work
with project managers in application development.

In the next section, you will learn what it means
to be a software engineer. Then, a framework for
discussing applications will help you categorize
characteristics, technologies, and types of applica-
tions in business organizations. The next several
sections guide you through alternatives for overall
management of the application development pro-
cess. The last section briefly outlines the remaining
chapters of the book. Along the way, major terms are
highlighted in bold print and defined so you can
begin to form a mental picture of the alternative
approaches to software engineering work.

SOFTWARE

ENGINEERING

This conversation might be overheard in a man-
ager’s office:

Consultant Manager: “All right, Mary, tomorrow
you start work on the rental processing applica-
tion we are developing for ABC’s Video Com-
pany. Mary, you are the project manager. Are
you ready?” S

Mary: ‘“Yes, our first job is to find out more about
the application. Then, Sam and I will decide
our approach to development and the documen-
tation that is needed. ABC’s manager, Vic, is
willing to provide us with whatever we need.
Then, we will complete a feasibility analysis
and...”

Ovenview of Software Engineering

Mary is describing the first steps used by a modern
software engineer in the development of a computer-
based application. Software is the sequences of
instructions in one or more programming languages
that comprise a computer application to automate
some business function. Engineering is the use of
tools and techniques in problem solving. Putting the
two words together, software engineering is the
systematic application of tools and techniques in the
development of computer-based applications.

A software engineer is a person who applies a
broad range of application development knowledge
to the systematic development of application sys-
terns for organizations. Software engineers used to
think of their job as conscientious development of
well-structured computer programs. But, as the field
evolved, systems analysis as a task appeared along
with systems analysts, the people who perform that
task. Now, there is a proliferation of techniques,
touls, and technologies w develop applications. Soft-
ware engineers’ jobs have evolved to now include
evaluation, selection, and use of specific systematic
appreaches to the development, operation, mainte-
nance, and retirement of software. Development
begins with the decision to develop a software prod-
uct and ends when the product is delivered. Opera-
fions is the daily processing that takes place.
Maintenance encompasses the changes made to the
logic of the system and programs to fix errors, pro-
vide for business changes, or make the software
more efficient. Retirement is the replacement of the
current application with some other method of pro-
viding the work, usually a new application.

Fundamental skills of software engineers include

1. How to identify, evaluate, cheose, and imple-
ment an appropriate methodology! and
CASE tools

2. How and when to use prototyping

3. How and when to select hardware, software,
and languages

1 Technicatly, the term methodology means “the study of meth-
ods.” In information systems work, the termn is cotloquially ac-
cepted Lo mean a collection of tools and techniques used to
represent an application’s requirements. We use the Informa-
tion, Systemns (IS) form of the term meaning ‘collections of
toels and techniques.’ CASE software antomates the use of
the tools and techniques.

Soffware Engineering 3

NEW YORK BANK

In 1970, NY Bank wanted to be first in the
New York market with on cutomated teller
machine (ATM) systermn. The bank contracted
with a large computer vendor to build
custom ATM software using the vendor’s
equipment. Because telecommunications
technology was in its infancy at the time, and
distributed processing did not exist when the
system was installed in 1971, the two ATM lo-
caflons used small, local computers to record
transactions. The computers did not commu-
nlcate with sach other. Nor could they
check custormer balances ta verify avallabll-
ity of funds for transactions.

Within one month of the opening of the
ATMs, one customer had, in one 24-hour
period, withdrawn $200,000 from the two
machines. The customer’'s balance in his
checking account was $50. One month, and
one similar user later, NY Bank shut its ATM
offices, canceled the contract with the ven-
dor, and wrote off $30 miklon In development
costs. Shortly after, NY Bank began another
project 1o develop o "second-generation”
ATM system in which balances were checked
via communications with a centralized data-
base application.

4. How to manage activities associated with
configuration management, planning, and
control of the development process

5. How to select computer languages and de-
velop computer programs

6. How and which project testing technigues to
apply

7. How to choose and use software maintenance
techniques

8. How to evaluate and decide when to retire
applications

The geals of a software engineer are to pro-
duce a high quality product and to enjoy a high
quality development process. The product of a soft-
ware engineering effort is a delivered, working com-
puter system, some examples of which include:

» Accounts receivable processing

» Order processing

» Inventory monitoring and maintenance

= Decision support for overnight funds
investment

» Collateralized mortgage obligatien cost
determination

» Insurance reimbursement processing

» Funds transfer processing

Early warning system for problems with eriti-
cal success factors

s Query processing for a customer information
database

A quality SE produoct is

= on time

s within budget

» functional, i.e., does what it is supposed
to do

friendly to users

error free

flexible

adapiable

In addition 10 a quality product, quality of process
is desirable. The software engineering process
describes the steps it takes to develop the system. We
begin a development project with the notion that
there 15 a problem to be solved via automation. The
process is how you get from problem recognition to
a working solution. A quality process is desirable
because it is more likely to lead to a quality prod-
uct. The process followed by a project team during
the development life cycle of an application should
be orderly, goal-oriented, enjoyable, and a leaming
experience.

That we try to apply engineering discipline to
software development does not mean that we have
all the answers about how to build applications. On

4 CHAPTER 1

Overview of Software Engineering

TUV INSURANCE COMPANY

In 1991, TUV Insurance Cormpany began a
restructuring project for an annulty premium
processing application. The project team
consisted of a manager who had been with
the company 20 years and two analysts
who were new hires in 1991, The two new
pecple, Jacqguie and Ted, both wanted to
appiy information engineering techniques to
the work. They discussed the methodology
with the project manager and clients who
agreed 1o try a modified form of the new
methodology.

During the first phase of development, an
entity-relationship diagram was developed
with accompanying data dictionary and
process decompaosition descriptions. The proj-

ect team and users were pleased with the
results.

When the schedule for development wds
presented 1o the user, it was estimated that
the entfire project would take 18 months
using information engineering. The client
balked. He said. "The history of this company
is that any project over one year never gets
done. Therefore, | won't approve this, Just
design me a file, like we have always done.
and then odd on the processing to create
and maintain the file, When you revise the
schedule to use this appreach—file design
and ifs processing—make sure it is under
avyear”

the contrary, we still build systems that are not use-
ful and thus are not used. For example, New York
Bank lost millions of dollars (see Example 1-1)
because they used the wrong technology. Part of the
reason for continuing problems in application
development, like those of NY Bank, is that we are
constantly trying to hit a moving target. Both the
technology and the type of applications needed by
businesses are constantly changing and becoming
more complex. Our ability to develop and dissemi-
nate knowledge about how to successfully build sys-
temns for new technologies and new application types
setjiously lags behind technological and business
changes. This book discusses where the field is now,
and where it is likely to be in the Z1st century. One
thing is certain: The way we build systems in 10
years will be vastly different from the way we build
systems today. The existing techniques that we ex-
pect to be using into the next century are discussed in
this text. There will be other techniques yet to be
developed. and yvou will have to learn to use them,
100, One purpose of this text is to provide a fotinda-
tion for learning to learn software engineering.
Another reason for continuing problems in appli-
cation development is that we aren’t always free to

apply the techniques we know work best. Why? you
might ask. Organizations may know the right things
to do, but it is hard to change habits and cultures
from the ofd way of doing things, as well as get users
to agree with a new sequence of events or an unfa-
miliar format for documentation. As Example 1-2
shows, compromisc is possible. The example illus-
trates some problems with revolutionary change and
haw revolution can be pared down to evolution and
made acceptable.

You might ask then, if many organizations don’t
use good software engineering practices, why should
1 bother leaming thern? There are two good answers
to this question. First, if you never know the
right thing to do, you have no chance of ever using it.
Second, organizations will frequently accept
evolutionary, small steps of change instead of
revolutionary, massive change. You can learn indi-
vidual techniques that can be applied without
complete devotion to one way of developing sys-
tems. In this way, software engineers can speed
change in their organizations by demonstrating
how the tools and techniques enhance the quality
of both the product and the process of building
a system.

APPLICATIONS

Software engineering is the building of applications.
An application is the set of programs? that antomate
some business task. Businesses are made up of func-
tions such as marketing, accounting, manufactur-
ing, and personnel. Each function can be divided
into work processes for which it is responsible. For
instance, marketing is responsible for sales, adver-
tising, and new product development. Each process
can be separated into its specific tasks. Sales, for
instance, requites maintaining customer relations,
order processing, and customer service. Applications
could support each task individually. Conversely,
one marketing application could perform all tasks,
integrating the infonmation they have in common.

All applications have some common and some
unique features. One problem is that there is no
agreed upen way to discuss these similarities and
differences. In this book, we present three dimen-
sions of applications to simplify and clarify this
discussion. The dimensions of applications are char-
acteristics, responsiveness, and type. Characteris-
tics are common to all applications and include data,
processes, constraints, and interfaces, The section on
application characteristics is first and should be a
review. Responsiveness defines the underlying time
orientation of the application as baich, on-line, or
real-time. By knowing the time orientation of an
application, we can define minimal technology
required to suppeort the application. Type defines the
business orientation of the application as transac-
tional, query, decision, or intelligent.

Application Characteristics

This section is about shared characteristics of appli-
cations: data, processes, constraints, and interfaces
(see Figure 1-1). All applications: (1) act on data and
require data input, output, storage and retrieval;
(2) imbed commands that transform data from one
state to another state based on and constrained by

2 A program is composcd of instructions that perform some
well-defined task. Sometirmes there are many tasks, composed
of millions of instructions in an application. When there are
many tasks, they are split into programs. This decomposition
into subtasks which relate to programs is one wopic mn ihe
chapters on application design.

Applications 5

business rules; and (3) have some human interfaces
and may have one or more computer interfaces,
Application types vary in the extent to which these
characteristics are known, defined, and understood.
Each of the characteristics is discussed below. Since
this 15 review, 1f vou can define the terms in bold
print, you might skip to the next section: Application
Responsiveness.

Data

Data are the raw material (numbers and letters) that
relate to each other to form fields (attributes), which
define entities (see Figure 1-2). An entity is some
definable class of people, concrete things, concepts,
or events about which an application must maintain
data. Examples of each entity type are customers,
warehouses, departments, or orders, respectively.
Data and entities can be described independently of
their processing rules. Examples of data definition
aids are entify relationship diagrams (see Figure
1-3} and third normal form linkage diagrams (see
Figure 1-4),

Data requirements in applications include input,
outpuk, storage, and retrieval.

INPUT. Data inputs are data that are outside the
computer and must be entered using some input de-
vice. Devices used for getting data into the computer
include, for example, keyboard,” scanner, and trans- -
mission from another computer.

OUTPUT. Output is the opposite of input; that
is, outputs are data generated to some media that is
outside the computer. Common output devices in-
clude printers, video display screens, other comput-
ers, and microform equipment {e.g., microfiche,
microfilm).

STORAGE AND RETRIEVAL, Data storage
describes a physical, machine-readable data format
for data, while data retrieval describes the means
you use to access the data from its storage format.
Storage and retrieval go together both conceptually
and in software. Storage format and retrieval access

3 Atiached to video display or maybe some typewriter-like
terminal, touch-tone phone, etc.

] CHAPTER 1

Qverview of Software Engineering

Date Input and Ouiput
Using Human Interface

Terminal
Data
Entry

Daia Storage

Application Processes
with Constraints Buift-in.

Data Retrieval
Application Processes.
Data Outpust; Edit, Update,
Manial interface Report, Quary
Data Storage:
Computer intlerface
- Report
from Uﬁggte
Cue
Data Oufput;
Manual Interface
Accounting
Applications

FIGURE 1-1 Application Characteristics

may be defined by your use of purchased software
(such as a database management system’s method,
e.g., Oracle, DB2, or Adabas*}, or may be defined by
an access method provided by a hardware vendor
(e.g., IBM’s virtual sequential access method—
VSAM).

Data storage require two types of data definition:
logical and physical. The logical definition of data
describes the way a user thinks about data, that is,
the logical data model. These definitions might be

4 Oracle is a trademark of the Oracle Corporation. DB2is a
trademark of the IBM Corporation. Adabas is a trademark of
Software AG, Inc.

relational, hierarchic networked, or object-oriented.
Relational logical data models are arranged in
tables of rows and columns. Hierarchic logical data
models define one-to-many relationships in a tree-
shaped model that resembles an organization chart.
Network logical data models define many-to-many
relationships.

Ohject-oriented logical data models
(OOLDMs) combine hierarchic and network log-
ical models to form a lattice-structured hierarchy.
OOLDMs are more specific in identifying classes
and subclasses of objects in a hierarchy. A class is a
set of data entities that share the defining character-
istic. For instance, the class customer might have

Applications 7

1234267895andraJaniceones21NaonbfieldRoadFreeportGA442404042214960
is less meaningful than if it is split into related fields of information:

ENTITY: Person

ATTRIBUTES:

INSTANCE of Person

Social Security Number: 123-42-6789
Name: Sandra Janice Jones
Address Line: 21 Narthfield Road
City: Freeport
State: GA
Zip Code: 44240
{Area Code} Telephone: {404) 221-4960

FIGURE 1-2 Attribute-Entity Example

subclasses for cash and credit customers. The lat-
tice network arrangement allows relationships to
remain unconstrained by a data management soft-
ware conceptualization,

Vendor

Supplies

Parts

FIGURE 1-3

Entity-Relationship Example

Figures 1-5, 1-6, 1-7, and 1-8 show logical data
structured in each of the four ways for vendor-parts
information. Notice that the network and relational
diagrams are somewhat similar. The relational model
uses logical data connections to reflect relationships,
while the network model uses physical address
pointers imbedded in the data structure to maintain
the relationships. For the hierarchic model, you must
make a decision about which information is more
important within the data context. If both vendors
and parts are equally important, then complete re-
dundancy with two hierarchies is required as shown
in the diagram.

The physical definition of data, or physical data
maodel, describes its fayout for a particular hardware
device, Physical layout is constrained by iniended
data use, access method, logical model, and storage
device. External storage devices for data include
magnetic disk, magnetic diskette, optical disk, com-
pact disk, laser disk, digitally applicd tape, and mag-
netic tape, to name a few. The major differences in
devices are the number of times a device can be writ-
ten to |e.g., as in write-once-read-many (WORM)
technology], the cost, the amount of data that can be
stored, the portability of devices, and the type of
retrievals that can be done on data (e.g., magnetic
tape requires froni-to-back sequential processing
versus direct accessibility 1o any data),

8 CHAPTER 1 Ovenview of Soffware Engineering

VENDOR Relation

IV—Nol Vendor-Namel Vandor-Addressl City | State ‘ Zip

t

VENDOR-PART Relaticn

PART Relaticn

Y

[V-Nol P-No] Quantity |

[y

L.
|P-N0 | Part-Wame | Price Units

FIGURE 1-4 Third Normal Form Example

VENDOR Relation

V-No Vendor-Mame

Vendor-Address

City

State Zip

01 | ABC Hardware | 123 Main St Morristown | NJ | 07950
03 | X¥Z Hardwara | 425 Center 5t. | Akron OH | 44311
02 | QBE Hardware | 7290 4th Si. New York NY | 10010
VENDOR-PART Relation PART Relation
¥-No P-No Quantity P-No Part-Name Price Units
o1 | oot 750 001 | Screwdrivers | 700 | Each
o1 | o2 | 2000 002 | Nails, #1 125 Gross
02 | 004 | 1200 004 | Mails #3 120 Gross
a1 | 004 | 1000

FIGURE 1-5 Relational Logical Data Model

Applications 9

VENDOR Sggment PART Segment
V-Mo P-Mg
Yendor-Name Fart-Name
Address Price

City Units

Slate Quantity-on-hand
Zip

PART Segment VENDOR Segment
P-No V-No
Part-Name Wendeor-Name
Prica Address
Units City
Cuantity-on-hand State
Zip
Physical
T — N — Address
IERYS TR . Poiriter
ABC Hardware 123 Main 5t. Maoiristown NJ 07950 012401
High Values-
001 Screwdrivers 700 Each 012402 End of Chain
J
002 Nails, #1 125 Gross 012685
004 Mails #3 120 Gross FFFFFF
FIGURE 1-6 Hierarchic Logical Data Maodel
Processes age of new facts or rules inferred about a situation
. . . or entity.
A process is the sequence of instructions or con-
junction of events that operate on data. The results
of processing include chaiges to data in a data- .
P £ & Constraints

base, identification of data for display at a ter-
minal or printing on paper, generated commands to Processing is subject to constraints, which are lim-
equipment, generated program commands, or stor- itations on the behavior and/or processing of entities.

10 CHAPTER 1 Overview of Software Engineeting

VENDOR Segment
V=NO
Vendor-Name
Address

City

State

Zip

u-NO P-NC, Qty I Linkage Segment

¥
PART Segment
P-Na
Part-Name
Price

Urits

01 ABC Hardware 123 Main St Mornstown MJ 07950 012401

02 004
0 004

1200

1000 Linkage Set

004 Nails #3 120 Gross FFFFFF

FIGURE 1-7 Network Logical Data Model

Vendors Paris

Offige Supply Manufacturing
Vendors Vendors

FIGURE 1-8 Object-Oriented Logical Data Model

If accounts receivable balance = zero
and prerequisile classes are taken
and course section is available
then register student
€lse write appropriate message to
student,

} Praotequisiias

FIGURE 1-@ Prerequisite Constraint Example

Constraint types are prerequisite, postrequisite, time,
structure, control, or inferential.

PREREQUISITES. Prerequisite constraints are
preconditions that must be met for processing to
occur. They usually take the form of *if .. _then . ..
else” logic in a program (see Figure 1-9).

POSTREQUISITES. Postreguisite constraints
are conditions that must be met for the process to
complete successfully. They also take the form of
Yif ... then ... else’ logic, but the logic is applied
after processing is supposedly complete.

TIME. Time constraints may relate (o one or
more of the following:

Applications 11

1. Timing of processing, for instance, all money
transfers in New York must be processed by
3 p.m. to meet the NewYork Federal Reserve
Bank closing deadline.

2. Time allotted for a process, for instance,
time-out of the database when remote site A’s
expected response is not received within ten
seconds.

3. External tiime requirements, for instance,
reports must be delivered to the Controller's
affice by noon.

4. Synchronous processing, for instance, loca-
tions A and B must both have completed their
respective actions successfully for location
C to perform action X,

5. Response time for external interface process-
ing, for instance, the system must respond to
the user terminal within two seconds after
the enter key is pressed.

STRUCTURE. Structural constraints describe
the relationships between data, meta-data (knowl-
edge about data), knowledge and meta-knowledge
{system generated knowledge) in applications (see
Figure 1-10). Customers, for example, might have
different processing if they pay by credit or cash. So,
there would be a general class customer and two
subelasses, credit-customer and cash-customer.
Meta-data about custormers inciudes, for example,
the definition of the domain of allowable values for
customer identification.

DATA:

META-DATA :

KNOWLEDGE:

META-KNOWLEDGE:

CON1a0

Fielkd=Customer-1D

Size=f

Type=xxx889

Validation= Oocurs once per customer

CONDO1 mist pay cash for sales

If Cugtomner-ID > 7?7?7050
and accounis raceivable balance = 1000
cash sales only

else

OK credit sales up to 1000,

FIGURE 1-10

Structural Constraint Example

12 CHAPTER !

Structural constraints determine what type of
inputs and outputs may be allowed, how process-
ing is done, and the relationships of processes to
each other.

CONTROL. Control constraints relate to auto-
mated maintenance of data relationships (e.g., the
batch total must equal the sum of the transaction
amounts).

INFERENCES. The word infer means to con-
clude by reasoning, or to derive from evidence.
Inferential constraints are limits on the reasoning
ability of the application and its ability to generate
new facts from previous facts and relationships.
These constraints come in several varieties. First,
inferential constraints may relate to the applica-
tion. For example, you might not want a medical
expert system to build itself new knowledge based
on new user information unless the “user” is an
approved expert who understands what he or she
is doing,.

Second, inferential constraints may relate to the
type of knowledge in the system and limits on that
knowledge. For example, CASE tools cannot help
you decide what information to actually enter into
the system (vet). Rather, you as the user must
already know what you want to describe and how to
describe it when you use a CASE tool. What CASE
can do is reason whether the information you
entered conforms to its rules for how to represent
information.

Third, inferential constraints may relate to the
language in which the system is developed. For in-
stance, you might be required to build an expert sys-
tem in Prolog because that is the only language
available. Prolog is a goal-oriented, declarative lan-
guage with constructs for facts and rules that re-
quires its knowledge (i.e., the data) to be imbedded
in the program. Large programs in Prolog are hard to
understand and may be ambiguous. Therefore, pro-
gramimers write smaller, limited reasoning programs.
If you have a large, complex knowledge base, you
may want to separate the data from the program
logic. But the language choice can constrain your
ability o do such separation.

Overview of Software Engineering

Interfaces

There are three types of interfaces: human, manual,
and computerized. There are few guidelines in any
methodologies for designing any of these interfaces.
Each type of interface is discussed briefly in this sec-
tion, and ir more detail later in the texi.

HUMAN. Huoman interfaces are the means by
which un application communicates to its human
users. Human interfaces are arguably the most
important of the three types because they are the
hardest to design and the most subject to new tech-
nologies and fads.

Most often, a human interface is via a video dis-
play which might have options for color, size of
screen, windows, and so on. Many application de-
velopers are tempted to design elaborate screens
with the assumption that more is beiter: more color,
more information, and so forth. But a growing body
of research combined with graphic design ideas
show that this is not the case. Figure 1-11 shows the
same information on a well designed screen and on a
poorly designed screen. A screen should be orga-
nized to enhance readability, to facilitate under-
standing, and to minimize extranecus information,
Few colors, standardized design of top and bottom
lines, standardized use of programmable function
keys, and easy access to help facilities are the keys 1o
good screen design,

MANUAL. Manual interfaces are reports or
other human-readable media that show information
from the computer. You use manual interfaces when-
ever you pay electric, telephone, or water bills. Some
simple standards for manual interfaces are to mirror
screen designs when possible to enhance under-
standing, to fully identify the interface contents with
headers, notes, and footers when needed, and to fol-
low many of the same human interface “rules” for
formatting information.

AUTOMATED., An automated interface is data
that is maintained on computer-readable media for
use by another application. Application interfaces
tend to be nonstandardized and are defined by the
data-sharing organizations. Guidelines for applica-

Applications 13

Ship via

X XX
XK XX

Program: ABCO01 XYZ System Date: mm/dddyy
IANTE: XI0OKX XX KIOHX N

-7 Address: x000000X X 00N

City: x:000xxxx 5t xx

Zip: XXRIH-XAXX

Tax?

KIXHHHKK Yes

Item Oty Description Unit Price Extension

wonoconone 900099

WO0Oonnoe 999999

Balesman Terms
XXX KEXENXKK

59999 99
29993 89

AN

Well-Designed Screen

Name: xxxxexneo AGOress: XXXKXKXXXXXAXR
City: xocooxxxx St xx Zip: ooooexxxx Tax? Y
Salesman: s Terma: oo Ship Viaxxxx
Item: X Qity: xx Doscrption; XX0COIKEXxX%K

Unit Price: 9992.99 Extansion: 9999%.99

Itarm: xx Qty: xx Description: Xxxxmooemxx

Unit Price: 9993.99 Extension: 99999.99

Poorly-Designed Scrasn

FIGURE 1-11

tion file interfaces have evolved over the last fifty
years 1o include, for instance, placement of identi-
fying information first and placement of variable
length information last. Other interfaces are gov-
erned by numerous formal standards, for instance,
local area network interface standards are defined by
the Institute of Electrical and Electronic Engineers
(IEEE) and the open system interface (OSI) standard
for inter-computer communication is governed by
the International Standards Organization (ISO). Few
such standards are currently relevant to an individual

Good versus Bad Screen Design

business application. Lack of standards, such as for
graphics user interfaces (GUIs) slows business
acceptance of new innovations. Uncertainty over
which “look’ will become the standard, in the case
of GUIs, leads to business caution in using new
technology.

Application Responsiveness

In this book, application responsiveness is how long
it takes the system 1o act on and respond to user

14 CHAPTER 1 Qverview of Soffware Engineering
wee . ___
Real-Time
Applications
Newly
Deve;lop_ed On-Ling Applications
Applications
50%_|
Batch Applications
| | |] |
| i | | 1
1950 1980 1970 1380 1980 2000

FIGURE 1-12 Application Typ¢ Transition

actions. Responsiveness of an application reflects the
fundamental design approach as batch-oriented,
on-line, or real-lime. Each of these approaches is
defined in this section. Of course, in the real world,
any combination or permutation of these approaches
are used in building applications. Most applications
designed in the 1990s are on-line with some batch
processing, In the 215t century, on-line applications
will give way to more real-time applications. Figure
1-12 shows the transitioa from batch to on-line 1o
real-time processing in the last half of this century.
Table 1-1 compares application responsiveness on
several categories.

Baich Applications

Batch applications are applications in which trans-
actions are processed in groups. Transactions are
gathered over time and stored tegether. Al some pre-
defined time, the batch is closed and processing on
the complete batch is done. Transactions are pro-
cessed in sequence one atter the other, A system flow
diagram of a typical batch application is shown in
Figure 1-13. The hatch of transactions is edited and

applied to a master file to create a new master file
and a printed log of processing. In batch applications
the requirements relating to the average age and
maximum possible age of the master file data deter-
mine the timing of processing.’ In addition to pro-
cessing transactions, other programs in batch
applications use the master file as their major input
and process in a specific fixed scquence.

On-Line Applications

On-line applications provide interactive process-
ing with or without immediate file update. Interac-
tive processing means there is a two-way dialogue
berween the user and the application that takes place
during the processing. This definition of on-line dif-
fers somewhat from the use of on-line terminology
in other texts which assume that on-line systems are

5 Sec Davis, G. and Olson, M., Management Informarion Sye-
tems: Conveptual Foundations, Structire, and Development,
New York: McGraw-Hill, 1985, for a detailed discussion of
batch systems.

Applications 15

TABLE 1-1 Comparison of Application Technologies

Baich On-Line Real-Time
Category Applications Applications Applications
Amount of data Large Srnall-Large Medium
Visual review of No Yes Yes
inputs
Ratio of updates to High Low-High High
stored data
[nquiry Baich On-line On-line
Reports Long, formal Short, informal Shert, informal
Backup/Recover Copy files to tape One or more of the One or more of the

Cost to build*
Cost to operate®
Efficient use of
Difficulty to build*

Speed of processing
all transactions

Speed of processing
one transaction

Uses DBMS and
data communications

Function integration

Low

Low

Computer resources
Simple

Fast

Slow

May or may not

Low

following:

Copy files to tape
transaction log,
preimage log, postimage
log, mirror image fles

Medium
Medium-High
People time
Medium

Slow

Medium

Probably

Medium

following:

Copy files to tape
transaction log,
preimage log, postimage
log, mirror image files

High

High
Pzaple time
Complex
Medium

Fast

Yes

High

*Relative measure

also real-time (see the next section). In this text,
on-line processing means that programs may be
resident in memory and used sequentially by numer-
ous transactions/events without reloading.

Figure 1-14 shows the difference between an
on-line application and a batch application. Tn an
on-line application, small modules perform the func-
tion and communicate directly vig data passed
between them. In the batch application, disjoint pro-
grams perform the function and indirectly communi-
cate via permanent changes to file contents created

by one program and interpreted by the next pro-
gram(s). The on-line programs keep a log of transac-
tions to provide recovery in case of error; this
prevents re-entry of data.

On-line programs’ dialogue with the user is to
ensure entry of syntactically correct data. The error
correction dialogue replaces the error postion of the
update log. The remainder of the update log to doc-
ument updates becomes optional and, instead, an
acknowledgement of successful processing is dis-
played to the user.

16 CHAPTER 1 Overview of Software Engineering
Transaction Edited
Edit Transaction
Program File
anual
Transaction
Data Entry Edited
Transactions
Master ©
Update Old
ngfam h Master_
File
S
Details of ©
Transaction
y Processing New
Master
Update File
Log —
FIGURE 1-13 Batch Application System Flow Diagram

Terminal
Data
Entry

Cornpletion
Acknowledgrment

Interactive
Data Entry
Muadule

Edited

Update
Maodule

Transaction

Transaction
Log far
Backup/
Recavery

FIGURE 1-14

On-Line Application System Flow Diagram

Real-Time Applications

Real-time applications process transactions andfor
events during the actual time that the related physi-
cal (real world) process takes place. The results of
the computer operation are then available {in real
time} to influence or control the physical process
{see Figure 1-15). Changes resulting from a real-
time process can be refreshed to users viewing
prechange data when the change is completed. Real-
time programs can process multiple transactions
concurrently. In parallel processes, concurrency
literally means that many transactions are being
worked on at the same time. In sequential processes,
CONCUITENCY MCAns Many transactions are in process
but only one is actively executing at any one
fmoment.

Database processing is more sophisticated in real-
time systems. If an update to a data item takes place,
all current users of the item may have their screens
refreshed with the new data. Examples of real-time
applications include automated teller machine

Appllcations 17

{ATM), stock marke? ticker, and airline reservation
processing.

Types of Applications

There are four types of business applications: trans-
action, data analysis, decision support, and expert
applications. Today, all four types are usually on-
line although the application may use any {or all)
of the responsivencss types, even on a single appli-
cation. In addition. a fifth type of application: em-
bedded, 15 defined briefly to distinguish computer
science-software engineering from IS-software
enginearing.

Transaction-Oriented Applications

Transaction-oriented applications, alsc known as
transaction processing systems (TPS8), support the
day-to-day operation of a business and include
order processing, inventory management, budgeting,

Transagtion

Terminal Interactive - Log fer
Data Data Entry Backup’
Entry Module Recovary

Edited
Acknowledgrnent i -
5 Update Clerk Transaction
Master
File
F /
Update Details of
Module Transaclion
Updated Processing
Data to
All Current
Data
]
Refresh
Module

FIGURE 1-15

Real-Time Application System Flow Diagram

18 CHAPTER 1

Qverview of Software Engineering

Maintain
Customers Custamer
File
Maintain
tnventory -
Invenicry
File
Interactive [
Data/Rsquest Maintain
Entry Ordars
Order
File
Create
Shipping
Papers/invoices

tnvoices
File

Bills of Lading

Shipping
Papars

* Maintain here includes add, change, delete, and query processing.

FISURE 1-16 Order Processing Applications

purchasing, payables, accounting, receivables, pay-
roll, and personnel. They are characterized as appli-
cations for which the requirements, the data, and
the processing are generally known and well-
structured.® By known, we mean that the function is
repetitious, familiar and unambiguous. By well-

6 An informative text on transaction processing systems is
On-line Business Computer Applications, 2nd ed., by
Alan Eliaison. Chicago: Science Research Asscciates,
Inc., 1987,

structured, we mean that the problem is able to
be defined completely and without ambiguity. The
requirements are identifiable by a development
team.

A transaction application example is order pro-
cessing (see Figure 1-16). Order processing requires
an order file, customer file, and inventory fite. The
contents of the files differ depending on the level of
integration of order processing with accounts receiv-
able, manufacturing, purchasing, and inventory pro-
cessing. Processing of orders requires add, change,

Applications 19

Jj xaveie -3
EFFECTIVE INSURANCE COMPANY
in the earty 1980s, Effective Insurance realized
they were generating 22 fest of paper each
rmonth in accounting reports that were sent to
about 80 different parts of the organization,
Yet, for all this paper, the number of legitimate
reqguests for access to datd wos mushrooming
and had reached about 200.

Rather than try to produce reports for
each specific user, the company decided to
automate the infermation and allow users to
access their own data to generate their own
reports. That way, paper could be reduced
and ecch person would have the dota they
wanted, formatted the way they wanted it.

The company never anticipated the im-
mense savings in fime, monsy, and. more

importantly, the incredases in productivity and
rnorale, that this move would produce. 8y
1989, there were over 2,000 users accessing
seme or all of the accounting information.
Ecich user had his own terminal and the use of
a fourth generdation language.” fo generate
customized information Interactively. Reports
were created by each user as needed.

“A founth-generation language is one in which a
query language, statistical routines, and data bases
are Integrated for application development by
Hoth 1S and by non-IS prefessionals.

delete, and inquiry functions for all files, pricing of
items, and creation of shipping papers and invoices.
Inquiry functions should allow retrieval of informa-
tion about orders by date, order number, customer
ID, or customer name. The software engineer uses
his or her understanding of general order processing
to customize the application for a given organiza-
tion and implementation environment,

Data Analysis Applications

Data analysis applications support problem solving
using data that are accessible only in read-only
modc. Data analysis applications are also known as
query applications. A query is some question asked
of the data. SQL, the standard query language for
database access, poses questions in such a way that
the user asks what is desired but need not know kow
to get it. The computer software figures out the op-
timat access and processing methods, and performs
the operations it selects. An example of a query ask-
ing for the sum of all sales for customers in New
York State for the first yearly quarter might look like
the tollowing:

SELECT CUST_NAME, CUST_ID, AND
SUM{CUST SALES)
FROM CUSTOMER
WHERE CUST STATE =
MONTH IN (1, 2, 3):

‘NY' AND

A language, such as SQL, is a declarative tan-
euage, because you ‘declare” what to do, not how to
do it. Declarative languages are relatively easy to
learn and use, and are designed for use by noninfor-
mation systems professionals.

Queries are one of three varieties:

1. Interactive, one-of-a-kind. These are
assumed to be thrown away after use.

2. Stored and named for future modification and
re-execution.

3. Stored and named for frequent unchanging
gXecution.

The third type of query frequently replaces re-
ports in transaction applications (see Example 1-3).
The data for all query processing must be known in
advance and tend to come from transaction applica-
tions. Query outputs may use program language for-

20 CHAPTER 1

matting defanlts (4« in SQL), or may be formatted
for formal visual presentation or fed into other soft-
ware (¢.2., graphical software) for summarizing.

Query applications support an evolving concept
called data warehouse, a storage scheme based on
the notion that most data should be retained on-line
for query access. A warchouse stores past versions
of major database entries, transaction logs, and his-
torical records.

Decision Support Applications

Decision support applications (D55) seek to iden-
tify and solve problems. The difference between de-
cision support and query applications is that query
applications are used by professionals and managers
to select and summarize historical data like the
example above, while DSSs are used by prefession-
als and managers to perform what-if analysis, iden-
tify trends, or perform maithematical/statistical
analysis of data to solve unstructured problems.
Data for DSSs usually are generated by transaction
applications.

Unstructured problems are ones for which not
all information is known, and if it is known, the users
may not know all of the relationships between data.
An cxample of a structured problem is to answer the
qucstion: “What is the cost of a 5% salary increase?”
An example of an unstructored problem is “What
product mix should we manufacture next year?” The
difference between these two kinds of questions is
that the structured problem requires one query of
known data to develop an estimate, while the prod-
uct mix question requires economic, competitive,
historical, and product development information to
develop an estimate. Becavse the information may
not all be known, DSS development uses an iterative
problem-solving approach, applying mathematical
and statistical modeling to the decision process, Cor-
rected and/or supplemental data are fed back into the
modeling processes to refine the analysis,

Executive information systems (ELS) are a spin-
off from DSS. EIS applications support execulive
decision making and provide automated environ-
mential scanning capabilities. Top cxccutives deal
with future-criented, partial, inaccurate, and ambigu-
ous information. They scan the economy, industry,
and organizational environments to identify and

Overview of Software Engineering

monitor key indicators of business activity that affect
their organization. EIS integrate information from
external information databases and internal applica-
tions 1o provide an automated scanning and model-
ing capability. The major difference in EIS from
DSS then, is the incompleteness, polential inaccu-
racy, and ambiguity of the data.

Group decision support systems (GDSS) are a
special type of DSS applications. GDSS provide an
historical memory of the decision process in sup-
port of groups of decision makers who might be geo-
graphically dispersed. GDSS focus more on the
group interaction processcs with lirtle or no data
modeling or statistical analyses. Data analysis soft-
ware in GDSS tend to be less elaborate than DSS
software, but may include a spreadsheet and routines
to present summaries of participant votes on issues
in either numerical or graphical formats. GDSS typ-
ically provide such functions as

1. Anonymous recording of ideas

2. Democratic selection of group leaders

. Progressive rounds of discussion and voting
to build group consensus

e

For all DSS, application development is more for-
mal than guery applications, and less formal than
transaction applications. The development life
cycle tends to be iterative with continuous identifi-
cation of requirements. D3S software ¢nvironments
arc sophisticated and typically include software tools
for communications support, statistical modeling,
knowledge-base maintenance, and decision process
support,

Expert Systems

Expert systems applications (ES) are compuler
applications that autemate the knowledge and rea-
soning capabilities of one or more experts in a spe-
cific domain. ESs analyze characteristics of a
siluation to give advice, reccommend actions, or draw
conclusions by following automated reasoning
processes. The four mujor components of an ES are
knowledge acquisition subsystem, the knowledge
base, the inference engine {or rule base as it is some-
times called), and explanation subsystem. Each of
these components are briefly explained here.

Applications 21

Jl EXAMPLE 14 |
MEDICAL ES ETHICAL DILEMMA

A doctor who is not a specialist in rare dis-
eaqses sees g patient in the emergency rcom
who appecrs 1o be in respiratory distress, After
a preliminary exam, he consults with an ex-
pert systermn that diagnoses many diseases
and recommends G course of freatment. The
£S5 requests all of the symptoms from the doc-
tor who answers the gusstions to the best of
his akility. The ES dlagnoses the problem as
advanced Legionnaires’ disease with a prob-
ability of 80%. The ES suggests no other possi-
ble diseases, The doctor prescribes the ES's
recommended treatrment. The patient dies.
On investigation, it turns out that the ES con-
fains errors in its rules and that the correct
diagnosis. following the exact same set of
symptoms, woulld have led to a different
diagnosis with different freatment,

There are ethical issues in every aspect of
this problem. Who is responsible for ES accu-

racy? Is the knowledge engineer who built
the ES responsible for ensuring accuracy of
Information in the system? QOr. does his or her
responsibility only mean transiating the rea-
soning processes coftrectly? What is the
responsibility of the "expen” who supplies the
information in ensuring it is correctly entered
into an ES to supply correct reasoning? If
medical ES contains information on thou-
sands of diseases, is it even possible to test it
completely? How is consistency of diagnoses
checked? What happens when symptoms
are entered in different sequences? Is the
doctor who uses the ES suggestion ethical?
Thete is no consensus on answers to these
questions af present. The lack of consensus
highlights the need for discussion of ethical
issues in IT applications.

The knowledge acquisition subsystem is the
means by which the knowledge base is built. In gen-
eral, the more knowledge, the *smarter” the system
can be. The knowledge acquisition subsystem must
provide for initial loading of facts and heuristic rules
of thumb, and be easy to use in adding knowledge
to the knowledge base,

Frcquently, we reason without knowing how we
arrive at a solution, In fact, reflect how you yourself
think when analyzing a problem to develop an appli-
cation. How do you decide what the processes are?
You follow an elaborate, highly internalized process
that is difficuli to talk about. You are not alone in
having this difficulty. Eliciting the information about
reasoning processes from experts is a major ditfi-
culty in building effective ES applications.

The knowledge base is the codified automated
version of the expert user’s knowledge and the rules
of thumb (ulso called heuristics) for applying that
knowledge, Designing the knowledge base is as dif-
ficult as ehiciting the information because no matter
how it is designed, it will be limited by the software

B R i

in which it is implemented. Therefore, special ES
programming languages have been designed to al-
low the most flexibility in defining connections be-
tween pieces of information and the way the pieces
are used in reasoning.

Just as people reason to develop a most probable
outcome to a situation, ESs use reasoning and infer-
ence to develop multiple, probable outcomes for a
given situation. Several solutions may be generated
when there is incomplete information or partial rea-
soning, Probabilities of accuracy of the solution(s)
are frequently developed to assist the human in judg-
ing the usetulness of a system-generated outcome.
Ethical and moral issues may be more apparent
in ESs than the other application types. Example
1-4 describes an ethical dilemma relating to a
medical ES.

The last major component of ES is the ability to
explain its reasoning to the vser. The explanation
subsystem provides the ability to trace the ES’s rea-
soning. Tracing is important so the user can learn
from the experience of using the system, and so he ot

22 CHAPTER 1 Owverview of Software Engineering

she may determine his or her degree of confidence in
the ES’s resuls,

These four application types—transaction, query,
DSS, and ES—will be referenced throughout the
iext to tie topics together and to discuss the useful-
ness of methodolegies, languages and approaches
to testing, quality assurance, and maintenance for
each.

Embedded Systems

Embedded systems are applications that are part of
d larger system. For example, a missile guidance
applicaticn works in conjunction with sensors,
explosives, and other equipment within 1 single mis-
sile unit, The application, by itself, is minor; its com-
plexity derives from its analog interfaces, need for
complete accuracy, and real-time properties within
the missile’s limited life span once it is released.
Embedded applications development has been
the province of computer science educated develop-
ers rather than information systems (IS) educated
developers.

As busingss deploys ever more complex equip-
ment in the context of computing environments, the
need for embedded systems skills wiil increase. This
implies that IS education must alse address real-
time, embedded system requirements, and that com-
puter scientists will continue to move into business
for application development.

Applications in Business

Applications are most successful when they match
the crganizations’ necds for information. Most in-
formation in organizations is gcnerated to allow the
managers to control the activities of the organiza-
tion to reach the company’s goals. Goals may be
short-term or long-term. Control of activities implies
information evaluation and decision making. There
are three levels of organizational decision making:
operational, managerial, and strategic. Each level
iras different information needs and, therefore, dif-
ferent application needs.

At the operational level, the organization requires
information about the conduct of its business. Deci-

sions deal with daily operations. For instance, the
operational level in a retail organization is concerned
with sales of products. The main operational level
applications would be order processing, inventory
control, and accounts receivable. In a manufactur-
ing business, the operational level is concerned with
sales and manufacturing. The main operational level
applications would be manufacturing planning, man-
ufacturing control, inventory management, order
processing, and shipping.

The information at the operational level is cur-
rent, accurate, detailed, available as generated, and
relates to the business of the organization. Opera-
tional information is criticul to the organization
remaining in business. As a critical resource, the data
requires careful management and maintenance. The
types of applications that support operational ievel
decisions and information are transaction processing
applications (see Figure 1-17). Query applications
for current operational data are other applications
that support operational level decisions.

The information needs for managerial control are
mostly internal information, can be detailed or sum-
mary, and should be accurate. Decisions made for
managerizal control concentrate on improving the ex-
isting ways of doing business, finding and solving
problems, and take a medium-range (e.g., quarter or
year) view of the company’s business, The types of
issues dealt with concern reduction of

s costs by comparing suppliers’ prices
» the time to process a single order
m the errors in a process

Aplicatior, T
«,5;% T Pes

FIGURE 1-17 Apptication Types and
Decision Types

» the number of manual interactions with an
order, and so on

The types of applications that support these data
needs are data analysis applications, DSS, and
GDSS (see Figure 1-17). Each of these application
types serves a different role in supporting manager-
1al control decision needs. Data analvsis applications
can be used to find and solve problems,. DSSs can
be used Lo identify trends, analyze critical relation-
ships, ot compare different wotk processes for pos-
sible improvements. GDSSs facilitate meetings of
people with different motivations and organizational
gouls, providing a meuns to reach consensuvs with a
frank discussion of the issues.

At the strategic level, the types of decisions take a
broad view of the business and ask, for instance,
what businesses should wc be in? What products
should we produce? How can we improve market
share? These questions require external information
from many sources to reach a decision. The infor-
matton is ambiguous, that is, able to be interpreted in
many different ways. Becanse the information is
Tulure-oriented, it is likely to be incomplete and only
able to be digested at a summary level.

The types of applications that support incomplete,
ambiguous, external information needs best are ex-
ecutive inforrnation systems (EIS) (see Figure 1-17).
EISs are specifically designed to accommodate
incomplete, ambiguous information. GDS8Ss also
might be used at the cxecutive level to facilitate dis-
cussion of alternative courses for the organization.

PROJECT

LiFE CYCLES

There are several different ways to divide the work
that takes place in the development of an application.
The work breakdown in general compriscs the pro-
ject’s life cycle, If you asked five SEs to describe the
life cycle of a typical computer application, you
would get five overlapping but different answers.
Life cycles discussed here are the most common
ones: sequential, iterative, and learn-as-you-go.’

7 Future developments in life cycles are discussed in
Chapter 18.

Project Life Cycles 23

Sequential Project Life Cycle

You should remember from systems analysis that a
segquential project life cycle (SPLC]) starts when a
software product is conccived and ends when
the product is no longer in use. Phases in 2 SPLC
include

initiation

problem definition

feasibility

requirements analysis

conceptual design

design

code/unit test

testing

installation and checkout

operations and maintenance

retircment

These SPLC phases are more appropriate to busi-
ness than to military/government applications
because, in the government, the first four phases (ini-
tiation, definition, feasibility, and functional re-
guirements definition) are usmally completed
by a different organization than that of the imple-
menters, Government prejects are subject to con-
gressional revicw, approval, and budgeting. So,
a government project requiring congressional ap-
propriation is usually defined as beginning at
the conceptual design phase and ending with
deployment of the system with operational status
according to Department of Defense standard
#2167a [DOD, 1985]. In contrast, business [S are
typically initiated by a user department reguesting
that a system be built by an MIS department. The
need for an IS is typically motivated by some busi-
ness situation: a change in the method of business, in
the legal environment, in the staffing/support envi-
ronment, or in a strategic goal such as improving
market competitiveness.

We call these SPLC phases a ‘Waterfall’ ap-
proach to applications because the output of each
phase fceds into the next phase, while phases are
maodified via feedback produced during the verifica-
tion and validation processes® (see Figure 1-18).

8 Boehm, Barry W., Software Engineering Economics. Engle-
wood Cliffs, NJ: Preatice-Hall, 1981,

24 CHAPTER 1 Overview of Soffware Engineering

Initiation —\'
.\ Feasibility

Analysis

Analysis \

Design

Program/

Linit Tast \
K Tast

o

Implement \

Operate
and
Maintain

Retira

FIGURE 1-18 Sequentiai Project Life-Cycle Model

Phases in the waterfall definition are defined as dis- feasibility analysis phase. In the following subsec-
crete even though, in practice, the information is tions, each phase of the project life cycle (SPLC) is
obtained in a nonlinear manner and the phase begin- defined,’ with the main activities and documents
nings and endings are difficult to distinguish. To identified.

identify discrete beginnings and endings, most com-
panies use the completion of the major product (i.e.,
program or document) produced during each phasc

4 This definitiom is adapted from work conducted during The
Assessment and Development of Software Engineering Tools
project sponsored by the ULS. Army Institute for Research in

as$ signaling the phase end. So, completion of a fea- Management Information, Communications, and Computer
sibility report, for instance, identifics the cnd of the Sciences (AIRMICS), contract DAKFL1-89-C-0014.

SPLC Phases

INITIATION. Project initiation is the period of
time during which the need for an application is
identificd and the problem is sufficiently defined
to assemble a team to begin problem evaluation.
The people and organizations affected by the appli-
cation, that is, the stakeholders, are identified. Par-
ticipants from each stakeholder organization for the
development team are solicited. The outcome of
initiation is a memo or formal document requesting
automation support and defining the problem and
participants.

FEASIBILITY. Feasihility is the analysis of risks,
costs and benefits relating to economics, technology,
and user organizations. The problem to be automated
is analyzed in sufficient detail to ensure that all
aspects of feasibility are evaluated,

Economic feasibility analysis elaborates
costs of spccial hardware, software, personnel,
office space, and so forth for each implementation
alternative.

In technical feasibility analysis, alternatives for
hardware, software, and general design approach
are determined to be available, appropriate, and
functional. The benefits and risks of alternatives are
identified.

Organizational feasibility is an analysis of hoth
the developing and using organizations® readiness
for the application. Particular emphasis is placed on
skills and training needed in both groups to ensure
successful development and use of the application.
The decision whether or not to use consultants and
the type of role they would play during development
is made during organizational feasibility analysis.
Organizational decisions include effectiveness of the
organization structure and definition of rales of
individual jobs in the organization as they will be
with the new application,

The feasibility report summarizes

« the problem

= (he economic, technical and organizational
feasibility

» risks and contingency plans related to the
application

Project Life Cycles 25

» preferred concept for the software product and
an explanation of its superiority to alternative
concepts

» training needs and tentative schedules

» estimates of project staffing by phase and level

of expertise

After feasibility is established, the Software De-
velopment Life Cycle (SDLC), a subcycle of the
SPLC, begins. This subcycle typically includes
phases for analysis, conceptual design, design, im-
plementation, testing, and installation and checkout.
SDLC end is signaled by delivery of an operational
application.

ANALYSIS. The analysis phase has many syn-
onyms; Functional Analysis, Requirements Defini-
tion, and Software Requirements Analysis. All
of these names represent the time during which
the business requirements for a software product
are defined and documented. Analysis activities
define

1. Functional requirements—"what” the system
is supposed to do. The format of the func-
tional requirements definitions depends on
the methodology followed during the analy-
sis phase.

2. Performance requirements—terminal, mes-
sage, or network response time, input/output
volumes, process timing requirements {e.g.,
reports must be available by 10 a.n.).

3. Interface(s) requirements—what data come
from and go to other using applications and
organizations. The definition includes timing,
media, and format of exchanged data.

4. Design requirements—information learned
during analysis that may impact design activ-
ities. Examples of design requirements are
data storage, hardware, testing constraints,
conversion requirements, and human-
machine interaction requirements (e.g., the
application must use pull-down menus).

5. Development standards—the form, format,
timing, and general contents of documenta-
tion to be produced during the develop-
ment. Development standards include rules
about allowable graphical representations,

26 CHAPTER 1

documentation, lools, techniques, and aids
such as computar-aided software engineering
(CASE) tools, or project management sched-
uling software. Format information includes
the content of a data dictionary/repository for
design objects, project report contents, and
other standards to be followed by 1he project
leam when reporting project accomplish-
ments, problems, status and design.

6. The plan for application development is
refined.

Analysis documentation summarizes the current
mcthod of work, details the proposed system, and
how it meets the needs of the required functions,
Requirements from the work activitics are described
in graphics, text, lables, structured English, or some
other representation form prescribed by the method-
ology being used.

CONCEPTUAL DESIGN. Once the proposed
logical system is understood and agreed to by the
user, conceptual design begins. Other names for con-
ceplual design activity include preliminary design,
logical design, cxternal design, or software require-
ments specifications. The major activity of concep-
tual design s the detailed functional definition of all
external elements of thc application, including
screens, reports, data entry messages, and/or forms.
Both contents and layoul are included at this level, In
addition, the logical data model is transformed into a
logical database schema and user views. If distribu-
tion or decentralization of the database is antici-
pated, the analysis and dccision are made during
conceptual design. The outputs of conceptual de-
sign include the detailed definition of the exiernal
items described above, plus the normalized and opti-
mized legical database schema.

Not all organizations treal conceptual design sep-
arately. Outputs of conceptual design may be in a
conceptual design document or might be part of the
functional requirements document develeped dur-
ing analysis. Depending on the project manager’s
personal taste and experience, the conceptual design
might be partially completed during logical design
and fully completed during physical design. In this
text, the two phases, design and concepiual design,
are treated as one.

Cverview of Software Engineering

DESIGN. Design maps “what™ the system is sup-
posed to do into *how” the system will de it in a par-
ticular hardware/soltware configuration.'” The other
terms used to describe design activities include
detailed design, physical design, internal design,
and/or product design.

During the design phase, the software engineer-
ing team creates, documents, and verifies:

1. Sollware architecture—identifies and defines
programs, modules, functions, rules, objects,
and their relationships. The exact nature of
the software architecture depends on the
mcthodology followed during the design
phase.

2. Software components and modules—defines
detailed contents and functions of softwarc
companents, including, but not limited to,
inputs, outputs, screens, reports, data, files,
constraints, and processes.

3. Interfaces—details contents, timing, respon-
sibilities, and design of data exchanged with
other applications or organizations.

4. Tesling-—defines the strategy, responsibili-
ties, and timing for each type of testing to be
performed.

5. Data—physically maps “what™ to “how™ for
data. In database terms, this is the definition
of the physical layout of data on the devices
used, and of the requirements, timing, and
responsibility for distribution, replication,
and/or duplication of data.

SUBSYSTEM/PROGRAM DESIGN. Subsys-
tem and/or program designs are sometimes treated
as subphases of the design phasc. Whether they are
separate phases or not, the software engineering
team creates, documents, and verifies the following:

1. Application contrel siructure—defings how
each program/module is activated and where
it returns upon completion.

10} Anyonc who has designed a system will tell you that you
cannot perform the conceptual design without some knowl-
edge and attention to the implementation environment. So,
the “what” and “how” distinctions arc gencrally, but not

cormpletely, accurate when deseribed as discrete activities.

2. Data structure and physical implementation
scheme—defines physical data layouts with
device mapping and data access methods 10
be used. In a database environment, this
activity may include definition of a central-
ized library of data definitions, calling rou-
tines, and buffer definitions for use with a
particular DBMS.

3. Sizing—defines any programs and buffers
which arc expected to be memory-resident
for on-line and/or real-time processes.

4. Key algorithms—specifies mathematically
cotrect notation to allow independcent verifi-
cation of formula accuracy.

5. Program component (routine with approxi-
mately 100 source procedure instructions)—
identifies, names, and lists assumptions of
program component design and usage.
Assumptions include expectations of, for
instance, resident routines and/or data,
other routincs/modules to be called in the
course of processing this module, size
of queues, buffers, and so on required
for processing,

CODE AND UNIT TEST. During ceding, the
low-level program elemenis of the software product
are created from design documentation and de-
bugged. Unit testing is the verification that the pro-
gram does whal it is supposcd to do and nothing
more. In systems using reusable code, the code is
custornized for the current application, and checked
to ensure that it works accurately in the current
environment.

TEST. During testing—sometimes called Com-
puter Software Component (CSC) Integration and
Testing''—the components of a software product are
evaluated for correctness of integrated processing,
Quality assurance testing may be conducted in the
testing phase or may be treated as a separate activity.
During quality assurance tests, the software prod-
uct (i.e., softwarc or documcntation) is evaluated
by a nonmember of the project team to deter-
mine whether or not the analysis requirements are
satisfied.

11 This is a term used by DOD standard #2167a, 1985,

Project Lite Cycles 27

IMPLEMENTATION. Also called Installation
and Chcckout, implementation is that period of
time during which a software product is integrated
into its operational environment and is phased
into production use. Implementation includes the
completion of data conversion, installation, and
training.

At this point in the project life evcle, the software
development cvcle ends, and the maintenance phase
begins. Maintenance and operations cortinue until
the project is retired.

OPERATIONS AND MAINTENANCE. Opera-
tions and maintenance is the period in the sofiware
life cycle during which a software product is em-
ploved in its operational environment, menitored
for satisfactory performance, and modified as nec-
essary. Three types of maintenance!? are

1. Perfective—to improve the performance of
the application (e.g., make all table indexes
binary to minimize translations, change an
algorithm to make the software run faster,
and so on.)

2. Corrective—te remove softwarc defects
(i.e., 1o fix bugs)

3. Adaptive—to incorporate any changes in the
business or related laws in the system (e.g.,
changes for new IRS rules)

Each type of maintenance requires a mini-
analysis and mini-design to determine social, techni-
cal, and functional aspects of the change. The current
operational versions of software and documentation
must be managed to allow identification of errors
and io ensure that the correct copy of software is run,
Omne aspect of change management specifically ad-
dresses configuration managenent of application
programs in support of maintenance activities.

RETIREMENT. Retiremenl is the period of time
in the software life cycle during which support for a
software product is terminated. Usually, the func-
tions performed by the product are transferred to a
successor system. Another name for this activity is
phaseout.

12 A detailed discussion of maintenance topics is presented in
Lientz and Swanson, 1980,

28 CHAPTER 1

UNIVERSAL ACTIVITIES. Thete are two uni-
versal activities which are performed during each
life-cycle phase: verification and validation, and
configuration management.

An integral part of each life-cycle phase is the
verification and validation that the phase products
satisfy their objectives. Verification establishes the
correctness of correspondence between a software
product and its specification. Validation establishes
the fitness or quality of a software product for its
operational purpose.

For instance, the individual code module specifi-
cations from design are verified to ensure that they
contain accurate and complete information about the
functions they perform. The modules are validated
against the analysis phase specification to ensure that
all required functions have corresponding designs
that accurately reflect the requirements.

Configuration management refers to the man-
agement of change after an application is opera-
tional. A designated project fibrarian maintains the
official version of each preduct. The project librarian
is able at any time to provide a definitive version (or
baseline) of a document or software module. These
baselines allow the project manager to control both
the software maintenance process and the software
products.

History

The sequential life cycle was originally devcloped
and documented in the 1960s to provide defense
contractors a life-cycle documentation standard for
Department of Defense (DOD) projects. The cur-
rent DOD Standard #2167a lists all activities and
details all documentation required for software
development as fulfillment of military contracts. As
industry recognized that their own application
development projects were out of control, over bud-
get, and unsatisfactory when complete, they modi-
ficd the standard to eliminate defense/aerospace
terminology and replace it with industry specific ter-
minology. Organizations modified the standard to
incorporate elements of methodologies, such as
structured development, data flow diagrams, and
walk-throughs, that were becoming known at the
same fime, In the late 1960s and early 1970s the
waterfall and 2167 documentation standard were

Qverview of Software Engineering

used throughout most Fortune 500 companies as
cast-in-concrete requirements for building and docu-
menting systems.

Problems

As nonncgotiable documentation requirements, pro-
jects frequently produced thousands of pages of doc-
umentation that no one except the authors ever read.
Information about applications was rarcly in any one
person’s head and communication overhead became
amajor problem to completing systems successfully.
User/management approval to continue with each
phase was not based on their knowledge of what
the system would do, but on some other criteria.
Published studies showed that the typical written
application requirements document contained, on
average, one-half to one error pet page. The conclu-
sion that paper prose is mot a good medium for
conveying the complex variety of application
requircments led to the development of more graph-
ical representation forms.

Eventually, IS managers realized that the water-
fall, when applied too stringently, not only did rot
solve the probliems of bad systems, it contributed to
a new generation of overdocumented bad systems.
The result has been a scaling back on required doc-
umentation. Standards have become ‘guidelines’ for
expericnced project managers to consider and to pro-
vide ncw project managers with review lists of
activities whose relevance they should consider.
Each project team customizes the documentation
and development activities in addition to the tools
and techniques they use.

Even with relaxation of required documentation,
a sequential life cycle dees not recognize the itera-
tive, nonlinear nature of application development,
and cannot easily accommodaie overlap of phases.
Many organizations now use a variant of the water-
fall by performing the activities in an overlapped
manner, sometimes called the ‘pipeline’ approach.
Finally, the waterfall approach does not recognize
that the level of detail necessary to adequately doc-
ament application functions is significantly different
with the use of automated tools, use of diagrams
(e.g., DFDs) to replace text, and use of high level,
fourth-generation languages (c.g., SQL).

Current Use

The sequential life cycle is still used but rarely in full
detail, and mostly for transaction applications. The
sequential life cvcle and its terminology will be
around for many decades to come, bat two diver-
gent trends will occur. On the one hand, demarcation
of phases will be more relaxed. Three trends lead-
ng to phase relaxation are:

= increasing maturity of computer-aided soft-
ware engineering (CASE) tools
» increasing use of high-level langnages
= availability of reusable clectronically stored
application information

On the other hand, further alteration and cus-
tomization to accommodate the need for more
detail in systems using new, more complex, or other-
wise novel hardware/software components will also
take place. It is from these novel, groundbreaking
applications that our industry frequently develops
new techniques to better communicate application
characteristics.

Iterative Project Life Cycle
Iterative PLC Description

An iterative project Life cycle is a cyclic repetition
of analysis and design events. Iterative PLC is some-
times called prototyping or a spiral approach to
development.

Prototyping is the development of a system or
system component in a short period of time without
formal written specifications. Originally thought of
as helpful for proving the usefulness of new tech-
nologies, prototyping caught on in the early 1970s as
a way to circumvent the overload of documentation
from the sequential lite cycle, Frequently, prototyp-
ing was wrongtully used and led to bad systems.
But, as experience with prototyping has grown, there
are three specific uses for which prototyping can be
very beneficial:

1. Complete iterative development of an appli-
cation when requirements are not well-under-
stood, e.g., DSS

2. Proof of utility, availability, or appropriate-
ness for technology, software, or hardware

Project Life Cycles 29

3. Rapid development of part of the system
to ease a critical work situation for users,
e.g., order entry without edit/validation to
ease paper backlog

Some authors describe a completely different life
cycle for prototyped applications. The notion that the
lifecycle is completely different is not entircly cor-
rect. The life cycle depends on the nature of the pro-
totype. If 2 complete application is built, then the
model of the life cycle mirrors that of the waterfall
with iteration between analysis-design-prograrm-
ming-testing-implementation as requirements be-
come known (see Figure 1-19). The difference is the
level of detail to which analysis and design are per-
formed. Requirements of iteratively-developed
applications are generally not well known or under-
stood. They might be ambiguous or incomplete for
some time. The prototype provides a base from
which users and developers together discaver the
requirements for the application.

One use of prototyping tests proof of utility,
availability, or appropriateness of the hardware, soft-
wate, ot design concept. The prototype development
process 1s a subphase of development that may par-
allel cither feasibility, analysis, or design. There is no
significant testing of a ‘proof * prototype because it is
being used to verify that an activity can be auto-
mated in a certain way, or that hardware {or soft-
warc) can be used as planned. An example of a
proof-of-concept prototype is shown in Figure 1-20
as taking place at the same time as the feasibility
study. By the end of feasibility analysis, the useful-
ness of the prototype is decided, and the feasibility
report recommends that the tested product (or idea)
be abandoned or used.

A third type of prototype is a partial application
developed as u stopgap measure for a particular
problem until the complete system is available. A
partial prototype might be built with its complete life
cycle paraileling one phase of the development life
cycle as shown in Figure 1-21. Thc phases of the
prototype development cycle mirror those of a nor-
mal development life cvcle; they differ in that only
a small portion of the entire application is developed.
These prototypes can omit processing details. For
instance, an on-line data entry might not fully vali-
date data. Feedback to the design team would detail

30 CHAPTER 1 Overview of Software Engineering

Analyze and
Gather
Reguirements

Dasign

Build

Prototype

Evaluate and
Refine
Requirements

Engineer product
to ensure complete
documentation
development

FIGURE 1-19 Full System Prototype Lifc Cycele

what is and is not in the prototype so that its design
and development are completed during the regular
application development.

FProblems

There are two major problems with prototyping:
misuse to circumvent proper analysis and design,
and never completing prototypes as proper applica-
tions. Prototyping has been used as one way to cir-
cumvent rigidities in the sequential life cycle when it
is treated as a set of nonnegotiable activities. In this
misuse, some authors refer to ‘quick analysis™ and
‘Quick design’ as if less work is done during those
phases. [n fact, if done properly, the activities and
work are identical to those done in the life cycle, and
the efforl normally placed on documentation is di-
verted to building software.

The other major problem with development
of a prototype is that the system might never get

formalized. Dwetaiis of processing, for instance,
data validation and audit requirements, might be
forgotten in the push to get a working prototype
into production. While this problem is casily
solved, it requires user and management com-
mitment to a completed project. The problems
with ensuring this commitmcnt are political,
not technical.

Current Use

Although still misuscd in the development of undoc-
umented, incomplete applications, prototyping for
the above intended purposes is also alive and
healthy. All forms of query and D5S applications arc
candidates for iterative life cyctes. Some languages
(such as Focus, Rbase, Oracle} have easy to learn,
short, very high-level programming languages that
are naturally amenable to prototyping. A database
can be deflined, populated with data, and queried in

Project Life Cycles 31

Feasibility
Analysis
Profotype
Activiies: k
Analysis \v Analysis
Design
Design
Develop \
Prototype

Evaluate and
Refine
Requiremsnts

Program/
Unit Test

\

\

Tast

\

Implgment

FIGURE 1-20 Proof of Concept Prototype Application Development Activities

under an hour to show capabilities of the languages
or discuss requirements of a system. This kind of
prototyping builds morale in the IS staff and confi-
dence in the users, and is a great selling tool for in-
house application development.

Future Use

Prototyping is appropriate to validate designs, to
prove use of new hardware and/or software, or to
quickly assist users while building a larger applica-
tion. For these uses, prototyping is expected to be
employed with increasing use of high-level lun-
guages to facilitate prototype development. Though
there are few antomated prototyping tools that also
interface to CASE for full application definition,
more such integrated tools are becoming available.

Learn-as-You-Go
Project Life Cycle
Learn-as-You-Go PLC Description

With all the good news about developments in life
cycles, there is a disturbing statistic that about 75%
of all companies in the United States do not use any
life cycle and/or methodology to guide their devel-
opment work.!? The title learn-as-you-go could
equally well be called trial-and-error, or individual
problem solving. The life cycle for the no-life cycle

13 Nceecco, Charles R, Carl L. Gordon, and Nancy W. Tsai,
“Systems analysis and design: Current practices,” MIS Onar-
terly, December 1987, pp. 461-476.

32 CHAPTER 1 Overview of Software Engineering
Feasibility
Analysis
Analysis
Prototype
Development:
Design
Analysis \
Program/ k
Unirg Test Test \'
Implement \ Implement
Prototype
FGURE 1-21 Partial System Prototype

approach is shown in Figure 1-22, which shows a
generic life cycle. The problem is defined. The SE
develops the application, which enters operation and
maintenance. This approach is not suited to group
wotk, so projects are limited to one person develop-
ing small applications. There are two different types
of development groups that are in this category: de-
velopers of truly unique applications, and developers
who do not want too much control or structure in
their work.

The first developer view that the problem is
unique and cannot easily be molded into a formal
life cycle because of its nature is appropriate Lo
applications using emerging technologies and tech-
niques, such as expert systems and artificial intelli-

gence. There is no life cycle that describes building
of cxpert systems, although with a feedback loop
between maintenance and definition to indicate iter-
ation, Figure 1-22 is appropriate to these systems.
There is no methodology of knowledge engineer-
ing; rather, there are several techniques that onc
mighl use depending on the nature of the expertise,
the personality of the expert, and the complexity of
the problem demain. This life-cycle approach is
appropriate for such emerging application domains
as long as it is a disciplined experimentation loop
that includes feedback and documentation.

The second view that all problems are unique,
and if understood, do not require significant modei-
ing, documentation, or sequences to the analysis and

Define
Problem

Develop

Mairtain

FIGURE 1-22 Generic View of Life-Cycle
Development

development events. Since each problem is unique,
there is no point in trying to repeat the analysis and
design experience. Development is viewed as a cre-
ative activily that should be unconstrained. There
should be no formal analysis, design, programming,
or testing, even though each of these activities must
be performed during the process. This approach
dcnics the nced for professional SEs or a profcssion
of software engineering. In fact, it is frequently a
cover for ignorance, or an excusc for laziness. This is
a hacker’s view of the world that is not appropriate
to business organizations.

Problems

If building smai! sysiems (e.g., less than 2,000 lines
of code in a 3GL, like Cobol, less than 400 lines of
code in a 4GL), the developers, managers, and users
may not have problems, Many financial analysis
models and small systems in brokerage firms are

Project Life Cycles 33

developed using no life cycle and no methodology.
Bul anything other than small applications are un-
likely te perform exactly as desired, may not be
completely tested when placed into production, and
cannot be integrated easily into existing applications.

A less obvipus problem is that this technique
relies on individual problem-solving capabilities
and knowledge. Studies by IBM and others show
individual programmer differences of as much as
16 times in productivity and more than that in accu-
racy. If the firm using this technique has only
the best, top 5% of programmers on its staff, there
is little risk. But how many firms actually have these
pcople?

The view that we do not need a disciplined ap-
proach to developing applications implies that just
anyone can design and build good applications. Yet
daily we hear of users who have built complex
spreadsheet DSSs only to leave a company with no
documentation and no procedures for the next uscr.
We also hear of users (and, regrettably, people with
the litle software engineer) who are leaders of proj-
ects that are canceled after spending millions of dol-
lars, because the pieces just do not work together.
For cach Lype of application, there is a price with this
view: DSSs without an architecture cannot be ex-
tended; ESs without a plan are unreliable and un-
maintainable; TPSs without architectures and plans
can oaly ever support one small piece of business;
integration across subject data areas is impossible.
Even though ES and Al problem solving both use
the learn-as-you-go technique, both require a differ-
ent kind of discipline and rigor.

Current Use

As related above, about 75% of all companies in the
United Staies do not use any life cycle or methodol-
ogy to guide their application development work.
With this statistic, it is no wonder that most applica-
tions do not perform as intended, are delivered late,
overrun the budget, and have unsatistied users.

Future Usc

For emerging technologies, techniques, or concep-
tualizations of applications, this approach is an
effective way 1o nurture development of a ficld of

3 CHAPTER 1 Overview of Software Engineering

knowledge. For these uses, it will remain. Unfortu-
nately, it will also remain for companies who belicve
that discipline and order cost too much, and who will
continne to suffer the risks involved with relying
solcly on one persen’s skill and integrity.

In summary, life cycles define a global break-
down of activities in the lifc of an application. No
lifc cycle prescribes how to actually do the work
within the phases of a PLC. For that definition, we
turn to methodologies.

METHODOLOGIES

Methodologies are procedures, techniques, and pro-
cesses used to direct the activities of each phasc
of a software life cycle. There are five classes of
methedologies: process, data, object, semantic, or
nene. Each has its own unique view of an application
that relates to its historical conlext, its awn short-
comings, problems, and futures. In this scction, a
brief overview of the classes of methodologies is
given with a general list of documents produced by
the analysis phasc, problems with the methodology,
and short analysis of the methodology’s current and
future use. Much of this material should be review. It
it is nel review, don’t panic. Use this material to
learn the terminology for discussing the methods in
detail later.

In addition to the methodologies prescribing how
to do an analysis and design, a special class of meth-
ods advises how to bring users into the process. ‘That
class, sometimes called social methodologies, is the
last part of this section.

Process Methodology
History

Process methedologies take a structured, top-down
approach 1o evaluating problem processes and the
data flows with which they are connected. Process
methods developed during the 1970s in response to
increasing complexity of application processing,
increased complexity of operating systcm environ-
ments (e.g., the IBM 360 generation of hardware),
and the introduction of disk file processing with
sequential, indexed, and direct access methods. The

documentation produced by the process approach'
includes, for example, context diagrams, data flow
diagrams, data store definitions, and structurcd
English process descriptions. In the course of a com-
plete application development, many other types of
analysis and design documentations are developed.
These additicnal documents are discussed in the
chapters on analysis and design.

Current Use

Individual techniques such as context and data flow
diagrams are widely used and also supported in
CASE environments. Other techniques have been
replaced by newer methods, for example, paper-
based data diclionaries have been replaced by CASE
repositories or active data dictionaries, file design
has been augmented by normalization, entity rela-
tienship diagramming, and so on.

Future Use

Process melhods as atiributed o DeMarco and
others will fade as a distinguishable methodology
with context and DFDs melded into a collection of
techniques that will be used to support methodol-
Ogy customization.

Data Methodology
History

Data methodologies begin analysis activities by
first evaluating data and their relationships to deter-
mine the underlying data architecture, When the data
architecture is defined, outputs are mapped onto
inputs to determine processing requirements. The
most used data methodelogy is informaliion engi-
neering (TE) which was described by Finkelstein and
Martin.!® Documentation produced by the data

l4 The architects of process methods were Yourdon and Con-
slantine, 1978; DeMarco, 1979; Gane and Sarson, 1979,

15 Sce Martin, Jamcs, Information Engineering, Book !: Iniro-
diection, Book 2: Plunning and Analysis, Book 3: Design and
Implementation, Englewood Cliffs, NJI; Prentice-Hall, 199();
and Finkelstein, C., fnformation Engineering, 1991,

approach discusscd in this text is that of informa-
tion engineering.

As the use of DBMS softwarc became pervasive
during the late 1970s and early 1980s, software
engineers recognized a need for improved ways of
designing data structurcs. Many methodologies were
developed that concentrated strictly on the data
aspects of applications with the processing added as
an afterthought fcf. Warnier, 1981]. As an attempt
to address the entire application development life
cycle, Martin and Finkelstein borrowed techniques,
packaged them in a new methodology, and inte-
grated them to provide the first “womb to tomb’
methodolegy. Information engincering, the result-
ing methodology, begins with enterprise level analy-
sis and proceeds through ideatification of
applications and individual project life cvcles. The
methodology was not the work of one person; rather
it integrates concepts that were thought of as the best
at the time including entity-relationship modeling,
normalization and other techniques relatling to DB
design. The enterprise level techniques are adapted
and widely used in organizationat reengineering.

An example of analysis documentation developed
using information engineering includes entity refa-
tionship diagrams (ERD), entily hicrarchy diagrams,
process dependency diagrams, process hierarchy
diagrams, and third normal form logical database
definition.

Current Use

Information engineering is gaining acceptance in
some of the largest LS. corporations (e.g., Mobil,
Texaco} and is used in Australia (where Finkelstein
lives) but is not widely used otherwisc. Other *data’
methods enjoy regional popularity, 16

Future Use

Some of information engineering’s appeal is iis
position as the only mcthodology that represents all
levels of organizational analysis from enterprise

16 Michael Jackson's Jackson Structured Development (JSD) is
used in England. Warnier-Ort techniques are used in compa-
nies such as AT&T. Chen’s entily-telationship approach is
used in isolation in many corperations but is also part of in-
formation engineering.

Methodologies 35

through application. 1E cannot easily be altered, at
this time, to accommodate object orientation or
knowledge enginecring. But it will be around for
some time with parts of ihe methodology replaced in
a customizing process. Individual techniques such as
ERD will gain even more acceptance in the future
as data administration increases.

Object-Oriented Methodology
History

Object-oriented methodology is an approach to
system life-cycle development that takes a top-down
view of data objects, their allowable actions, and the
underlying communicalion requirement to define a
system architecture. The data and action components
are encapsulated, that is, they are combined together,
to form abstract data types. Encapsulation means
that if [know what data I want, I also know the
allowable processes against that data. Data are
designed as lattice hierarchies of relationships to
ensure that top-down, hierarchic inhcritance and
sideways relationships are accommodated. Encapsu-
lated objects are constrained only to communicate
via messages. At a minimum, messages indicate the
receiver and action requested. Messages may be
more ¢laborate, including the sender and data to be
acted upon.

Object orientation developed during the 1980s
and 1990s as producing desirable software attrib-
utes (for instance, minimal coupling) espoused since
the 1960s. Object-criented designs can result in soft-
ware with desirable properties: modularity, infor-
maticn hiding, functional cohesion, and minimal
coupling. Like the other methodologies, bad designs
lead to bad applicalions,

Object orientation appears able to support the ab-
stract concepts needed to automate meta-data and
meta-mela-daia needed for expert, intelligent, and
multimedia applications. Meta-data gives meaning
to data and is information about data. For instance,
a name or data type is information aboui the data in
the example (sec Figure 1-23). Meta-meta-data is
information about the meta-data that describes its
allowable use Lo the application. These types of
definitions allow you to plug-in any hardware

36 CHAPTER 1

Cverview of Software Engineering

Data
Meta-Data

Msala-Meta-Daty

Data Dot
Metz-Data

Meta-Meta-Data

Data SCo1
Meata-Data

Meta-Meta-Data

Cathrine Ratliff
Name, Alpha, 16 Characters

Type=Data Field,
Logieal Link = Process,
Physical Link, Frocess,
DBMS (EMPL DB)

Drive Address, Alphanumeric, 3 Characters

Type=Disk,
Logical Link = /0 Driver
Physical Link = SCS| Channel 0

Sereen 1D, BOx20 Alphanumen: Characters

Type=3270 Black/Whita Terminal,
Logical Link = /O Driver, Process
Physical Link = SCS| Channel 0

FIGURE 1-23 Object-Oriented Example

device, software, or data to create an application
environment.

Object orientation is still an immature discipline,
undergoing almost daily evolution and change. As
such, the details presented for object orientation
in this text may be considerably different in five
years.

The documentation produced by one object
approach for analysis/design includes, for example,
a succinct paragraph describing the system, an object
list, an object attribute list, an action list, an action
attribute list, a message list, and scveral optional
diagrams,

Current Use

Object orientation is the usual approach to devel-
oping applications in aerospace and defense organi-

zations, and experiments with its use are occurring in
most large companies, Object design appears to be
the best suited method for real-time applications, and
is useful for on-linc applications. It is one of the 1S
buzzwords of the 1990s and appears often in every
trade periodical, research journal, and booklist.

Future Use

Keeping in mind that it is neither a complete nor a
maturc methodelogy, the current high level of activ-
ity implies a future full of object-oriented applica-
tions, databases, and CASE tools. When done
properly, object orientation appears capable of sup-
porting many complex cnvironments, including:
intelligent applications, multimedia applications,
and reusable code and reusable design objects. Look
for object ori-entation to be around for a long time.

If you only learn one new methodology, this will be
4 profitable one to learn for the future.

Semantic Methodologies
History

Semantic methodologies are used in the automation
of artificial intelligence (AT} applications. Al, like
object orientation, is in its infancy. By definition,
Al methodologies are also in their infancy.

Al applications cover a broad range of intellectual
difficulty, ranging from recognizing 1o reasoning to
learning (see Figure 1-24). Most Al applications in
business are on the lower end of the Al spectrum,
and provide limited reasoning in applications. Busi-
nesses are experimenting with more complex uses
of AL

This discussion is about Al applications that
reason through problems to achieve expert level
competence in a specific area of expertise. These
applications are usually called knowledge-based
systems (KBS) or expert systems (ES) upplications.
Most ES contain the reasoning processes of one or
more human experts.

Semantic approaches to systam life-cycle devel-
opment avtomate the meaning of objects in the
application. For example, a knowledge object might
be composed of objects describing a ‘legal” hard-
ware configuration, The reasoning process in the ES
first asks characteristics of hardware objects that are
required for a system (e.g., speed of disk drive, size
of disk drive). Then, using the required characteris-

Methodologies 37

tics as constraints, the ES determines ‘legal’ config-
uraticns that meet the constraints,

Al present, data and rules for evaluating data in
semantic applications are defined together within the
application and not separated as in traditional appli-
cations. There is no scparation of analysis and design
activities per s¢ for semantic applications either.
Rather, the task of knowledge engineering encom-
passes three general tasks: eliciting knowledge from
an cxpert, analyzing it to define the heuristics and
data, and automating the information in some logic-
hased language, such as Prolog.

Current Use

Knowledge-based systems are a growing segment of
the applications portfolio in organizations today.
This is another class of methodology, along with
object orientation, that is in s infancy. Semantic
methods are somewhat more well-defined for busi-
ness use than object methods. But, the extent of spe-
cial training and expertise required to implement
intelligent applications make the knowledge inac-
cessible to most practicing SEs.

Future Use

There is a significant amount and diversity of
research that will resvll in mature semantic method-
ologies over the next decade. One major activity in
the future will be the addition of expert intelligence
to current transaction, query, data analysis, and DSS
systems. Semantic method use will continue to be a
growth area in IS for the foreseeable future.

Percomtof 07 Recognizing
Companies » Reasoning
Using Al ~
25%
. Learning
o L= &
1970 1980 1990 2000 2010

FIGURE 1-24 Range of Artificial Intelligence Applications

33 CHAPTER 7

Overview of Softwarg Engineering

STOCK MARKET SELLERS, INC.,
Stock Market Sellers, Inc. (SMSl) is a brokerage
flrm that had a reputation for slow, steady
growth and low aggression relative to its
industry. In 1988, SMSI embarked on a new,
more cggressive position and began intro-
ducing new products practically overnight to
keep up with its competition,

Automated support for SMSIs new prod-
ucts was the responsibility of Alec Ranier, a
young Brit who was a whiz-kid programmer,
Alec was promoted several fimes until, in
1921, he managed a staff of twenty pro-
grammers who developed applications to
support new products.

When asked about his use of Iife cycles
and methodologies, Alec said, “No, we don’t
use any of those methodologies or CASE
technclogies. We don’t have time. A broker
wants a new product or a new analysis the
day after they ask for it, basically.”

*Don’t progrommers have to talk to each
other 1o coordinate their work?” | asked.

He replied, "Not usually, That's how we get
away with being so informal.”

“What happens when you do nesed to
have programmers talk 1o each other?”

Alec answered, "It is a mess| daughing) I'll
grant that. We redesign. rewrite, and do o ot
of code. Another side effect is we reinvent
the wheel a lot. We probably have twenty
programs that calculate collateralized mort-
gaoge cbligations and their returns.”

| was astonished, “"How do you verify their
accuracy?”

“Well, we don’t becouse we can’t. That is
a problem. We're actudlly trying to design
a few key maodules to be reusable, but it's
a problem becouse the potential-using
progroms are dil going to need 1o be
rewritten.”

| asked, "Do you know any methodoiogies
to help you do that design?”

Alec wos honeast, "Not really. I'm a good
programmer who got promoted. Some day |
might learn one but now | just want to "get
product out the door.” ~

No Methodology
History

When you develop an application using no method-
ology, you rely on your own cxpericace and prob-
lem-solving ability to automate a solution to a
problem. The wse of no methodology is implied by
the discussion of the learn-as-vou-go lifc cycle.
There are no general activities because what is
done and how it is done are left stricily to the
individual.

Current Use

Most organizations in the United States currently
use no methodology. Example 1-5 illustrates the

box companies get themselves into when they do
not usc a methodology. As in the example, compa-
nies generally do not recognize any problems. On
probing, they realize they have problems but have
no idea for getting out of the situation short of
rewriting all applications . . . a solution they consider
too costly.

Future Use

There are two major reasons why use of no method-
ology will begin to disappear as a strategy for
designing applications. First, trial-and-error is not a
productive problem-solving strategy when the
requirements for an application can be identified.
Rather, a lack of methodology indicates laziness,

shoddy work practices, and lack of rigor, usually
where it is most needed. Hopefully in the future,
more organizations will recognize the need for rigor
in developing applications . . . their company’s
future might well depend on 1hat recognition. Sec-
ond, in order to use CASE tools and gain any of their
productlivity improvements, some methodolegy is
required,

User Involvement in
Application Development

Each of the previous methodology discussions
approaches the problem of application development
as it it were done only by technically oriented per-
sonnel. Where in this picture is the user of the
application? Ultimately, users mwusl supply informa-
tion about the business functions and accompany-
ing data that are being automated. In this section,
we discuss user involvement in application devel-
opment so you do not think SEs work only with cach
cther. Although early applications were frequently
built without discussions with users, iselation of SEs
from users resulted in systems that might work tech-
nically, but often did not meet user needs, and fre-
quently disrupted the workplace.

In the early 1960s, Scandinavians began to voice
concerns over the social side effects of applications.
Early systems frequently deskilled workers, Socially
orientcd methodologies of application development
were created in response to the concerns aboui the
effects of computerization. Social methodologies
describe an approach to SDLC that attends to social
and job-related needs of individuals who supply,
receive, or use data from the applicaticn being built.
Social methodologies are nol really methodologies;
rather, they are user involvement techniques. These
techniques ignore technology completely and as-
sume that some other approach to the technical
aspects of application development is uscd along
with user involvement.

The three main vser-involvement techniques are
joint application design (JAD), socio-technical
systems (STS), and Ethics. The most practical and
popular method is joint application design (JAD)

Methodologies 39

which requires an off-site meeting of all involved
users and systems people, who meet for five to ten
days to develop a detailed functional description of
application requirements. Daytime meetings are
used for new analysis; nighttime meetings document
davtime results for review and further refinement the
next day.

There are many benefits from user involvement in
application development. First, it builds commit-
ment by users who automatically assume ownership
of the system. Second, users, who are the real ex-
perts at the jobs being automated, are fully repre-
sented throughout development. Third, many tasks
are performed by users, including design of screens,
forms, and reports, development of user docu-
mentation, and development and conduct of aceep-
tance tests.

We assume that user involvement is not
only desirable, but mandatory to truly effective
application development product and process.
This does not imply that such design will result,
only that it can. Using a social approach assumes
that job enjargement is a desirable by-product of
automation.

The most important aspect of user involvement
18 that it must be meaningful. The users must be de-
cision makers and statf who fully understand the im-
pact of their decisions, and who are interested in
participating in the development process. Using low-
level staff, or assigning “cxpendable’ managers is
not the way to have users participate in developing
applications. Neither is co-optation of users desired,
Co-opting means that you get people to agree with
the outcome because they “participated’ in the deci-
sion process even though the alternatives are all de-
fined by the application developers.

The goal of user participation is for IS and non-IS
people to work together as business partners rather
than as adversaries. When users participate, they
make all nontechnical decisions. The SEs explain
and shepherd users to make semitechnical decisions,
for instance, design of screens. The SEs explain both
the impact and reasoning of major technical deci-
sions. If this discussion implies that users call the
shots, that is what is meant. User involvement means
that users run the project, making the majority of

40 CHAPTER 1

decisions and having final say on alf major deci-
sions. The SEs and other Managemeat [nformation
Systems (M18) staff act as scrvice-oriented techni-
cians, as they are.

In many organizations, the social aspects of work
are specifically felt ner o be within the scope of re-
sponsibility of software devclopers. If the develop-
ment statf are only technical in their orientalion, this
is probably true. Then it is the responsibility of the
project manager to educate user and IS management
about the need to design the organization and jobs
as well as the system.

In the United Statcs, high levels of user involve-
ment are still unlikely and usually at the discretion of
the project manager. In many cases of ‘user involve-
ment’, the reality is that users are not involved, Even
in companies that have user projcct managers, IS
staff can ignorc user desires and baild the systems
they want to build,

SEs and users who have participated in user-
involved application development tend to be fully
committed to user involvement as a requirement in
application development. Hopefully, the days of ap-
plication devclopment by technicians who never
consult with users are gone, or soon will be. Future
generations of computer-literate uscrs witl demand a
say in how their systems are developed. The progno-
sis, then, is for user involvement Lo continue slow
growth of use in the United States.

OVERVIEW

OF THE BOOK

In this chapler so far, we have prefaced and intro-
duccd the major topics of the book. In addition
to identifying specifically how the above topics
will be used later in the book, there are many morc
topics that you will also learn that we briefly out-
line here.

Applications

Applicalions are the underlying topic of all we dis-
cuss in this text. You should already have a fairly
good understanding of what an application is. We
will not discuss that topic further.

Overview of Software Engineering

What we will discuss throughout the text is how
application types relate to each of the topics. You
will get answers to questions such as: Which life
cycles and methods are most appropriate to which
application types? When do application characteris-
tics and technologies affect the choice of life cycle
and/or methodology?

Project Life Cycles

Project life cycles should also have been mostly re-
view, PLCs, per se, are not mentioned again. Rather,
the phases of feasibility, analysis, design, testing,
lunguage selection, and testing each have their own
chaplers. One difference between this text and most
other texts is that multiple methodologies and devi-
ations from the standard PLC are discusscd in the
context of cach phase.

Part I: Preparation for
Software Engineering

Part 1 prepares you for the tasks of developing and
implementing an application. The chapters in this
section introduce you fo

m research on learning and software engineering
to highlight an effective means of studying
and practicing this work

= the ABC Video case used throughout the text

n the roles of project manager and software
enginecrs

» methods of gathering information about the
task to be automated

» proper behavior during application de-
velopment

Part II: Project Initiation

After you know how 1o elicit information, we begin
talking about project development. Part 11 first
discusses organizational level re-engineering, a
methad to developing application plans. Then, feasi-
bility analysis is detailed in the next chapter. These
discussions are separated from those about the
mcthodologies because these tasks are assumed by
most methodelogies. For each chapter, the theories

underlying the concepts are introduced, a method of
performing the tasks is described, and examples are
provided from ABC to help make the information
concrete.

Part III: Analysis and Design

Part 111 is devoted to analysis and design activities
that each take about 20% of application development
time, During analysis, the SE concentrates on defin-
ing what the application will do. During design, the
requirements are translated to define kow the appli-
cation will operate in its specific hardware and soft-
ware environment. One representative methodology
from each broad class of methodologies is discussed
in detail in Chapters 7 through 12. Chapters 7 and 8
discuss analysis and design, respectively, for process
methodologies. Chapters & and 10 relate to data-
oriented methodologies. Chapters 11 and 12 present
object-oriented methodologics. Based on ABC’s
rental processing application, we will discuss what
each methodelogy can and cannot do for you during
logical definition of application requirements. For
each methodology, the theories underlying its de-
velopment are described and representative CASE
tools available to support application development
are provided.

At the conclusion of the methodology discussien,
Chapter 13 recaps the graphical representations and
thinking processes used in each methodology. The
methodologies are compared and contrasted on sev-
eral sets of criteria. In addition, future developments
in technology and applications and their impact on
methodologics are developed.

Somc tasks are performed during analysis and de-
sign, but are not addressed by most methodologies.
These forgotten activities are included in this section
and discussed in Chapter 14.

Part IV: Implementation
and Operations

Many tasks remain to complete an application de-
velopment, including programming, testing, main-
tenance, and change management. Each of these
topics is related to application and methodology
types in Chapters 15 through 18. For every chapter,

Overview of the Book 41

applicable automated support tools are identified.
Chapter 15 discusses the selection of a target lan-
guage for an application. Code for applications will
be increasingly generated by the CASE tool. As
CASE use increases, the need to code, then, is
replaced with a need to choose an appropriate
language.

Similarly, many applications now use purchased
software rather than customized code. Chapter 16
discusses the selection and purchasing of hardware,
software, or consulting services for application
development.

Testing is required of all applications developers
at present whether a machine generates the code or
not. Chapter 17 discusses different types of testing,
testing techniques, and the development of test plans
for an application.

Change is & way of life in application develop-
ment. Chapter 18 deals with the management of
change for documents and software. The section on
software maintenance describes re-engineering as
it applies to deciding whether or not to replace
or maintain code. Several replacement options
are presented.

Finally, the last chapter discusses careers in soft-
ware ecngineering, Keeping current in a profession
that constantly changes is a daunting task. In Chap-
ter 19, you will reccive tips on the type of reading
you should do and the types of professional organi-
zations you might join to enhance your ability to stay
current. In addition, you will lcarn the types of jobs
available to you as a novice softwarc engineer and an
approach for deciding on a starting job.

SUMMARY —

This chapter prefaces and summarizes the contents
of the text. Software engineering was defined as a
systematic approach to the development, operation,
maintenance, and retirement of software. A software
engineer is a person who has a broad knowledge of
methodologies, life cycles, languages, and all as-
pects of softwure development, and who applies that
knowledge to the systematic development of appli-
cation systems. The two main goals of software en-
gineering arc to bwild a quality product through a
quality process.

42 CHAPTER 1

Next we defined applications characteristics, re-
sponsiveness, and types. An application is a set
of related programs that perform some business
function. The characteristics that all applications
have in common are data, processes, and constraints.
Application responsiveness reflects whether the
application is batch, on-linc, or real-time. Finally,
application types include transaction processing,
query, DSS, and expert systems.

Project life cycle is the breakdown of work for
initiation, development, maintenance, and retire-
ment of an application. Alternative project life
cycles include sequential, iterative, and the learn-
as-you-go. The sequential life cycle includes a series
of phases for initiation, feasibility, analysis, concep-
tual design, design, programming/unit testing, test-
ing, implemenlation and checkout, maintenance, and
retirement.

Methodologies are policies, techniques, and tools
that guide the activities of each phase of a software
project life cycle. The five classes of methodologies
in this text are process, data, object, social, and se-
mantic. Process and data methodelogies are fairly
mature guidelines for developing applications.
Object and semantic are emerging methodologies
that help us build systems using artificial intelligence
and new technologies. Social methods are really
techniques for involving users and assume the use of
one of the other four methodology classes as well.

REFERENCES

Boehm, Barry W., Software Engineering Economics,
Engiewood Cliffs, NJ: Prentice-Hall, 1981.

Booch, Grady, Software Engineering with Ada, 2nd ed.
Menlo Park, CA: Benjamin-Cummings, 1987.

Booch, Grady, Object Oriented Design with Applica-
tions, Redwood City, CA: Benjamin-Cummings,
1991.

Bostrom, Robert P, and J. Stephen Heinen, “MIS
problems and failures: A socio-technical per-
spective,” Part [, MIS Quarterly, September 1977,
pp. 17-28.

Chen, P. P-S. “The entity-relationship model—Toward a
unified view of data,” ACM Transactions on Data
Structures, Vol. 1, March 1976, pp. 9-36.

Qvenview of Software Engineering

Davis, Gordon, and Margrethe Olson, Maragement
Information Systems: Conceptual Foundations, Struc-
ture and Development, 2nd ed. New Yotk: McGraw-
Hill, 1985.

Department of Defense, Siandard for Application Devel-
opment, Guideline #2167a. Washington, DC: US
Government Printing Office, 1985,

DeMarco, Tom, Structured Analysis, New Yock: Yourdon
Press, 1979,

Eliason, Alan L., Onfine Business Computer Applica-
tions, 2nd cd. Chicago, TL: Science Research Associ-
ates, 1987,

Feigenbaum, E., P McCorduek, and H. P. Nii, The Rise
of the Expert Company, New York: Vintage Books,
1989,

Gane, C., and T. Sarson, Structured Svstems Analysis;
Tools and Technigues. Englewood Cliffs, NJ;
Prentice-Hall, 1979.

Gange, Chris, Computer-Aided Software Engineering: The
Methodology, The Products and the Future. Engle-
wood Cliffs, NI: Prentice-Hall, 1990,

TELL, IEEF. Software Engineering Dictionary. Piscat-
away, NJ: [EEE Press, 1983,

Licntz, B. P, and E. B. Swanson, Software Maintenance
Management: A Study of Maintenance of Computer
Application Saftware in 487 Data Processing Organi-
zafions. Reading, MA: Addison-Wesley, 1980.

McClure, Carma, CASE is Software Automation. Engle-
wood Cliffs, NI: Prentice-Hall, 1590

Martin, James, Frformation Fngineering, Rook 1: Intro-
duction, Book 2: Planning and Analysis, Book 3:
Destgn and Implementation. Englewood Cliffs, NJ:
Prentice-Hall, 195{.

Necco, Charles R., Carl L. Gordon, and Nancy W, Tsal,
“Systerns analysis and design: current practices,” MIS
Uuarterly, December 1987, pp. 461-476,

Parnas, D. L., "On the ctiteria to be used in decomposing
systems into modules,” Communications of the ACM,
Vol. 15, #12, 1972, pp. 1053—1058.

Spraguc, Ralph H., Jr.,, and Hugh I. Watson, Decision
Support Systems: Putting Theory info Practice. Engle-
wood Cliffs, NJ: Prentice-Hall, 1986.

Swanson, E. B., Information System Implemeniation:
Bridging the Gap between Design and Utilization.
Homewood, IL: R, D. Irwin, 1988.

Turban, Efraim, Decision Support and Expert Systems:
Management Support Systems. New York: Macmillan
Publishing Company, 1990.

Yourdon, Fdward, and Larry L. Constantine, Structured
Design. New York: Yourdon Press, 1978,

KEY TERMS

adaptive maintcnance

analysis

application characteristics

application
TESPONSIVENEess

application type

automated interface

batch applications

class

coding

computer-aided software
engineering (CASE)

conceptual design

configuration
managerent

consirainl

control constraint

corrective maintenance

data

data analysis applications

data methodology

data warehouse

decision support
applications

declarative language

design

development

economic feasibility

embedded system
engmeermg

executive information
system (EIS)

cxpert systems (ES)

feasibiliry

goals of SE

group decision support
systems {GDSS)

hierarchic logical data
model

human interface

implementation

inferential constraint

initiation

input

interactive processing

iterative project life cycle

joint application design
{JAD)

knowledge acquisition
subsystem

knowledge base

learn-as-you-go project
life cycle

logical data model

maintenance

manual interface

meta-data

meta-meta-data

methodology

network logical data
model

object-oriented logical
data model

object-otientation

on-line application

operations

organizational
feasibility

output

perfective maintenance

physical data model

posttequisile constraint

prerequisile constraint

process

process melhodology

product

program design

prototyping

quality assurance

query application

real-time application

relational logical data
mode}

retirement

retrieval

SE process

ST product

semantic methodology

sequentiaf project life
cycle

social methodology

software

Software Development
Life Cycle (SDLC)

software engineer

software engineering

spiral application

Study Questions 43

transaction-oricnted

development application
storage Transaction Processing
structural constraint System (TPS)

structured problem
subsystem design
technical feasibility
testing

unil tesling
unstructured problerm
validation
verification

time constraint

EXERCISES

1.

STUDY (QUESTIONS
1.

E—
Develop a table of application characteristics
down the rows in the first column, and the appli-
cation responsiveness levels across the columns.
How docs cach application characteristic differ
for cach level of responsiveness?

Develop a table of application characteristics
down the rows in the first column, and the
methodology classes across the columns. Begin
lo develop a comparative tuble of the way each
mcthodology prescribes documenting the re-
quirements for each application characteristic.
You will not be able to complete the table at this
point.

Define the following terms:

application praject life cycle
characteristics protolyping

batch application real-time application

constraint semantic methodology

data methodology fime constraint

meta-data unstructured problem

object validation

on-line application

. Define how each methodology’s histery is

affected by technology.

. What ar¢ the four application types and how do

they differ?

. 'What are the subtypes of decision support sys-

tems? How do they differ?

. What is computer-aided software engineering?

44

=}

10.

11.

12,

13.

14.

15.

16.

17.

18.

CHAPTER 1

. What is an application?
. How do real-time and on-line applications

differ?

. What is the range of artificial intelligence

applications? What area do most expert sys-
tems cover today?

. 'What is the starting point for analysis in a

process methedology? for a data methodology?
Why is it important 10 know the orientation of
a methodology?

If most companies do not use methodologics,
why should vou learn how to use them?

Is some methodology better than none? is
some life cycle better than nong? Discuss the
pros and cons of using and not using method-
ologies and life cycles.

What are the components of a feasibility
study? What type of analysis is performed for
cach?

What are the phases of a sequential develop-
ment life cycle? How do they vary when you
use prototyping?

‘What are the five types of constraints? Give an
example of each.

‘What are the four application types? Give an
example of each.

How do on-line and real-time applications
differ?

Draw a diagram showing the operation of a
typical batch application. Then draw a diagram
showing the operation of z typical on-line
application. Discuss how they are similar and
how they are different.

Qverview of Software Enginesring

19,

20.

21.
22,
23,
24,

25.

What is the difference between a semantic
methodology and an object-oriented
methodology?

What is quality assurance and when is it
performed?

What is meaningful user involvement?

List the three uses of prototyping.

What are the dangers in using prototyping?
What is wrong with a learn-as-you-go life
cycle?

What is dangerouns about using no methodol-
ogy and no life cycle?

* EXTRA-CREDIT QUESTIONS

L.

Develop the pros and cons of the ethical issues
described in Example 1-5. What is your opin-
ion? How can the open questions be resolved?
What can be done to further the involvement
of users in applications development? Should
this be done? How can it be done in an ethical
way? _

Are methodologies as you know them at

this point cutwure free? How can culture get

in the way of their use in a multinational
organization?

Think beyond this text to the development of
applications in a multinational organization.
What are cultural and ethical issues in building
applications that will be used in many countries
of unequal computer resources?

PREPARATION

PA

FOR SOFTWARE

ENGINEERING

The four chapters in this section prepare vou for the
actual work of software engineering., Chapter 2
serves two purposes: First, research on learning and
software engineering are summarized to give you
some ideas about how to organize the text’s material,
Good mental maps of the information ease your
learning and help you keep the different methodolo-
gies distinct. Second, a case describing an applica-
tion to be built is introduced: ABC Video rental
processing. The application is developed in each of
the methodologies we will discuss,

Projcct managers and sofrware engineers perform
different duties and are usually different individuals
cn a project team. In Chapter 3 you will learn the

1]

troles of project managers and software engineers
and how they complement each other. The kinds of
questions we will answer are: What does a project
manager do? How does it differ from a software
engineer? Why is knowledge of managemenl impor-
tant to a software engincer?

Last, in preparation for developing systerns,
Chapter 4 defines techniques tor gathering the in-
formation you need to analyze and design a system.
Then, we will discuss how you should act and how
to evatuate what you are told during information
gathering. Sample dialogues between ABC man-
agers and the software engineering team illustrate
the information presented in Chapter 2.

__ LEARNING
APPLICATION
~ DEVELOPMENT

CHAPTI

INTRODUCTION

There is rarely one ‘right’ solution application in
software engineering. Just as in Chapter 1, we said
there is rarcly onc ‘right” way of getting a solution
for an application. Despite this ambiguity of the
software engineering process and product, there are
approaches to problem solving in software engi-
neering that are more successful than others. Your
gaining experience to know those approaches is
one goal of this text. To assist vou, this chapter dis-
cusses how we learn, how we gvolve [rom novice
to expert, and how you can apply this knowledge to
mastering the matcrial in this book, In the second
section, the case study we follow throughout the text
is introduced. The case is related to learning ap-
proaches suggested in the first section, and to the
review in Chapter 1. First, let us turn to learning and
the development of expertise.

How WE DEVELOP

KNOWLEDGE AND

EXPERTISE

Learning

There are two basic stages of skill development in
learning that we call the declarative and procedural

a6

knowledge development stages. In the declarative,
or what stage, we learn basic skills, rules, and activ-
ity sequences. We learn declaralive knowledge be-
fore process knowledge. During the process, or kow
stage, we imbed the whaf knowledge into a process.
We learn kaw to perform the aclivily sequences, and
how 10 integrate the different rules. In the last part
of kow learning, we internalize both the declarative
and process knowledge so they become part of our
automatic memory.!

The internalization of declarative and process
knowledge occurs through

experiencing real life

doing classroom exercises

reading cases and solutions

developing practice problems with feedback
studying hoth good and bad examples

Cognitive psychology and artificial intelligence
research describe buman thinking as case-based
reasoning. A case is a predetermined representation
of event scquences in a particular setting.? During

1 For a complete discussion of declarative and process knowl-
edge, see Chi, Glascr, & Recs, 1982,

2 Kintsch & Mannes, 1987, discuss case-based reasoning.
Schank & Abeclson, 1977, also writing about artificial intelli-
gence call case-based reasoning “script” based reasoning. The
two terms-—casc and script—are essentially the same.

How We Develop Knowledge and Expertise

47

Problem
Statement
[
. Menta
Declarative Procedural Model of
Method H Method ™ Problem CASE
Knowiedge Knowtedge Knowledge
Problem Domain Knowladge
} L
Mental Model .
Analyist »| of Problem L] Solution
Knowledge Salution Repressntation
[
Dsclarative Procedural Mental
Method — Method = Model of
Knowledge Knowledge Methodology
Methodelogy Knowledge

FIGURE 2-1
Conger, 1993)

learning, we rccognize patterns of alternatives,
expected actions, and decisions that work. After
reaching a detailed level of understanding of the pat-
terns, we internalize a case, imbedding the patterns,
actions, and decisions into our knowledge structure.

In systems analysis, two different types of cases
might be appropriate: analysis task and problem
task. Figure 2-1 illustrates the information used in
analysis and how they interact. The analysis domain
case is the declarative and process knowledge of
actions needed to do the analysis task. We can divide
analysis tasks further into subjective and objective
activities. Subjcctive analysis activities are subprob-
lems in application development that accompany all
methodologies. Sume representative analyst knowl-
edge includes knowing

Interaction of Knowledge Types in Systems Analysis (adapted from Vessey &

= what life cycle is appropriate

m what data-gathering technique is likely to be
most effective

= when data gathering is complete enough

» when we should iterate through earlier stages
of the process

During objective analysis activities, we describe
the functioning and design of a proposed application,
We may further subdivide objective activities into
techniques used, such as methodology or computer-
aided software engineering (CASE]} tools. When we
do not follow a methodelogy, we rely on our own
problem-solving ability and knowledge.

The second type of knowledge required to
develop an application is problem task cuse

48 CHAPTER 2 Learning Application Development

knowledge. Problem task knowledge is the de-
clarative and process knowledge of the problem
domain being automated. Fer example, order entry—
inventory control processing describes a general
problem task domain. If we add that the systcm is for
a retail business, it is less general. If we add that the
system is for Sears and Roebuck, for instance, it is
less general again. During the automation proccss,
we apply our knowledge of how to do analysis to
the problem domain. We use analysis knowledge
both to describe the current system and to develop
the functions of the new system.

Use of Learned Information

Case-based reasoning relies on our recall of past
similar experiences, that is, analogous events, Anal-
ogies arc similar experiences that we use to

s classify problems

® plan a course of action

® suggest explunations

® supggest means of recovery from failures

When the analogy matches the current situation,
we use¢ it to predict what will happen bascd on the
analogous event. When the analogy does not fit, we
look for similarities between current and past expe-
riences from which we can gencralize to build new
analogies.

During the leatning process, we build our own
cxamples to help us learn new information. We rec-
ognize similarities between different episodes, com-
pile the similar, generalized events, and form a new
memaory casc. This generalization process is learn-
ing. Learning calls for failure of an analogous ex-
pectation to work for the current case, followed by
explanation of the failure which we make sense of
and fit into our own memory as a new case.

Why is the use of analogy so imporiani? Sysiem
analysis is work that requires judgment and adjust-
ment. System analysis has nonoptimal solutions (1.¢.,
relies on satisficing), and takes place within a
bounded knowledge base. Analogical reasoning is
better for systems analysis than reasoning by under-
standing because analogical reasoning relies on
experience 10 generate cases while understanding

refies on experimental trial and error. When ana-
lysts have applicable analogous cxperience, we try to
fit that knowledge to the current situation to serve
several purposes: understanding of situational dy-
namics, generating options, and calculating the
chance of success of an application option.

In systems analysis tasks, there are frequently one
or more¢ aspects of a problem that are unfamiliar to
the analyst. In unfamiliar situations, analysts first
rely on aspects of the work with which we are
familiar, then enlarge and broaden the applicability
of our analogical knowledge. But what happens
when we do not have the experience to use analogies
or our analogies do not appear applicable? Then, we
turn to expert/novice differences in problem solving
for general tasks 1o sce whal happens.

Expert/Novice Differences
in Problem Solving

The differences between experts and novices are dif-
ficult to pin down. Expert analysts are considered to
have an extensive, internalized knowledge upon
which they draw to apply analogous problem
domains and problem-solving techniques to a cur-
rent analysis task. They work quickly, knowing what
they know and what they don’t know, and are able
to determine at least one workable solution quickly,
sometimes within minutes. A novice, on the other
hand, is slow and unsure, exhibiting some, buat not all
expert behaviors, and making mistakes throughout
the process. Experts and novices differ consider-
ably in their approaches to solving problems. For
instance, povices

= develop local mental models of problem
parts, that is, work on bits of small problems
rather than on integrating the bits into a
whole. For example, novices concentrate on
adding customers instead of concentrating on
customer maintenance, including add, change,
delete, and retricval processing.

s use undirected search in a trial and error
manner (for example, to determine the utility
of a new technology). The undirected way is
to look through several magazines to see if

How We Develop Knowledge and Expertise 49

they have articles on the tochnology, instead of
looking through a subject index at a library,

= analyze surface features (for example, think
of control statuses and their allowable values
instead of the implicatiens for processing that
relate to each value)

» simulate design entities in isolation (for exam-
ple, simulate video rental processing without
paying attention to how it works with return
processing)

» misconceive actions {for example, never
analyze the complete rental/return cycle)

= fail to integrate the chunked local models into
a whole global problem solution (for example,
fail to integrate history processing into the
rental/return cycle)

Novice problem-solving strategies include satis-
ficing and conservatism. Satisficing meuns to know-
ingly elect a nonoptimal solution.” Novices search
for any solulion; experts search for the best solu-
tion. Conservatism is minimal change of a solution;
it means the problem solver takes the first solution
rather than testing alternatives. Novices search for
alternatives only when the existing method fails, but
they cannot always tell that the existing method is
failing. So, in becoming conservative, novices use
their first conceptualization of a problem. [n contrast,
experts usc optimizing and alternative evaluation in
analysis and design. Because of conservatism,
novices suffer breakdowns—errors in the problem-
solving proccss. Since the process is both con-
strained and directed by a methodology, the
breakdowns relate to the analyst’s mental model of
the problem and use of @ methodology to develop a
mentzl model of the solution.

Conversely, experts do

= categorize problems (for instance, ABC
Video Rental processing is a simple form of
an order entry problem)

= develop global mental models of the problem
that they “see’ or visualize the entire problem
solution

3 See Simon [1960] for a more complete discussion of satisfic-
ing and decision making.

= use directed searches in problem expansicn
and identification of similar problems

» apalyze deep structures, nol just define terms
but analyze their meaning, fit, and the political
and technical implications

= use goals and plans to determine what steps to
take in finding a solation

= perform skilled sequences of actions including
menlal simulation and top-down expansion of
the problem

Experts use knowledge of the application devel-
opment process to direct actions independently from
the problem. For instance, regardless of the prob-
lem or methodology, vou always begin with a defi-
nition of the scope of the activity. This abstract
knowledge about structuring of a problem, proce-
dures, and process uses intcrnalized cases and plans,
and relies on experience. Problem analysis and
design involve decomposition of a problem into sub-
problems, relying on substrategies of analogy and
understanding to guide decomposition in a top-down
manner. When the problem domain is new ang the
problem type is new, expansion progresses breadth-
first. But, for problem solving in familiar domains,
cxperts prioritize areas on which to focus, using a
depth-first strategy for each new area.

With methodology training, practice, and feed-
back, novice software engineers can display many
expert behaviors in a short time, i.e., after analyz-
ing and designing as few as three case problems.*
Methodologics sequence events, and constrain
and direct the actual analytical process. Guide-
lines and heuristics about what to analyze and how
to analyze it arc supplied by the method with com-
ments supplied by the text and instructor. Relation-
ships are identified to link each deliverable within
a method, associating the thought processes used
to develop the deliverables. All of these directed
activities speed and simplify both the develop-
ment of expert behavior and the internalization of
methodologies,

Research on whether there are differences
between mcthodologies for facilitating expert

4 See Vessey & Conger, 1993, for an example of this type of
study.

50 CHAPTER 2 Learning Application Development

hehaviors is in its infancy. Several laboratory studies
by the author and others identify proecss methods
as easier to learn, with no noticeable difference
between methodologies in the delivered quality of
the resulting proposed togical system. One thing we
do know is that not all methodologies work equally
well for all problems. This information will be dis-
cussed in Chapter 13.

How to Ease Your
Learning Process

In this text, we assume that you want to go beyond
knowing the basics of systems analysis and design,
but that you do krow the basics. We assume you
have a working knowledge of structured systems
analysis and design, data base, and programming.
Most systems analysis and design courscs practice
developing data flow diagrams. In this text, we will
discuss DFDs and compare and contrast them with
other methods, building on your current state of
knowledge. i vou don’t feel confident about your
abilily to draw data flow diagrams, there are exer-
cises at the end of Chapter 6 for practice. For data-
base knowledge you should know and understand
the valve of normalization, and you should be
familiar with SQL and at least onc database package.
For programming, you should have practice with
some procedural language (¢.g., Cobol) writing and
debugging programs that read sequential filcs to gen-
erate reporls. Knowledge of data structures, files,
and a structured language, such as Pascal, is helpful
but not necessary to using this book successfully.

Application development is essentially a prob-
lem-solving cxcrecisc which is unique because there
is rarely one right or best answer to an automation
preblem. Practitioners and professors of application
development will both tell you (hat the best way to
learn software engineering is to “Do it!” A quote to
suppert this idea comes from Confucius:

I see and I forget,
1 hear and I remember,
1 do and I understand,

In doing, you will make mistakes, get con-
fused, and think you are completely wrong. Don’t

give up. Ask guestions. Since we learn declarative
knowledge first, try to remember as much of the pro-
cedural what knowledge as you can while vou read
the text.

Try to think like an expett. Try to develop a
global picture of the problem, methodology, or other
subject in your mind and develop a plan of attack
for your work session. Try to catcgorizc problems
both that you are working on and that you are having
with the work, Analyze your thought processes to
develop a better understanding of your problem-
solving approach. See if you can mentally simulale
vour application design, asking yourself how com-
plete it is and how well it solves the problem.
Attempt to analyze the ‘deep structures’ by asking
what cach term means and what it implies. Talk
about all of these thought processes both with your
instructor and with other students.

Practice your rcasoning process by reviewing the
example in the text, by working through problems
at the end of each chapter, and by talking to other
students about the reasoning you used to develop
your representations, Try diffcrent ways of doing the
same thing. When you find mistakes, try to learn why
what you did was not the best, and #ow vou could
have reasoned to develop a betier answer, Through
these processes, you will learn valuable praoblem-
solving skills that will be useful throughout vour
carcer in IS.

APPLICATION
DEVELOPMENT
CASE

Now, we are going to switch gears, away from the
theoretical to the realistic. In this section, we pre-
sent the case used throughout the text. The setting, a
video store, is used for two reasons. First, it is a sim-
ple business that should allow you to build an accu-
rate, complete mental model. A complele mental
model is crucial to developing an accurate solution
in any methodotogy. Second, most of us rent videos
and have analogous knowledge that we can praciice
using. As you read the cases, try to apply the ideas
discussed in the previous section. Ask yourself,

What is the “big’ picture? Do I understand this prob-
lem? Use analogies from your experiences as a video
store customer (or clerk) to the way Vic wants to run
his business.

The case—ABC Video Rental Processing—is
representative of the class of order processing/
inventory control problems. Through its process-
ing, customier, inventory, and order files are main-
tained. In addition, ABC Video Rental Processing
also is unique in that the video rental business is
different from other businesses, and ABC’s video
rental processing is distinct from other video rental
businesses. '

ABC Video rental processing similarities and dif-
ferences from other types of order processing appli-
cations highlight the importance of knowing how o
learn. The similarities allow you to use analogy to
determine the general requirements of the applica-
tion. For instance, all order entry applications require
customer, order, and inventory databases. Con-
versely, each company does its own detailed pro-
cessing for order fulfillment. In ABC’s case, itis a
rental company, not a sales company, and rentals arc
not handled the same as sales. So even if you already
know order processing, only a portion of the knowl-
edge will be applicable to the rental situation, Keep
this in mind when you discuss your own video store
experiences. Each store has its own ‘brand’ of pro-
cessing that might differ from ABC’s, You must con-
stantly evaluate the applicability of your past
experience to the current sitvation, trying to use
everything possible without forcing inappropriate
past knowledge on the new client’s application.
Next, the context of the industry is described.

History of the Video
Rental Business

The video rental industry experienced phenomenal
growth during the 1980s. The cost of entry into the
industry was low, every mom-and-pop store, super-
market, and small time entrepreneur entered the
market. There was no stability in the market and
competition was fierce. For instance, some busi-
nesses required “membership fees,” others did not.

Application Developrment Case 51

Some businesses charged one price for all rentals,
usually about $2.00 per videotape per day. Some
businesses offered premotions, such as “Two-Fer-
Tuesdays,” for which two tapes were the same price
as ong.

Soon businesses Tccognized that 80% of their
videos were rented within 20 days of a tape’s release
into the market. With this recognition, video stores
introduced a two-tiered pricing system, charging a
new-release price and an old-relegse price. The mar-
ket began to destabilize and small store owners, for
whom the business was a sideline, were forced to
decide if they wanted to devote the floor space 10
videos which soun became obsolete, or if they would
abandon the business. They abandoned the business
in droves and the video rental industry weni through
a period of consolidation.

The business today is stable, but is becoming
moenopolized by large chains; RKO and Blockbuster,
for instance. ABC is an unomaly in this market
because it is still a one-person, one-store operation.
Vic, ABC’s awner, would like to offer unique and
useful services with a minimum of ‘bureaucracy’ in
the process, and to eventually franchise his business
expertise. With these goals in mind, we turn to his
business requirements for defining the video order
processing application Vic wants to build.

ABC Video Order
Processing Task

ABC Video rents video casscites to customers. Since
this business is becoming more competitive, Vic, the
owner, wants to automate rental processing, iftven-
tory maintenance, and an expert systemn to speed and
simplify the rental process. Vic prepared information
for the consulting team to begin work. Vic tried to
separate what he wanted from what he needed. So,
the application business requirements are listed.
Then, Vic’s “vision’ of the application is presented,

General Requirements (Excerpted
from a memao from Vic to consultants)

... ABC Vidco currently owns two PC ATS and can
get IBM comparible PCs cheaply. I would like all the

CHAPTER 2 Leaming Application Daeveloprment

machincs hooked together somehow to share the
information and have some equipment backup in case
a PC breaks down. Each PC will have a printer for
two-part forms. If the customer wants a copy of an
order, he or she takes the top copy and sigus the baot-
tom. I need a signed copy to legally charge for unre-
turned tapes.

I want 10 minimize typing throughout all the process-

ing. Bar code readers are cheap, Can we use ihal tech-

nalogy for keeping track of rentals?

There are three to six clerks doing renials at any one
time, sharing machines. Rental/return processing is
about 90% of the business. Machines should be
allowed to do any processing, but should stay set at
rental/retarn processing once there. I want to be able
10 know where every tape in the store is—out on
rental, on the shelf, or waiting reconditioning.

Business requircments relate to customer, videos,
rentals, and history information. Each of these
requirements are listed below.

Customer Requirements

Customers arc pecple who desire to rent videos for
one or more days.

1. Ail customers must be *registered’. This means
they must have an easy o remember identifica-
tion code. plus their phone number, name,
address, credit card number, credil card type,
and credit card expiration datc on record before
they may rent videos,

2. All members of a houschold should be able to
share the same identification number.

3. Customers are required to pay renlals in
advance and settle late fees before any new
rentals are allowed.

4. Customers can return tapes in three ways:

® Drop off through a slot in the door

= Drop off at the desk as they walk in to get
new videos

= Drop off as they take out new rentals

3. Customers who fail to return tapes or damage
tapes are charged for the vidco on their credit
cards. Their customer record must be marked
‘bad credit risk’ and they will not be allowed to
rent videos.

6. Retrieval of customer information must be
allowed by identification, phone, name,
address, zip, or credit card number.

7. All fields must be allowed to be changed as
required.

8. Reports on number of new cusiomers by month,
by year, "bad credit risk” cuslomers, lale return-
ing customers, expired credit card numbers
must all be allowed.

Q. Deleting of customers must be allowed by the
manager {Vic) only.

Yideo Requirements

Videos are taped movies, sports, or music events that
are rented to customers,

1. All videos received in the store must be ‘regis-
tered’ and tracked. Minimum information is
identification number of copies, title, vendor,
code, and date rcccived. Video registration
should use some technoelogy (& bar code
reader?) that does not require typing.

. Individual copies of videos should be identifi-

able for rental/return processing.

All copies of a title must be identifiable to track

rental trends,

4. Counts of the number of renials by copy and by
title should be available for reporling.

. Retricval of video information for reporting
must he allowed on any single or multiple crite-
ria. Common reports needed will be for mainte-
nance {hased on how many rentals), number of
tapes and rentals by type {e.g., musical, horror,
drama, comedy}, and for tapes that have not
rented in the last x days,

6. Idon’t know how hard or expensive this is,

but I would like some history information,
such as

[

el

h

= rentals by copy by title

® days rented by month by year by copy
by title

= renials by customer so [can warn them when
they try ta re-rent a litle

7. Future provisions should allow for

8 {racking the number of davs of rentals by
copy by title or by dates of rentals

= multiple rental products (such as VCRs, cam-
corders, CDs, video games, Nintendo game
sets, and so on)

= automatic debit card or eredil card payments

w variable rental charges based on promotions,
date of receipt, and so on

Rental Processing

1. First, NO BUREAUCRACY' Second, the
pracess MUST BE EASY. The rental process
must not require customers to carry a card,
must not require clerks (o type much, and must
be easy to leatn. Relurn processing must also be
simpte and flexible.

2. To take out tapes, customer ID and video [Ds
are entered, All other information should be
pulled from the computer.

3. The systern should compule total charges,
inchide late fecs, and compute change for
money entercd.

4. The computer must be hooked to a cash drawer
or cash register that unlocks when the money
is entered.

5. A printed copy of orders must be kept and
signed by customers. These go to accounting
and are reconciled at the end of the day.

6. Ead of day 101als for the cash registers must
show a total number of tapes out, cash paid,
tapes in, on-time tapes, late tapes, late foes, and
a total amount of money in for the day.

Yic’s Vision of Rental/Return Processing

Customers choose videos for rental cither by taking
the empty box from a shelf in the store or by telling
the clerk the video name(s). The clerk retrieves the
tape(s), which are filed alphabetically by name. The
clerk enters customer identification {could this be
phone number?) into the system to retrieve the cus-
tomer’s record and to creatc an order. Aay late fees
from previous rentals must be settled before a new
rental can occur.

The clerk uscs a bar code reader {or other scanner) to
scan the video identifier and enter videotape identifi-
cation into the system. For each video bar code
entered, the system completes the rental detail line on
the screen with today’s date, videotape identification,
video name, and rental price. When bar code IDs for
all videotapes to be rented have been entered, the sys-
tem computes the total fee, aviomatically compuling
and adding in sales tax. Late fces may be added to the
total if any arc ontstanding, The customer is told the
total amount and the money is paid.

When the clerk enters the money amount inta the sys-
tem and puts the cash into the cash register, the sys-
temn reduces the amount paid by the total fee amount
to obtain the amount of change due to the customer.
The amount due to ABC for the rental is reduced to

Application Development Case 83

zero on the order. The customer signs a copy of the
otder form as it is printed on a printer and takes the
video(s) home.

On return of tapes, the clerk scans the bar code IDs of
the videos. The system should retrieve and display the
order with the return date and any late {ees added to
the detail line. If either there are no late fees or late
fees are settled upon return of the video, the order is
deleied from the system and the history of use infor-
mation for the tape is updated. Late fees, and the
osder information about tape(s) rented that caused the
late fee(s), remain on file until they are paid.

Trend analysis should include guery capabilities with
statistics built in. This should be available en an

ad hoc basis without having te anticipate all queries
and/or types of analysis in advance. Part of the analy-
sis is used to determine how many tapes of each film
to purchase. Trends might be based on sequential
nights of rental, number of nights rented within the
first 20 days, number of nights rented wilhin the sec-
ond 20 days, and so on, Each individual lape, even
though it might be the ath copy of m copics of the
same film, should be identifiable for this analysis.
These requirements are not included with the descrip-
tion of required file information above, because

you should determine the best way to supply this
information.

Discussion

Let's stop here a moment and think about the ABC
Rental Processing case. First, get a global mental
made! of the problem. The problem is to automate
rental/return, customer, and video inventary pro-
cessing, including totaling of orders, computing
change, monitering of late returns, and creation of
historical information. This scunds like a complete
statement of problem scope, and it could be used for
that purpose. In this case, the problem is small
cnough to hold most of the functions in mind at
once.

Do you know enough to automate the problem?
No, you do not, not if you want to do it properly. The
processcs, in terms of how a customer will interact
with ABC personnel, are fairly simple. Rental pro-
cessing has fairly well-defined data requirements
and business requirements about how to do the
process steps, The flow of processes for rentals still

54 CHAPTER 2 Learning Application Development

needs elaboration, but is complete enough for under-
standing the general problem,

What don’t you know? The kinds of questions we
will ask will be details of what we already know:
How many? How often? What about variations on
the process? Questions will also claborate on con-
straints and determine if there are interfaces. Some
examples of specific questions inciude: How many
videos are there in the store? How many new ones
artive each month, week, day? How many customers
are there? How many remtals per day? What kind of
security is needed? Does Vie alrcady have software
in mind for this application?

There are many more gquestions we will ask as
we move through the text, and the type of questions
varies with the methodology. Even with many ques-
tions, we do know quite a bit about the overall
process and Vic's ideas for how the process should
work. We know much less about specific details of
the operation that we need to fully understand the
problem and devise a workable solution. We will get
more details as we progress through the text.

In terms ol 1the Chapter 1 discussion on types of
applications, tental proecssing will be on-line with
interaclive processing. bt is a transaction processing
application with some query processing. The rental
application transaction pertion automates the paper-
work of rentals, returns, and payments [or rentals.
The quety and reporting part of the rental application
uses predefined data in a read-only manner, and has
predefined reporting requirements as well as ad hoc
reporling requircments. The rental processing case is
used throughout this text to reason through each
methodology.

SUMMARY

In this chapler we explained the nature of learning
and expetience. Declarative knowledge is knowl-
cdge about whar actions, proccdures, or steps
are taken lo petform some task. Declarative
knowledge is a required but incomplete learning,.
Process knowledge is knowledge about Aow to
perform, reason, and integrate the steps we know
from declarative learning, While we learn, we form
analogics or cases that form patterns of experi-

ences. When we match a pattern from experience
with seme current problem, we use analogical
thinking. Whun a past experience does not mateh
some current problem, we analyze the differences
to develop a new case based on the new situation.
The internalization of cases in our memory is
learning.

Novices differ from experts in their problem-
solving approach. Novices make mistakes because
they do not have a global view of a problem, cannot
mentally simulate a solution to the problem, and do
not see connections and meaning in prohlem parts.
Experts are able to analyze novel problems because
they use analogies from their experience to develop
a giobal view of the problem, can take a top-down
view of what they know and do not know, can sim-
ulate their solutions mentally, and understand con-
nections and meaning in problem parts. Several tips
for practicing software engineering were provided to
speed and simplify vour learning.

The casc company, ABC Video, and its rele in the
video rental business was described, rental-order
processing delails were developed.

REFERENCES

DE—

Adelson, B., and E. Soloway, “The Role of Domatin
Experience in Software Design,” IEEE Transactions
ort Software Engincering, SE-1I, Vol. 11, 1985,
pp- 13511360,

Jelfries, R., A. A, Turner, P. G. Polson, and M. E.
Atwood, “The Processes Involved in Designing Solt-
ware,” in Cognitive Skills and Their Acquisition {J. R,
Anderson, cd.). Hillsdale, NJ: Lawrcoce Erlbanmn
Associates, 1987, pp. 255-283.

Kintsch, W., and 5. M. Mannes, “Generating Scripts
from Memory,” in Knowledge Aided Information
Processing (E. van der Meer and 1. Hoffman, eds.).
NY: Elscvier Science Publishing Co., Inc,, 1987,
pp. 61-80.

Klein, G, A,, and R. Calderwood, “How do People Use
Analogies to Make Decisions?,” in Proceedings of
Case Based Reasoning Workshop {J. Kolodner, ed.),
DARPAISTO, Clearwater Beach, FL, May, 1988,
pp. 209-218.

Littman. D. C., 1. Pinto, §. Lechovshy, and E. Soloway,
“Memtal Models and Software Maintenance,” in
Empirical Studies of Programmers—I st Workshop

(L. Soloway and S. Iyengar, eds.). Norwood, NJ:
Ablex Publishing Co., July 5-6, 1986, pp. 80-98.

Schank, R. C, and R. P. Abelson, Scripts, Plans, Goals
and Understanding. Hillsdale, NI: Lawrence Erlbaum
Associates, 1977,

Schank, R. C.. “Explanation: A First Pass,” in Experi-
ence, Memory and Reasoning, (J. 1., Kolodner and
€. K. Riesbeck, eds.). Hillsdale, NJ: Lawrence
Erlbaum Associales, 1986, pp. 139-166.

Shemer. L., “Systems analysis: A sysiemic analysis ofa
conceptual model,” Communication of the ACM,
Yol. 30, #0, June, 1987, pp. 506-512.

Simon, H., The New Science of Management Decision.
NY: Harper and Row, 1960,

Vessey, I, and S. A. Conger, *Requirements specifica-
tion: Learning object, process, and data methodolo-
gies,” Communications of the ACM, accepted for
publication, 1993,

Wand, Y., and R. Weber, “A unified model of software
and data decomposition,” in Proceeding of the 12ih
International Conference on Information Sysiems (1. L
DeGross, I Benbasat, F. DeSanctis, and C. M, Beath,
eds.). NY: SIGBDP, Association for Computing
Machinery, i991.

KEY TERMS

analogy generalizaiion
analysis domain global menlal model
breakdown goal

case local mentat model
case-based reasoning novice

calegorize problems plan

conservallon
declarative knowledge
deep structures
directed search

expert

problem domain
process knowledge
satisficing

surface features
undirected search

EXERCISES

1. Develop pseudo-code for ABC Video's rental
processing system. Identify and discuss what the
essential portions of rental processing are. Dis-
cuss which procedures could be either included
or omilted without changing the cssence of the
problem. (Note to Instructor: This is a useful

STUDY QUESTIONS

1.

LA

Study Questions &85

exercise to ensure that all students have a good

understanding of the problem.)

Describe a work situation you have experienced.

Discuss the organization: the structure of the

organization, its goals, its strategies for meeting

its goals, its culiure, its managers’ style, the
social life at work.

A. Describe your job and how your job con-
tributed to the organization’s goals. Describe
the computer applications, if any, you used
in your job. Analyze what you did on your
job and recommend computer applications
that could have streamlined, enhanced, or
broadened your job. Do you have the ‘big
picture’ of the company and your job’s role?
If not, how would you go aboul developing a
global view?

B. Describe some arca of the organization (you
may or may not have worked therc) that
could use an application 1o speed its work,
make its work morc accurate, enhance jobs,
provide better information to workers, or
simplify work life. Describe the application
and how it would mect its goals.

Define the foliowing terms:
anmalogy

conservatism

declarative knowledge
global mental model

problem domain
satisficing
surface features

. Which comes first—declarative knowledge or

process knowledge? Why? How does learning
work?

Why and how do we use analogics?

Why are analogies belter vsed in systems analy-
sis and design than a trial-and-crror method of
preblem solving?

‘Describe the details of what it means to rent a

tape at ABC. How do the manual processes
translate into computer processes? Use analo-
gics from your own cxperience ta discuss
rentals,

Make a list of questions you have about ABC
order processing that still need to be answered.

56

CHAPTER 2 Learning Application Development

Use analogics from your own video rental expe-
rience to identify issues that still nced to be
resolved.

. Describe the details of what it means to return a

tape. How do the manual processes translate into
computer processes? Idemtify subprocedures for
which you have choices about when and how
they are performed.

. How do you develop a global mental model of

some problem? How do you know if vou have a
global mental modcl of some problem? How do
you validate your mental model?

. What does it mean to create historical informa-

tion? When docs history get created? In the
ABC case, is history created at video rental
time? or at video return time? or at some other
time? How do you know when you have the cor-
rect answer to this type of question?

X EXTRA-CREDIT QUESTIONS

i

Write a onc page analysis of some work experi-
ence you know about, Describe some function
and how it contributed to the organization’s

goals. Describe the computer applications, if
any, used in the function. Analyze the job and
recommend computer applications that could
streamline, enhance, or broaden the function.
Make a list of questions you need answered to
Zain a complete understanding of the problem
areas.

. Draw a diagram or verbally describe (in pseudo-

code or your own words) how ABC Video per-
forms order processing. Muke a list of questions
you have about ABC order processing that still
need to be answered. Describe how your experi-
ence as a video store customer helps you under-
stand what ABC is trying to do. Describe, from
your experience as a video store customer, how
you think a video store should be automated.
How does it differ from Vic's desires? What
should you do about those differences? What are
Vic’s goals for the application in addition to pro-
cessing rental/returns? What features might you
consider for the application to meet those goals?
List three functions you can put in the system 1o
help meet Vic's goal of “no bureaucracy.”

PROJECT

CHAPT

MANAGEMENT

INTRODUCTION

The role of the software engineer (SE) differs from
the project manager in thal the SE provides technical
expertise, while the project manager provides orga-
nizational expertise. Depending on the size of an
organizalion and project team, one person might per-
farm both roles. Small projcet teams (i.e., less than
five people) and organizations with limited software
development staff (i.e., less than 10 people) cxpect
one person to assume both software enginecr and
project manager roles, The larger the organization,
the more likely the functions are split and the more
extensive each person’s experience is expected to be.

The project manager and software engineer are
responsible for tasks that include both complemen-
tary and supplementary skills. In general, the sofi-
ware engineer is solely responsible for management
of the life cycle, including the following areas
detailed in Chapters 4 through 14:

» Management and conduct of development
process

Development of all documentation

Selection and use of computer-aided software
cngineering (CASE) tools

Elicitation of user requircments

Technical guidance of less skilled staff

1]

= Assurance thaf representation techniques, such
as data flow diagrams, are correct, consistent,
and validated

s Oversight of technical decisions

m Assurance that constraints (e.g., two-second
response time) are identified and planned as
part of the application

Complementary activities are activities that are
performed jointly but with different emphasis
depending on the role. Complementary activities
include planning the project, assigning staff to tasks,
and selecting from among diffcrent application
alternatives.

The project manager (PM) is solely responsible
for organization liaison, project staff management,
and project monitoring and control. These major
responsibilities are discussed in this chapter.

When one person or another is identified as solely
responsible for some activity, it does not mean that
they alone do the work, The SE and PM are feam
leaders who work together in all aspects of develop-
ment. The SE may have project management expe-
rience. Sole responsibility means that when a
disagreement occurs, responsibility for the final de-
cision rests with the responsible person. Different
management styles determine how open a manager
is to suggestion and discussion of alternatives.

57

58 CHAPTER 3 Project Management

Feasibility
Study

Implament

FIGURE 3-1 Example of Too General a Plun

A short discussion of appropriate behaviors for proj-
cct managers is also included inm this section. These
behaviors are the project manager’s responsibility
toward the project.

First we discuss the joint SE and PM activities.
Then we discuss activities for which the project
manager is solely responsible. Management styles
and a brief discussion of project manager respon-
sibilities to the project team are included in the
section on personnel management. The last sec-
tion lists computer-aided support tools for project
management.

COMPLEMENTARY

ACTIVITIES

Joint activities of the software engincer and project
manager include project planning and control,
assigning staff to tasks, and selecting from among
different alternatives for the application.

Project Planning

To plan the project, the project manager works with
the SE to determine human, computer, and organiza-
tional resources required to develop the application.
While a detailed discussion of planning is included
in Chapter 6, the aspects of special interest to the
project manager are in this section.

A project plan is a map of tasks, times, and their
interrelationships. It can be very general (scc Figure
3-1) or very specific (see Figure 3-2). Neither ex-
treme of plan is very useful although some plan is
better than none. A rule of thumb for level of detail
is to define activities for which a weekly review of
progress allows the SE and project manager to know
whether the schedule is being met. Figure 3-3 shows
an example of a well-defined plan.

The general methodolegy of planning is as
follows;

1. List tasks. Include application development
tasks, project specific tasks, interface organi-

Complementary Activities 59

FIGURE 3-2 Example of Too Detailed a Plan

zation tasks, and review and approval
Lasks.

2. Identify dependencies between tasks.

3. Assign personnel either by name or by skill
and experience level.

4. Assign completion times to tusks, compute
the most likely time for each.

5. Identify the critical path.

The project manager and SE share responsibility
for developing the plan. The SE's responsibility is
to know all of the tasks relating to the application be-
ing developed; the project manager s responsibility
18 to ensure that all organizationally related tasks are
included in the list. (The application tasks are dis-
cussed in Chapter 6.) Organization tasks include the
fotlowing:

1. Review decuments for completeness, con-
tent, consistency, and accuracy.

2. Negeotiate, agree, and commit to start and end
dates for work.

Analyze

FIGURE 3-3 Example of Acceptable Level
of Detail

60 CHAPTER S Project Management

3. Define nceessary application interfaces; plan
for detailed interface design work.

All documentation, plans, and design work of the
project team is subject to review by at least the
user/sponso1. Many other departments or organiza-
tions might also be required to review some or all
of the work. These organizations might include man-
agers of I8, users, quality assurancc, lcgal, audit,
operations, other application groups, government
regulators, industry regulators, or others. Each or-
ganization applies its specialized knowledge to the
application documents (o assess their adequacy.

The sccond task is to obtain agreement and com-
mitments from outside agencies or departments. Fre-
quently, resources and work arc provided by other
departments. Clerical support, for example, might
be from an Administrative Services Depariment.
Opcrations departments supply support in terms of
computer time, memory, disk space, terminals, log-
on IDs, access to software environments, access to
data bases, and so on as neccssary to develop and
test the application. Auditors frequently want to
comment on auditing plans and change the design
based on their findings. Quality assurance depart-
ments might review documents to find inconsisten-
cies and errors that require correction. Vendors
might need to install hardware, software, or related
applications that need liaison from the project team
and testing once installed. All of these activities need
to be scheduled and planned. Since dates for com-
mitments might not be known when the plan is
developed, the plan contains the dates at which con-
tact should be initiated and dates by which the com-
mitment must be made in order not to impact the
delivery date.

Third, the project manager obtains requirements
for application interfaces from other application ar-
¢as. An interface is data that is sent or received be-
tween applications. The interface application areas
might be in the same company, but might also be an
industry group or a government organization. The
plan reflects dates by which contact should be inili-
ated and by which the information is required.

If a make-or-buy decision will be made, the pro-
ject manager and SE work together to develop the
subplan for this decision. Subactivities relating to

acquisitions include creating and submitting requests
for a proposal (RFP), obtaining vendar quotes, eval-
uating vendor quotes, selecting and gbtaining man-
agement approval for a vendor, negotiating contract
and delivery dates, and planning and testing of the
acquired item.

When all of the ilems are identified, they are re-
lated to each other. Tasks that are related arc drawn
on a task dependency diagram showing the se-
guences of dependencies. Sequences may be inter-
dependent (see Figure 3-4). When all sequences of
tasks are on the diagram, independent tasks are
addcd. Milestones, such as the completion of a fea-
sibility analysis document, are shown and are visu-
ally obvious because the preceding sets of tasks all
feed into that task. Task sequencing can vary de-
pending on the methodology used. (See Chapter 6
for more on this topic.)

Sequencing tasks is the first step to identifying the
critical path of tasks for the application’s develop-
ment. The critical path is the sequence of dependent
tasks that together take the most development time.
If any of the tasks in the critical path are delayed,
the project is also delaycd. So, the critical path tasks
are the greatest source of risk for project completion.

The next step is to estimate the amount of work.
For this discussion, we assume the project manager
and SE assign times to tasks based on their experi-
ence (i.e., reasoning by analogy). Other methods are
discussed in Chapter 6. Times are assigned to cach
task hased on its complexity and amount of work.
Three times should be estimated: an optimistic time,
a realistic timc, and a pessimistic time., The formula
used to compute the most likely time is shown in
Figure 3-5. The figure weighis the most likely, real-
istic time by a factor of two in relation to the other
cstimates.

While times afe being assigncd, the skill sets and
experience levels of a person to do this task should
be defined. The list of skill sels and experience lev-
els is used to detcrmine how many people and what
type of people are required on the project for each
phase. Other assumptions will surface, and a list of
them should be kept, as shown in Tahte 3-1. The
assumptions become part of the planning document,

When resource requirements and {iming are com-
plete, several activities take place. The SE develops

Complementary Activities 61

Finalize
al
Daocs.

Online
Depen,

Analyze
Inventory
Allog,

Analyze
Inventory
Maint.

Create
Dict.
Entries

Analyze
Invaice
Create

Design
Logical
DB

Decide
on Print
Formats

Analyze
Bill of Lad.
Create

Dasign
Farms

FIGURE 3-4 Example of Interdependent Sequences of Tasks

a schedule; the project manager develops a budget.
(O + 2R + P}/ 4 = Most Likely Time Estimate They both identify the critical path and discuss it in
terms of petential problems and how to minimize
Legend: their likelihood. Task definitions are made more de-
O—Optimistic Time Estimate tailed for critical tasks, to allow more control and
R—Realistic Time Estimate monitoring.
P—Pessimistic Time Estimate When complete, the plan, schedule and budget
are submitted to the user and 18 managers for com-

ment and approval. Work begins, if it hasn’t already,

FIGURE 3-5 Formula for Determining with the plan used to guide project work. The plan
Schedule Time is used by the project team to see where their work

62 CHAPTER 3 Prgject Management

TABLE 3-1 Project Assumptions

Type Assumption

Example

Availabilily of conliguration, component of mainframe,
special hardware, programmer support cquipment, tools,
time

User time involvement. This may be expressed in time
per day for a number of days. or may be in number of
days.

Need for services from audit, law, vendors, qualily
assurance, or other support groups

Software performance

Test time, terminal time, or test shot availability

Disk space

Memary, CPU time, tape mounts, imaging access,
or other mainframe resourccs

Personnel

Hardware/software availability

Programmers will gain access to [EW by September
10, 1994,

A middie manager representative from Accounts
Payable will be available in a Joint Application
Design session scheduled for June 1-5, 1994,

The Audit Department will be able 10 review and
comment on the adequacy of audil controls within
7 business days of receiving the review decument.

The Database Management Software will be able to
process 10,000 transactions per day.

Batch programs can be tested simultaneously with on-line
programs.

Batch programs will be able to average three test runs
per day with an average turnaround of less than 2.5 hours,

Batch programs will be less than 160K and will require
no more than two tape mounts each,

Operations will make available 100 cylinders of TBM
3390 disk space for the project beginning 9/10/94. An
additional 50 ¢yl. will be added for test databases by
10/30/94, An additional 250 cyl. will be added for pro-
duction database conversion by 11/30/94,

For testing, 30 CPU minutes per day plus 75 hours of
terminal access time will be required beginning 10/30/04.

Two senior programmer/analysts with 23 years of
IFocus experience and 2-3 years of on-line, multiuser,
application development experience is required by 6/30/94,

Tour programmers with 1-2 vears of Focus experience and
one year of VM/CMS experience is required by 7/15/94.
Imaging equipment will be availabie for application test-
ing no later than 9/10/94.

15 PCs or IBM 3279 terminals will be available for
access and testing use no later than 9/10/94.

fits in the whole project, and it is used to monitor
progress toward project completion.

The plan should never be cast in concrete. Plans
should change when the tasks are wrong, times are
underestimated, or there are changes in project scope
that alter the activities performed in some way.

Assigning Staff to Tasks

Task assignment is fairly straightforward. The ma-
jor tasks are to define the tasks and skills needed, list
skills and availability of potential project members,
and match people to tasks. The project manager and

SE actually begin discussing possible project staft
when they are planning the project and tentatively
assigning people to tasks. Then the projecl man-
ager’s real work begins.

The hard part of an assignment is the judgment
required to match people whose skills are not an ex-
act match for those needed; this is the usual case. For
instance, vou might want twe programmer analysts
with the following list of skills:

» design and programming cxperience on a sim-
ilar application

= three to five years experience in the opera-
tienal environment

» one te two years of expericnee with the data-
buse software

» managerial experience for two to four people

m known for high quality work

» known as an easy-going personality

suppose your manager gives you a junior pro-
grammer right out of a fraining program, an analyst
who does net program and who has no operational
environment, database, or managerial experience,
and a senior programmer who does no design, is
known to be difficult, and sometimes does high qual-
ity work.

The good news is that you have three people
instead of two. The bad news ix no one of them has
all of the qualifications yvou want. What do you do?
This is what management is all about.

The project manager should get to know the team
members well. This means assessing their position
with the company, expectations on the project, spe-
cific role desired for the person, possible start and
cnd dates for work, and personality or persomnal is-
sues that might affect their work. Much of this in-
formation can be got from previous performance
revicws. But nothing substitutes for discussing the
information with the person.

The project manager has responsibilities to his or
her manager, the client sponsor, and (o the rest of
the project team to get the best, most qualified peo-
pie possible. In these capacities, the project man-
ager honestly discusses previous problems with the
person, any personal problems that might detract the
person’s attention from work, and any outside jobs,
schoot, or other commitments that might also hin-
der their commitment. The person and the project

Compiementary Activities 63

manager both should be given an opportunity to ac-
cept or reject the possibility of work., Even when
there is no choice, it is also the responsibility of the
project manager to make his or her expectations of
quality and quantity of work clcar. If the person wiil
not report directly to the project manager, the per-
son she or he will report to should also be at the
meeting. In this way, evervone knows exactly what
was said and what commitments were (or were not)
madc.

The answer to the task assignment problem above
is to assign the tasks to best fit the skills, Assign the
senior person responsibility for the work of the
junior one, and provide molivation and incentives
for quality work (see the following section on moti-
vation). You also altcr the schedule, if needed, to
more closely mirror the actual skills of the team.

The heuristics, or rules of thumb, for personnel
assignment arc as follows:

1. Assign the best people to the most complex
tasks from the critical path. Assign all critical
path tasks. As the experience and skill levels
of people decrease, assign less complex and
smaller tasks. Do not give new, junior, or
unqualified staff any tasks on the critical
path. Assignment of senior people io critical
tasks minimizes the risk of missing the targct
date.

2. Define a sequence of work for each persen to
stay on the project for as long as their skill
set is needed. Try to assign tasks thal provide
each person some skill development.

3. Do not overcommit any pcrson by assigning
more tasks than they have time. Make sure
each person will be busy, but allow time (o
finish one task before beginning another.

4. Allow some idle time {2-5%} as 4 contin-
gency for each person. Do not allow more
than eight sequential hours (i.e., one day) of
idle time for any person.

3. Do not schedule any overtime. Scheduled
overtime places unfair stress on people’s pro-
fessional and personal commitment and is a
regular enough occurrence in development
that it should not be scheduled at the outset,

The project manager is also responsible for coor-
dinating movement from another assignment to the

&4 CHAPTER 3 Project Management

current development project. This coordination is
done with the other project manager(s) invofved and
possibly the personnel department. New hizes should
be assigned a ‘buddy’ to help them get familiar with
the company, its facilities, the computer environ-
ment, policies, and procedures. Senior staff should
be assigned 1o mentor junior staff, encouraging the
learning of new skills on the job,

Finally, the project manager must ensure thai
each person understands the expectations and duties
assigned to him or her. All staff should have a copy
of their job description. They should know the extent
of their user interaction, extent of their intraproj-ect
responsibility and communication, and policies
about chain-of-command on who to go to with prob-
lems, project errors found, or problems with work
assignments.

Ideally, the team should be given an overview of
the application, a chance to review the schedule, and
an opportunity to comment on their ability to meet
the deadlines assigned. I they cannot meet the dead-
lines and have reasonable cxplanations, the plan,
schedule, and budget should be changed. In addition,
any training or learning on-the-job that is required
should result in a lengthening of the schedule. If the
tcam members agree to the schedule, then they are
committed to getting the work done within the time

allowed and should be held accountable for that as
part of their work assignment,

Selecting from Among
Different Alternatives

Applications all have alternatives for implementa-
tion strategy, methodology, life cycle, and imple-
mentation environment. The project manager and SE
together sort out the options, develop pros and cons,
and decide the best strategies for the application.

Implementation Strategy

Implementation strategy is some mix of batch,
on-line, and real-time programming. The decision
is based on timing requirements of users for daia
accuracy, volume of transactions each day, and num-
ber of people working on the application at any one
time. All of these numbers are estimates at the plan-
ning stage of an application, and are subject 10
change. The strategy decision might also change.
In general, though, a decision can be made at the
feasibility stage to provide some direction for data
gathering.

As Table 3-2 shows, the timing of data accuracy
drives the decision between batch and on-line. Keep

TABLE 3-2 Decision Table for Implementation Strategy Selection

Timing of Data Currency

< 1 hour N
< 4 hours N
< 24 hours Y

Peak Transaction Volume/Number of People Entering Data

< 10 — Y —_ _ Y — —
1055 — N Y — N Y —
> 59 — N N Y N N Y
Options

Batch application X X

On-line application X X X X X
Real-time application X X X X

in mind that these are rules of thumb and need to be
used in an organizational context. If data can be
accurate as of some prior period, a batch applica-
tion might be developed. If data must be accurate as
of some time of the business day, ither on-line or
real-time strategics would be success{ul.

If the volume of transactions divided by the num-
ber of people is very high (over 60 per minute), then
a high-performance application, with many concur-
rent processes, that is, a real-time applicatien, might
be warranted.

If the volume of iransactions divided by the num-
ber of people 15 low (less than 25 per minute), but the
timing requires on-line processing, an on-line appli-
cation is best.

The gap in transactions per minute from 10 to 60
requires more information, specific to the project, for
a decision. Answers to several questions are needed.
For instance, how complex 1s a transaction? How
was the number of workers arrived at, and can the
number change? Is management willing to fund the
difference in cost for a real-time application over an
on-line one? Are there other factors (e.g., specific
database software to be used) to consider in the
decision? These questions are all context specific
and the resuiting decision would be determined by
their answers.

Implementation Environment

The implementation environment includes the
hardware, language, software, and computer-aided
support tools to be used in developing and deploying
the application. The decision is not final at the fea-
sibility and planning stage, rather the alternatives
and a potential decision are identified. The issues to
be resolved for a final decision are then identified.

Frequeantly there is no choice of implementation
environment. The organization has ong environment
and there are no alternatives; all development uses
one mainframe and one language (for instance,
COBOL). More often, as personal computers and lo-
cal area networks become more prevalent, the alter-
nalives are mainframe or nctwork with PCs as the
workstation in the chosen eavironment.

The decision is based frequently on the cxperi-
ence of the project manager, SE, and potcntial team
members. People tend to use what they know and not
use what they do not know. [deally, the implemen-

Complemeantary Activiiies 65

TABLE 3-3 Decision Table for
Implementation Environment

CrU Bound N N Y

1/0 Bound Y Y N N
< 100,000 Trans/

Day Y — Y —
= 100,000 Trans/

Day — Y — Y
Hardware

Mainframe X X X X
LAN X

LAN + Mainframe

nelwork X X X

tation environment should be selected fo fit the
application, not the skiils of the developers.

For instance, if a real-time application is be-
ing built for a Sun workstation environment under
Unix operating system, C++ ot Ada arc probably
the languages of choice. Certainly, Cobel is not a
choice.

Guidance in implementation environment selec-
tion comes from the user. Do they have equipment
they want to use? How is it configured? What other
software or applications are on the equipment? How
amenable is the user to changing the configuration to
fit the new application?

Then, with this information, the decision table in
Table 3-3 can be used as a guideline for selecting
the implementation environment.

In general, whenever there is a specific require-
ment, it tends to drive the remaiding decisions.
Whenever there are general requirements, the deci-
sion can remain open for a longer time. Some direc-
tion—either toward a mainframe solution or a
PC/LAN sclution—should be tentatively decided
during feasibility and planning. During this process,
the project manager should identify the issues
for further information needed in making a final
decision.

Methodology and Project Life Cycle

The final issue to be tentatively decided is which
methodology and how streamlined the life cycle

&6 CHAPTER 3 Project Managemeant

TABLE 3-4 Decision Table for Methodology and Life Cycle Selection

Source of Complexity

Process
Data — Y
Knowledge representation — —
Balanced — —

Nowvel problem N N

Methodology

Process X
Data X
Object X

Semantic

will be. Frequently, therc is no choice about these
decisions, either. The organization supports one
methodology and one life cycle and there is no dis-
cussion allowed. Equally frequently, enlightened
managers know that not all projects are the same,
therefore the development of the projects should also
not be the same.

Methadology choices are process, data, object,
social, semantic, or some hybrid of them (see Chap-
ter 1). Life cycle choices are the sequential waterfall,
iterative prototyping, or learn-as-you-go (sec Chap-
ter 1). These decisions are not completely separated
from those of implementation environment in the
previous section, because any fixed implementation
requirements can alter both the methodology and the
life cycle choices.

Assuming no special implementation require-
ments, the application itself should be the basis for
deciding the methodology. In a husiness environ-
ment, the rule of thumb i3 to cheose the methodol-
ogy that addresses the complexity of the application
best. If the complexity is procedural, a process
method is best. If the complexity is data related, a
data methodology is best. If the problem is easily

broken into a scries of small problems, an object
method might work best. If the project is to automate
expert behavior or includes reasoning, a semantic
methodology is best. A decision table summarizing
heuristics on deciding methodology and life cycle is
shown as Table 3-4.

Life cycle choice also requires some decision
about what type and how much involvement there
is of users. If some intensive, accelerated require-
ments or analysis technique is used [see joint
requirements plaﬁnigg (JRP) and joint application
design (JAD), Part IT Introduction], either a stream-
lined sequential lifé cycle or an iterative approach
can be used. Very large, complex applications with
kaown requirements usually follow a sequential wa-
terfall life cycle. If some portion of the application—
requirements, software, language—is new and
untested, prototyping should be used. Object orien-
tation assumes prototyping and iteration. If the prob-
lem is a unique, one-of problem that has never been
automated before, either a learn-as-you-go prototyp-
ing or an iterative life cycle would be appropriate.

Tn the next sections, the activities for which the
project manager has sole responsibility arc detailed.

Thesc activities include liaison, personnel manage-
ment, and project monitoring and reporting.

LIAISON

The project manager is a buffcr between the techni-
cal staff and outside organizations. In this liaison
role, the project manager communicates and negoti-
ates with agents who are not part of the project team.
A ligison is a person who provides communications
between two departments. Examples of outside
agents include the project sponsor (who may or may
not be the user), IS managers, vendors, operations
managers, other project managers, and other depast-
ments such as quality assurance (for validation and
testing), law (for contracts), and administration (for
¢clerical and secretarial support).

For each type of liaisen, status reporis are an
itnportant means of communication (see sample in
Figure 3-6). Status reports document progress, iden-
tify problems and their resolution, and identify
changes of plans to all interested parties. In addition,
many other communications of different types are
described for each type of liaison. The guidelines
here are just that—guidelines. They are developed
assuming that open communications between con-
cerned parties is desired, but the guidelines require
judgment and knowledge of the situation to sepa-
rate a good action from a less good action.

Project Sponsor

The sponsor pays for the project and acts as its
champion. A champion is one who actively sup-
ports and sells the goals of the application to others
in the organization. ‘A champien is the ‘cheerleader’
for the project.

The goals of liaison with the champion are to
ensure that he or she knows the status of the project,
understands and knows his or her role in dealing
with politics relating to the project, and knows the
major problems still requiring resclution.

The major duty of the champion is to deal with
the political issues surrounding the project that
the project manager cannot deal with. Palitics are
in every organization, and politics relate ta organi-

Licison &7

zational power. Power usually is defined as the
ability of a person to influence some outcome. One
source of power comes from controlling organi-
zational resources, including moncy, people, infor-
mation, manufacturing resources, or computer
TesSOurCes,

Political issues of application development do not
relate to the project, but to what the project repre-
sents. Applications represent change. Changes can
be to the organization, reporting structure, work
flow, information flow, access to data, and extent of
organizational understanding of its user con-
stitpency. When changes such as these occur, sorne-
one’s status changes. When status changes, the
people who perceive their status as decreasing
will rebel.

The rebellion may be in the form of lies told to
analysts, refusal to work with project members,
complaints about the competence of the project
team, or any number of ways that hinder the change.
If the person causing trouble is successful, the proj-
ect will fail and his or her status will, at worst, be
unchanged. Politics, left unattended, will lower the
chances of meeting the scheduled delivery date and
raise the risk of implementing incorrect require-
ments. The project manager usuvally tries to deal with
the political issues first, keeping the sponsor in-
formed of the situatton. If unsuccessful, the spensor
becomes involved to resolve the problem.

In some organizations, the project manager com-
municates to the sponsor only through his or her
manager. In others, the project manager handles all
project communications. In general, treat the spon-
sor like your boss. Tell him or her anything that will
cause a problem, anything they should know, and
anything that will cause the project delays.

User

The wser is the person(s) responsible for providing
the detailed information about procedures, pro-
cesses, and data that are required during the analy-
sis of the application. They also work with the SE
and project manager in performing the feasibility
analysis, developing the financial and organizational
assessments of user departments for the feasibility
study.

468 CHAPIER 3 Project Management

ICIA Industries—interoffice Memo

DATE: October 10, 1994
TO: Ms. 8. A. Cameron
FROM: J. B. Berns

SUBJECT: Owder Entry and Inventory Control Project Status

Progress

We have resolved the testing problems between batch and on-line by going to a two-shift
programming environment. The on-line programmers are working from 6 a.mM. to 2 p.v. and
the batch programmers are working from 2 .. to 10 rm. This is not an ideal situation, but it
is working at the moment.

We are still two weeks behind the schedule for programming progress, and we may not be
able to make up the time, but we should not lose any more time.

The on-line screen navigation test began two days ago and is going smoothly. Several
minor spelling problems have been found, but ne logic problems have been found. George
Lucas should complete the user acceptance of the screen navigation and screen designs
within three days if no other problems surface.

Problems

The decode table for warehouse location, due 5/12/94 from George Lucas, is still not deliv-
ered yet. This is going to delay testing of the on-line inventory allocation programs begin-
ning in ten days if we do not have it. Is there another person we can contact to get this
information?

Operations found what appears to be a bug in one of the CICS modules. When a screen
call is made, two bytes of the information are lost. We are double-checking all modutes to
ensure that it is not an application problem. Jim Connelly is calling IBM today to see if they
have a fix for the problem. At the moment, this is not causing any delays to testing. But it
will cause delays beginning next week if the problem is not resolved. The delays will be to
all on-line modules calling screens and will amount to the time per module to code a work-
around for the unresolved problem. This should be about one hour each for a total of

120 hours. We hope this delay can be avoided; everyone possible is working on the prob-
lem, including two experts from our company whom we called in last night as a free service
o ICIA.

FIGURE 3-6 Sample Status Memo and Report

Projecl manager—user communication includes
both planned and unplanned status meetings, writ-
ten communications for status, analysis, interview
results, documentation, and walk-throughs of appli-
cation requirements as specified by the project team.
Timing of user communications differs with the type
ot communication, but is most often daily until the
application begins programming and testing. Then, a
minimum of weekly personal centact should main-
tain the relationship.

In general, tell the user everything that might
affect thern, the project, or the schedule negatively;
do not tell them anvthing else.

IS Management

IS managers, like most managers, want to know
progress, problems and their solutions, warnings of
lateness, and political issues. They do not want to
handle all problems for their managers, nor do they
appreciate finding oul a project will be late the week
before it is due. Tell your manager anvthing that
might get him or her in trouble, that they need 10
know, or that might impaci the project negatively.
Always expect to proposc solutions and argue if you
think vour solution is better than their’s. Always
accept their solution if it is mandated, unless it is
unethical or illegal.

Technical Staff

Technical staff here means the project team. Always
be open with them. Keep them currenl on progress,
problems and resolutions, and any information that
affects their ability to do their job. Praise quality
work. Practice team building using common sense,
like having small victory parties at the end of phases,
sharing birthdays, or announcing promotions.

Operations

Operations affect the project differcntly depend-
ing on the phase. In early phases, word processing
and PCs must be available [or documentation.
Computer-aided software engineering tool access
might be required. Timing, tvpe, and nceds of ac-
cess should be planned and negotiated well in

Ligison a9

advance. The kinds of problems a tearn might suffer
from no access may delay documentation but does
not delay the work of analysis. In the worst casc, the
work can be done manually.

During design, the database administrator must
have access and resources allocated for the definition
and population of a test database. This must also be
ncgotiated well in advance.

During implementation, old data must be con-
verted to the new format and envirenment, programs
must be placed in production, and users begin using
the application. At this time, the operations depart-
ment assumes responsibility for running the appli-
cation. This responsibility must also be planned and
negotialed in advance.

When programming and testing begin, all project
members need access to compilers, test database,
editors, and, possibly, testing tools to work on their
programs. Abscence of resources at this time can
scvercly delay project completion. For each day of
person-time lost, there can be one day of project
delivery time lost. Timing, type, and volume of ac-
ccss are all negotiated items. Advance negotiation
should begin at least one month prior to the need.
Most opcrations managers wilf tell you they want to
know about a demand for their resources as soon as
you can identity the demand and the date needed.
Most operations managers will also tell you they
want all requirements at once, So you should be pre-
pared to discuss analysis, design, and implementa-
tion needs before much work takes place.

In general, operations managers need to know
what the project needs from them and when. They
also should be sent progress reports and told of any
problems that alfect the use of their resources.

Vendors

A vendor is any company, not your own, from
which you obtain hardware, software, scrvices, or
information. If the application is installed in an ex-
isting cnvironment, probably no vendor contacts are
needed. If, however, acquisition of software, hard-
ware, or both is planned, there are three types of con-
tact with the vendor thal tuke place. The firsi is
proposal communication, the second is for negotia-
tions, and the last is customer support.

70 CHAPTER 3 Project Management

A Request for Proposal (RFP) (scc Chapter 16)
is a document developed by the PM and SE to solicit
bids from potential vendors. Vendors are asked to
respond with an cstimatc of service and price within
some number of days (e.g., 30). All bids reccived by
the cut-off date are reviewed. Proposal communica-
tions are usuaily limited to information about the pro-
posal. RFPs are accepted and responded to by vendor
marketing staff with some technical assistance, Proj-
cct manager contact is with the marketer.

Part of the RFP process is the development of a
list of required features for the item being bid upon.
This list should have priorities and weights assigned
to it during the proposal stage for usc during the
analysis, Bids are rated on the requirements then
compared te se¢ which vendor most closely meets
the needs of the application.

When a vendor is selected, a contract must be
nggotiated. Negotiation may be with the marketer,
but might also be with a financial person or with the
marketer’s manager. Similarly, the project manager
might do all or some of the negotiation with assis-
tarce from a financial person or his or her manager.
Negotiations deal with price, time period of the con-
tract, number of sites, number of users, type of
license, guarantees in case the vendor goes out of
business, warrantees, and so on. There is no onc way
to negotiate, and most oflen, all negotialions are
turned over tw legal staff for completion of contract
terms. It is important never to commit to any terms
until they are seen and approved by some manager
in the organization. Frequently, contracts have far-
reaching implications that an individual project man-
ager may not know.

Other Project Teams
and Departments

Other IS orgamizations that might need project
cornmunications include a database administration
group, other project teams, and a quality assurance
group, Other departments might include law, or
audit. In all cases, the communicalion is similar.
Thesc groups need to know what their relationship
to your project is, how soon and what type of sup-
port you need, who to contacl for questions and

information, and project status that might change
any of these requirements.

In addition, you also have needs of these teams.
If any of the organizations is performing work
you need to complete your project, then you necd
the same things from them that they need from you.
You need to know exactly what they will do for you
and how it will be transmitted (o your project, whom
to contact, and task status that might affect vour
schedule.

To summarize, many other groups and depart-
ments in the organization need to have liaison activ-
ities with a project. It is the project manager’s job te
provide that liaison with communications tailored
to the needs of the other organization.

PERSONNEL
MANAGEMENT

For personnel management, the project manager
hires, fires, coaches. motivates, plans, frains, and
cvaluates project team members.

Hiring

Hiring is usually coordinated through a personnel
office thal oversees all IS hiring, not just cne proj-
ect. Newspaper advertisements can be more cost-
effective, gencral, and get a better response when
coordinated for all projects. The personnel office
receives the responses and filters obviously unqual-
ified applications out from the pool of applicants.
Then, working with the project manager, the per-
sonnel department screens Lhe applicants and
arranges project intervicws.

As in most things, timing is important. Ads take
from one to two weeks to get approved and placed.
Receipt of resumes usually takes the same amount of
time. Interviewing is time consumling and can lake
another one to (wo weeks for each hire. Then, offers
arc made and salary negotiations completed. The
elapsed time 1o hire someone might be seven weeks
or longer.

In addition, scheduling interviews may mean
early-moming, evening, or lunch-time work. People
scarching for a job who already have one may not

want to take vacation time for an interview. If the
person appears qualified, the project manager is
expected to shift his or her schedule (o fit (he necds
of the applicant.

Firing

You may not agree, bul keeping a person in a job
for which they are unsuited does more damage to
the manager, the person, and the projccet than you
might think. Project manugers are damaged because
they think of little ¢lse and agonize over the de-
cision much longer than neccssary. People usu-
ally know if they ure going to be terminated because
they did not complete their specified tasks. They
should have been told, in writing, before the termi-
nation date.

Prolonging a termination is damaging to the per-
son being fired because it gives them a false sense
of hope, makes them lose confidence in the person
not following through on their described actions, and
also allows them to influence other project members
negatively.

Finally, procrastination on firing is damaging to
the project because the longer the termination is
delayed, the mote likely the person being terminated
wil} begin talking of his or her situation to other proj-
ect mermbers and disrupting work. As more people
find out, mote time is spent speculating on the situ-
ation. Less work gets done and the staff eventually
loses confidence in the project manager.

No one gets into trouble overnight. Usually there
is a period during which a problem is known, but it
might be corrected before any real problems arise.
It is at this time that the project manager should sit
down with the person and talk about the sitvation.
Legally, everyone in this situation is entitled to at
least one warning letter which is also placed in their
personnel file, This is followed by a letter of repri-
mand stating that performance is subslandard with
reasons for that judgment. The letter also states that
the person is on probation and will be terminaied by
a specified date unless some actions are taken, The
actions are then listed. If the person docs the as-
signed work satisfactorily, they arc off probation. All
of these communications are in writing, monitored
and approved by personnel and the 1S manager, and

Personnel Management 71

are the basis for any future legal action by the
employee.

If the work is performed satisfactorily, probation
ends. If not, the person is terminated. Termina-
tion from a project does nol necessarily require ter-
mination from a company. Il a person is ill-suited to
a particular projcct, she or he mighs still be a valu-
able employee. A good project manager will first try
to place the person somewhere else in the organiza-
tion. If the person is terminated from the com-
pany, the company can try to help them find another
job through an out-placement service ot by provid-
ing company resourccs (a desk and phone away
from the project) until a job is found. If the person
is terminated for antisocial behavior, an addic-
tion, or for some other nontechnical problem,
the project manager might help them seek profes-
sional help.

Motivating

Motivation has personal and professtonal aspects.
Professional motivation arises from a desire to do a
good job. People are motivated to do a good job
when they are treated like a professional and given
meaningful, inleresting work that includes some dis-
cretionary decision making and some creative de-
sign.

Personal motivation arises from a desire to
improve one’s position in life. Position in life is
defined individually and may mean earning more
money, buying a bigger house, becotming an analyst,
or becoming a manager, and $o on.

Project management style is the delermining
factor of personal motivation. A project manager
who facilitates participation, fosters controlled risk-
taking, and allows people to grow as individuals will
gain undying loyalty trom his or her staff. A project
manager who treats the staff as stupid, lazy, and
unmotivated might obtain desired behaviors from
them, but it will be through intimidalion and
coercion.

The project manager needs to know the proj-
ect team members individually in order to tailor
reward systems and assignments to help them reach
their goals. Project manager commitment to help-
ing team members reach personal goals determines

72 CHAPTER & Project Management

how professionally motivated the team merbers
will be.

There are three aspects to molivation. First, the
project work itself can be used to further profes-
sional goals that include doing novel work and
advancing to new levels of seniority, experience, or
responsibility. Second, the project manager must be
careful to tailor reward and pt rishment systems to
fit the tasks, being unbiased in terms of importance
of individual contributions to the work. Third, the
individual professional must make a commitment to
doing something extra to gain the reward, either
on-the-job or on his or her own time.

Take, for instance, a mainframe Cobol program-
mer who wants to move to a personal computer LAN
environment using C++. The project has relaxed
deadlines and the project manager might be able to
help the person, but some commitment from the pro-
grammer is necded. The project manager recom-
mends that the person find, attend, and pass a C++
course [or which the company will pay. Then, the
person will be assigned a task in the desired envi-
ronment. If the task is successtul, more tasks will
follow. If the task is not successful, the situation will
be reasscsscd.

Professional motivation might also come from
fostering development of association ties outside of
work. Meetings or user groups of vendors,' profes-
sional associations,? or other prolessional groups
related to work duties might be paid for by the com-
pany to foster professional motivation.

Motivalion also has a negative side. The actions
that would be taken should the person fail to do their
job competently must also be known. There should
be company policies about guality and quantity of
work that are also included as part of job descrip-
tions. In the absence of company policy, the project
manager should adept rules, with the knowledge and
consent of their manager, about punishments for fail-

—

Guide and Share are JTBM mainframe user groups with over
10,000 members each, 11iCys is the Digital Equipment users
group. [n these huge groups, there are subgroups with inter-
csts in every software package, language, and development
envirentent offered by the vendor,

2 The Association for Computing Machinery (AUM) is one
example.

ure to meet work requirements. These should also be
made known to evcryone on the project.

Career Path Planning

Motivating is an immediate activity of the project
manager, but all employees and managers should be
encouraged to develop longer range aspirations, as
well. The project manager should help plan, with
cach individual, the tasks from this project that can
be used to further his or her career.

The project manager should discuss goals and
carcer paths at the beginning of the project and at
least annually during performance reviews after that,
The discussion should include a frank assessment
of current pereeptions of the individual’s verbal,
erganizational, and professional skills, as well as
helping the person plan courses, assignments, or
opportunities to improve his or her performance,
There should be direct ties from performance to
rewards, Any time an individual does something sig-
nificant enough to be mentioned on an appraisal, he
or she should be told and either praised or counseled
to change,

Training

The purpose of project (raining is to specifically
address weaknesses of staff in techniques, technol-
ogy, ot tools used on the project. The SE and any
project leaders are directly responsible {or identify-
ing training needs, The project manager is responsi-
ble for obtaining the training for the individual(s)
who need it. A senior mentor for the trained skill
should be assigned to monitor progress in the devel-
opment of the skill, once training is coniplete.

Nonrelated training, as discussed above, may also
be authorized by the projcct manager depending on
employee need, rewards, and fit with employee
goals.

Evaluating

Evaluations are annual assessments of the person
from both profcssional and organizational perspec-
tives. Evaluations are written and usually are signed

by the revicwed person and the reviewer. Quality
and quantity of work assignment are the professional
assessments and are the most important aspects of
junior level work. Junior staff, having no busincss
experience, are monitored most closely for their abil-
ity to do their work. Competence for the assigned
jobs is determined, and the more competent, the
faster the person is promoted.

As people become more senior, quality and quan-
tity of assigned work becomes assumed and organiz-
ing, metivating, communications, and interpersonal
skills become more important. The nontask specific
skills are viewed from an organizational perspective.
More emphasis is placed on the ability to persnade,
manage, motivate, and communicate with others,
thus describing a goed manager.

Promotion for most senior people is {o the man-
agerial ranks. In some companies, the importance
of very senior, technical experts, is recognized. In
those companies, equal emphasis is placed on the
professional and organizational assessments. Tech-
nical staff can aspire to the senior technical positions
without having to sacrifice their technical expertisc
in the bargain.

The usual performance evaluation contains
sections for assignments, comemunications and inter-
personal relations, absences, planning and organiza-
lion, supervision, delegation, motivation, training,
and special considerations. Each of these is de-
scribed briefly,

The assignments section contains a brief descrip-
tion of four or five major assignments with expecta-
tions on guality and quantily of work for each as well
as a brief paragraph assessing the extent to which the
assignment was met. Quality and quantity of work
are intangible and frequently subjective assessments,
but there are always expectations of thc amount of
work a persen should do, and of the extent to which
reworking is needed. In addition, the individual's job
description should give guidance on expectations for
work quality and quantity. Finally, the extent to
which the person needs to be monitored and assisted
is an indicator of the extent to which they can work
independently and competently at their job. The dis-
cussion of qualily and quanltity should be presented
in terms of job description, manager expectations,
and extent to which expectations are met. Specific

Personnel Management 713

cxamples are required to demonstrate very high and
very low quality work,

Project managers evaluate communications and
human rclations. Assessments of both relating verbal
and written communication skills are developed.
Communication skills are related to specific project
assignments and to other project activities, such as
walk-lhroughs, that are not major assignments.
Communication evaluation includes grammar,
speed, persuasiveness, clarity, and brevity. The per-
son’s ability to develop and deliver a presentation,
and actual expcriences doing these are described.

Another area of assessment is interpersonal
relationships with project manager, senior staff
members, peers, others in the department, and users.
Additional comments might discuss specific inci-
dents that vary from the general assessment and ihat
might highlight a need for improvement, or identify
a particular skill, For instance, a person with good
negotiating skills might be identified by their arbi-
tration of a disagreement between two other project
members,

Work abscnces are mentioned in terms of total
days missed, number of absences, and type of ab-
sence. If there are company policies about absences
and they are exceeded, a comment about the extent
to which absences affected work might be added.
The ability of the person to meet deadlines, main-
tain an accurate status of the project, and need spe-
cial communications due to absences are all
described. Extraordinary situations causing a long
absence, such as emergency surgery, are included.

For plucning and organization, accuracy, detail,
independence of work, and cooperation with other
affccted groups are all assessed. In addition, the per-
son's adherence to their own plans is discussed. Do
they use it properly as a road map, or is it a rigid tule
from which no straying is allowed, or is it ignored
and treated as a task done for management?

Delegation is the extent to which the work is
shifted from the manager to subordinates. Issues
rated are how well work assignments match people’s
skills, allow monitoring to ensure completion,
provide for personal and career improvement of
subordinates,

Managerial style is assessed in terms of group
motivation. Does the project manager obtain

74 CHAPTER 3 Project Management

commitment from staff with enthusiasm, discom-
fort, unhappiness, or anger? Does the manager ask
or command? How successful is the strategy and
what must the manager do to change unsuccess-
ful strategies? Are tactics altered to fit the person
being managed, or is everyone treated the same
way? Are people treated fairly or is favoritism
prevalent?

Can the manager motivite others to learn new
skills? To what ¢xtent does the manager provide
needy staff with training, either formal or informal,
on techniques, technology, and tools? If formal train-
ing is given by the person being rated, summarics
of student ratings of quality and quantity of training
should be prescnted. The person’s ability to pro-
vidc mentoring and quality of mentoring might be
addressed,

Finaliy, there is usually a section for the project
manager to rccommend future assignments, training,
or other professional activities for further develop-
ment of the individual.

MONITOR

AND CONTROL

Status Monitoring
and Reporting

The rationale of the planned application develop-
ment is that you monitor the plan to communicate
activity status and interim checkpoints to clients.
The overall goal—meeting the project installation
date-—is the end point of a lengthy complex set of
processes. Without the plan, knowing whether or not
the installation date will be met is difficult. Status
monitoring is the comparison of planned and
actual work to identify problems. Project control is
the decisions and actions taken based on the proj-
ect’s status.

In a planned approach, project team members
report time spent on cach activity for some period.
The sample time sheet (see Figure 3-7), allows
breakdowns for several tasks listed across the top of
the form and hours worked on the task reported by
day of the month. Totals by day of the month and

by task over the period are tallicd by row and column
totals. This type of rcporting allows the project man-
ager to easily see for each person weekend work,
how many hours are spent on each activity over a
period, and how many effective work hours there are
per day.

In addition, each person should write a short
progress report. The report summarizes progress in
qualitative terms, identifies problems, issues, eirors,
or other conflicts that might delay the work. If a task
wiil be later than its schedule date, the reason for
lateness must be explained. The project manager and
SE both review the reports and time sheets to decide
if problems need further action. A sample progress
memo is shown as Figure 3-8.

The SE and project manager map actual progress
of each person against the planned times. When
progress looks slow, the project manager asks the
person specifically if there are problems, if there are
enough resources, for example, test shots, and if the
person thinks they can meet the deadline. If the task
appears to have bcen underestimated, the schedule is
checked to see if changing the time allotted will
cause completion delays. Similar tasks are checked
to see if they are alse underestimated. The cumula-
tive effect of changes is checked to see if completion
is in jeopardy. If it is, the project manager discusses
the problem with his or her manager and they
decide on the proper course of action.

The best policy is to address potential problems
eatly, before they become big problems. If a person
cannot finish work because of too many assign-
ments, then rcassign some of the work to another
person. If they have not got enough testing time,
arrange for more time. Active management prevents
many problems.

Problem follow-up includes dctermining the
severity and impact, planning an alternative
course of action, modifying the plan as required,
and continuing to moniter the problem until it is
resolved or no longer has an impact on the deliv-
ery date.

Tell the client about problems that may not be
solved so they are prepared for delays if they become
inevitable. When changes become needed, tell the
client about changes to planned dates even when
they do not change the completion date.

Monitor and Control

75

Project:

Month:

Name:

Activities

Day of
Month

Total
for Day

1186

217

318

4/19

5/20

6/21

7/e2

8/23

9/24

10/25

11/26

12727

13/28

14/29

15/30

3

Total

FIGURE 3-7 Time Sheet

764 CHAPTER 3 Project Managerment

ICIA Industries—Iinteroffice Memo

DATE: October 10, 1994
TO: J. B. Berns
FROM: M. Vogt

SUBJECT: Owrder Entry and Status

Progress

We completed our screen design and navigation testing 10/7/94 and turned the modules
over {o George Lucas for user acceptance. He requested changes to several items:

1. The location of the total at the bottom of the screen is moved left five spaces.

2. The PF key assignment for PF3, which we were using to END any process. He would
like END to be PF24. We explained that this is not a good design because the operator
needs more key strokes (and hence is more likely to err) for PF24. Also, this is a very
time-consuming change, about 10 hours, and that he should have mentioned his prefer-
ence during the reviews. He decided to think about it and talk to some real operators

before making a firm decision.

The other testing is progressing well. | am almost done testing the entire order process,
except for inventory allccation. | need the warehouse codes from George by next week if

| am to continue testing the programs.

Problems

The warehouse codes which were promised some months ago are getting to be on the criti-
cal path. If | do not have them by next week, | cannot continue to test the inventory alloca-
tion portion of the application. | can assign my own code scheme, then change it to the real
one if | have to, but | would like to avoid the double work.

FIGURE 3-§ Sample Progress Report

The kinds of problems that oceur and the activi-
tics the project manager monitors change over the
course of the development. For instance, during the
definition of the project scope, the project manager
monitors the following:

Is the client cooperative?
Are all the stockholders identified and involved?

Are users being interviewed giving accurate,
complete information?

Are users participating as expected?

Are there any apparent political issues o be
addressed?

Duoes the scope look right? That is, does the
current definition appear to include relevant
activities?

By analysis, the project manager knows most
users and how they work, should have identified
potential political problems and dealt with them, and
should be comfortable that the project scope is cor-
rect. The activities monitored turn toward the project
team, and include the following:

Do all analysts know the scope of activity and
work within it?

Is the analysts” work emphasis on what and not
how?

Are users participating as expected?

Are all project members pulling their weight?

Is everyone interested and happy in their job?

Is there any friction between team members, or
between team members and users?

Docs cveryone know what they and all others
are doing?

Is there constant feedback-correction with users
on interview results?

Are team members beginning to understand the
users” business and situation? Are the team
members objective and not trying to force
their own ideas on the users?

Are walk-throughs finding errors and are they
getting resolved?

Are documents created looking complete? Does
the user agree?

Is the analysis accurately addressing the prob-
lems of the user? Are team members analye-
ing and describing exactly what is needed
withoul embellishment?

Is typing turnatound, printing of word-processed
documents, copying, or other clerical support
acceptable?

Does communication between teams and be-
tween teams and users appear to be satis-
factory?

Is the project un time? What 1s the status of
critical path tasks? Has the critical path
changed because of tasks that finished early?

Where are the biggest problems right now? How
can we alleviate the problems?

What do we nol know that mighl hurt us in
design?

The functional reguirements that result from
analysis should describe what the application will

Monitor and Control 77

do. The project manager is constantly vigilan
that the requirements are the users. One problem
many projecis have is that the user wants a plain
functional application but the analysts design a high-
priced application with the user functions, but with
many unnecessary fealures, or “bells and whistles,’
as well. This problem, if it occurs, must be dealt with
before analysis ends or extraneous functions will
be in the resulting application. When over-design
problems surface, it is important to try to trace
them to specific analysts for retraining in providing
theit services.

In design, the emphasis shifts to monitoring the
rate, type, and scope of changes from the users, If the
busincss is volatile, requirements change may
become a constant problem. Change management
procedures should be developed and used. At this
point, the project manager’s worries include the
following:

Do the analysts know the application?

Is the translation to operational environment
correet and complete?

Arc watk-throughs finding errors? Arc crrors
being resolved?

Are users participating as expected? Are users
properly involved with screen design, test
design, acceptance criteria definition?

Arte all project members pulling their weight?

Is everyonc intcrested and happy in their job?
Is there any friction between team membens,
or between teamn members and users?

Does everyone know what they and all others
are doing?

Are all team members aware of their changing
responsibilities, and are they comfortable
with and able to do design tasks?

Does communication between teams and
between teams and users appear to be satis-
factory?

Is the project on time? What is the status of
critical path tasks? Has the critical path
changed because of tasks that finished early?

Where arc the biggest problems right now?
How can we alleviate the problems?

What do we not know that might hurt us in
programming? Is the implementation
environment suitable for this application?

78 CHAFTER 3 Project Management

Can the database managemenl soflware
accommaodate this application?

The number of project team members usually
increases for programming Lo do parallel develop-
ment a5 much as possible. The communication over-
head necessary to know everyone’s status and for
them to know the project status increases. The prob-
fems in the programming and unit testing stage
tend to focus on communications and programmer
performance.

Does everyone understand how their work fits
into the project? Does everyone know their
critical-path status? Are all current project
members pulling their weight? Does every-
one know what they and all others are doing?

Is testing time sufficient? Is terminal access
sufficient?

Does everyone know the technologies they are
using sufficiently to perform independently?

Are junior staff paired with senior mentors?

Are users requesting further changes?

Are users participating as expected in test
design, user documentalion development,
conversion, and training?

Is therc constant feedback-correction with users
on suspected errors?

Are prototypes being used as much as possible
to demonstrate how the application will
work?

Are walk-throughs productive, finding errors?
Arc crrors getting resolved?

Whilc programming and unit testing are proceed-
ing, tests for integration and system level concerns
are being developed. The database is being estab-
lished and checked out. The operational environment
is being prepared. Concern shifts from getting the
applicaticn expressed in code o gelling it working
correctly. The kinds of questions a project manager
might have are the following:

Are all current project members pulling their
weight? Does everyone know what they and
all others are doing?

Is testing time sufficient? Is terminal access
sufficient?

Are users requesting further changes? Are wsers
participating as expected in testing?

Is there constant feedback-correction with users
on suspected errors?

Atre walk-throughs productive, finding errors?
Are errors getting resolved?

Does the system level test really prove that the
functlions are all accounted for?

Docs the integration test verity all interconnec-
tions? How can it be leveraged to prove the
reliability of the interconnections during the
system test?

‘What do we not know about the operational
environment that might hutt the project?

Is the database software working properly? Are
back-up and recovery procedures adequate
for testing?

How can we use the integration and system tests
to develop a regression test package?

Is documentation being finalized? 15 everyone
working to capacity? Should we start letting
programmers go to other projects? If we let a
key person go, who can take their place when
a problem occurs?

Finally, testing is complete, the application
appears ready, and the user is ready to work. There
should have been a plan for actually implementing
the aperational application thal eases the user into
use without too much trauma. The easing-in period
gives the project team some time (o fix errors [ound
in production without excessive pressure. The
issues now center on getting the application to work
in its intended environment for its intended users.,
The questions include the following:

Is the site prepured adequately? Is air condi-
tioning sufficient? Are lighting and
ergonomic design sufficient?

Arc usets properly trained and ready to do
work?

Are work cyceles and evaluation of results identi-
fied sufficiently 1o allow implementation and
vetification of results?

When errors are found, are they getting
resolved?

Are users taking charge as expected?

Are all current project members pulling their
weight? Does everyone have enough
work to do? Can people be freed to other
projects?

Automated Support Tools for Project Management 79

[s communication between teams and between
teams and users appearing satisfactory? Are
users told whenever major problems occur?
Are they participating in the decision making
aboul error resolution? :

Many of the questions above are technical in
nature and would be reterred to the SE to monitor.
The project manager is like a mother hen and is sup-
posed to worry about cverything, Obviously, if the
plan addeesses the activities as it should, many of the
answers to the above sets of questions are found in
wcekly progress reports of team members. Compil-
ing the individual progress reports and project prog-
ress reports in a project log allows the manager and
any of the staff to review decisions, problems and

their resolutions, and other issues as they occur dur-
ing the development.

AUTOMATED
SUPPORT TOOLS
FOR PROJECT
MANAGEMENT

Project management support tools have increased in
sophistication and performance since the mid-1980s
when the first PC-based tools arrived. The tools in
this section support project planning, task assign-
ment and menitoring, estimation tools, and sched-
uling tools (see Table 3-5). Key tool capabilitics

TABLE 3-6 Automated Support Tools for Project Management

Product Company

Technique

CA-products
lslandia, NY

DataEasy Project Managemenl

Foster City, CA
Demi-Plan Demi Software
Ridgefield, CT
Foundation Arthur Anderson & Co.
Chicago, TIL
[EW, ADW (PS/2 Version) Knowledgeware
Atlanta, GA
Life Cycle Manager Nastee

Southficld, M1
Life Cycle Project Manager

Fairfax, ¥
Maestro Softl.ab
San Francisco, CA
microGANTT Earth Data Corp.
Richmond, VA
Milestone Digital Marketing Corp.
Walnut Creek, CA
Multi-Cam AGS Mgmt Systems

King of Prussia, PA

Computer Associates International, Ine.

Data Easy Software

American Management Systems

Project planning

Task mapping

Critical path project planning
and tracking

Froject management
Project planning

Project planning

Project planning, task
assignment, tracking

Project planning, task
assignment, tracking

Problem tracking

Project planning

Critical path projoct planning
and tracking

Project planning and tracking

(Continued on next page}

80 CHAPTER 3 Project Management

TABLE 3-5 Automated Support Tools for Project Management (Continued)
Product Company Technique
PMS 11 North America MICA Inc. Projeci planning, 1ask

San Dhego, CA

Primavera Project Manager
Bala Cynwyd, PA

Project Microsoft
Bellevue, WA
Project Workbench, Applied Business Technology

Fast Project NY, NY

Systemn Architect

NY, NY
Teamwork Cadre Technalogies Inc,
Providence, K1
vsDesigner Visual Software, [nc.

Santa Clara, CA

Primavera Systems Inc.

Popkin Software and Systems, [nc.

assignment, tracking
Critical path
PERT

Project planning, task
assignment, tracking

Project planning, task
assignment, tracking

Project planning, task
assignment, tracking

Project planning

Planned completion
date tracking

Project completion
tracking

Critical tssues
monitoring

not considered here inciude word processing,
spreadsheets, calendars, or interfaces Lo electronic
mail {these are considered useful for all organiza-
tion members). Other tools that are used by 4 pro-
ject manager but are discussed in other scetions of
the text are for configuration management, quality
cantrol, and metrics.

SUMMARY

The project manager rolc is frcquently separate and
distinct from that of the software engineer. The soft-
ware cngincer is generally responsible for technical
aspects of project work. Some tasks are joint, com-
plementary activities shared by project managers
and softwarc cogincers, For these joint activities,
the software engineer contributes technical skills,
and the project manager contributes organizational
skills.

The project manager is solely responsible for
most people-related aspects of projects. The three
main tasks of the project manager arc organizational
lizison, employee management, and praject monitor-
ing and control. Organizational lizison includes cre-
ating working relationships with other organizations
and departments, resolving project-related problems
regardless of their nature, and reconciling the project
design with cxpectations of others. Employee man-
agement includes working with Personnel te hire,
fire, and staff the project. Employee management
also includes individual employee monitoring to
help them evaluate, set, and attain career goals. Proj-
ect monitoring and control is the other major proj-
ect management activity. Monitoring means to trace
the progress of project work and compare it to bud-
geted time and resources to maintain progress. Con-
trol includes deciding and implementing project
changes when progress is not satisfactory. Project
changes might include change of job assignments,

introduction of training, or change to schedules,
and plans.

REFERENCES

E——

Abdel-Hamid, Tarek, and Stuart E. Madnick, Seftware
Project Dynamics: An Integrated Approach. Engle-
waad Cliffs, NI: Prentice Hall, 1991.

Gilbreath, R. D., Winning at Project Management: What
Warks, What Fails and Why. NY: John Wiley and
Sans, 1986,

Gildersleove, Thomas R., Date Processing Project Man-
agement, New York: Van Nostrand Reinhold Com-
pany, 1974,

Glass, Robert L., Software Conflict: Essavs on the Art
and Science of Software Engineering. Englewood
Cliffs, NJ: Prentice Hall, Yourdon Press, 1991,

Cleland, D. L, and William R. King, Systems Analysis
and Project Management. NY: McGraw-Hill,

1983,

King, William R., and D. 1. Cleland (eds.), Project Man-
agement Handbook, 2nd ed. NY: Van Nostrand Rein-
hold, 1988,

Pleller, lellrey, Organizations and Organization Theory.
Bosten: Pitman, 1982,

Rogerson, Simon, Project Skills Hardbook. Lund,
Sweden; Chartwell-Bratt, 1989,

KEY TERMS

champion praject control

complimentary activities project plan

critical path request for proposal

evaluaticns (RFF)

heuristic SpOnsor

implementation status monitoring
environment task dependency

implementation strategy diagram

intertuce user

ligison vendor

personnel management

EXERCISES

1. List and discuss three advantages and three dis-
advantages to project team members using time
sheets to report work activities. What might

STUDY QUESTIONS
1.

o

10,

11.

12.

13.

14,

15.

16.

Study Questions 81

some alternatives for reporting task progress and
lime spent be?

. Write an honest appraisal of yourself for the

work you have done in school toward your cur-
rent degree. Give specific examples of good and,
maybe, poor work. Rate your knowledge and
skills gained in terms of a schedule that ends
when you graduate,

Discuss the following comment: “It is impor-
tant for a project manager to have been a
programmer and an analyst. Gtherwise, the
manager has no feel for the problems and

their severity.”

T —
Define the following terms:
champion critical path
liaison project plan
When and why are the software engineer and
project manager roles split?

heuristic

. Describe the preject manager’s role in

planning,

Describe a general planning methodology.
What kinds of reviews are done on project doe-
umentation? Why are they necessary?

What arc five types of operations resources that
might be needed on a project?

What is the minimum lead time recommended
for resource requests?

What is an RFP and when is it used?

What is the purpose of a task dependency
chart?

What is a critical path and why is it

important?

Should a plan be finalized and cast in

concrete?!

List four tvpes of assumptions made during
planning and describe why each is important,
Why should project team members submit time
sheets?

Describe how to assign staff to tasks. Why is
the process rarely this simple?

Describe the heuristics for assigning staff to
projects.

Shouid planned overlime be in a schedule?

32

17.

i8.

19.

20

21.

22.

24,

26.

27.

28.

CHAPTER 3 Project Management

List five things cvery person should know
about his or her job when working on an appli-
cation development project.

What are the three alternatives for implementa-
tion strategy?

What are the heuristics for deciding implemen-
fation strategy?

List iwo choices for implementation en-
vironment.

Desctibe the heuristics for deciding implemen-
tation environment.

‘What are the choices for methodology and life
cycle?

. Describe the heuristics for deciding meth-

odology,
Describe the heutistics for deciding life cycle.

. 'What is a liaison? What project manager duties
require liaison work?

List the contents of a project status report.
What is politics and how does it affect applica-
tion development work?

Why are performance appraisals done?

W EXTRA-CREDIT QUESTIONS

1. List and discuss types of assessment from a per-

formance appraisal. How does a manager ensure
the ratings are fair and objective? What should a
manager do if he or she does not like the person
being reviewed?

. Develop a praject plan for ABC Video based on

the information in Chapter 2 only. Use the case
and this chapter to decide the tasks. Use your
experience, whatever it is, to decide the times
for the tasks. Do not look at other information in
this or other texts when planning the work.
What assumptions do you have? How comfort-
able are you with your estimates? Keep this
assignment and redo it at the end of Chapter 6.

DATA GATHERING
FOR APPLICATION

CHAPTIER

DEVELOPMENT

INTRODUCTION

Each phase of application development requires
nteraction between the developers and users to
obtain information of interest at the time. Each phase
seeks to answer broad questions about the applica-
tion. For instance, in feasibility analysis, the ques-
tions are broad and general: What is the scope of
the problem? What is the best way to automate? Can
the company afford (not) to develop this applica-
tion? [s the company able to support application
development?

In analysis we seek what information about the
application. For instance, What data are required?
What processes should be performed and what are
the detuils of their performance? What screen design
should be used?

In design, we develop how information relating to
the application. For example, How does the appli-
cation translate into the specific hardware environ-
ment selected? How docs the logical data design
translate inte a physical database design? How do
the program modules fit together?

The kind of interaction that elicits answers to
questions such as these differs by information type
and phase. In this section we describe the alterna-
tives for obtaining information to be used for appli-

| I
L
— I

cation development. The alternative data gathering
techniques are described, then related to application
types. Then, cthical considerations in data collec-
tion and wser relations are discussed.

DATA TYPES

Data differs on several important dimensions: time
orietitation, structure, compleleness, ambiguity, se-
mantics, and volume. Each of these dimensions is
important in defining requirements of applications
because they give guidance to the SE about how
much and what typc of information should be col-
lected. Aldso, diffcrent data types are related to
different application types and require different
requirements elicitation techniques. Inattention to
data dimensions will cause errors in analysis and
design that are costly to fix. Error correction cost is
an inereasing function of the phase of development
(see Table 4-1).

In addition to obtaining information, we also use
the techniques for validating the information and
interpretation in the proposed application. Use of
validation techniques during each phase increases
the likelihood that logic flaws and misinterpretations
will be found early in the development.

84 CHAPTER 4 Data Gathering Application Developrnent

TABLE 4-1 Cost of Error Correction by
Phase of Development

Phase in Which
Errors are Found

Cost Ratio to
Fix the Error

Feasibility/Analysis 1
Design i-6
Code/Unit Test 10
Development Test 14-40
Acceptance Test 30-70
Operation 40-1000

From Boehm, Barry, Software Engincering Feonomics. Engle-
wood Clififs, NJ: Prentice-Hall, 1981.

Time QOrientation

Time orientation of data refers to past, present, or
future requircments of a proposed application, Past
data, for example, might describe how the job has
changed over time, how politics have affected the
task, its location in the organization, and the fask,
Past information is exact, complete (if maintained),
and accurate. There is little guessing or uncertainty
about historical records.

Current information is information about what is
happening now, and its relevance in determining the
future, Bor instance, current application information
rclates to operations of the company, the number
of orders taken in a day, or the amounl of goods
produced. Current policics, procedures, business
industry requirements, legal requirements, or other
constrain{s on the task are also of interest in appli-
cation development. Current information should be
documented in some way that it can be read by the
development team to increase their knowledge of the
application and preblem domains.

Future requirements relate to changes in the in-
dustry expected to take place. They are inexact and
difficult to verify. Economic forecasts, sales trend
projections, and business ‘guru’ prognostications are
cxamples of future information. Future-criented in-
formation might be used, for example, by managers
in an executive information system (EIS).

Structure

Structure of information refers to the extent to
which the information can be classificd in some way.
Structure can refer to function, environment, or form
of data or processes. Information varies from un-
structured to structurcd with interpretation and deti-
nition of structure lcft to the individual SE. The
information structuring process is one in which the
SE is giving a form and definition to data.

Structure is important because the wrong applica-
tion will be developed without it. For inslance,
knowing that the user envisions the structure of the
system to be on¢ with ‘no bureaucracy,” minimat
user requiregments, and no frills, gives vouw, ihe SE, a
good sense that only required functions and data
should be developed. In the absence of structuring
information, technicians have a tendency to develop
applications with all ‘the bells and whistles’ so
the users can never complain that they don’t have
some function.

An example of structuring of data is shown in
Figures 4-1 and 4-2, When you begin collecting
information about employees for a personnel appli-
cation, you might get information about the em-
ployees themselves, their dependents, skills the
employees might have, job history information,
company position history, salary history, and per-
formance reviews.

The information comes te you in pieces that may
not have an obvious structure, but you know that alt
of the data relates to an employee so there must be
relationships somewhere. In Figure 4-2, we have
structured the information te show how all of the
informatien relates to an cmployee and each other
in a hierarchic manner. Each employee has specific
one-time information that applics only to them, for
instance, name, address, social security number, em-
pleyee ID, and so on, In addition, each employee
might have zero to any number of the other types of
information depending on how many other compa-
nies they have worked al, whether they have chil-
dren, and how long they have worked at the
company. The most complex part of the data struc-
ture is the relationship between position, salary, and
reviews. If salary and performance reviews are dis-
joiat, they would be as shown, related to a given

Data Types

85

Name

Age
Jobx Title at Time of Raise
Social Security Number

Address

Raise Amount

Dependent’s Mame

Dependant's Date of Bidh

Job Salary

Performance Reviewer

Current Job Tithy
Date of Raise

Past Job Title

Date of Ferformance Review

Job Title al Time of Review

Performance Rating

FIGURE 4-1 Unstructured Personnel Data

Pergonal Information
Social Security Number
Name

Addrass

Crate of Birth

Dependent Information
Dependent Date of Birth
Dependent Name
Dependent Relationship

Job Information
Job Title

Job Department
Jot: Bagin Date
Job End Date
Job Salary

Performance Ratings
Perfarmance Rating Date
Performance Rating
Performance Reviewsr

Raise Information
Raise Date
Raise Amount

FIGURE 4-2 Structured Personnel Data

84 CHAPTER 4 Data Gathering Application Development

position the person held in the company (sce Figure
4-2). The other option is that salary changes are de-
pendent on performance reviews and the hierarchy
would be extended another level.

Completeness

Information varics in completeness, the extent to
which all desired information is present. Each ap-
plication type has a requisite level of data complete-
ness with which it deals, Transaction processing
systems deal with complete and accurate informa-
tion. GDSS and DSS deal with less complete infor-
mation, EIS, expert systems, or other Al applications
have the highest levels of incompleteness with
which they must cope.

n applications dealing with incomplete informa-
tion, the challenge to you is to decide when the
information is complete enough to be useful. Some-
times this decision is made by the user, other times
it is made within the application and there need to
be rules defining complete enough.

Ambiguity

Ambiguity is a property of data such that it is vague
in meaning or is subject to multiple meanings. Since
ambiguity deals with meaning, it is closcly related to
semantics, An example of ambiguity is to ask the
following query:

PRINT SALES FOR JULY IN NEW YORK

In this query, New York can mean New York Statc or
New York City; both answers would be correct. Ob-
vious problems will occur to a person who asks thai
request [or onc context (the state) and gets an answer
for the other context (the city). Contextual cues help
SEs to define the one correct inlerpretation of am-
biguous items; further preblems arise becausce of
muliiple semantic interpretations within a single
context. For that reason, semantics is discussed next.

Semantics

Semantics is the study of development and change
in the meaning of words. In busincss applications,
semantics is the meaning attached to words. Mean-

ing is 4 social construction; that is, the people in
the organization have a collectively shared defini-
tion of how some term, policy, or action is really
interpreted.

Semantics is important in applications develop-
ment and in the applications themselves, If people
use the same terms, but have different meanings for
the terms, misunderstandings and miscormmunica-
tions are assured. If embedded in an application,
semantically ambiguous data can never he processed
by a program withoul the user being aware of which
‘meaning’ is in the data. Applications that have
sernanticalty mixed data then rely on the training and
longevity of employees for proper interpretation of
the data. IT these key employees leave, the ability to
correctly interpret the meaning of the data is lost.
Losing the meaning of information can be expensive
to the company and can result in lawsuits due to
improper handling of information.

An example of semantic problems can be seen in
a large insurance company. The company uses the
term ‘institution’ to refer to its major clients for
retirement funds. The problem is that “institution’
means different things to different people in the
company. In one meeting, specifically convened to
define ‘institution,” 17 definitions surfaced. The
problem with semuntic differences is not that 16 of
the 17 definitions are wrong. The problem is that all
I7 definitions are right, depending on the context of
their use. [t is the SEs job (0 unravel the spaghetti
of such definitions to get at the real meaning of terms
that are not well defined at the corporate level. Un-
raveling the meaning of the term ‘institution’ took
about 20 person-months over a two-year pegiod to
get the user community to reach consensus on the
corporate definition of the term ‘institution.”

Volume

Volume is the number of business events the sys-
tem must cope with in some period. The volume of
new or changed customers is estimated on a monthly
or annuzl basis whereas the volume of transactions
for business operalion is usually measured in volume
per dav or hour, and peak volume, Peak volume is
the number of transactions or busingss cvents to be
processed during the busiest pericd. The peak period

might be annual and last several months, as with tax
preparation. The peak might be measured in scconds
and minutes, for example, to meet a Federal Reserve
Bank closing deadline.

Volume of data is a source of complexity because
the amount of time required to pracess a single
transaction can become critical to having adequate
response fime when processing large velumes. Inter-
active, on-line applications can be simple or ex-
tremely complex simply because of volume. For
instance, the ABC rental application will actually
process less than 1,000 transactions per day. Contrast
this volume with a credit card validation application
that might service 50,000 credit check requests per
hour. Credit card validation is simple processing;
servicing 50,000 transactions per hour is complex.

Applications that mix on-line and batch process-
ing using softwarc thal requires the two types of
processes to be distinet, requires carcful attention to
the amount of time necessary to accommodate (he
volumes for both types of processing. For instance,
the personnel application at a large oil company was
designed for 20 hours of on-line processing with
global access, and four hours of batch reporting.
When Lhe system wenl “live,” the on-line processing
worked like a charm becausc it had been tested,
retested, and overtested. The batch portion, for
which individual program tests had been conducted,
required about 18 houry because of the volume of
processing. After several weeks, the uscrs were fed
up because printed reports had been defined as the
means of distributing query results, and they had
nonc. The solution required an additional expendi-
ture of over $200,000 to redevelop all reports as
pseudo-on-line tasks that could run while the inter-
active processes were running. Simple attention to
the volume of work for batch processing would have
identified this problem long before it cost $200,000
to fix.

DATA COLLECTION
TECHNIQUES

There are seven techniques we use for data gathering
during application development. They are inter-
views, group meetings, observation, temporary job

Datg Collection Technlques a7

assignment, questionnaires, review of internal
and outside documents, and review of software.
FEach has a use for which it is best served, and each
has limitations to the amount and type of informa-
tion that can be got from the technique. The tech-
nique strengths and weaknesses are summarized
in Table 4-2, which is refercnced throughout
this section.

In general, you always want to validate the infor-
mation received from any source through trian-
gulation. Triangulation is oblaining the same
information from multiple sources. You might ask
the same quecstion in several interviews, compare
questionnaire responses to each item, or check
in-house and external documents for similar inlor-
mation. When a discrepancy is found, you reverify it
with the original and triangulated sources as much as
possible, Tf the informatien is critical to the applica-
tion being correctly developed, put the definitions,
explanations, or other information in writing and
have it approved by the users separately from the
other documentation. Next, we discuss cach data
collection technigue.

Single Interview

An interview is a gathering of a small number of
people for a fixed period and with a specific purposc,
Interviews wilh one or bwo vsers at a time are the
most popular method of requirements elicitation. In
an interview, questions are varied 1o oblain specific
or general answers. You can get at people’s feelings,
motivations, and attitudes toward other departments,
the management, the application, or any other entity
of interest (see Table 4-2). Types of intervicws ate
determined by the type of information desired.
Interviews should always be conducted such that
both participants feel satisfied with the results. This
means that there are steps that lead to good inter-
views, and that inattention to one or more sleps is
likely to result in a poor interview. The steps are
summarized in Table 4-3. Meeting at the conve-
nience of the interviewee sets a tone of cooperation,
Being preparcd meuns both knowing who you are in-
terviewing so you don’t make any embarrassing
staterents and having the first few questions pre-
pared, even if you don’t know all the questions.

88 CHAPTER 4 Data Gathering Application Development

TABLE 4-2 Summary of Data Collection Techniques

Interviews

Strengths

Weaknesses

Get both qualitative and quantitative information

Get both detail and summary information

Good method for surfacing requirements

Takes some skill
May obtain biased results

Can result in misleading, inaccurate, or irrelevant
information

Requires triangulation to verily resulls

Not usetul with large numbers of people to be
interviewed {e.g., over 50)

Group Meetings

Strengths

Weaknesses

Drecisions can be made

Can get both detail and summary information
Good for surfacing requirements

Gels many users involved

Decisions with large number of participants
can take a long time

Wastes time
I[nterruptions divert attention of participants
Arguments about turf, politics, etc. can oceur

Wrong participants lead to low results

Observation
Strengths Weaknesses
Surface unarticulated procedurcs, decision criteria, Might not be representative time period

reasoning processes

Not biased by opinion Behavior might be changed as a result of being abserved
Observer gets good problem domain uoderstanding Time consuming

Review Software
Strengths Weakncsses

Good for learning current work procedures
as constrained or goided by software design

Good [or identifying questions te ask users
about tunctions—how they work and whether
they should be kept

May not be carrent
May be imaccurale

Time consuming

Data Collection Technigues 89

TABLE 4-2 Summary of Data Collection Techniques (Continued)

Questionnaire

Strengths

Weaknesses

Anonymity for respondents

Attitndes and feelings might be more honestly
expressed

Large numbers of people can be surveyed easily

Best for limifed response, closed-ended questions

Good fer multicultural companies to surface

Recall may be imperfect

Unanswered questions mean you cannot get the
information

Questions might be misinterpreted

Reliability or validity may bc low

Might not add useful information to what is already

biases, or requirements and design features that known
should be customized to fit local conventions

Temporary Assignment
Strengths Weaknesses

Goaod 1o fearn current context, terminclogy,
procedures, problems

Bases for questions yvou might not otherwise ask

Mayv not include representative work activities or
time period

Time consuming

May bias future design work

Review Internal Documents

Strengths

Weakncsses

Good for learning history and politics
Explains corrent context

Good for understanding current application

May bias future design work
Saves interview/user time

Not useful for oblaining atiitudes or motivations

Review External Documents

Strengths

Weaknesses

Good for identifying industry trends, surveys,
expert opinions, other companies’ experiences,
and technical information relating to the problem
domain

May not be relevant
Information may not be accurate

May bias future design work

on CHAPTER 4 Data Gathering Application Development

TABLE 4-3 Steps to Conducting a
Successful Interview

1. Make an appointment that is at the convenience of the
interviewee,
2. Preparc the interview: know the interviewee,
Bc on time,
4, Have a planned beginning to the intervicw.
a, Introduce yourself and your role on the project.
b. Use open-ended general questions o begin the
discussion.
c. Be inferested in all responses, pay attention.
3. Have a planned middle to the interview.
a. Combine open-cnded and closed-ended questions
to obtain the information you want.
b. Follow-up comments by probing for more detail.
c. Provide feedback to the interviewee in the form of
comments, such as, “Let me tell vou what T think
you mean, . .."
d. Limit your notetaking to avoid distracting the
interviewee.
6. Have a planned closing lo the interview.
a. Summarize what you have heard. Ask for correc-
tions as needed.
b. Request feedhack, note validation, or ather actions
of intervicwee,

bl

® Giive him or her a date by which they will
receive informalion for review.

® Ask him or her for a date by which the review
should be complete.

c. If a follow-up interview is scheduled, confirm the
date and time.

A good interview has a beginning, middle, and
end. In the beginning, you introduce yourself and put
the intcrviewee at ease. Begin with general questions
that are inoffensive and not likely to evoke an emo-
tional response. Pay attention to answers both to get
cucs for other questions, and to get cues on the hon-
esty and attitude of the intervicwee. In the middle, be
businesslike and stick to the subject. Get all the in-
formation you came for, using the techniques you
chose in advance. If some interesting side informa-
tion emerges, ask if you can talk about it later and
then do that. In elosing, summarize what you have
heard and tell the interviewee what happens next.
You may write notes and ask him or her to review

them for accuracy. If you do notes, try (0 get them
back for review within 48 hours. Also, have the in-
terviewee commit to the review by a specific date to
aid in your lime planning. If you say you will fol-
low up with some activity, make sure you do.

Interviews use two types of questions; open-
cnded and closed-cnded. An open-ended question
is onc that asks for a multiscntence response. Open-
ended guestions are good for eliciting descriptions of
current and proposed application functions, and for
identifying feclings, opinions, and expectations
about a proposed application. They can also be used
to obtain anv lengthy or explanatory answers. An
example of open-ended guestion openings are: “Can
vou tell me about . . . or “What do you think about
...7or *Can you describe how you use . . .".

A closed-ended guestion is one which asks for
a yes/no o1 specific answer. Closed-ended questions
are good for eliciting factual information or forcing
people to take a position on a sensitive issue. An
cxample of a closed-ended question is: “Do you use
the monthly report?” A ‘yes’ responsc might be
followed by an open-ended question, “Can you ex-
plain how?”

The questions can be ordered in such a way that
the interview might be structured or unstructured
(see Table 4-4). A structured interview is one in
which the intervicwer has an agenda of items to
cover, specific questions to ask, and specific infor-
mation desired. A mix of open and closed questions
is used to elicit details of intercst. For instance, the
interview might start with “Describe the current
rental process.” The respondent would describe Lhe
process, most often using general terms, The inter-
viewer might then ask specific questions, such as,
“What is the daily volume of rentals?” Each struc-
tured interview is basically the same because the
same questions are asked in the same sequence. Tal-
Iving the responses is [airly easy because of the
structure.

An unstructured interview is one in which the
interview unfelds and is directed by responses of
the interviewee. The questions tend to be mostly
open-ended. There is no set agenda, so the inter-
viewer, who knows the information desired, uses the
responses from the open-ended questions to develop
ever morc specific questions about the topics. The

Data Collection Technigues 91

TABLE 4-4 Comparison of Structured and Unstructured Inierviews

Strengths

Structured

Unstructured

Uses uniform waording of questions for all
respondents

Easy 10 administer and evaluate

Mare objeclive evaluation of respondents
and answers to questions

Requires liltle training

Results in shorter interviews

Provides greater flexibility in question wording to suit
respondent

Can be difficult to conduct because inlerviewer must listen
carefully to develop questions about issues that arisc spon-
tancously from answers to questions

May surface otherwise overlooked information

Requires practice

Weaknesses

Structured

Unstructured

Cost of preparation can be high

Respondents do not always accept high level of
structure and its mechanical posing of questions

High level of strecture is not suited to all
situations

Reduces spontaneity and ability of interviewcr
to follow up on comments of interviewee

May waste respondent and interviewer time

Interviewer bias in questions or reporting of results is
is more likely
Extraneous information must be culled through

Analysis and interpretation of results may be lengthy

Takcs more time to collect essential facts

same questions used above as examples for the
structured interview might also be used in an un-
structured interview; the difference is that above,
they are determined as a ‘seript’ in advance. In an
unstructured situation, the questions flow from the
conversation,

Structured interviews are most useful when you
know the information desired in advance of the in-
terview {see Table 4-4). Conversely, unstructured in-
terviews are most useful when you cannot anticipate
the topics or specific outcome. A typical scrics of in-
lerviews with a user client begins with unstructured
interviews to give you an understanding of the prob-
lem domain. The interviews get progressively struc-

turcd and focused as the information you need to
complete the analysis also gets more specific.

User interview results should always be commu-
nicated hack to the interviewee in a short peried of
time. The interviewee should be given a deadline
for their review. If the person and/or information are
critical to the application design being correct, you
should ask for comments even after the deadline is
missed. If the person is not key in the development,
the deadline date signifies a period during which you
will accept changes, after the date you continue
work, assuming the information is correct.

It is good practice to develop diagram(s) as part
of the interview documentation. At the beginning of

92 CHAFTER 4 Data Gathering Application Developrment

the next interview session, you discuss the dia-
gram{s} with the user and give him or her any writ-
ten notes to verify at a later time. You get immediate
feedback on the accuracy of the graphic and your
understanding of the application. The benefits of this
approuch are both technical and psychological. From
a technical perspective, you are constantly verifying
what you have been told. By the time the analysis
is complete, both you and the client have confi-
dence that the depicted application processing is
correct and complete. From a psychological per-
spective, you increase user confidence in your ana-
lytical ability by demonstrating your problem
understanding, Each time you improve the diagram
and deepen the analysis, you also increasc user con-
fidence that you will build an application that
answers his or her need.

Interviews are useful for obtaining both qualita-
tive and quantitative information (see Table 4-2).
The types of qualitative infermation are opinions,
beliefs, attitudes, policies, and narrative descriptions.
The types of quantitative information include fre-
quencies, aumbers, and quantities of items to be
tracked or used in the application,

Interviews, and other forms of data collection,
can give you misleading, inaccurate, politically mo-
tivated, or irrelevant information (see Table 4-2).
You need to learn to read the person’s body language
and behavior to decide on further needs for the same
information. Table 4-5 lists respondent behaviors
you might see in an interview and the actions you
might take in dealing with the behavioss.

For instance, if you suspect the interviewee of
lying or ‘selectively remembering’ information, try
to cross-clieck the answers with other, more reliable
sources, If the interview information is found to be
false, ask the interviewee to please explain the dif-
ferences between his or her answers and the other
information. The session does not need to be a con-
frontation, rather, it is a simple request for explana-
tion. Be careful not to accuse or condemn, simply try
to get the correct information.

Persistence and triangulation are key to geiting
complete, accurate information. You are not required
to become ‘friends” with the application users,
but interviews are smoother, yield more informa-
tion for the time spent, and usually have less ‘game-

playing’ if you are *friendly’ than if you are viewed
as distant, overly-objective, or noninterested.

Meetings

Meetings are gatherings of three or more people for
a fixed period to discuss a small number of topics
and sometimes to reach consensus decisions. Meet-
ings can hoth complement and replace interviews.
They complement intervicws by allowing a group
verification of individual interview results. They can
replace interviews by providing a forum for users to
collectively work out the requitements and alterna-
tives for an application. Thus, meetings can be use-
ful for choosing between alternatives, verifying
findings, and for soliciting application ideas and
requirements.

Meetings can also be a colossal waste of time (sce
Table 4-2}, In general, the larger the meeting, the
fewer the decisions and the longer they tuke. There-
fore, before having a meeting, a meeting plan should
be developed. The agenda should be defined and cir-
culated in advance to all participants. The number
of topics should be kept to between one and five. The
meeting should be for a fixed period with specific
checkpoints for decisions required. In general, meet-
mgs should be ne longer than two hours to maintain
the attention of the participants. The agenda should
be followed and the meeting moved along by the
project manager or SE, whoever is running the meet-
ing. Minutes should he generated and circiilated to
summarize the discussion and decisions. Any
follow-up items should identify the responsible
person(s) and a date by which the item should
be resolved.

Meetings are useful for surfacing requirements,
reaching consensus, and obtaining both detailed and
summary information (see Table 4-2). If decisions
are desired, it is impostant to ask the decision makers
to attend and to tell them in advance of the goals
for the meeting. If the wrong people participate, time
is wasted and the decisions are nol made at the
meeting,

Joint application development (JAD) is a spe-
cial form of meeting in which users and technicians
meet continnously over several days to identify ap-
plication requirements (scc Figure 4-3). Beforc a

TABLE 4-5

Data Collection Techniques 93

Interviewee Behaviors and Interviewer Response

Interviewee Behavior

Interviewer Response

Guesses at answers rather Lhan admit ignorance

Tries (o tell inlerviewer what she or he wants 1o
hear rather than correct facts

Gives irrelevant information

Stops talking when the intervicwcer takes nates

Rushes through the interview

Wants no change because she or he likes the
current work environment

Shows resentment; withholds information or
answers guardedly

I not cooperative, refusing to give information

Gripcs about the job, pay, associates, supervisors,
ar trcatment

Acts like a techno-junkic, advocating state-ol-
the art everything

After the interview, cross-check answers

Avoid questions with implied answers. Cross-check
answers

Be persistent in bringing the discussion to the desired topic

Do not take notes at this interview. Write notcs as soon
as the interview is done. Ask only the most important
questions. Have more than one interview to get all
information.

Suggest coming back later

Encourage claboration of present work environment and
pood aspects. Usc the information to define what gets kept
from the current method.

Begin Lhe interview wilh personal chilchat on a lopic of
interest to the interviewee. After the person starts talking,
work into the interview.

Get the information elsewhere. Ask this person, “Would
you mind veritying what scmeone else tells me about this
topic?”

If the answer is no, do not use this person as an informa-
tion source,

Listen for clues, Be noncommittal in your comments. An
example might be, “You seem to have lots of problems
here;, maybe the application proposed might solve some of
the problems.” Try to move the intervicw to the desired
topic.

Listen for the information vou are looking for. Do not
become involved in a campaign for technology that does
not fit the needs of the application.

JAD session, users are trained in the technigues used
to document requirements, in particular, diagrams
for data and processes are taught. Then, in prepara-
tion for the JAD session, the users document thejr
own jobs using the techniques and collecting copies
of all forms, inputs, reports, memos, taxes, and so
forth used in performing their job.

A JAD session lasts from 3 to 8 days, and from
7 to 10 hours per day. The purpose of the sessions is
to get all the interested parties in one place, to de-

fine application requitements, and to accelerate the
process of development. Several studies show that
TAD can compress an analysis phase from three
months into about three weeks, with comparable
results. The advantage of such sessions is that users’
commitment is concentrated into the short period of
time. The disadvantage is that users might allow
interruptions to divert their attendance at JAD meet-
ings, thus not meeting the objective. JAD is dis-
cussed in more detail in the Introduction to Part II.

94 CHAPTER 4

Data Gathering Application Developrment

FIGURE 4-3 JAD Meeting

Observation

Observation is the manual or automated monitoring
of one or more persons” work, In manuwal observa-
tion, 3 person sits with the individual(s) being ob-
served and takes notes of the activities and steps
performed during the work (see Table 4-2). In auto-
maled observation, a computer keeps track of soft-
ware used, e-mail correspondence and partners, and
aclions performed using a computer. Computer log
files are then analyzed to describe the work process
based on the sofiware and procedures used.
Observation is useful for obtaining information
from users who cannot articulate what they do or
how they do it (see Table 4-2). In particular, for
cxpert systems, taking protocols of work is a use-
ful form of cbservation. A protocol is a detailed
minute-by-minule list of the actions performed by a
person. Videotaping is sometimes uscd for continu-

ous tracking. The notes or tapes are analyzed for
events, key verbal statements, or actions that indicate
reasoning, work procedure, or other information
about the work.

There are three disadvantages to observation (see
Tuble 4-2). First, the iime of chservalion might not
be representative of the activities that take place nor-
mally, so the SE might get a distorted view of the
work. Second, the idea that a person is being ob-
scrved might lead them to change their behavior.
This problem can be lessened somewhat by exten-
sive observation during which time the person be-
ing observed loses their sensitivity to being watched.
The last disadvaniage ol observalion is thal il can
be time-consuming and may not yield any grealer
understanding than could be got in less time-
consuming methods of data collection.

Advantages of observation are several. Little
opinion is injected into the SE’s view of the work.

The SE can gain a good understanding of the cur-
rent work environment and work procedures through
observation. The SE can focus on the issues of
importance to him or her, without alienating or dis-
turbing the individwal being observed, Some barriers
to working with the SEs that are needcd for inter-
views and validation of [indings might be overcome
through the contact of observation.

Some ground rules for observation arc nccessary
to prepare for the session. You should identify and
define what is going 1o be vbserved. Be specific
about the length of time the cobservation requircs.,
Obtain both management approval and approval of
the individual{s) to be observed before beginning,
Explain to the individuals being observed what is
being done with the information and why. Tt is
unethical to observe someone without their knowl-
cdge or to mislead an individual about what will be
done with the information gained during the obser-
vation session.

Temporary Job Assignment

There is no substitute for experience. With a tem-
porary job assignment, you get a more complete
appreciation for the tasks involved and the complex-
ity of each than vou ever could by simply talking
about them. Also, vou learn firsthand the tcrmino] -
ogy and the context of its use (see Table 4-2). The
purpose, then, of temporary job assignment is to
make the assignee more knowledgeable about the
problem domain. Temporary assignments usually
last two wecks to one month—long enough for vou
to become comfortable that most normal and excep-
tional situations have occurred, but not long encugh
to become truly expert at the joh.

Tempoerary assignment gives you a basis for
formulating questions about which functions of the
current methed of work should be kept and which
should be discarded or modified.

The disadvantage of work assignments are (hat it
is time-consuming and may not be a representative
period (see Table 4-2). The choice of period can
minimize this preblem. The other disadvantage is
that the SE taking the temporary assignment might
become biased about the work process, content, or
people in a way that affects future design work.

Data Collection Technigues 95

Questionnaire

A questionnaire is a paper-based or computer-based
form of interview. Questionnaires arc used to obtain
information from a large number of people. The
major advantage of a questionnaire is anonymity,
thus leading to more honesl answers than might be
got through interviews. Also, standardized questions
provide seliable data upon which decisions can
be based.

Questionnaire itcms, like interviews, can be ei-
ther open-ended or closed-ended. Recall that open-
ended questions have no specific response intended.
Open-ended questions arc less reliable for obtaining
complete information about factual information and
are subject to recall difficulties, selective perception,
and distortion by the person answering the question,
Since the interviewer neither knows the specific re-
spondent nor has contact with the respondent, open-
cnded questions that lead to other questions might go
unanswered. An example of an open-ended ques-
tion is: “List all new functions which you think the
ncw application should do.”

A closed-ended guestion is one which asks fora
yes/no or graded speeific answer. For example, “Do
you agree with the need for a history file?” would
obtain either a ves or no response.

Questionnaire construction is a learned skill that
requires consideration of the reliability and validity
of the instrument. Reliability is the extent to which
a questionnaire is free of measurement crrors. This
means that i[a reliable questionnaire were given to
the same group several times, the same answers
would be obtained. If a questionnaire is unrcliable,
repeated measurement would result in different
answers every time. Questionnaires that try to mea-
sure moad, satisfaction, and othcr emotional char-
ucteristics of the respondent tend to be unreliable
becausc they are influenced by how the person feels
that day. You improve reliability by testing the ques-
tionnaire. When the responses are tallied, statistical
techniques are used to verify the reliability of related
sets of questions.

Validity is the extent to which the guestionnaire
measures what you think yon arc measuring. For
instance, assume you want to know the extent to
which a CASE tool is being used in both [requency

96 CHAPTER 4 Data Gathering Application Developrent

of usc and number of functions used. Asking the
question, “How well do you use the CASE 1c0l?”
might obtain a subjective asscssment based on the
individual’s self-perception. If they perceive them-
selves as skilled, they might answer that they are
extensive users. [f thcy perceive themselves as
novices, they might answer that they do not use the
tool extensively. A better set of questions would be
“How often do you usc the CASE tool?” and “How
many functions of the tool do you use? Please list the
functions you use.” These questions specifically ask
for numbers which are objective and not tied to an
individual’s self-perception. The list of functions
verifics the numbers and provides the most specific
answer possible.

Some guidelines for developing questionnaires
are summarized in Table 4-6 and discussed here.
First, determine the information to be collecled,
what facts are required, and what feelings, lists of
items, or nonfactual information is desired. Group
the items by type of information obtained, type of
questions to be asked, or by topic area. Choose a
grouping that makes sense for the specific project.

For cach piece of information, choose the type of
question that best obtains the desired response. Se-
lect open-ended questions for general, lists, and non-
factual information. Select closed-ended questions to
elicit specific, factual information, or single answers.

Compose a question for each item. For a closed-
ended question, develop a response scale. The five-
response Likert-like scale is the most frequently
used. The low and high ends of the scalc indicate
the poles of responses, for instance, Totally Disagree
and Totally Agree. The middle response is usually
neutral, for instance, Neither Agree Nor Disagree.
Examine the question and ask yourself if it has any
words that might nol be intcrpreted as you mean
them. What happens if the respondent does not know
the answer to your question? Do you need a responsc
that says, f Don't Know? Is a preferred response hid-
den in the question? Are the response choices com-
plete and ordered properly? Does the question have
the same meaning for every department and possible
respondent? If the answers to any of these questions
indicate a problem, reword the question to Temove
the problem.

If you have several questions that ask similar
information, examine the possibility of eliminating

TABLE 4-6 Guidelines for Questionnaire
Development

1. Determine what facts are desired and which people
are best gualified to provide them.

2. For cach fact, sclect cither an open-ended or
close-ended quesiion. Wrile several questions and
choose the one ar two that most clearly ask for the
information.

3. Group questions by topic area, type of question, or
some context-specific criteria.

4, Examine the questionnaire for problems:

= More than two questions asking the same informa-
tion

m Ambiguous questions

® Qucstions for which respondents might not have
the answer

= (lucstions that hias the response

= Questions that are open to interpretation by job
function, level of organization, etc.

® Responses that are not comprehensive of all possi-
ble answers

= Confusing ordering of questions or responses

Lh

. Fix any problems identified above.

6. Test the questionnaire on a small group of people
{e.g., 5-10}. Ask for both comments on the questions
and answers to the questions.

7. Analyze the comments and fix wording ambiguities,
biases, word problems, ete. as identified by the
comments.

8. Analyze the responses to ensure that they are the
type desired.

9. If the information is different than you cxpected,
the questions might not be dircct enough and need
rewording. [f you don’t get vscful infermation that
vou don't already know, reexamine the need for
the questionnaire.

10. Make final edits, print in easy-to-read type. Prepare a
cover letter.

11. Distribute the questionnaire, addressing the cover

letter (o the person by name. Include specific instruc-

tions aboul returning the questicnnaire. Provide a

sclf-addressed, stamped envelope if mailing is

needed.

one or more items. If you are doing statistical analy-
sis of the answers, you might want similar questions
to see if the responses are alse similar (i.e., are cor-
related). If vou are simply tallying the responses and

acting on the information, try to use one guestion
for each piece of information needed. The minimal-
ist approach keeps the questionnaire shorter and eas-
ier to tally.

Pretest the questionnaire on a small group of rep-
resentative respondents. Ask them to give you feed-
back on all of the items that they don’t understand,
that they think are ambiguous, badly worded, or
have responscs that do not fit the item. Also ask them
to complete the questionnaire. The answers of this
group should highlight any unexpected responses
thal, whether the group identified a problem or not,
mean that the question was oot interpreted as in-
tended. If the pretest responses do not provide you
with new information needed to develop the project,
the questionnaire might not be needed or might not
ask the right questions. Reexamine the need for a
questionnaire and revise it as needed. Finally, change
the questionnaire based on the feedback from the test
group. The pretest and revision activitics increase
the validity of the questionnaire.

Provide a cover letter for the questionnaire that
briefly describes the purpose and type of information
sought, Give the respondent a deadline for complet-
ing the guestionnaire that is nol too distant. For
instance, three days is better than two weeks. The
more distant the due date, the less likely the gues-
tionnaire will be completed. Include information
about respondent confidentiality and voluntary ques-
tionnaire completion, it they are appropriate. Ideally,
the questionnaire is anonymous and voluntary. To
the cxtent possible, address the letter to the individ-
ual respondent.

GGive the respondent directions about returning
the completed guestionnaire, If mailing is required,
provide a stamped, self-addressed envelope, If
interoffice mail is used, provide your mail stop
address. If you will pick up responses, tell the person
where and when 10 have the questionnaire ready for
pickup.

Document Review

New applications rarcly spring from nothing. There
is almost always a current way of doing work that is
guided by policies, procedures, or application sys-
tems. Study of the documentation used to teach new
employees, to guide daily work, or to use an appli-

Data Cellection Techniques 97

cation can provide valuable insight into what work
is done.

The term documents refers to written policy
manuals, regulations, and standard operating proce-
dures that organizations provide as a guide for man-
agers and employees. Document types inciude those
that describe organization structure, goals, and work.
Examples of each document type follow:

Policies

Procedures

User manuals

Strategy and mission statements

Organization charts

Job descriptions

Performance standards

Delegation of authority

Charl of accouats

Budgets

Schedules

Forecasts

Any long- or short-range plans

Memos

Meeting minutes

Employec training documents

Employce manuals

Transaction files, ¢.g., time sheels, expense
records

Legal documents, e.g., copyrights, patents,
trademarks, etc.

Historical reports

Financial statcments

Reflerence files, e.g., customers, employees,
products, vendors

Documents are not always internal 1o a company.
External documents that might be useful include
technical publications, research reports, public sur-
veys, and regulatory information. Examples of ex-
ternal documents follow:

Rescarch reports on industry trends, technology
trends, technological advances, etc.

Profcssional publications with sulary surveys,
marketing surveys, or product development
information

IRS or American [nstitute of CPA reports on
taxes, workmen’s compensation, affirmative
action, financial reporting, etc.

98 CHAPTER 4 Data Gatheting Application Developrnent

Economic trends by industry, region, country,
elc.

Government stability analyses for developing
countries in which the application might
be placed

Any publications that might influence the
goals, objectives, policies, or work
procedures relating to the appli-
cation

Documentation is particularly useful for SEs to
Iearn about an area with which they have no previ-
ous experience. It can be useful for identifying issues
or questions about work processes or work products
for which users nced a history. Documents provide
objective information that usuzally does not discuss
uscr perceptions, feelings, or motivations for work
actions.

Documents are less useful for identifying atii-
tudes or motivations. These topics might be impor-
tant issues, but documents may not contain the
desired information.

Software Review

Frequentiy, applications are replacing older software
that supports the work of user departments. Study
of the existing softwarc provides you with informa-
tion about the current work procedures and the
extent to which they are constrained by the software
design. This, in turn, gives you information about
questions to raise with the users, for instance, how
much do they want work constrained by the appli-
cation? If they could remove the constraints, how
would they do the work?

The weaknesses of getting information from soft-
ware revicw are that documentation might not be
accurale o1 current, code might not be readable, and
the time might be wasted if the application is being
discarded.

To summarizc, the methods of collecting infor-
mation relating to applications include interviews,
group meetings, chservation, questionnaires, tempo-
rary job assignment, document review, or soflware
review. For ebtaining information relating to re-
quircments for applications, interviews and JAD
meetings are the most common,

DATA COLLECTION
AND APPLICATION
TYPE

In this section, we identify the data gathering tech-
niques most useful for each application type. Like
mosl aspects of application development, the tech-
nigues can be used for all application types, but
because of their strengths and weaknesses, they do
not always result in the type of information that is
necded most. [n this section, we first match data col-
lection techniques to the data types discussed in the
first section. Then, the data types are matched to
application types (from Chapter 1), Next, we match
the data collection techniques to application types
based on the data types they have in common.

Data Collection Technique
and Data Type

Table 4-7 summarizes the discussion of the above
sections. By matching technique for data collection
10 data type, we are more likely to identify informa-
tion of interest than using other techniques. As the
tablc shows, interviews and meetings are useful for
eliciting all types of information. This is the reason
they are most frequently used in application work.

Observation provides only crude numerical esti-
mates of volumes, and is restricted to current time,
varying ambiguity, and possibly variable semantics
(see Table 4-7). Recause the information from an
observation is unstructured, some skill is required
of the SE to impose a siructure on it that fits the sit-
uation. Alse, the information may be incomplete.

Questionnaires can ask structured questions about
any lime frame but only obtain complete answers for
questions asked (see Table 4-7). If the questions are
open-ended, the completeness might be quite low.
Ambiguity in questionnaires should be low, but the
question semantics might be misinterpreted by the
respondents. Questions about volume at a depart-
ment or organization level are usually inappropri-
ate. Information about the volume of transactions or
time for transaction processing for individual work-
ers would get meaningful information.

Data Collection and Application Type 2’4

TABLE 4-7 Data Collection Techniques and Data Type

Technique Time Structure Completeness Ambiguity Semantics Volume
Intervicw All Al All All Varies All
Meeting All All All All Varies All
Observation Current Unslrucl. Incomplete Mauy vary Varies Crude
measure
Questionnaire All Structured Complete for Low Fixed but might Individual
questions asked be subject to volumes
interpretation only
‘Temporary job Current Unstruet. Incomplete Low-med. Varics For period
assignrment of obser-
vation but
may not
be represen-
tative
Internal Past- Unstruct. Incomplete Low-med. Varies Maybe
documents current
External Maostly Unstruet. Incomplete Low-med. Relatively N/A
documcnts currcnt- fixed
future
Software Pasi- Structured Complete for Low-med. Fixed Maybe
Teview current software

Temporary job assignments are similar to obser-
vation in having a high degree of uncertainty asso-
ciated with the information obtained (sec Table 4-7).
The information tends to be current, unstructured,
and incomplete depending on the period of work.
Ambiguity varies from low to medium depending
on how well-defined and structured the work is.
Scmantic conlent might vary depending on the
shared definitions in the work group.

Documents provide unstructured, incomplete
informations from which ne relevant volume infor-
mation is likely. The time cnientation differs whether
the documents are infernal or external to the com-
pany (see Tabic 4-7). Internal documents are mostly
oriented to the past or current situation. External
documents are mostly oriented to currcnt or futurc
topics, The semantics of cxternal documents on ma-
ture technologies or topics tend to be relatively fixed
while that of internal documents might vary by
department or division.

Software provides past, and possibly cur-
rent, information that is structured because it is
auwtomated. The ambiguity should be low to me-
dium, and semantics should be fixed since the
application imbeds definitions of data and pro-
cesses in code. Information on velumes may be
present but should be cross-checked using other
methods,

Data Type and
Application Type

Application lypes are transaction processing (TPS),
yuery, decision support (DSS), group decision sup-
port (GDSS), executive information (EIS), and ex-
pert systems (ES). Each of these has one or more
predominate dutatype characteristics that identifies
its application. Table 4-8 shows all applications
catcgorized for all data types. Here we discuss only

100

TABLE 4-8 Data Type by Application Type

CHAPTER 4 Data Gathering Applicaticn Development

Technique Time Structure Completeness Ambiguity Semantics Volume
TPS Current Structured Complete Low Fixed Any
Query Past, Structured Complete Low Tixed Any
current
DSS All Structured Varies Low-med. Varies Med.-high
GDSS Current- Unstruct. Incomplete Med -high Varies Low
future
EIS Future Unstruct. Incomplete Med.-high Varies Low-med.
Expert system Current Semi- Incomplete Med.-high May vary Low
based on structured
past

the data types that differentiate between application
types.

TPS contain predeminantly known, current,
siructured, complete information (see Table 4-8).
Recall that TPS are the operational applications of a
cempany. To control and maintain records of cur-
rent operations, you must have known, structured,
current, and complete information.

Query applications have similar characteristics
to TPS with the difference that they might concen-
trate on historical information in addition to current
information (see Table 4-8). Querics are questions
posed of data to find problems and solutions, and
io analyze, suminarize, and report on data. To per-
form summaries and reports with confidence, the
data must be structured, complete, and interpreted
consistently being both unambigucus and of fixed
semantics.

DSS are statistical analysis 1ools that allow
development of information that aids the decision
process. The type of data that identifies DSS so
that all time frames might be represented, may
be incomplete, ambiguous, have variable semantics
and medium to high volume (scc Table 4-8), DSS
might be used, for instance, in analyzing which of
two variations on a given product might enjoy
the larger market share. To do this analysis, past
sales, current sales, and sales trends in the industry

might all be analyzed and tied together to develop
an answer,

GDSS are meeting facilitation tools for groups
of people. GD3S tools operate in a structured man-
ner working on data that is unstructured, current, and
future-oriented. GDSS mostly deal with data that is
incomplete und contains semantic and other ambigu-
itics (see Table 4-8). The wols themselves are com-
plete, unambiguous, and so forth, but the megting
information they process is not.

EIS are futurc-oriented applications that allow
executives to scan the envirenment and identify
trends, economic changes, or other industry activity
thar affect their governance of a company. EI% deal
mostly with ‘messy’ data that is vnstructurcd,
incomplete, ambiguous, and c¢ontains variable
semantics (see Table 4-8). Interpretation is always a
problem with such data, which is why executives
who excel at reading the environment are highly
compensated.

Last, expert systems manage and reason through
semistructured, incomplete, ambiguous, and variable
semantic data (sce Table 4-8). Experts und ESs take
random, unstructured information and impose a
structure on it. They reason through how to inter-
pret the data to remove ambiguity and to fix the
semantics. Thercfore, even though the data coming
into the application might have these fuzzy char-

Cata Collection and Application Type 101

TABLE 4-9 Data Collection Technique and Application Type

TPS Query DSS GDSS EIS ES
Interview X+ X X X X X
Mceting X X X X X X
QObservation X X Limited Limited X
Queslionnaire X X X
Temporary job
assignment X X X
Internal documents X X X Limited
External documents X X X X X X
Software revicw X X X Limited Limited Limited

*Roldface identifies most frequently used method.

actcristics, the data processing is actually highly
structured.

Data Collection Technique
and Application Type

Finally, in discussing different data types, we desire
to know which data collcetion techniques are best
for each application type. By combining the infor-
mation in Tables 4-7 and 4-8, we develop Table
4-9 to summarize data collection techniques for each
application type. The table entry in boldface shows
the principle method of data coliection fer each
technique.

TPS and query applications can profit from
the use of all techniques. Meetings and interviews
predominate because they elicit the broadest range
of responses in the shortest time (scc Table 4-9).
Observation and temporary job assignment are
particularly useful in obtaining background informa-
tion about the current problem domain, but need to
be used with caution so as not to prejudice the design
of the application. Questionnaires are useful when
the number of people to be interviewed is over 50.
Also, questionnaires are useful in identifying
characteristics of users that determine, for instance,
training required of users during organizational fea-

sibility analysis. Also, if the screen requires, for
instance, colors or different types of screen arrange-
ments, questionnaires might be wseful for present-
ing a small set of alternatives from which the actual
users choose.

DSS also are shown as having a use for all data
collection techniques, but not all techniques are
practical in all cases (see Table 4-9). DSS are gen-
erally developed for use by people in jobs with a sig-
nificant amount of discretion in what they do and
how they do it. Therefore, chserving or working
with one or two people as representative may result
in a biased view of the application requirements for
a gencral purpose DSS. Even for a custom DSS,
observation and job assignments might both be
impractical if the SE does not know enough about
the job being supported {o interpret what she or he
observes. The same holds true of documents. Docu-
ments, such as statistical reports, might be useful
for providing samples of the types of analyses
desired in a DSS. Other documents, such as poli-
cies, procedures, and so on, are not likely to be rele-
vant to the application. For general purpose DSS
with a large number of users, questionnaires are a
uscful way to identify the range of problems and
analysis techniques required in the DSS. This infor-
mation might be followed by interviews or meetings
to determine DSS details.

102

GDSS are usually costom-built suites of software
packages that provide different types of support for
automated meetings. As such, the SE working on a
GDSS environment needs to know the types of
issues, number of parlicipants, as well as types of
reasoning and group conscnsus techniques desired.
GDSS components are neither common knowledge
nor frequently used; you might build one GDSS in
a career. Therefore, significant time would be spent
finding out about the marker,vendars, and GDSS
componcnts. External documents on vendor prod-
ucts are useful in developing questions that elicit the
required information. After knowledge of the market
is obtaincd, interviews and meetings are useful to
determine the specitic requirements and to review,
with users, what the GDSS can and cannol do. Gther
mctheds might have some limited value. Tor in-
stance, observation of an actual meeting that might
be automated would be useful for the SE to gain
insight about how a ool might work. Internal docu-
ments that provide information about meetings that
the GDSS is expected to provide would also be
uscful. Both of these technigues, observation and
document review, have a specific limited roie in pro-
viding the information needed to build a GDSS. Any
softwarc revicw that is done would be review of
other company’s GDSS facililies or of vendor prod-
ucts, rather than review of in-house software.

EIS ar¢ similar to GDSS in the rarity and gencral
lack of knowledge about what an ELS is. EIS are not
standard applications with a screen for data catry of
some type and reports that are displayed. EIS are
information presentation [acilitics thal can be struc-
tored with menus and selection tools, but may dis-
play document pagces, newspaper arlicles, book
abstracts, summary reports, and 30 on. EIS are usu-
ally built for a small number of users, which elimi-
nates the use of questionnaircs, EIS arc custom and
one-of-a-kind environments for which past docu-
ments or softwarc will be of limited value. Obscr-
vation is most likely limiled because executives
would be uncomfortable in being observed. Tempo-
rary job assignment is not possible because you can-
not just *be an executive’ for a week or two. This
leaves external documents, interviews, and meetings
as the most likely techniques for data collection (see
Table 4-9). As with GDSS, external documents will

CHAPTER 4 Data Gathering Application Development

he mostly to identity the market, vendors, and prod-
ucts. Intervicws arc most likely 1o be used to deter-
minc cxccutives’ information nceds and preferred
delivery platforms,

Finally, SEs use intervicws, observation, and
external documents the most in developing expert
systems (see Table 4-9), Experts frequently can talk
about external aspects of their jobs, the physical cues
they use as inpuls, and the result of their reasoning
and how it is applied to the business. They are just as
frequently unable to discuss their reasoring pro-
cesses and how they pul the cues together to make
sense of unstructured situations, Experts, by defini-
tion of the term expert, have so internalized their
work that they just do it. Thev don’t think con-
sciously aboul Aow they are doing what they do.
Therefore, observation, in particular, the use of pro-
tocol analysis, is useful in getting information the
expert might not be able to articulutc. Protocol
analysis is time-consuming and indefinite because
you, the SE, are inferring & reasoning process from
actions takcn. At best, the protocol analysis gives
you questions to ask about the work that assist the
experts in discussing aspects ol work they ordinar-
ily cannot. Thus, obscrvation is interleaved with in-
terviews to discuss what is observed. As the process
conlinues, structure is imposed on both the data znd
the preblems to begin to develop the ES. The process
of obtaining an expert’s reasoning processes is called
knowledge elicitation. The process of structuring
the unstructured data and reasoning information is
called knowledge engineering. Knowledge engi-
neering is an activity that is ditficult to lcarn and re-
quires training through an apprenticeship approach
in which the traines works with an experl knowledge
cngineer.

PROFESSIONALISM
AND ETHICS

A profession is defined as a job requiring advanced
training. Computcr information systems devclop-
ment and any job dealing with information tech-
nologies qualify as professions. Professionalism is
acting in accordance with the highest expectations of
4 professional group, Those expectations are codi-

fied in professional codes of cthics for varicus orga-
nizations. The organizations relating mosl closely
to IS professions are the Association of Computing
Machinery (ACM) and Data Processing Manage-
ment Association (DPMA). Both organizations have
ethical conduct codes and the codes are similar. The
most widely publicized code for the Association for
Computing Machinery [190], follows:

1. 'The developer shall act with integrity at all

times,

a. The developer shall qualify an opinion out-
side his or her area of competencc.

b. The developer shall not falsify his or her
qualifications.

¢. The developer shall not knowingly issue false
statements about the present or expected sta-
tus of a systern.

d. The developer shall not misuse confidential
or proprietary information,

¢. The developer will remain sensitive to and
will reveal potential conflicts of interest.

The developer should consiantly strive lo in-

crease his or her competence in the profession.

a. A devcloper will diligently attempt to de-
velop systems that perform their intended
functions and satisfy the organization’s
nceds.

b. A developer will help his or her collcagues
develop professionally.

3. A developer shall accept only assignments for
which there is reasonable expectation of meeting
the goals of the system.

4. A developer should use his or her special knowl-
edge to advance the health, privacy, and general
welfare of the public and society.

a. A developer should always consider the indi-
vidual’s right to privacy when working with
data.

b. A developer should refrain from participating
in a project in which he or she feels there will
be undesirable consequences for mdividuals,
organization, or society as a whole.

&)

If you read the ACM Code of Ethics carcfully,
note that it contains cthical topics and professional-
ism topics. To separate out what is professional con-
duct [rom what is ethical conduct, we first define

Professionalism and Ethics 103

ethics terms and relate ethics to IS professions. Anv-
thing that is unethical is also unprofessional, but the
rcverse Is not true. Professionalism is a broader sub-
ject than ethical behavior. In fact, the early name for
codes of ethics was ‘codes of professional behavior.”
Ethics is in the section on data collection because
many of the issues are concerned with user relations
and arc most evident in data collection activities.

So, what is ethics? Ethics is the branch of phi-
losophy that studies moral judgment and reasoning,.
A dilemma is any situation requiring a choice
between two unpleasant alternatives. Therefore, an
ethical dilemma is uny situation in which a decision
results in unpleasant consequences requiring moral
reasoning. The addition of information technologies
to organizations presents novel, little vnderstood
opportunities for unethical behavior that arc rarely
discussed in texis,

Fthics is an issue of growing interest as it relates
to information technologies. You, as users and
developers of ITs, are sometimes in particular cir-
cumstances that subject you to dilemmas that need to
be reasoned through to reach an ethical decision.
One problem with ethics is that it is misunderstood
as religious upbringing and the application of reli-
gious thought to real life situations. In fact, that is
incorrect. Ethical decisions and reasoning are based
on philosophics of rights, equity, and utility, that is,
the greatest good for the greatest number of people.
Ethics requires evaluation of alternatives, requiring
only belief in the equality and dignity of man. Next,
we discuss ethics as it relates to ditferent aspects of
data collection and user interactions in application
development. Then, a procedure for reasoning that is
likely to lead to ethical decisions is presented for
your vse.

Ethical Project Behavior
Confidentiality

Always be trustworthy of information told in confi-
dence. In fact, assume that any interview informa-
tion is in confidence, unless the person being
interviewed is specifically told that it is ‘on the
record.” Besides being unethical, telling ‘tales out
ol school” will eventually return to hurt your career.

104 CHAPTER 4 Data Gathering Application Development

If you think some information gained in privacy
should be shared, ask if the interviewee minds if you
discuss it. With permission, the bounds of confiden-
tiality are removed and you are free to discuss the
information.

The exception to this rule occurs when a person
confides in you about an illegal act. You are legally
bound to report any illegal activity to the managers,
company authorities, and police, if no action is
taken. By law, if you do not report illegal acts, yon
are an accessory to the act and arc aiso libel to
legal action.

Privacy

Experts have a right to know when their experience
and knowledge are being used in an application. The
basic rule is treat others as you would like Lo be
treated. Would you like it if the company observed
your use of computers and built systems based on
it? Especially in building expert systems there are
ethical issucs about ownership of expertise. There
should be no observation, in person or by computer,
without permission. No one should be coerced into
cooperation. Participation should be voluntary.

Ownership

Computers are now so much a part of corporale lifc
that we tend to get confused about who owns the
resources, On an inlellectual level, most people rec-
ognize that the company thal owns the computers
also owns the computer time. But, in a given situa-
tion, most people feel that if the resource is not used
it is wasled, and that computer time is like the ether,
a free resource that is there for the taking. Most
executives do not feel the same way, whether or not
there is a policy about computer resource use.

Find out, in advance, the company policy or
owner feelings about personal use of computing
resources, then follow their guidance. Actions like
running a program for a friend, doing personal fi-
nances, keeping track of the baseball teamn, and so on
may or may not be ethical, depending on how the
company feels about the use of its resources.

Who owns woerk and work-related products
should be spelled out in detail so that if you feel

something is rightfully yours, so does the client/
company and you can feel cthical about taking it. For
instance, technical, user, or operational documenta-
tion, screen designs, data dictionary, program code,
vendor literature, or other products that you develop
or gather in the course of development are all subject
to ownership confusion. If you work for a consulting
company and develop a proprietary application, like
ABC’s rental system, you have no right to sell the
processing to ather companies. This right is nego-
tiable and belongs only to the client unless that right
is specifically itemized in the contract. Be clear
about ownership and you are less likely Lo be fired or
sued over owncrship rights,

The expertise that you gain from working on a
project is intellectual property. Expertise is yours
uniess you sign a contract to the contrary. However,
it is unethical to use your company-specific knowl-
edge for personal, noncompetitor, or competitor
financial gain unless you have an agreement with
vour empioyer about such use. Usually employers
ask that you not divulge proprietary information, but
the definition of proprietary may be open to inter-
pretation. Also, employers can bar you from using
information for one to two years if they can prove
that it might hurt their business. The best course of
action is to get such issues in the open and decided in
advance so no conflict occurs.

Politics

Try to never be mixed up in a political battle. This
is easier than it sounds, especially if you are the SE
or project manager. Politics is the science of man-
agcment often driven by personal motivation. In
organizations, most people have the company’s
interest in mind when they make decisions; everyone
1s also assumed to at Icast consider their personal sit-
uation in decisions, as well. Some people put per-
sonal improvement ahead of all other considerations,
even to the detriment of the company. Extreme self-
ish motivation without regard to the outcome for
others or the company is unethical.

In a political battle, the politician(s) try to ma-
nipulate the project resuits to improve their position
in the company, Political maneuvering might take

different forms: stalling, lying, artificial require-
menis, false cooperation, or different public and pri-
vate statements. You, as the SE or PM, must become
sensitive to such actions and learn how to diffuse
them. The tactics are manifested in the discussion
of interviewee actions and interviewer reactions in
Table 4-5.

Courtesy

It is not necessary to tell every project problem to the
user. You are ethically bound to discuss problems
that might impact schedule, budget, or accuracy.
When to tell a user about problems requires common
sense. You should tell them carly cnough to warn
them that the problem is coming, and late enough not
to have been a whistleblower for nothing, Never wait
until the last minute when nothing can be done to
fix the problem, or all project participants lose cred-
ibility. Always solicit user assistance in problem res-
olution once they are told. The purpose of weekly
status meetings is to provide stalus and identify
problems and their anticipated resolution. These
problems always foreshadow schedule and budget
problems when they remain outstanding for 2 long
period. A problem outstanding several months with
no solution in sight wiil probably impact the sched-
ulc and budget. In keeping the user up-te-date on
technical problems you indirectly apprise them of
potential cost and budget overruans.

Personal Manner and Responsibility

When people work on a project with others, they
sometimes lose sight of their contribution as stand-
ing on its own for quality review. Somehow the
notions of “on time, within budget, and accurate’
have medning to the project but not to the individ-
ual who is coding and testing a module. One rokc of
the PM and SEs is to instill the sense of responsibil-
ity in every person. Each person should know their
tasks, budget, expected resource use, and due date,
Each person should be held accountable for meet-
ing their deadlines and for having no errors in the
code. Accountability is easy to displace in project
work; who is responsible becomes ditffuse. Some

Professionalisrn and Ethics 105

people say the project manager is always account-
able. Some say the analysts and SEs. Some say no
one. The short answer is that everyone is responsi-
blc for and should be made accountable for his own
work and its integration into the project whole.

Do not talk to your manager, client, or your
employees about work problems that do not relate
Lo project completion. This is just good business.
Managers and clients want answers and solutions,
not problems. Therefore, they should be informed
of status and problems that might someday affect
them, but should otherwise be left alone. A manager
doesn’t want to know how Suzie in the typing pool
or Carl in the copy room butchered your work. You
deal with it and forget it. If you have a problem with
the quality of someone’s work who does not report
te you, mention it to that person, and if unresolved,
talk to their manager. The less accusatory and more
factual you can be, the less fike a whiner and com-
plainer you appear. Be sure you can back up any
accusations you make,

Do not tell the client or your manager about your
personal problems unless you have a personal rela-
tionship. Personal problems can always be blamed
far everything that goes wrong, but that is neither
adult nor ethical. Henry Ford’s famous quote,
“Never complain, never explain,” comes to mind
here. Your job at work is to work, so just do it.

Do not get emotionally involved with the user. If
there is a budding relationship, it can wait until the
project is complete. Emotional involvements are
easy to fall into when you are together 10 to 15 hours
a day for months at a time. They also are prone to
collapse as soon as a new project begins and you and
they both work with others 10 to 15 hours a day.
Emotional attachments cloud judgment and do not
belong in the office.

Never intentionally misiead. Never lie. Never
give false impressions, false perceptions, or any
information thal might cause users to infer a better,
bigger, more functional application than you plan to
deliver, Uscrs will form their opinions based on what
you and their managers iell them. Don’t oversell the
application and what it can do for their job. Also, ifa
downsizing is taking place at the same time, don’t
falsely give people hope that their jobs will be saved

106 CHAPTER4 Data Gathering Application Development

when they might not. You don’t raise alarms, but you
don’t give false hope either.

Ethical Reasoning

When you feel you are confronted with a problem
that requires ethical reasoning, vou need some way
to identify all potential stakcholders, to evaluate the
alternative courses of action, and to reason through
the alternatives. Onc such method is presented here
ds a way 1o initiate reflection on your own thinking
about the way you reason through tough problems.
This is certainly not the only method of problem
Teasoning.

Identify Stakeholders

First, identify who might benefit or suffer from your
decision. This action identifies stakeholders. people
who have a stake in the outcome of your action. This
is a difficull lask, especially with computer usc when
you might not know the stakeholders personally.
Stakehelders might be stockholders of a company,
the company itself, your boss, you, the user com-
munity, the uset/client for the applicalion, society, or
people subject Lo direct or indirect connection to the
application. For instance, space shuttle astronauts,
patients in a hospital, people whe live near the plant
in which the application will run, e-mail recipients,
report users, governments, data entry clerks and their
managers, all might be stakeholders.

Identify Actions Stakeholders
Would Choose

Then, identify the action each stakcholder would
prefer you to take and why. This task defines all pos-
sible actions. Begin with yoursel{. What do vou want
to do? Why do vou think this is the best decision?
Answer these questions from the perspective of each
stakeholder group. Putting yoursc!f in each stake-
holder group’s position requires objectivity and dis-
tance [rom the problem.

Eliminate Alternatives

Next, determine if there are any policies, procedures,
laws, or other guidelines that make one or maore

alternatives untenable. Cross them off the list. Once
a type of conduct crosses over into governance by
laws, it is no longer an ethical issue, but becomes a
legal one. Always obey the laws of the country you
are in and the country vou rcpresent. For instance,
bribery is a way of life in many countries, but not in
the United States. Thercfore, you are legally bound
not to use bribery in business when you work for an
American firm.

Policics and procedures of companies are similar
in codifying conduct, but do not hold the same strin-
gency of penalty for their transgression. Violation
of policics is usually a fireable offense, meaning you
lose your job when vou violate a policy. Procedures
are less stringent, but are expected (o be followed.
You might receive a letter of reprimand for not fol-
lowing a procedure exactly.

Guidelines, such as the professional code of
ethics listed above, also provide heuristics about
conduct to help you in governing vour work behav-
ior. There is no direct penalty in not following a code
of ethics. You might be sued or fired, but the pun-
ishment is not from the professional organization.

Rcason Through Negative
Outcome Alternatives

For the possible courses of action remaining on your
list, reason through each by asking key negative
questions. If the answer to any of these negative out-
come questions is yes, remove the alternative action
[rom the list.

Are the rights of any person or group violated by
this action? Censider the right to privacy, ownership
of information about individuals’ buying habits, pay-
ment habits, income, tax status, and 5o on. Consider
the rights to company privacy of customer, financial,
personnel, medical, and other proprietary informa-
tion. Ask if the lack of sccurity and access controls,
for instance, subject the database to casual brows-
ing by system uscrs. If such browsing could result
in a violation of privacy to customers, it should be
prevented.

Does taking this action result in incquitable treat-
ment of a person or group? Equitable trcatment
requires judgment of equality. In multinational com-
panies, inequity might be scen as a business deci-

sion. For instance, many US corporations initially
got into internaticnal business by dumping their sec-
ond rate quality goods in other markcets. Was this
ethical? The answer is in the manner in which it was
dome. If the goods were sold as second quality, there
is no issoe. If the goods were sold as first quality,
the companies basically licd and were unethical.

Companies might be subject to inequity because
of their internal staff quality, too. Does the company
lose money because of the inefficiency of design? A
manager, for instance, might insist on using a par-
ticular software because he knows it, cven though it
is not efficient for the task. The manager is making
a trade-off of current knowledge versus cost and
time for learning a new product, that can cross the
line into unethical behavior when it costs the com-
pany tangible amounts of money. Using mainframes
which rent for millions instcad of nctworks that cost
thousands could be construed as unethical when net-
works arc not even considered because of a lack of
expcertise. In other words, making a business deci-
sion to stay with a significantly more expensive
aliernative after considering all alternatives, is ethi-
cal. Avoiding a4 comparison of alternatives or mak-
ing a decision because of lechnical ignorance is
not ethical.

Does taking this action have the potential of plac-
ing a person or company in jeepardy financially,
physically, legally, or morally? Hospital applications
thal hook patients to computerized monitors, trans-
portation industry applicalions that affect safety of
planes and cars, power plant applications that deal
with monitoring power-generation equipment, and
so forth, arc all potentially life-threatening. We need
such applications, but their design and mainlenance
must be of the highest possible quality to pose the
least risk to human life. If corners are cut on analy-
sis, design, or testing, lives can be lost.

Reason Through Neutral and
Positive Outcome Alternatives

For remaining actions, ask key positive outcome
guestions to select the best alternative. Does taking
this action result in the best possible outcome for all
stukeholders? What is the result of taking no action?

Summary 107

If only negative outcomes are possible, does tak-
ing this action result in the least harm to all stake-
holders? If this is the case, who sufters and what type
of injury? If the stakeholder is warned in advance,
can the problem be averted?

Selcct a Coursc of Action

When all the pros and cons of cach alternative have
been identified, select the alternative that produces
the greatest good for the greatesi number of people,
that does not violate anyonc’s rights, and that results
in the most equitable decision, with all stakehold-
crs’ equity considered,

SUMMARY

Data gathering is done during every phase of appli-
cation development, but serves different purposes
in each phase. The types of data collected depends
on the type application and phasc of development,

Data types refer to the characteristics of data for
time-orienlation, structure, completeness, ambiguity,
semantics, and volume. Attention to data types in
selection of data collection technique is less likely to
cause errors and more likely to find errors than inat-
tention to data type. The cost of errors rises dramat-
icaily the later in the development process it is
found. Time orientation of data refers to past, pres-
cnt, or future data requirements for an application.
Data structure refers to the extent to which data can
be classified. Data compleleness is the extent to
which desired information is present. Ambiguous
data have unclear or multiple meanings; companics
strive for unambiguous definitions [or data. Data
scmantics arc the meanings, we as organization
employees, give to data. Volume is the numbers of
cach item of interest in an application. Volumes can
have widcly varying time orientations. SEs must
attend to peak as well as average volume.

Several data collection techniques were dis-
cusscd, imcluding interviews, group meetings,
questionnaires, observation, femporary job assign-
ment, review of internal and external documents,
and review of software. Interviews are mectings
between two or three people for obtaining any type

108 CHAPTER4 Data Gathering Application Development

of information. Interviews can be structured or
unstructured. Questions asked can be open-ended or
closed-ended.

Group meetings include four or more people
and can substitutc for interviews or can be used to
validate interview findings. Joint application devel-
opment meetings are a special type of meeting
specifically convened to develop application re-
quirements. Special training and planning are
required for JAD sessions. Both intcrviews and
meetings require attention to an agenda and time
period.

Observation is the monitoring of one or more per-
sons’ work. Observation is useful for learning a
problem demain and is most often used in expert
system development. A data analysis technique
called protocol analysis is used to infer the reasoning
processes of experts from detailed manuscripts of
their actions during a period.

Temporary job assignment is an alternative
means of gaining problem domain experience
for nonmanagerial, nonexecutlive jobs. Question-
naires are structured forms of interviews conducted
on many pecple, usually more than 50. Statistical
techniques are frequently used in analyzing ques-
tionnaire results. Reliability and validity of the ques-
tions are issues to be considered in questionnaire
development.

Document review is useful in gaining background
information about an application area. Dacuments
can be internal or external to the company.

Software review is the analysis of programs and
documentation {o learn the details of a curremt
application.

In developing the information about data collec-
tion technique related to application type, we also re-
lated data collection technique to data type and data
type to application type. From these analyses, we
find that interviews and meetings are most fre-
quently used because they are the only techniques
useful regardless of application type. The other tech-
niques have specific purposes for each application
type. For instance, software review for TPS, tempo-
rary job assignment, or observation are useful in
gaining problem domain experience. Observation is
most useful in expert system development. External

documents are important in unigue GDSS and FIS
development. Questionnaires are most uscful in DSS
for general use in 4 company, for surveying user
preferences for design options, or for obtaining
detailed information about the application from a
large number of people.

KEY TERMS

closed-ended question

data ambiguity

data completeness

data semantics

data structure

data time-orientation

data volume

dilemma

document

ethical dilemma

ethics

intellectual property

interview

juint gpplication
development (JAD)

knowledge elicitation

knowledge engineering

REFERENCES

meetings
observation
open-ended question
peak volume
poditics

profession
professionalism
protocod
qucstionnaire
relizbility

semantics
stakeholder
structured interview
triangnlation
unstructured interview
validity

Fluzlen, Per O., Denald 1. McCubbrey, P. Declan
O’Riordan, and Keilh Burgess, Foundations of Busi-
ness Systems, 2nd ed. Fort Worth, TX: Dryden Press,

1992,

Gause, Donald C., and Gerald M. Weinberg, Exploring
Requirements Quality Before Design. NY: Dorsct
House Publishing, Inc., 1989.

Lucas, Henry C., Jr., The Analvsis, Design, and Imple-
mentation of Information Systems, 4th ed. NY:

McGraw-Hill, Inc., 1992,

Mockler, Robert J., and Dorothy G. Dologite,
Knowledge-based Systems: An Infroduction io Expert
Systerms. NY: Macmillan Publishing Co., 1992,

Zahedi, Fatemabh, fntelligent Systems for Business:
Expert Systems with Neural Networks. Belmont, CA:
Wadsworth Publishing, 1993,

EXERCISES

1. Ethics is far from a scitled issue, especially as it
relates to use of information technologies. One
issue, for instance, is that development of artifi-
cially intelligent applications might be unethical
because we do not know how they will turn out.
That means, we cannot predict if a person or
company will get hurt. Debate this issue and
develop conclusions [or your class. Summarize
the debaie and send it to a trade magazine such
as Communications of ACM, Computerworld, or
Datamation.

2. For ABC Video, play the roles of Vic, Mary, and
Sam, Either write or playact an intervicw to
elicit requirements for the proposed rental appli-
cation. Mix the nse of open and closed questions
to follow a chain of logic.

3. Develop a questionnaire that might be used with
the user community of the Office Information
Systern case in the Appendix.

STUDY QUESTIONS

1. Define the following terms:
ambiguity professionalism
cthical dilemma reliability
joint application semantics

development structure of data

professional triangulation

2. Why are data types important? What happens
when the wrong data collection techniques

are used? How deces data collection tech-
nique rclate to costs in applications?

3. How do data types relate to applications?

4. Discuss the cost of fixing errors in applications.

5. How do ambiguity and semantics differ? Why
are they both important?

6. When are temporary job ussignments not a use-
tul data ¢ollection technique?

7. What type of information can be got from tem-
porary job assignments?

8. Whar is the usc of reviewing documents? How
do you choose whether to review internal or
external documents?

10k

14.

15.

16.

17.

18,

24,
25,

26.
27.

28.

Study Questions 109

. Why would you ever review software? What

are the pitfalls of software and software docu-
mentalion review?

Compare and contrast individual inlerviews
and meetings, listing two purposes that are
the same for both techniques and two that

are diffcrent,

. Compare and contrast structured and unstruc-

tured interviews.

. Compare and contrast open-ended questions

and closed-cnded questions.

Describe how an unstructured interview pro-
gresses. What types of questions are used as
the opening? How does the interviewer know
what Lypes of guestions to ask? What types of
questions are used after the opening?

Which kinds of data can you best get from
observation?

Which kinds of data can you best get from
external document revicw?

Which kinds of data are you unlikely 1o get
from a questionnaire?

Which data cellection technigue is most useful
for obtaining expert reasoning processes?
Why? Describe the use of the technique,
Which data collection technique is most useful
for obtaining executive needs for an E15?

. Why are cxpert systems and EIS unique?
. Which question types are used for factual,

detailed explanations of work processes?

. How do you scleot between structured and

unstructured interviews?

. What is the typical follow-up to an interview?

Who does what and when?

. Why are meetings a vseful data collection tech-

nique? How do you plan a meeting to avoid
wasting time?

Describe how to develop a questionnaire.
Describe protocol analysis. When is it
used? What application type(s) is it most
used for?

What type of data are most likely in a DSS?
Describe the time-orientation of EIS. What
type of data is associated with EIS?
Describe knowledge engineering. When is it
used and why?

110

29.

30.

31.

32,

What is the difference between prefessionalism
and professional ethics?

Discuss three of the six arcas of ethical conduct
by IS professionals.

Describe an ethical dilemma you might face in
application development work. How should it
be dealt with?

Describe the reasoning process for developing
#n cthical solution to some issue.

* EXTRA-CREDIT QUESTIONS

1.

For ABC Video’s rental application, we still do
not know acecurate counts for volumes of rentals,
late returns, on-time returns, late fees, or cus-
tomers. How would you go about finding this
information? Be specific in identifving a data
cellection technique, the number of people
involved, and the amount of time involved. At
what stage of the development process should
this information be got?

CHAPTER 4 Data Gathering Application Developrment

2. The ACM's Code of Ethics, number 2, discusses

the nced for developers to constantly increase
competence in their profession and to help
athers to do likewise. Is this an cthical issue?
Who ar¢ the stakcholders to the issuc? Reason
through the issues and develop your own
thonghts on the subject. Compare them to class-
mates, arguing for vour position.

. List and define the data type for all data cur-

rently identified for ABC’s rental application,
Refer to Chapter 2 for the data definitions.

PROJECT

INITIATION

The two chapters in this scction address the activities
thai take place before analysis of a specific project
begins. Projeet initiation can tuke place in several
differcnt ways. First, it can be part of a larger enter-
prise reengineering effort. Second, a project might
be initiated as part of an information systems plan-
ning effort. Third, a preject might be initiated based
on a user request for 1 specific project. All threc
methods of project initiation are equally feasible and
equally useful in beginning an application develop-
ment project.

Chapter 5 addresses the first two project initiation
efforts. The main discussion is how to do a reengi-
neering design of an organization and plan applica-
tions and technologies to support the redesign.
Enterprise level planning, such as an information
systems plan, is described as a subset of activitics
that focus on applications only and are an abbrevi-
ated reengineering study. Most researchers and in-
dustry cxperts, such as James Martin, recommend
that at least an information systems plan (ISP) is a
worthwhile planning activity in existing organiza-
tions. Both reengineering and ISPs result in plans for
multiple applications which are prioritized for
development.

e

1]

Enterprisc level planning exercises are costly, and
some companies cannol afford to spend computer
resources on such studies. In these companies, appli-
cation development projects are initiated via a
direct request from a user. Also, companies that do
enterprise level plans might desire to reconfirm rec-
ommendations that might be two or three years old.
For direet initiation and for reconfirmation of rec-
ommendations, a user memo to the Information Sys-
tems Manager or to an IS Steering Committee can
initiate project assessment. Such an assessment is
called a feasibility study.

Chapter 6 details the activilies involved in a fea-
sibility study. A feasibility study is performed te
assess the financial, technological, und organiza-
tional readiness of the company for the application.
Feasibility is an important analysis that is usually
conducted on individual application projccts rather
than on a whole group of applications, such as might
be identified in an ISP or organizational reengineer-
ing project. The feasibility analysis determincs the
extent to which new technologies, skills, or training
arc required by the user and developer staffs and
assesses the ability of the company to pay for the
development project.

11

112 PARTI Project Initiation

Part of the technical feasibilily is to define a
direction for the application development through an
evaluation of technical development alternatives.
For instance, an application might be on-line or real-
time; it might be on a standalonc PC, on a PC con-
nected to a local area network, or on terminals
attached to a mainframe; it might use a 4GL data-
base software such as Oracle™ or a full-service
database such as IMS DB/DC. Likely alternatives
are evaluated to determine the extent to which func-
tional requirements would be supported, and to
determine any alternative-specific benefits that
might be present. A recommendation for technical

1 Oracle™ is a trademark of the Oracle Curperation. IMS
DB/DC is a product of IBM Corporation.

concepts is made and may (or may not) be accepted
at the completion of the feasibility study. Even
though the concept need not be cast in concrete at
this time, it helps to have 1 sensc of the operational
environment for conducting the analysis phasc of
the project.

A risk assessment should be performed as part of
feasibility analysis. The risk assessment identifics
technical, personnel, and financial problems that
could hinder the successful completion of the proj-
ect. For each risk defined, two types of plans are
developed. First, a contingency plan to deal with the
problem if it should occur is defined. Second, imme-
diate steps to minimize the probability of the risk’s.
occurrence are planned and taken.

ORGANIZATIONAL
REENGINEERING

CHAPT

AND ENTERPRISE

PLANNING

K

INTRODUCTION

As the economy becomes more global and the busi-
ness climate more competitive, companies need to
recvaluate what they do and how they do it. Reengi-
ncering is the evaluation and redesign of business
processcs. The goal is to streamline the organiza-
tion to include only the business functions thai
should be done rather than necessarily improve on
what is done today. Reengineering can introduce
radical change into organizations with information
technologies as key to supporting new organiza-
tional forms and providing information delivery to
its users,

When radical approaches are not necessary (or
wanted), the techniques of reengineering can be
scaled down to provide enferprise level plans for
information systems. Enterprise level planning tech-
niques originally were developed in response to
managers’ complaints that IS departments did not
respond to their information needs and frequently
built applications that the company did not need.
Enterprise planning techniques match IS plans to
organization plans and are also used within the
context of reengincering. Techniques include stake-
holder analysis, critical success factors, and infor-

mation systems planning (ISF). In this chapter, we
first develop the conceptual basis and methodology
for reengineering. Enterprise techniques are defined
for use in reengineering analysis. Then, enterprise
level IS planning, without organization design, is
described. The last section identifies computer-aided
software engineering (CASE) tools that support 1e-
engineering and enterprise level analysis technigues.

CONCEPTUAL

FOUNDATIONS

OF ENTERPRISE

REENGINEERING

Organizational reengineering is the evaluoation and
redesign of business processes, data, and technol-
ogy (see Figure 5-1). The goals of reengineering are
to achieve dramatic improvements in quality, ser-
vice, speed, use of capital, and reduced costs. The
rationale for business reevaluation comes from need.
The need may be to turn around a failing company,
to increase competitiveness, to improve customer
service, to increase product guality, or any combi-
nation of these. The philosophy of reengineering is

113

114 CHAPTERS

Before

Organization

Data

Technology

After

Organization

Technelogy

FIGURE 5-1 Reengineering Targets

that, when implemented alone, total quality pro-
grams, organizakon redesign, or information tech-
nology are inadequate for an organization to realize
its potential. The main resources of organizations
today are people and informaticn. Both people and
data, the raw material of information, have to be
optimized to even try to meet the company’s poten-
tial. Organization redesign optimizes the people
resource; the interjection of quality improves both
organization and data. Complete recvaluation of
technology that provides the information infrastruc-
ture optimizes the data and delivery of data to the
people whe need it. This chapter discusses how to

Organizational Reengineering and Enterprise Planning

evaluate the organization and its information re-
quirements, how to reengineer both the organization
and the technology, and how to plan for the imple-
mentation of radical change.

Reengineering theory comes from management
and [S. Management theories about organization
design, job design, and reskilling are all used in re-
design of work and the organization structure.

First, good management practice dictates that
only essential activities be done. To assure this, rc-
engineering assumes an organization fevel plan for
alt functions, activities, and processes that accom-
plish the activities. It also assumes that the plan is
actively managed to ensurc that all processces di-
rectly relate to the organization's mission, goals, and
objectives. Nonessential processes, departments, and
layers of management are eliminated to streamline,
speed, and lower the cost of process performance.

Second, in job redesign, a caseworker approach is
preferred to an assembly line approach. Casework-
ers' have increased control, decision making, au-
thority, and discretion. Redesigned, enlarged jobs
improve the quality of work life, thus, improving the
quality of work.

To satisfy employees and customers, for instance,
customer service departments might adapt a case-
worker approach to work. [n the caseworker ap-
proach, employees know the entire process from
beginning to end and work independently to service
their personal customers. In addition, the caseworker
works closcly with the marketing and sales force for
those same customers. The consequences of case-
workers are great. The customer service agents have
reskilled, enlarged pobs that are more interesting.
Intrabusiness commmunications between, for instance,
sales and customer service, are improved. External
customer relations should also improve because cus-
tomers have one consistent rcpresentative with
whaom they work.

Enlarged jobs dare not & way (0 squeeze more
work out of already overworked people. In the cus-
tomer service example, initially a clerk does a small
number of activities that present a partial view of a
large number of customers. In a reengineered job,

1 Hackman [1990}.

Conceptudl Foundations of Enterprise Resngineeting

the clerk does a large number of related activities
that present a complete view of a small number of
customers. The move is away from an assembly line
appreach and toward self-sufficient workers or work
groups.,

The first reengineering improvement for case-
workers comes from job redesign. If the 80-20 rule
is zpplied to most businesses, 80% of the transac-
tions in the business are the norm, and 20% are
exceptions. Organizations are typically designed to
handle exceptions well. The 80% of their work that
is normal tends to take much longer than needed.
One goal of reengineering is to increase handling
speed and quality of handling for the 80% of nor-
mal transactions by an order of magnitude, for
instance, by at least 10 times. A second goal is 10
decrease the number of exceptions to as close w zero
as possible. For instance, at Ford, one way to prevent
crrors in the receipt of goods from vendors was to
accept only complete, exact shipments. Any item
that did not match an order item caused the entire or-
der to be returned. Vendors got the message quickly
that Ford would not accept their shoddy work prac-
tices any more and were forced to revise their pro-
cedures as well.

Empowerment of the caseworkers comes from
job redesign, remaval of errors from the process, and
from the use of any and all information and tech-
nologies that assist them in performing their job.
Information technologies enable reengineering. In-
formation technologies {IT} are any technologies
that support the storage, retrieval, organization, man-
agement, or processing of data. A technology plan
and goals should be developed and managed at the
organization level.

In addition, data, the raw material for informa-
tion, requires recognition and organizational com-
mitment as a corporate resource. As & corporate
resource, data requires the same careful planning and
ongoing management as cash-on-hand, office equip-
ment, or personnel. Data must be managed at the
corporate level as a key asset of the organization.

To manage and plan for the organization struc-
ture, its dara, and its technology, enterprise level
(1.e., the entire organization is the enterprise) plans
must be devised. These plans, or ‘architectures,’
provide a snapshot of the current organization. An

115

enterprise architecture is an abstract summary of
some organizational component’s design. The orga-
nizational strategy is the basis for deciding where the
organization wants to be in three to five years, When
matched to the organizational strategy, the architec-
tures provide the foundation for deciding priorities
for implementing the strategy.

The organization process architecture identifies
the major functions of the organization, the activities
that define the functions, and the processes that
accomplish the activities, Examples of each of these
levels are shown in Figure 5-2. Tt does not detail the
procedures for how to do each task,

During reengineering analysis, the entire process
architecture 1s reevaluated for its support in achiev-
ing organizational goals. For processes that sarvive
the analysis, the organization is redesigned. Theories
of interdependence, linking mechanisms, and orga-
nization design are applied to structuring work
groups in the reengineered organization.? These the-
ories are not new. Rather, theorists and practitioners
have talked about them for years with little move-
ment of theory into practice. Over the same years,
information technologies matured sufficiently to
support the integration and data sharing required of
the information organization. In the eatly 1990s, a
ground swell of changing companies became an
avalanche, with many companies trying to imple-
ment the theories vsing information technologies to
support the revised organization.

The second architecture, data architecture, iden-
tifies the enduring, stable data entities (people,
places, organization, events, and applications) that
are critical to the organization maintaining itself as
a poing concern. IS theories of information modeling
and information systems planning are used in data
analysis. In particular, entity-relationship modeling
is nsed for documenting data and its relationships,
Entity-process analysis is used 1o design subject area
databases. Entity-application analysis and process-
application analysis are used to define automation
requirements. These analyses originated in IBM’s

2 Interdependence theory is Thompson's [1967]. Galbraith
[1976] and Galbraith and Nathansen [1979] propose linking
mechanizms with some organization design, Other organiza-
tion design work is listed in the references.

116

CHAPTER & Crganizational Reenginsering and Enterprise Planning

Plastics Company

[
Finance)

Accounting

Fin. Control

Investment

[Personnel , (Manulacturing]

-(Plant 1)

(ot)

(Plant 2)

—@enefits Mgmt)

(" RaDPan)

FIGURE 5-2 Sample Process Architecture

information systems planning (ISP) methodology
and are expanded in reengineering.

The network architecture identifies all locations
of work and their communications requirements.
It is the basis for deciding telecommunications
support,

Finally, the technology architecture contains
information about platforms [e.g., mainframe, local
area network (LAN), or personal computer (PC)J,
special-purpose technologies {(e.g., multimedia,
imaging, e-mail) and the locations of cach. By map-
ping the network and technology architectures, orga-
nization level technology changes can be identitfied.
New technologies, such as imaging, can be evalu-
ated and positioned to provide the most leverage to
the grganization.

Successful reengineering is not assured. Neces-
sary conditions, or absolute prerequisites, for reengi-
neering include:

»

Management commitment, usually from the
CEO or top manager of the organization.
Formally articulated organizational mission,
goals, and objectives.

Full commitment of the reengineering

team.

Training and support for the reengineering
team.

The destre to change the organization and
its culture.

T addition to the necessary conditions, reengineer-
ing assumes the following:

1.

Nothing escapes review. The reengineering
team has as its mission to evaluate the orga-
nization, including its structure, jobs, daia,
processes, and technology. Recommendations
in any of the five areas of assessment may

be made.

2. Enlarging jobs and empowering job holders
as caseworkers rather than as assembly line
workers is desirable.

3. Business and IS orgamizations must become
partners in the redesign and technology
CIMpOwerment.

4. In improving quality of processcs, elimina-
fion of errors via elimination of functions and
superfluons processes is desirable,

5. There are no technolegy constraints. Recom-
mendations will be made without regard to
current budgetary, organizational, or other
constraints. Implementation planners, based
on recommendations and manager’s priori-
ties, will attend to constraints.

6. Data shareability is desired. While normaliz-
ing data within an application environment
minimizes redundancy in an application, min-
imizing orgarmzational data redundancy via
data administraticn and acress applications is
the real goal. Building subject area data bases
and providing data access based on need
rather than on organization structure is the
means to achicving organizationally mini-
mized data redundancy.

This assumption of no constraints may not he
realistic in that politics and survival of participants
can subvert the desired objectivity in a reengineering
project. One of the management challenges in re-
engineering is to prevent politics from preventing
the needed change.

Industry leaders and successful turnaround
companics who now thrive provide the motivation
tor sweeping change. These companies are orga-
nized differently from their competition. Indusiry
leaders today tend to have fewer departments, fewer
layers of management, and fewer people doing anal-
ogous jobs than their competition. Their success is
partly organizational and partly cultural. Thesc
successful companies succeed because they define
their market in terms of what their customers want
and demand, then they exceed those expectations.
Because these companics do not have excess siruc-
ture, they are flexible to conttinuously reeval-
uate what they are doing and how well they are
doing it

Planning Reengineering Projects 117

Ford Mator Company, for instance, turned around
their losing company when introducing their ‘Qual-
ity is number one’ program, They compared their
crganization to others, including Japanese firms, and
found they had many mere people performing simi-
lar functions. In some cases, like the accounting
area, the diffcrence was mote than 10 to | in num-
bers of people. Ford threw away the book about how
accounting should be done, eliminated parochial
interests about where decisions should be made,
made data sharing from databases universal, and
reduced their staff by over 600%. The result of the
extensive changes is happier people with more skills
used in a given job. Individual jobs are done faster
and more cheaply with almost no errors.

The philosophy of reengineering 1s to define
stakeholders’ goals and then exceed them. The phi-
losophy is based on the idea that change can be
good. Companies must scan the business horizon
and actively change the organization as needed to
lower costs, and to improve, speed, and increase the
quality of service(s} in meeting its mission. They
must be equally proactive about discontinuing ser-
vices, departments, applications, or technologics that
no longer relate to organizational goals and objec-
tives. In short, the organization must be proactive
rather than reactive about all aspects of its operation,

PLANNING
REENGINEERING
PROJECTS

Schedules for reengineering projects can be based on
several diffcrent scenarios, The geal of all scenarios
is the same: redesign of organization, jobs, pro-
cesses, data, and supporting technoloegies. A sec-
ondary goal is that all redesign planning be
completed in a short period of time. The short peried
should be within four months from the time the team
is formed until all recommendations are presented to
the senior manager sponsor(s).

Reengineering projects can be completed faster
or slower depending on several factors. First is the
amount of actual time spent by each team member.
Ideally, all team members should be relieved of their

118 CHAPIER S Crganizational Reengineering and Enterprise Planning

current duties and assigned full time to the reengi-
neering effort. [n reality, the best managers, who you
want on the team, also are the most needed to run the
current business. So, part-lime or short duration full-
time commitments might Aave to suffice.

In all cases, one to four senior IS staff (i.e., con-
sultants, senjor analysts, software engineers, or proj-
ect managers) are assigned fuil time to the project.
Much of the work performed during the reengineer-
ing project is identical to that performed as part of an
information systems planning exercise. IS staff who
already know [SP only need to learn several types
of matrix analysis and organizational design to be
fully capable of performing the reengineering work,

The second major factor in determining the
amount of time is the size of the organization being
analyzed. A 100-person, five-department organiza-
tion can be analyzed eastly within four months. A
10,000-persen, 2(K)-department with four hierarchic
levels can also be analyzed within four months, but
requires more people and more discipline to the
tcam. A good rule of thumb is to have one person for
every 10— 5 departments or every 100 jobs.

Four months is the time most authors recommend
for completion of the entire reengineering project,
from inception to development of the implcmenta-
tion plan. The actual pilot testing and implemen-
tation of the changes might take several years
to complere, There are several good reasons for a
short time schedule. First, managers cannot suspend
their work indefinitely and run a company, teoo. If
several people are allocated full time it drains the
management resource. Second, with a mentality ori-
ented to quarterly results in the United States, most
managers will not wait longer than that to prepare for
change. Third, the project is bound to be known
throughout the organization soon after it begins.
When reorganizations arc imminent, work is re-
placed by gossip and worry, The shorter the time
of the reengineering study, the less lost work to the
orgamzation.

When the end date is mandated, the team does the
amount of work they can accomplish within the time
constraint. This approach to work is called ‘level of
effort.” With a level of effort approach, the team
works at capacity up to the deadline and, what does
not get done. does not get done. For large projects,

then, the kevel of effort appreach assumes an incom-
plete analysis.

The assumption here is that error-prone and bot-
tleneck processes are the targeted activities. While a
high-level description of the entire enterprise is pos-
sible, only the problem activities are actually in the
level-of-effort study.

Scenarios for three levels of user manager partic-
ipation are provided in Figures 5-3 through 5-5. Fig-
ure 5-3 shows a short burst of participation, simnilar
to a joint requirements planning (JRP).? In this sce-
nario, users and analysts are trained and go off-site
for an intensive 4—8 days (depending on the size of
the organization) of requirements, data, process, and
entity-process analysis. An alternative that mini-
mizes the amount of time managers are absent from
work is to hold the JRP meetings over one or two
weekends. More than 90% of the data gathering can
be completed using the JRP approach. In this sce-
nario, most of the analyses are done by the full-time
project statf, but are presented for review and deci-
sions to the user-team participants. fn no case do
the IS staff make the decisions and recommenda-
tions alone.

The second scenario assumes constant part-time
participation over time (see Figure 5-4), In this sce-
ndario, user managers are available for meetings,
interviews, and analysis sessions 1-3 hours gach
day. They must be committed to participating and
must not waver [rom participation, or the project will
falter. Notice the dotted lines for all activities. The
dotred lines imply a part-time, longer activity. The
full-timne 1S staff actually do most of the legwork,
interviews, and preparation for analyses. But, ance
again, the decisions are made by the user managers,
not the 1S staff.

The final scenario assumes full-time commiatment
for the duration of the project {see Figure 5-5). With
full-time users and full-time IS staff, the length of
the project can be as short as three weeks and, for
large organizations (e.g., 1,000 people, 50 dcpart-
ments), as long as 16 weeks. Table 5-1 shows the
major tasks and activities with expected percentages
of effort for cach task.

3 JRP is an innovation of IBM Corporation. It is fully discussed
in the introducrion 1o Part I1.

Rsenginesring Methodology 119

Identify Sponsgor

Asgsign Staff

Scope Project

Creale Schedule

Identify Mission Statement
Gather Information

Develop Data Architecture
Cevelop Process Architecture

Develop Network/Technology
Architectures

Develagp Analysis

Develop Org. Implementation
Plan

Develap IT Implementation Plan

Legend:

Findings Presented to Users

Weeks

111111111
123456789012345678

Recommendalions Presented to Sponsor

Impiementation Plar Presented to Sponsor

Fart-Time Activity

Full-Time Activily

FIGURE 5-3 Reengineering with Part-Time Users

REENGINEERING

METHODOLOGY

Reengineering is most easily done within the scope
of information system planning (ISP} projects. With
a greater balance of process and data analysis, and
several additional activities, reengineering uscs the
same information as the ISP. The major steps and

their results, type of questions asked, and analyses
are listed in Table 5-1. The steps are summarized in
Figure 5-6 which shows a significant amount of
overlap between steps. The times allocated to the
tasks are #s individual stand-alone activities and do
not reflect the amount of actual time spent on the
step. For instance, the architectures are all allocaled
onc week. But they arc preceded by uctivities of four
weeks during which they should also be developed.

120 CHAPTERS Organizatiocnal Reengineering and Enterprise Planning

ldantify Sponsar =
Assign Stalf
1 Scope Projecl
Create Schedule
ldentfy Mission Statement
Gather Infermat:on
Develap Bata Achitecture
{ Develop Process Architecturg

Develop Metwork; Techology
Archtectures

Develop Analysis

Develop Org. Implementation
Flan

Cevelop IT Impiemertation Flan

Legend:

Part-Time Activity

— Full-Time Activi

Weeks
111113111 22322

12345678901234566789011223

ﬁ Findings Presented to Users

E Recommendations Presented to Sponsor

E Implementation Plan Presertec to Sponsor

FIGURE 5-4 Reengineering with Continuous, Part-Time Users

All of those particular steps are iterative and require
three to five weeks t0 complete. A detailed descrip-
tion of each reengineering step follows,

Identify Project Sponsor

The first step of reengineering is to enlist or be en-
listed by the project sponsor. The project sponsor

is a sesror level manager who will pay for and
champion the project. A champion is an individual
with commitment, enthusiasm, credibility, and in-
fluence who can act as a ‘cheerleader’ for the project
and its outcomes. The sponsor is the overall project
manager for the reengineering project and must have
the authority, fortitude, and desire to change the
organization and its work, based on the recommen-
dations from the reengineering analyses.

Reengineering Methodoclogy 121

Weeks
1111111111 22222

123456786012345678801123

ldentify Sponsar H

Asgsign Staff

Scope Project

Create Schedule

Identify Missign Statement
Gather Infermation

Develop Data Architeeture
Develop Process Architecture

Devalop Network/Technology
Architoetures

Develop Analysis

Devetop Qrg. Implementation
Plan

Develop IT Implementation Plan

Legend:

Findings Presented to Users

[l Recommendations Presented to Spansor

E Implementation Plan Presentad to Sporsor

Part-Time Activity

——— Full-Time Activily

FIGURE 5-5 Reengineering with Full-Time Users

Assign Staff

Three or four user area, senior, or middle managers
should be assigned to the reengineering project for
a period not to exceed four months. At least one
month of the initial commitment should be full time;
the remainder of the work may require only part-
time commitment. Two or three senior IS managers,
or SEs, or data administrators, or consultants should

be assigned to the project full time for its entire
duration.

All team members should attend a reengineer-
ing workshop or class together to fully acquaint
them with the techniques and goals of the activity.
The individuals assigned must have commitment to
this work. They must be senior enough and good
enongh at their own jobs to have instant credibility
within their organization. Without both of these

122 CHAPTERS Organizational Reengineering and Enterprise Planning

TABLE 5-1 Percentage of Reengineering
Effort by Task
Activity % Effort
Obtain sponsor N/A
Initiate project N/A
Assign staff NiA
Scope project 2-5%
(Concurrent with next two 2 Days
activities)
Develop schedule 2-3%

3-5 Days
[dentify mission statement 2-5%

I Day
Gather data 20-25%

3—4 Weeks
Develop process architecture 6-10%

3 Days—1 Week
Develop data architecture 6-15%

3 Days—1 Week
Develop and analyze entity/ 20-25%
process matrix 3-4 Weeks
Develop implementation plan 20-25%

3—4 Weeks
Develop technology 6-10%
architecture 3 Days—t Week
Total duration L00%

12-17 Weeks

reguirements, the target of four months for the total

effort is doubtful.

Scope the Project

The key criteria for properly scoping a reenginecring
project are data self-sufficiency and user commit-
ment. Data self-sufficiency is defined as 70% (or
more) of data used in performing the business func-
tions that must originate within the subject organi-
zation. The goal of scoping is to identify a group of
departments that create their own information and
are not dependent on other departments for data to

do their work. Confrol over data creation equals data
self-sufficiency.

The second criteria is user commitment. User
commitment means that the managers participating
in the reengineering project must be committed to
changing the organization. This is not as difficult as
it might sound. Few people enjoy their job when
they know it is inefficierit and hampered by ineffec-
tive organization or systems designs. When the best
managers in an organizaticn that needs change are
assigned, they become enthusiastic about the pros-
pect of designing the work groups to fit the work.
Because their positions in the company are not at
risk, there is little reluctance to participate.

Determining data self-sufficiency requires de-
velopment of a quick entity-relationship diagram
(ERD), process hierarchy, and entity/process
mairix. The results should be about 80% complete
and address the major entities and processes. The
analysis of the matrix is to determine where data are
created, nothing else. If data are not created within
the organization, the amount of data and the creat-
ing (or originating} organizution are identified and
added to the study. In addition, the amount of data
for all entities created within the organization must
be identified to determine the percentage of data self-
sufficiency. The percentage is derived from the for-
mula shown as Figure 5-7.

The inputs to the formula (T) identify a count of
transactions or other work items generated within
the target reengineering organization. The outside
work () represents a count of transactions or other
work items coming into the department from else-
where in the organization. Qutside work is not sub-
ject to review or error reduction, and the goal is to
keep it to a minimum in the study. In Figure 5-7, the
target organization generates 75% of its own data
and is, therefore, data self-sufficient enough to ben-
efit from reengineering.

Less than 709 data sufficiency implies too
narrow a scope because of too great a data depen-
dency on ouwtside organizations. Lack of data self-
sufficiency artificially constrains (or may mask
potential) elimination of errors, organizations, or
levels of management that are not needed. If the
scope is too narrow, the analysts present the infor-
mation to the sponsor and request a broadened scope
to include the information-creating organization(s).

Reengineering Methodology 123

Identify Sponser

Assign Staff

Scope Projsct

Create Schedule

Identify Mission Statement
Gather Information

Develop Data Architecture
Cievelop Process Architecture

Davelop Network:Technology
Architectures

Develop Analyses

Davelap Org. Implementation
Plan

Develop IT Implemertation Plan

1111111
12345678901234556

FIGURE 5-6 Overlap Between Reenginecring Tasks

Formula:
i+ 0} 100=2%D%

Example;

f= 750,000 records
O = 250,000 recards
750,000/ {750,000 + 250,000) * 100 = 75%
Legend:
! = Data generated inside the reengineered
departments

O = Data generated outsitde the reengineered
departments that is raquired for them to do
their work.

DS = Data Seff-sufficiency

FGURE 5-7 Formula for Determining Data
Self-Sufficiency

For instance, reengineering might target an
accounting function. About 90% of the informa-
tion in an accownting function originates from other
organizations within the company. Without also
including those functions in the reengineering
study, changes that address, for instance, data accu-
racy or wotk lecation problems, are unlikely to be
successful.

The scope might not be complete until the next
several tasks are partially complete, due to a lack of
information about data and responsibilities. There-
fore, the initial scope should be reexamined before
completion of the entity/process matrix analysis to
reconfirm data self-sufficiency.

Create a Schedule

The team creates a schedule for the entire reengi-
ncering project not to cxceed four calendar months.
Each step has an estimated range of time that should

124 CHAPIER S Crganizational Reengineering and Enterprise Planning

be allotted as a percent of the project total shown
in parentheses (see Table 5-1). Each task is assigned
to a team member who is held accountable for
the work.

Identify Mission Statement

Identify the mission statement for the organization
with quantified goals for measurement. A mission
statement is a short paragraph summarizing the
overall purpose of the organization. The details of
the document should include goals and objectives,
along with determinants of success (i.e., critical
success factors) for each, with required data for mea-
suring the extent to which the goals are met (i.e.,
means-end analysis).

If the crganization has no mission statement,
or has no quantified goals and objectives, do
not attempt to develop these for the organiza-
tion. Disband the reengineering group and have the
managers work on perfecting the mission, goals,
and objectives before reconvening the reengineer-
ing effort.

Goals should have a three- to five-year horizon
and should be specifically measurable (i.c., quanti-
fied) (see example in Figure 5-8). There should be
at least one goal for each sentence in the mission
statement. Goals relate to stakeholders who are peo-
ple affected by the outcome. Some stakeholders

Increase the number of new customers by 5% each
year for five years.

Increase sales to existing custemers by 8% par year
for five years.

Increase number of rentals per store visit by praviding
an expert system to assist in selecting movies for
rental.

Reduce sales support expenses by 10% in gne year.

Reduce overhead expenses by 10% each year for
two years.

FIGURE 5-8 Example of Organization Goals
for ABC Video

include customers, vendors, stockholders, owners,
and boards of directors.

Identify critical success factors for determining
that goals are met. A critical success factor (CSF)
defines some essential process, data, event, or
action that must be present for the outcome to be
realized. For instance, if the goals in Figure 5-8 are
desired, a CSF might be Ensure that sales staff are
fully trained in locating movie information.

The last step of critical success factor analysis is
to decide what information is required to measure
goal success. In the example, goals relate to sales.
The CSF also relates to ‘training.’ Success measures
for sales and for sales staff knowledge of how to find
movie information are required. Periodic evaluation
with training for ill-informed sales staff is one way.
Management needs to know evaluations that have
taken place and misinformed staff who have been
retrained, If the same person{s) are being retrained,
management intervention might be warranted.

Intangible goal measurement is just as important
as tangible goal measurement. An intangible goal
might be increased customer satisfaction. To mea-
sure this, an ocutside polling company can canvass
customers and ask different recall or direct questions
about their satisfaction with the company's services.
Recall-type questions are of the form: Which vendor
that you work with has the best customer service?
Direct questions are of the form: Rate the customer
service of company x.

The next step is to link each CSF, critical infor-
mation measure, and goal to functions, processes,
technology and data in the organization. If this step
cannot be completed yet, defer completion of this
task until information gathering is complete. If new
entities or processes are defined through CSF unaly-
sis, add them to the list for reengineering analysis.

Gather Information

Gather information on processes, data, process prob-
lems, quality problems, data problems, accessibility
to data, timing of work (e.g., lags that cause idle
time), time constraints for performance, and prob-
lems related to timing, A sample list of questions
are:

What are the major steps to accomplishing each
process?

Which processes/procedures are required 1o
accomplish the mission, goals, and
objectives?

What data are used as input? Where does it
come from? Who entets or creates data? uses
or refrieves data? changes or updates data?
deletes data?

How is the input transformed by the process to
produce the results? That is, what do you
do when you do your job?

What data are passed between processes? What
is the current storage media for the data (e.g.,
computer, fax, paper, verbal, memo, etc.)?

Are the different types of data that you need for
your job used sequentially or in parallel?
Could you describe the procedure?

Where are time lags in your job during which
you are waiting for someone else to give you
work or infermation? How da you deal with
these lags?

Where are quality problems? How do you deal
with errors? What is the source of each type
of problem? Where (in which process or
outside organization) is each problem
detected? Where are quality problems within
the procedures you usc to do your job? How
do you try to guard against these problems?

What would you do differently if vou could
design your own job? How might computer
technologies help you? Suppose you have all
the new computer and other technologics
available for your job’s use. What technology
would you use and how?

Information might come from forms, screens, re-
ports, phone messages. fax messages, aulomated
applications, policy and procedure books, and so
on. The people actually doing the work provide this
information.

Most information is obtuined through an inter-
view format. Interviews should be individual or in
small groups (groups should have members who
share common goals to minimize political conflicts).
All middle and senior managers for the organization
should be interviewed in addition to representative

Reengineering Methodology 125

white-collar, blue-collar, or clerical staff. Treat the
sessions as fact-finding, not fault-finding. Address
all the topic areas for which information is required,

If you think you are getting incomplete or false
information, cross-check, or triangulatc, the infor-
mation by asking the same questions of multiple
sources. For instance, Manager A says his major
problem is caused by erroneous data reccived from
Manager B’s area, and Manager B did not identify
the problem in vour first discussion. Return to Man-
ager B and reinterview him or her, specifically dis-
cussing datu quality as a problem identified by the
other arca.

To validate the complete findings, make a group
presentation to all interviewees for final confirma-
tion that the information is accurate and complete,

Summary of the Architectures

In this section, we expand Zachman’s* information
systems architecture {ISA) framework to describe
how to express the reenginecring information in
terms of architectures. The four architectures of
interest in reengineering are data, process, network,
and technology. First, we define the framework
and information presented at each level. Then, re-
engineering information is translated into the four
architectures,

Conceptual Levels of the Architecture

The informarion systems architecture (ISA) de-
scribes distinct architectures relating business con-
text to application context. The five levels are
described in general terms below and are summa-
rized in Figure 5-9. Only the first two levels, scoping
and enierprise analysis, are used in reengineering.
Information systems application development
and organizational redesign arc complex engineering
activities that are similar to constructing a building
or an airplane. The 1SA describes the intellectual
levels of detail nceded for complex engineering

4 Iohn Zachman [1987). Zachman's architecture discusses data,
process. and network. ISA does not yet include a technelogy
architecture. This idea is from reengineering consulting which
requires a view of the technology as a basis for technology
redesign.

126

Model Level
Scope Sponsar
e | we
e
Hardware/Scfiware SE/Dasigner/Builder)
B
oS

Adapted from J. A. Zachman, 1987

FIGURE 59 Conceptual Levels of the
Architecture

activities. Then, it links them to data, processes, net-
woiks, and technologies—the components of com-
puter applications and reengineering.

In all three businesses—aerospace, architecture,
and systems—we begin with a sponsor’s idea of
what the item being built should look like. This is the
scope of the reengineering project that defines what
is in and what is not in the problem. If the ifem is a
house, for instance, users talk about a two-story
colonial with four bedrooms, three bathrooms, and
a fireplace in the family room. For reengineering, the
sponsor targets departments doing order processing
and customer assistance. In this case, the item is the
order processing department,

CHAPTER S Organizational Reengineering and Enterprise Planning

The user talks to an expert to describe his or her
view of the item, and the expert translates the user’s
idea into an enterprise ievel, logical description of
the item. A logical description is one that lists what
is done without saying Aow. The item begins to take
more shape and be less specific. The description of
the item is somewhat more abstract. For the house,
we now have a family room of 13.5 feet by 16 feet
with a cathedral ceiling that is open to the kitchen
with entries to the foyer and living room. For reengi-
neering, we have an order entry process that includes
order receipt, order change, order inquiry, inventory
allocation, creation of shipping papers, movement of
goods, invoice creation, and an interface to accounts
receivable. Both of these descriptions are signifi-
cantly more detailed than the first. Neither descrip-
tion is complete. We still don’t know the type of
windows in each room, for instance. Nor do we
know, for reengineering, whether the work is auto-
mated, how an order is processed, or whether any of
the steps can be done together. In both cases, the
details are unimportant at this level.

At the next level, the expert translates the logi-
cal, enterprise view of the item into terms and infor-
mation that are useful fo the analysts of the item. So,
the expert (or different experts) translates the enter-
prise view into a logical information systerns design.
The logical design still describes what the item will
do, but in more detail than before, and in terms
understood by application developers. In reengineer-
ing, the logical design is very specific about the item,
its parts, and how they fit with the other items and
their parts. In our order processing example, we
would know what data, what fields, what processes
and their details, timing of processing, what appli-
cations and technology are currently used to support
the work. Designers can review the detailed logical
design and see how it can be automated.

In the next step, designers review the logical
design and translate it to specific materials, thus cre-
ating a technology-based model. In reengineering
studies, this translation takes redesigned work, work
groups, departments, data, and technology as inputs.
The inputs are transiated into database schemas,
applications’ destgn specifications, network designs,
and specific hardware/software platforms for sup-
porting the redesigned work. In the order process-

Reengineering Methoedclogy 127

Model Process Data MNetwork Technoiogy
| ! : '
I I
! List of Business ! List of Things ! List of Business ! List of Business
! Functions ' Impartant to : Locations ! Technologies
i ! Business ! I
1 ; | :
| t I 1
| L I]
| ' | 1
| — t —_— | — 1 —
Scope ! — ' — | — i —
Sponsor i —_ : _ ! _ ' _
i —_ i — i - I —_
1 I 1 |
1 | 1 |
1] 1 |
1 1 1 3
! Function =Group | Entity =Classof | Node = Bus. ! Technology = Platform
! of Activities . Businass Thing X Location !+ Special Equipment
| : i I
I 1 I 1
—————————————— L R T e el e i
I I I 1
| | I 1
! Process ! Entity Relationship ! Logistics ! Tachnology
! Hierarchy ! Diagram | Network ! Network
| : i i
| i | 1
|] I 1
I] I 1
I] I :
Enterprise | i O] | :
User | | | C g ﬁ i C g ai
I I I 1
I I | 1
I I I 1
| | | 1
| | | 1
| | | :
! Function = | Entity = Business | Node = Business | MNode = Computer
i Business Process | Entity ! Process I Link = Netwark Link
H ! Relnghip. = Bus. | Link = Comm. H
! ! Constraint ! Need :
: I I H
Adapted from J. A. Zachman, “A Framework for information Systems Architecture,”
IBM Systems Journal, 26, #3, 1987, pp. 276-292.
FIGURE 5-10 Reengineering Levels and Architecture Domains

ing example, the requircments specification would
be translated into program specifications for specific
hardware, software, and language.

Finally, at the lowest component level, schemas,
specifications, and technology plans are impie-
mented and translated into working computer
components,

Only the scope and enterprise models are dis-
cussed in this chapter; the other levels are too com-
puter-oriented and not appropriate for reengineering.

Domains of the Architecture

The conceptual domains apply to four crganizational
domains: data, process, neiwork, and technology.
A domain is an area of interest. The data demain
defines the entities of interest to the target organiza-
tions and the interrelationships between them. The
process domain describes the functions, activities,
and processes of the target organizations, without
any identification of how they are accomplished. The

128 CHAPTER S Organizational Reenginearing and Enterprise Planning

ABC VIDEO MISSION STATEMENT

The mission of ABC Video is 1o develop and
maintain quality relationships with customers,
vendors, and employees.

For customers, we provide @ large selec-
tion of current and classic videos for rental of
a fair price. We qssist them in selecting videos
with courtesy, service, and a minimum of
bureaucracy.

For vendors, we order videos with reason-
able lead timeas and timely payment of bills,

For employess, we provide 4 congenidl
atmosphere with comfortable, clean, and
safe working conditions for a fair wage.

Process Data Network Technology
Video Selection Customer Laocation = | Neone
Service Request Video Rental {inferred)
(l.e., process rental) Vendor
Order Creation Order
Accts. Payable Video (= goods in
Inventory)
Payroll Employee
Personnel

network domain describes the organization from a
geographic perspective, The technology demain
describes the organization of work from a technol-
ogy platform perspective.

Translating Information
into Architecture

There are twe levels of architecture we describe in
this section for reengineering: the scope and the
enterprise model.

Scope

In reengineering, we assume that the mission state-
ment fully expresses the scope of the organization.
The mission statement is translated into network

technology, process, and data scopes to initiate the
reengineering ¢ffort. Example 5-1 shows a mission
statement for ABC Video and how it might be trans-
lated to identify the scope of the four domains. At
the scope level, we should know the major entities of
interest to the organization and the business func-
tions and their activities.

The network and technelogy demains may or
may not be mentioned in the mission statement. The
sponsor or uscr participants define these when they
are not in the mission statement. The network scope
defines the location of work for each activity. The
technology scope defines technology plaiform by
location. Because ABC has only one location and
no lechnology, it is 4 simple example. Another ex-
ample here is for a plastics subsidiary of a large
international company, Figure 5-11 shows existing
hardware platforms listed by location. In Figure

Reengineesring Methodology 129

Hardware Platform—Scope —‘

Location 1
Mid-Size Computer
LAN 1—25 PCs
LAN 2—15 PCs
LAN 3—42 PCs
Location 2
LAN 4—23 PCs
Logation 3
Mid-Size Computer
5 Stand-alone PCs
3 CAD/CAM Platforms

Location 4
Mid-Size Process Control Computer
LAN—25 FCs
1 CAD/CAM Platform

Activity by Location

Location 1
Finance—3 products at this location
Accounting—All products
Customer Service—All products
Product Management—3 products
Personnel/Payroll

Location 2
Finance—2 Products at this Location
Froduct Management—2 Products
General Manager

Location 3
R&D
WManufacturing Setup

Location 4

Manutacturing Plant

Location 5 Location &
Mainframe Corporate Headguarters
FIGURE 5-11 Plastics Company Hardware FISURE 5-12 Plastics Company Activity

Platform Scope

5-12, the activities from the process hicrarchy are
reused and identified by location.

At this point in reengineering, if the mission
statement were suspect in its completeness, a stake-
holder analysis might be developed to determine if
all constituents of the organization are represented.
If they are not, the mission statement would be
redrafted to include missing constituencies. While
this redrafting takes place, the reengineering study
ceases operation. A stakeholder is any person who
interfaces with, works for, or otherwise is impacted
by an organization. Stakeholders include the owner,
managerts, cmploycces, suppliers, customers, credi-
tors, government, community, and compelitors.
Ideally, representative stakeholders from each group
should review the strategy and offer suggcstions for
improvement.

When stakeholders are identified, the goals of
each stakeholder arc defined and related to the orga-
nization’s functions and strategies. 1f a goal does not

by Location

match a current function or strategy, management
determines if the goal will, in fact, be met. The goals
arc translated into strategies which, in turn, are trans-
lated into work. The intention of stakeholder analy-
sis is that rational, reasonable gouls should have both
strategic and organizational functions that relate to
the attainment of goals. Even if goals are omitted
from the final strategy, at least all stukeholders and
their desires are identificd and considered.

Enterprise Models

At the enterprise level, the user managers work
with information systems (IS) project repre-
sentatives to define business areas in logical terms.
The principle business modeling activities include
entity-relationship diagrams (ERD) for data,
functional decomposition diagrams for work pro-
cesses, a network diagram of process communi-
cation needs, and a techrology network diagram

130 CHAPTERS Organizational Reengineering and Enterprise Flanning

Purchasing l
Purchase
Videos

Place

Order
Identify ltems
& Vendors

Call Vendor to

Vearity Availability
and Price

Create and
Mail Order
Files Qrder Copy
by Vendor

Monitor
Onder

Idantify Late
or Problem
Qrders

Call Vendaor
and Inguire
or Reconcile

Verify Recsipts
Against Orders

Send Invoices
te Accountant

FIGURE 5-13 ABC Video Process Hierarchy

showing technology deployment. The ERD docu-
ments major data types and their interrelationships.
The functional decomposition identifies business
functions und their component activities and work
processes. The network architecture shows the loca-
tion of work and intraorganizational communication
requirermnents. The technology architecture shows the
hardware platforms by location and the telecommu-
nication linkages between them. All four architec-
tures are developed piecemeal as information
becomes known. (ERD and functional decomposi-
tions are discussed in detail in Chapter 9 and are only
summarized here.)

PROCESS ARCHITECTURE. Process architec-
ture development 1s concurrent with data gathering,
The time recommended in Table 5-1 is for comple-
tion and validation of the information. The decom-
position first identifies business functions, then the
component activities and their processes. Figure
5-13 shows an example. A business function is a
group of on-going activities that accomplish seme
complete job that is within the mission of the enter-
prise. Functions are general and fit most organiza-
tions. For instance, accounting and personnel are
found in most organizations regardless of industry or
business type. At the next level of detail, an activity

defines one or more related procedures that accom-
plish some task. For accounting, for instance, activ-
itics might be monthly close, maintaining chart of
accounts, or daily transaction prdcessing. At the
lowest level of detail for this diagram, a business
process identifies the details of an activity, fully
defining the steps 1aken to accomplish the activity.
Business processes within an accounting monthly
close might be gathering information, validating in-
formation, performing initial analysis, and so on,

The steps to developing a functional decomposi-
tion diagram include:

= [denfifying the functions of the target
organizations

w [nterviewing the representatives from each
arca to identify the activities performed for
each function

= Further identitying the processes for each
activity

During the decomposition process, business
problems are identified by the interviewees. The
problems are prioritized by the users with the reengi-
neering team in order of their significance to the
organization’s quality and function. Usuvally the
number of major problems to be identified 1s fixed
and between five and ten. Without a limit, the prob-
lem findings could overwhelm the analysts. Also,
having the number of major problems fixed requires
users to reach consensus about the seriousness and
scope of problems.

DATA ARCHITECTURE. This activity is con-
current with data gathering. One week of extra time
is recommended 1o allow completion and validation
of information. The data architecture is defined in an
entity-relationship diagram. An entity is some per-
son, chject, concept., application, or event from the
real world about which the organization maintains
data. A relationship is a mutual association between
entities,

For instance, a customer creates an order. Cus-
tomer and order are entities; create is their mutuoal
relationship. Figure 5-14 shows a basic ERD that
summarizes this relationship. ERDs can be much
more elaborate and include the number, or cardinal-
ity, of the rclationship, and information about

Reengineering Methodology 131

Customer

Croates

Order

FIGURE 5-14 Sample Entity Relationship
Diagram

whether or not the relationship is required. Cardi-
nality identifies one-to-one, one-to-many, and many-
to-many relationships. Each customer can have
many orders; thercfore, this is a one-to-many rela-
tionship. So in this ERD the cardinality is one-to-
many. The many side of the relationship is shown
with ‘crow’s feet’ on the diagram. Orders don’t
come from thin air; there must be a customer to have
an order. Conversely, customers are not required to
always have orders. Therefore, customer is required,
and order 1s optional in the relationship as signified
on the diagram by the short bar and small oval,
respectively.
The steps, then, to developing an ERD are:

» [dentify data cntitics, including new entities
required to attain and name organization goals

» Link entities to show their interrelationships

a Define relationship cardinality and the
required/optional nature of relationships

NETWORK ARCHITECTURE. The enterprise
level of network architecture defines organization
activities from the functional decomposition
performed at each location and communica-
tions requirements between them. The architecture

132 CHAPTER S Organizational Reengineering and Enterprise Planning

Locatian 1

Localion 2

Location 3

Location 4

required.

Interdependent activities; constant contact requirad.

Coordination and information sharing aciivities;

intermittent contact required.

No connection—independent aclivities. ro regular cantact

FIGURE 5-15 Plastics Company Network Architecture

described in this section is of the current organiza-
tion. During reengineering, if the changes recom-
mended affect the locations of work or the activities
of work, then the network architecture is redrawn to
mirror the recommended organization. When the
changes are presented to the sponsor for approval,
the old network and recommended network archi-
tectures should be comntrasted to highlight the
changes.

The process hierarchy defined functions, activi-
ties, and processes. The network architecture could

define any of these levels. For ABC Video, we
would choosc the function level because there is
only one work location. For the plastics company ex-
ample {see Figure 5-15), the activity level is chosen
because functions located in more than one place
may not include the same activities at all locations.
Using the activity level gives a further level of detail,
and accuracy, to the work. If the company were very
decentralized and diverse, the analysis could be at
the process level,

For the architecture, each activity is placed in a

Reengineering Methodology 133

|LAN4 -

Locatian 1 Location 2 Location 3 Location 4 Location 5
WID- : { |L MAIN
SIZE : FRAME

LANS'

-

wMD- | | MID- | ~1

SIZE } SIZE I

| :
1 |

CAD/ | | CADf |

cAM | | CAM [

] L

Legend:
= Permanent Link

FISURE 8-16 Plastics Company Technology Architecture

circle within a square identifying a location (see Fig-
ure 5-15). The circles are connecled when the activ-
ities require communication to complete their work.

TECHNOLOGY ARCHITECTURE. The tech-
nology architecture creates a netwuork diagram of ex-
isting technology at cach location using a network
technique similar to the network architecture (see
Figure 3-16). Then, the technology plattorms are
connected with lines to show telecommunications
linkages between them. Dotted lines are used to
show dial-up linkage. Solid lines are used to show
permanent conneclions. At this level, other special
hardware, such as imaging, CD-ROM, or technolo-
gies such as ISDN, are connected to the platform to
which it is attached.

Like the network architecture this is a snapshot of
the current technology deployed throughout the
organization. If the reccommendations for the re-
designed organization climinate or change locations,
a second technology architecture is created to
depict the new view of the organization.

At this point, the tcam is complete in their data
gathering. The team cenducts a group meeting with
all previously interviewed individuals to summarize
their findings and present the diagrams. The purpose
and sole focus of the meeting is to verify the accu-

racy of the information presented. No further analy-
sis, and no suggestions on the analysis, should be
discussed at this meeting.

Architecture Analysis
and Redesign

The analysis uses a serics of matrices matching the
architectures to redesign the organization, its data,
applications, and technology infrastructures. The
process and data architectures are the basis for the
organization and data design. The current applica-
tions are mapped to the redesigned organization and
data to recommend changes to the application envi-
ronment, The technology and network architectures
are analyzed to recommend telecemmunications and
technology infrastructure changes that best meet the
enterprise’s goals. These analyses are discussed
here.

Organization and Data

A process called affinity analysis is used to analyze
the data and processes. Think of this as normalizing
data across the organization. Affinity means *attrac-
tion’ or ‘closeness.” Affinity analysis clusters pro-
cesses by the closencss of their functions on data

134 CHAPTER &

Organizational Reengineering and Enterprise Planning

Purchase Vendor invemory
Entities = Order PO llem Item [tem Vendor
Progesses =
Identify Items
& Vendars R R CRU
Call Vendor to
Verify Avail/Price Ry RU
Create & Mail Order CRUD CRUD CRU R R
File Order Copy
by Vendor R R
Identify Late &
Problem Orders R R R R AU
Calt Vendor &
Inquire on Order RuU RU RU A R
Verify Receipts
against Order RU RU RU
Send Invoices to
Accauntant RD RO

FIGURE 5-17 ABC Video Data/Process Matrix

cotities they share in common. Because the average
data/process matrix has about 400 entries, affinity
analysis is best accomplished through an automated
tool, such as ADWTM3

A matrix of processes from the process hier-
archy diagram and data entities from the entity-
relationship diagram is created. The processes are
written in rows down the left side and data entities
across the top (see Figure 5-17), Use the lowest
level processes, such that all elemental processes
for the organization and application area are pres-
ent, When writing the process name, append a
prefix to identify the activity and function from the
hierarchy diagram.

In each cell, identify the functions each process is
allowed to perform on data, Possible functions arc
create {C), retrieve (R), update (LN, and delere (D).
One or more of the letters, as defined by the current
organizational responsibilities, are entered for cach

5 ADW is a trademark of Knowledgeware, inc., Atlanta, Ga.

entity. This matrix gets i1s nickname from those
functions; it is a CRUD Matrix.

Affinity analysis relates processes by their re-
sponsibility in crearing shared entity information.
The create responsibility for 80+% entities shared
between processes shows high affinity. An affinity
matrix is iteratively refined by affinity groups or
processes with cntity creation responsibility. In a
typical 20 x 20 matrix with 400 cells, five to seven
affinity clusters will emerge. Affinity clusters may
contain processes from several current organiza-
tions; organizational location of responsibility is not
of interest in this exercise.

Several clusters may overlap. This is normal and
not a cause for worry. If only one cluster emerges,
clustering continves with analysis of update respon-
sibility, and, if necessary, delete and retrieval re-
sponsibility. When a reasonable number of clusters
emerges, the next step begins. A reasonable number
may be one to five clusters for a small organization,
such as ABC, or six to nine for a large organization.

Figure 3-18 shows affinity clusters for ABC. A
first analysis of create responsibility would place
Create & Mail Order in a group and Identify Items &
Vendors in a group without classifying the other
entities. The final clusters shown in the figure
emerge after also analyzing update, delete, and
retrieval responsibility. The lines highlight the clus-
ters and simplify diagram interpretation; they do not
necessarily include afl actions in the clusters.
Notice that the Call Vendor to Verify .. . process
overlaps both clusters. It is placed in the second clus-
ter because it also updates Vendor information.

The next step is to analyze organizational ade-
quacy. Each process is individually analyzed first to
ensure process-goal correspondence. If the process is
specifically tied 1o the organization goals, objectives,
and mission, matk it for retention. If the process is
not tied to the organization goals, objectives, and
mission, either link it to geals or objectives, or mark
it for elimination.

Reengineering Methodology 138

Next, for processes that are candidates for elimi-
nation, determine if they also create, update, or
delete data. What is the relationship of this process
to ‘close’ processes? Is it in a sequence with other
processcs? If so, can those processes take on its data
responsibilities (thus enlarging the scope of the
process)? If the eliminated process also stands alone,
where elsc is the data used? If the answer is no-
where, mark the data for elimination, [Plan to return
to the individual(s) who identified either the process
or the data to confirm that you have not missed some
information linking the process or data te the mis-
sion.] If data is created by the process marked for
elimination, but updated and deleted elsewhere, can
the other processes assimilate data creation? What
other information will those processes now need in
order to be able to create the entity? Ask similar
guestions for updating and deleting the data.

Next, analyze the current organization design,
First, is each data entity created only in one process?

Purchase Vendor Inventory
Entitles = Crder PO Itam Item ltem ‘endor
Processes =
Create & Mail Order CRUD CRUD CRU R R
Call Vendor &
Inguire on Crder RU RU RU R R
Verify Receipts
against Order RU AU RU R
Send Invoices to
Accountant RO RD
Fite Order Copy
by Vendor R R
Identify Late &
Problam Orders R R R R RU
Identify ltems
& Vendors R R CRU
Call Vendor to
Verity Avail'Price RU RU

FIGURE 5-18 Affinity Clusters in ABC Data Process Matrix

136

If not, is there some business reason why two
processes are creating Lthe same data? Or is there his-
torically introduced redundancy? IT the former,
continue the analysis. If the latter, combine the
processes and eventually redo the affinity analysis.
Second, are the processes that cluster together in the
same department? If so, the organization necd not
change. If not, then realign the organization bound-
arics to have all processes that create the same data
reporting to the same manager. Expand the scope of
the pro-cesses to include as much of the create-up-
date-delete processing as possible. Needs for re-
trieval or access affect future plans rather than this
decsion process.

When the process analysis is complete, the
remaining processes are all critical to the organiza-
tion mission, The nexl task is 1o tentatively redefine
jobs within the context of the remaining processes.
The goals of job redesign are to enlarge and enrich
the jobs, and to eliminate inlerprocess dependencies
through job design. Intcrprocess dependency is clim-
inated or reduced by the caseworker approach to
Job design and by expanding data access to all who
use it.

To definc a job, begin with the processes in a
function. Add processes to the job until either the
skill mix or activity served changes. Then, define
another job until either the skill mix or activity
changes. Continue to define jobs untif all processes
are assigned. There may be jobs that span activities
but they should be exceptional.

After jobs are completely deflined, map them (o
functions by their affinity, that is, in terms of their
data creation and usage. Do not pay attention to the
number or types of jobs reporting to functions at this
point. Again, concentrale on eliminating errors,
paper, and dependencies. When all jobs arc mapped
te activities, the [irst phase of organization redesign
is complete. The next phase takes place during the
implementation planning.

The second analysis and redesign that results
from process/data analysis is for subject area data-
bases and applications to support them. This is a
morc subjective analysis than jub redesign because
there is no theory of applicalion development and
how to size applications. The current thought is that
applications that support wcll-defined subject areas

CHAPTER & Crganizational Reengineering and Enterprise Planning

will provide the best organizational support. The rea-
son for this is that subject arcas, data entitics, and
attributes are all fairly static. With well designed
data, the processing can change without affecting
the database.

First, use entity clusters 1o deline subject area
databases. Check that cach entity is also linked to at
least one goal or ebjective. If an entily is not linked,
either establish the correspondence, or mark it for
elimination. Converscly, analyze the processes
which use the entity. If this is the only data used by
the process, but the process is tied to some goal,
determine the presence of data to measure progress
toward the goal and, if needed, add a new entity to
the list; otherwise, if the rclated process also stands
alone, mark both the entity and the process for
elimination.

The subject area databases defined by affinity
analysis should be mapped to current, antomated
applications. If the subject areas are completely
automated and the applications are integrated, no
changes are needed. Rarely is this the case. Usually
several applications process pieces of subject area
data and both manual and automated usage of data
is required. The only integration is through the cxpe-
rience of users who know where to go for informa-
tion they need.

Redefine applications to support each subject area
of data. Define application changes for process
changes that reduce problems. Define ad hoc guery
facilities for all jobs requiring retricval access 10
data. Assume on-line processing for most applica-
tion work, Identify and recommend technologies that
streamline and speed information storage and deliv-
ery. Based on the problems and selutions identified,
determine the potential impact of applications for
meeting geals. Prioritize applications for develop-
ment to achieve the greatest impacts first.

Network/Technology Design

Before either (the network or Lthe technology designs
are dong, the receptiveness of the sponsor and man-
agers to the changes in jobs and applications should
be verified. H they support the work to date, the net-
work and technology analyses can continue. If they
du not support the job redesign or are rcluctant about

application suggestions, those aspects of the reengi-
neering must be defined acceptably before this
analysis.

There is no theory of network or technology
design at the enterprise level. Rather, we have rules
of thumb that must be evaluated in each business
context. First, tf the job redesign and process analy-
sis substantially change the activities being per-
formed in the organization, the enterprise network
model should be recast in terms of the revisions.
Next, if locations are significantly different, the tech-
nology model should be redrawn Lo reflect revised
lccations.

When the two network diagrams are acceptable,
they are compared and analyzed to recomimend new
and changed technologies for supporting the new
organization.

Using the technolegies identified as needed to
fuily support jobs, develop an overview of the tech-
nology for the organization. Classify types of appli-
cations on mainframes, local arca networks (LANSs),
and stand-alone personal computers. Classification
should identify applications by size, ‘corporateness’
of data, data sharing requirements, specialized tech-
nology required, and number of users,

Across the organization, rationalize the use of
fechnology resouwrces, minimizing the overall
cost to the organization. If new technologies are
recommended, develep estimates of implementa-
fion costs and benefits, including average cost
per expected user employee, If possible, identify
incremental costs for expanding the user base
once the technology is installed. Include training
costs in the estimates. Identify and recommend pos-
sible uses for technologies 1o reduce incremental
costs of use.

This activity is onc in which the IS representa-
tives have the most value added during reengineer-
ing. Being technology literate, IS representatives can
work with their technology planners to determine
possible technologies for consideration that have not
been identified before. The IS people should take the
lead in the rationalization of technologies. Deciding
the type of applications that belong on various plat-
forms for the organization requires the knowledge
and guidance of the IS steering committee or the IS
director (i.e., Chief Informarion Officer, MIS Man-

Reengineering Methodology 137

ager, or some similar title), Explanations of the
applications mapping to technology platforms
should be in business terms but based on sound
understanding of the technology invoived.

An example of network/technology redesign for
the plastics company example is provided. The plas-
tics company architectures in Figures 5-15 and 5-16
are used 1o create the revised network in Figure
5-19. One obvious problem is that organizations that
need to communicate for work are not electronically
connected. This suggests a network change to inter-
connect all interdependent activities. This change
means that the LANs that are only connected
through a star configuration in Locarien ! might be
connected via a backbone to the midsize computer,
Backbones in each location with multiple LANs can
be connected to provide intra-location communica-
tions, freeing the larger machines for inter-location
connection and data processing. With this type of
network design, everyone in the company can com-
municate with everyone else,

After this cursory analysis, we next look at the
technologies used for subject databases and appli-
cations. First, the subject databases are added to the
technology map. If pieces of databases are scattered,
integrate them or determine distribution require-
ments, This type of recommendation should be
coordinated with the applications recommendations
which are probably similar. Recommendations about
centralization, decentralization, federation, or distti-
bution of both data and processes should be consid-
ered. Changes in all infrastructure software such as
telecommunications monitors, database manage-
ment software, terminal interfaces, and so forth
should be considered for each activity at each loca-
tion. Advantages and disadvantages of all technolo-
gies, current and proposed, should be developed and
an estimated cost-benefit analysis developed.

In the plastics company example, software and
applications are added to the network/technology
analysis shown in Figure 5-20. Order information is
only available at Location 1, even though all sales
and product management organizations (Locations 1
and 2) require access. These data differences in what
currently exists to what is required show the type of
findings in network/technology analysis. To deter-
mine the best course of action, more infermation

138 CHAPTER S Crganizational Reengineering and Enterprise Planning
Location1 | Location2 | Locatond@ 1 Locationd 1 pcalion 5
MID- * | | : MAIN
SIZE | T — L FRAME
L T i T
i | MiD- | | MID- |-
! ! SIzE | ! size| !
Lan1| | |eanz|! ! - | : :
' i | PC'S I | JLAN 5[1
I : I i I :
LANZ| : caor| 1 [eap] !
! ,' CAM | ! cam| !
I 1 I I
1 | i !
] 1 1 |
T T T T
Current ! ' ! !
Applications X | . X
| | 1 |
Customer i Financial . R&D ! Scheduling | Accounting
H | | | 1 : :
Maintenance : ?;lanallgel:'renl ! R&D ' Manufacturing! Consohdlatlon
Order (localonly) 1 Manufacturing | Control | Accounting
Processing ! ! ! Payroll ! {local only)
Personnel | | | focalenly) | Financial
Management | l | | Management
I I 1 I
Payroll {Loca- ! ! | (local only)
tions 1,2,) ! ! ! I Payroli
Accounting : i ! L {local only)
. 1 | |
Financial X ' i i
Management | H | |
{locaf only) ' ! : X
| } 1 |
1 | | |
Required , : ; X
Applications ' . : !
] 1 [] 1
Customer , Customer ! R&D i Order Inquiry | Mo change
Maintenance \ Maintenance | Rpap . Subsystem .
|
Order ! Order E Manufacturing |: of Order E
Processing ! Processing | ! Processing !
Personnel | Accounting | | Scheduling |
| I ' I
Management ! {local only) : ' Manufacturing'
Payroll Loca- | Financial : i Contral :
tions 1 & 2) . Management | ! Payroll '
Accounting i flocalonly) | | (localonly)
| | | |
Financial : : : :
Management ! : | |
{iocal enly) i i i i
1 Il Il 1
Legend:
= Permanant Link
------ = Dial-Up Link

FIGURE 5-19 Plastics Company Network and Technology Analysis

Reengineering Methodology 139

Location 1 [Location 2 I: Location 3 i Lacation 4 i Location 5
MID- i |: i :‘ MAIN
$IZE | [oma— T o= e - FRAME

I i MID- | MID- | T

| | size | | SIZE |
Lan1| | Lanz| | | | ' |

! ! | PC'S | ! iLAN 5 !

1 | | |

LAN3| | CAD/| | canr]

: i CAM | | CAM i

! T 1 ;

I | I I

1 | | |

T T T T
Oparatingf ! : : \
Database ! : : !
Software : | | .

|] | I
IBM MYS ! Novell'Sybase | |[BM MVS 1 IBM MVS 1 IBM VYMICMS
IBM/DB2 ! | IBM/DB2 | IBM/DB2 | IBM/DB2
Novel/Sybase | I: Novell’Sybase i Navel/Sybase i

| Legend:
= Permanent Link
------ = Dial-Up Link

FIGURE 5-20 Plastics Company Technology and Software Details

might be requested of the locations. For instance,
do they need up-to-the-minute information? Why or
why not? The answer to this question determines the
need to redevelop the applications as on-line rather
than batch. If the locations need up-to-the-minute in-
formation, on-line applications are required. Let's
say that the sales and product management informa-
tion users need orders only as of the previous close
of business and that customer service agents in
Location 1 would like up-to-the-minute information
because most changes are made the samc day. This
information about needs gives the reengineering
team the details they need (o make intelligent rec-
ommendations about application changes. In this
case, either on-line order entry with retrieval, or the
entire application as en-line might be acceptable
alternatives.

Next, consider new technologies to manage paper
and work flow. For instance, dec using groups need
facsimiles of the paper forms? In some industries,
such as insurance, the answer would be yes. In plas-

tics manufacturing, the answer is no. So, imaging or
other micro-forms management hardware and sofi-
ware are not considered.

Specific operating environments should be con-
sidered next. If the networks are used to pass elec-
tronic mail and data files back and forth, the
operating environments do not necessarily have to
be the same. If, however, on-line query and file shar-
ing across environments is desired, the network
operating systems and database management soft-
ware probably should be the same to simplify user
access. This type of decision is aided by develop-
ment of a cost-benefit analysis for data access using
consistent software. What is cost of change? What
is the risk and cost of not changing? How much
added time is required, per request, to formulate and
obtain information with no change, and with
change? The answers to these questions are uscd to
determine the redesigned operating environment.

In the plastics example, the current environment
down-loads information nightly from Location 1 to

140 CHAPIER 5 Crganizational Reengineering and Enterprise Planning

Locations 2 and 4. The managers at those locations
would like access to interim data /f the applications
are moved to an on-line environment. [n other
words, they want the access if the data are more cur-
rent. Customer service needs current information.
We decide to move to the on-line environment and
provide networkwide access to data and services on
the net. If the nevwork operating systems (NOS) and
data bases are incompatible with this idea, they
would need to be replaced and made compatible.
To summarize, the network and technology archi-
tectures are superimposed and compared to decide
company changes. Then, technelogy requests and
application and software recommendations are
superimposed on the revised technology diagram,
Evaluation of requests, suggested changes from IS,
and recommendations from the organization design
team takes piace by analyzing each change. Change
evaluation includes cost-benefit analysis, develop-
ment of advantages and disadvantages of change,

and issue analysis with information supplied by

potential users.

Implementation Planning

Once the analysis and recommendations are com-
plete and tentatively approved, a plan to prioritize
and sequence the changes is developed. A reengi-
neering study is of lirnited use if there is no road map
for how to attain the recormmendations based on
where the organization is today. Implementation
planning designs the map. The steps of this phase
are:

Develop job descriptions.
Define the organization.

. Plan information technology.
Plan training.

Plan implementation.

o

Define Job Descriptions

This is a first-cut at describing the new positions.
The jobs still require human resources evaluation
and refinement during the next stage: implementa-
tion. To develop jobs, we reanalyze the tentative job
descriptions, attending to data needs for each job.

We define jobs as including related job skills for sim-
ilar, related data. For each job, list the processes,
data, and skills required of an incumbent. When the
subject arca database changes, create a new job, but
keep as a goal that each job should de some ‘whole
thing,” have decision power, access to all needed
data, and be sclf-contained. Keep in mind that con-
straints on job identification are data self-sufficiency,
process self-sufficiency, and minimal coupling to
other jobs and processes.

For each job, identify the processes and entities.
Identify the technologies that would achieve the job
objectives with the utmost speed and accuracy. Use
suggestions (and return for more specific informa-
tion if necessary} from interviewees about technol-
ogy that might be used. At this point, do not worry
about capital expenditures for technology. Keep
technology information for the technology/network
analysis.

Question all current metheds of work and ail
process dependencies. For instance, do you need
paper copies of orders? By law, you need records of
ordcrs, not paper orders. Devise schemes that elim-
inate paper, eliminate creation of paper, and elimi-
nate any handling of paper. Replace paper with
technology whenever the information must be re-
tained for legal or governmental compliance.

Concentrate on implementing change to eliminate
all identified problems. Relate each process and
entily 10 one or more problems identified; determine
how to improve quality of process and eliminate the
errors. Finally, concentrate on eliminating depen-
dencies between functions and between processes.
Enterfunctional dependency is minimized by elimi-
nating physical interactions or replacing them with
technology based interactions, For instance, elimi-
nate shipping papers by providing the shipping
department with access to the order database.

For each job within each process, write job de-
scriptions to align job poals with the corporate goals
and objectives. The outcome of this exercise is
to give every individual the means—management
structure, data, and technology—of meeting those
goals. Give every individual, at every level, specific
measurable responsibilities. Recommend changes
to the compensation plans to relate compensation to
meeting/exceeding of objectives and goals.

For each newly clustered, enlarged job, analyze
its relationships with other jobs to minimize inter-
job linkages. Reanalyze each job to ensure data and
process self-sufficiency, Finally, define defect-free
work procedures, If errors must be dealt with,
describe where they might occur and their proper
handling.

Define the Organization

A first-cut organization structure will have three lay-
ers: CEQ, functional managers, and everyone elsc.

The implication is that self-directed work teams
with either a limited hierarchy or @« matrix manage-
ment organization will result. Other organizational
ferms can result but are not specifically defined in
any of the reenginecnng methodologies. The steps to
developing a new organization design are: map jobs
to functions, analyze relationships between jobs
placing jobs in clusters or work groups, based on
data self-sufficiency, process self-sufficiency and
minimal coupling of clusters, and determine the
location of work (in large organizations some jobs
are centralized, some decentralized, and some cen-
tralized with replication in the remote locations). If
the first-cut does not result in a completely irrational
organization design, it might be accepted as it is for
trial. If there are too many different clusters {(usc
5-7 as the rule) or too many different jobs in a clus-
ter (use 5-15 as the rule), additional reevaluation
might be required.

Grouping of jobs is based on their interdepen-
dence. There are three types of interdependence in
organizations: pooled, sequential, and reciprocal.
Pooled interdependence is a relatively indepen-
dent, low level of interactien between depart-
ments or jobs. Sequential interdependence defincs
a serial relationship between departments or jobs.
Reciprocal interdependence defines highly interre-
lated activities that are worked on jointly by multiple
units requiring feedback and constant adjustment.
For instance, a bank loan depariment might be
viewed as relatively independent (i.e., pooled} from
other parts of a bank in that they need custemer
information received from the customer for their
decision with no other uniis involved. Purchasing,
receiving, and payables are scquentially interdepen-

Reengineering Methodology 141

dent in that they all use purchase order data. Yet all
these job types have different job skills; that is, they
each make different decisions and perform different
actions based on their access to the purchase order
informalicn. A reciprocally interdependent depart-
ment is a hospital intensive care ward in which many
specialists with different skills and knewledge all
work toward the same goal of patient recovery.

To group jobs, three methods of organization
design deal with the three types of inerdependence.
If the jobs relate to each other sequentially, cluster
jobs with similar skills together, Affinity groupings
of processes and entities are used to decide skill
requirements. Clusters may be sequentially depen-
dent with jobs within each cluster providing different
skiils. Plan (o provide shared database access to link
clusters; this minimizes paper movement and en-
sures data access.

For exarnple, look at the bank lean department
again. Bank loan department processes arc sequen-
tially related after the loan is made. Once the loan
commences, records are established and payments
are received. posted, and analyzed. In an assembly
line approach, these processes are different jobs. In a
caseworker approach, all of these processes are
within one job. Caseworkers could conceivably
monitor loans for any customer, but usually have a
casc “load’ that is defined by alphabetic groupings of
last initial of loan-maker names or some similar
scheme.

If the processes have pooled interdependence,
then job clusters contain one job type. For pooled
interdependence, use subject area data as the decid-
ing factor on when to create a new job. Each job,
cluster, or group should have its own data self-
sufficiency,

If the jobs are reciprocally interdependent and
pass work back and forth, or need discussion on
details regularly during the performance of work,
design work groups in the same way you designed
jobs. That is, design work groups to include all skills
needed to perform one activity or function. Find all
of the jobs that reciprocally share informarion; then,
define the se1 of diffcrent jobs that would comprise
a work group. Try 10 keep groups small with under
12 different jobs represented. For instance, engi-
neers, raw materials purchasing, manufacturing, and

142

quality control may all need access to the same
design drawings, specifications, and components
lists. They may be able to identify alternalives, make
decisions, and improve quality simply by sharing
responsibility for finished products. These job types
would be clustered in work groups {i.e., quality
circles),

Plan Information Technology

The next step is to redefine the IS environment. The
rationale for deciding priorities is to correct the ma-
jor problems tirst, and/or meet the goals/objectives
with the largest impact on net income. The steps to
develop an IS redevelopment plan are:

1. Compile 2]l subject area database and appli-
cation changes, redevelopment, enhancement
requirgments,

2. Compile alt technology and networl infra-

structure requirements,

Map technology and network needs to dala-

hase and application needs.

4, Define software reengineering projects.

5. Define new application development

projects.

Determine priorities for all projects.

7. Develop a plan for two years of development
and reengineering work. Develop a tentative
35 year plan for the remaining projects.

w

o

To develop the technology plan, create three
matrices: technology/process, process/entity, and an
entity/technology matrix. The technologies are all
those identified by interviewees and team members
ay potentiallv usetul in the organization. Complete
cach matrix. In cach cell of the process/technology
matrix. enter whether the technology speeds deliv-
CTY, IMPTOVES ACCUTACY, IMProves service, or lowers
cost. Enter all improvements that apply. This matrix
is used Lo delermine priorities for change.

In the entity/tlechnology matrix identify which
data entities are already fully or partially automated
and the type of automation. Types of automation
include file, application database, or subject darea
database,

CHAPTER S Organizational Reengineering and Enterprise Planning

Using the original process/entity matrix, identify
the extent and type of automation for each process/
data cell. Types of automation for processes include
full or partial, and batch, on-line, or real-fime. These
matrices may not be 100% complete, but are used
to guide the implementation planning process by
providing a summary of planned changes.

Plan Training

Develop a training plan to upgrade skill levels to
meet new performance requirements, recommending
how current jobs can be mapped onfo the new jobs.
This should be a skeleton plan defining sequencing
of training and approaches—outside company,
inside company, phased by department, phased over
time, and so on. Actual fraining details cannot be
complete until human resources” redefinition and
formalization of job descriptions and levels, and
estimates of number of people to be trained for each
job are known. The plan should be sufficiently
detailed to allow a pilot test of the training and new
work approach before its complete deployment.

Plan Implementation

Develop an implementation plan that reflects some
phased approach to changing the organization. The
number of people in any one job type might be dif-
ficult to determine if the jobs arc very differcnt from
the present. Moving from the assembly line to the
casewaorker or group work approaches changes the
entire equation; more, rather than less, people might
actually be needed. Human resources might be able
to assist in this type of estimating. If estimates of
numbers of people in caseworker jobs are too vaguc,
a pilot study can be conducted to facilitate estimating
of total personnel needs.

When the mapping is complete, summarize the
recommended changes and determine how they can
be implemented. The possible approaches are pilot
organization, phased implementation (by function,
location, business priority, or application), or total
cut-over. Develop timing of changes. [f the changes
are expected to take more than six months, deter-
mine how the organization, processes, data, or tech-
nology can be streamlined, changed, added to, or

eliminated row to provide immediatc improvement
and correction of some problem(s).

ENTERPRISE

ANALYSIS

WITHOUT

ORGANIZATION
DESIGN

Even without the extensive organization and lech-
nology redesign of reengineering, an enterprise
analysis helps managers establish applications prior-
ities and develop a plan for introducing new applica-
tions and technologies into their organizations.

The same analyses for entities and processcs arc
performed. Current automation of the affinity clus-
ters are summarized on the diagram. Recommended
changes are mapped to organization goals and strate-
gies to decide priorities for change. The changes
{rom enlerprise analysis are incremental and relate 0
applications and subject area databases. Swceping
technology and network redssessment arg miss-
ing from this activity, Likewisc, organization prob-
letns and finding obsolete functions are not goals of
this analysis.

When organization problems are identified, they
can be referred to the sponsor for consideration. One
example of organization problems is identified from
the entity/process matrix after affinity analysis is
performed. Each process should have a prefix identi-
fying its original function and activity relationships.
If the function/activity prefix for each creating pro-
cess for each entity is not the same, an anomaly is
found in that multiple managers have responsibility
for creating the same data. The idca is that processes
which de share responsihility for creating some
entity should report to the same manager. The same
manager can minimize conflicts and maximize
coordination and control over data creation.

A second type of organization problem is found
in the process hierarchy diagram. Because the dia-
gram is built to describe its information without
regard to current organization, some overlap or

summanry 143

duplication of activities may be found. When this
occurs, an effective technique for showing duplica-
tion, for example, is to draw shadow boxes, behind
the process (or activity or function) duplicated.
Then, on each box, identify the organization having
the responsibility, one box for each organization.
This effectively communicates organizational over-
lap without a need for additional comment, and is
less inflammatory than verbal or text descriptions
because it is presenting organizational facts,

AUTOMATED
SUPPORT TOOLS FOR
ORGANIZATIONAL
REENGINEERING
AND ENTERPRISE
ANALYSIS

The tools needed to support organization reengi-
neering are similar to those for project plan-
ning, but include process hierarchy diagrams,
entity-relationship dlagrams, network architectures,
and technology architecturcs. Many tools support
one or more of these requirements. Few tools on the
market currently support all of these requirements,
The automated support toels are summarized in
Table 5-2.

SUMMARY

Reengineering of an organization reevaluates
data, processes, technologies, and communications
needs to ensure that an enterprise meets its goals
as stated in its mission statement. The activities
of reengineering include the dala collection, analy-
sis, and development of recommendations to meet
organizational geals through radical redesign
of work.

Reengineering is intended to alter the shape and
operations of an organizalion. Frequently, organiza-
tions and managers do not want sweeping change.
When incremental change is desired, enterprise level

144 CHAPTER S Organizational Reengineering and Enterprise Planning
TABLE 52 Automated Support for Organizational Reengineering and
Enterprise Analysis
Product Company Technique
Analyst/Designer Toolkit Yourdon, Inc. Entiry-relationship
New York, NY diagram (ERD}
Anatool, Blug/60 Advanced Logical 8W ERD
MacDesigner Beverly Hills, CA
Bachman Bachman Info Systems Bachman ERD
Cambridge, MA
CA-products Computer Associates International, Inc. Data modeling
Strategic planning
CorVision Cortex Corp. ERD
Waltham, MA
Deft Deft ERD
Ontario, Canada
ER-Designer Chen & Assoc. ERD
Baton Rouge, LA
Excelerator Index Tech. ERD
Cambridge, MA Structure chart
Foundation Arthur Anderson & Co. ERD
Chicago, IL Project management
Project planning
IEF Texas Instruments ERD
Dallas, TX Enterprise analysis
and planning
Process hierarchy
IEW, ADW Knowledgeware ERD
{P5/2 Version) Atlanta, GA Enterprise analysis

and Flanning
Functional decomposition

analysis uses a subset of the analtyses of reengincer- Dunckel, Jacqueline, Good Ethics, Good Business: Your
ing 10 develop applications and subject area darabase Plan for Success. North Vancouver, British Columbia:

development recommendations. Self-Counsef Press, 1989.
French, W. L., and C. H. Bell, Jv., Organization Develop-

ment. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1984,

REFERENCE S Galbraith, Jay R., and Daniel A. Nathanson, Straregy
Implemeniarion: The Role of Structure and Process.
Davenport, Thormas H., Process Innovation: Reengineer- St. Paul, MN: West Publishing Co., 1978.
ing Work through Informarion Technologv. Boslon, Galbraith, J. R., Organization Design. Reading, MA:

MA: Harvard Business School Press, 1993, Addison-Wesley Publishing Co., 1977.

References 145

TABLE 52 Automated Support for Organizational Reengineering and
Enterprise Analysis (Continued)

Product

Company

Technique

MacAnalyst,
MacDesigner

Maestro

Multi-Cam

PacBase

ProKit Workbench

Silverran

SW Thru Pictures

System Architect

System Engineer

Teamwork

Telon, and other products

The Developer

Excel Software
Marshalltown, 1A

SoftLab
San Francisco, CA

AGS Mgt Systems
King of Prussia, PA

CGI Systems, Inc.
Pearl River, NY

McDonnell Douglas
St. Louis, MO

Computer Systems Advisers, Inc.
Woodcliff Lake, NJ

Interactive Dev. Env.
San Francisco, CA

Popkin Software and Systems, Inc.

NY, NY

LBMS
Houston, TX

Cadre Techneologics Inc
Providence, RI

Panzophic Systems, Ing,
Lisle, IL

ASYST Technology, Ing,
Napierville, IL

Decision table
Entity class hierarchy
ERD

ERD

ERD

Enterprise analysis
and planning
Project management

Enterprise analysis
and planning

Process decomposition
ERD

ERD

ERD

ERD

ERD

ERD

ERD

ERD
Structure chart
Organization chart

Greiner, L. E., und R. O. Metzger, Consufting to Man-
agement. Englewocod Cliffs, NJ: Prentice-Hall, Inc.,

1983.

Hage, J., and M. Aiken, Social Change in Complex
Crganfzations. New York: Random House, 1970,
Hackman, 1. R,, ed., Groups That Work (and Those That
Dan’t): Creating Conditions for Effective Teamwork.
San Francisco, CA: Jossey-Bass, 1990,

Hackman, J. R., and G. R. Oldham, Work Redesign.
Reading, MA; Addison-Wesley, 1980.

Hammer, M., *Reengineering work: Don't automate,
obliterate,” Harvard Business Review, July-August,
1990, pp. 104112,

Hammer, M., “From cow paths to datz paths,” Computer-
world, December 25, 1089-January 1, 1990, pp, 16-17.

IBM Corporation, Business Systems Planning Informa-
tion Systems Planning Guide, IBM Document # GE 20-
0527-1, Armonck, NY, 1978, pp. 1-92.

King, Wiliiam R., “Strategy set transformation,” M{S
Quarterly, March, 1978.

146 CHAPTERS Organizational Reengineering and Enterprise Planning

King, W. R., and D. I. Cleland, eds.. Strategic Planning
and Managemernt Handbook. NY: Van Nostrand Rein-
hold, 1983.

Huse, E. E, Orpanization Development. New York: West
Publishing Co., 1980,

Kouzes, James M., and Barry Z. Posner, The Leadership
Challenge: How to Get Extraordinary Things Done
in Organizations. San Francisco, CA: Jossey-Bass,
1990.

Lindenfeld, F., and J. Rothschild-Whitt, eds., Workplace
Democracy and Sociul Change. NY: Porter, Sargent,
1982

Rockart, John. “Critical success factors,” Harvard Busi-
ness Review, March—April, 1979, pp. 81-91.

Singh, Arvind, Comments from A Business Reengineer-
ing Workshop given in NY to TIA A, Performance
Development Corporation, Princeton, NI, January,
1992,

Sowa, I.F, and J. A, Zachman, “Extending and formaliz-
ing the framewaork for information systems architec-
ture,” IBM Svystems Journal, Vol. 31, #3, 1992, pp.
390-016.

Thompson, J. D,, Qrganizations in Action. New York:
McGraw-Hill, 1967,

Zachman, I. A,, “A framework for information systems
architecture,” /BM Systems Journal, Vol. 26, #3, 1987,
pp- 276-292.

KEY TERMS —
affinity level of effort

affinity analysis legical description
architecture mission staternent

network architecture
network domain
network scope

business activity
business function
business proccss

caseworker organizational
champion reengineering
critical success factor (CSF) pooled interdependence
CRUD matrix process architecture
data process domain

data architccture
data domain

data self-sufficiency
domain

project sponsor

reciprocal interdependence
reengineering scope
sequential interdependence

enterprise architecture stakehoider

inforrnation systems technology architecture
architecture (ISA} techirology domain
framework technology scope

information technologies user commitment

EXERCISES

1. Look at the questions suggested for data gather-
ing on page 125, Think of other possible ques-
tions and why they might be good additions to
those suggested. Discuss your suggestions with
class members.

2. Describe how the information provided for the
four architectures can be used in multiple ways
as the basis for 1S and organization redesign.

3. Discuss the differences in outcomes of an orga-
nizational reengineering project if one or more
of the assumptions in the list on pages 116-117
are not met.

4. Try to develop process and data architectures for
the Abacus Printing Co. case in the Appendix.
Try to do an affinity analysis of the information.
Develop a list of questions you need answered
to do a complete analysis.

STUDY QUESTIONS

1. Define the following terms:

organizational
reengineering

process architecture

technology
architecture

data architecture
enterprise analysis
information
technologies
network architecture

2. What is the motivation for organizational
reenginecring?

3. What are the steps to organizational
reengineering?

4. Why are caseworker or quality circle work
groups preferred to the assembly line approach
to work?

5. What is the 80-20 rule and how does it apply
to reengineering?

6. What is an architecture and why is il important
1o reengineering?

7. What types of architectures are used in
reengineering? What is the purpose of each
architecture?

8. What is an entity and how is it used in the data
architecture?

Q. What is a platform and how is it used in the
technology architecture?

10.

11.

12,

13.

14,

15.
16.

17.

18.

19,

20.

21.

22,

23.

24,

25,

26,

27,

List three prerequisites of reengineering. Why
are they necessary conditions for a successful
project?

What are four assumptions of rcengineering?
Why are different scheduling scenarios neces-
saty for the organization of reengineering
projects?

What is a level-of-etfort approach 1o work?
Why is it used with reengineering?

Why is there overlap between reengineering
tasks? Why is overlap necessary?

What is the role of the project sponsor?

List the types and roles of pcople who should
be assigned to a reengineering project.

Why is data self-sufficiency the major criterion
for scoping a reenginesring project?

Describe a good mission statement. What
makes the difference between a good mission
statemnent and a bad one?

Hoew are critical success [actors used in
reengineering?

List five information sources and the type of
data that the teum gets from each one,
Discuss the conceptual levels of Zachman’s IS
architecture. Which two relate to reengineer-
ing? Why are the others not used here?

What is the purpose of mapping the two levels
of architecture into different domains? Why
the domains chosen?

Who is a stakeholder? Why is a stakeholder
important?

Describe a CRUD matrix and its use.

Why is affinity analysis important? What are
the reengineering results that are based on
affinity analysis?

List three rules of thumb for developing the
network and technelogy recommendations.
Why is implementation planding important

to a reengineering effort? When changes are

Extra-Cradit Questions 147

dramatic, what is a good approach to imple-
menting change in the organization?

28. How does enterprise analysis differ from orga-
nizational rcengineering? Are these differences
significant? Why not do enterprise analysis
only?

29. ‘Which automated support tools provide all de-
sired functionality for reengineering support?

30. What are the functions desired of an automated
support tool for reengineering?

31. What are the key criteria for proper scoping of
a reengineering project? Explain.

* EXTRA-CREDIT QUESTIONS

1. You have been named to lead an organization
reengineering effort for a small, one-location
company. The company has functiens for ac-
counting, purchasing, inventory management,
shipping, and sales. The busincss of the com-
pany is retail sales of furniture. The current
commputer system supports the billing, shipping,
and invoicing process. No one but employees in
the accounting department use or access the
computer at present. Develop a plan and sample
questions you might ask the employees and the
owner for an organization reengineering projeci.

2. What are factors that can cause a reengineering

project to complete faster or slower? Explain.

Imagine that you wark in a company that has all

tvpes of computer hardware and networks:

mainframes, mid-size, PCs, wide-area main-
frame networks, and local area networks. What
arc the issues in defining what data and applica-
tions should be on each type of hardware?

Develop and discuss possible guidelines for data

and application location selection.

LX)

____APPLICATION
__ FEASIBILITY
___ ANALYSIS
_____AND PLANNING

CHAPTIER

INTRODUCTION

Feasibilily is the first stage of application develop-
ment, The purpose of the feasibility study is to
ensure that the organization can accommaodate the
technology, organization changes, and cost of the
new application. During feasibility analysis the
major tasks are: define the scope and boundaries of
the problem, generate technical alternatives, assess
costs, benefits and risks, and recommend an applica-
tion development strategy. The proccdurcs described
in this chapter are used for large, full life-cycle
projects; selective and abbreviated forms of the
analysis are used for iterative development and for
small projects.

DEFINITION OF

FEASIBILITY
TERMS

The feasibility analysis tasks and the terminology
of each are briefly described. The stages of work
during feasibility are: gather information, develop
alternatives, evaluate alternatives, and plan and doc-
ument the recommended approach to development.

148

During the information gathering stage, the goal
15 to develop a request from a vague, peneral state-
ment into a specific request with boundaries and
scope completely defincd. Key business and applica-
tion leverage points are defined during the scoping
activity. A business leverage point is some activity
from which a competitive advantage can be gained.
An application leverage point is some automated
function that might provide a competitive advantage
o the wsing business unit(s). Application leverage
points frequently relate to improvements of betfer,
Jaster, and more to work. Some business and appli-
cation leverage points ate:

Increasc market share

Increase linkage to vendors or customers

Provide desired information that is not currently
available.

Business and application leverage points are
used as the starting point for developing the benelits
that would result from a change in the current
method of work. Benefits can be tangible or intan-
gible. Both benefit types are important for man-
agement to decide whether or not to do the
recommended changes. Tangible benefits are mea-
surable improvements fo a specific work product or
process. For instance, reducing staff by 10 people

and the resulling cost savings arc tangible benefits.
Intangible benefits are not directly measurable. For
instance, improved customer service through inte-
grated database access has tangible and intangible
benefits:

Tangible Benefits

Deercase operating cost by 10% in first year
Inerease market share by 5% per year for three
years

Intangible Benefits

Improve company image

Increase customer satisfaction

Improve employee job satisfaction

Provide faster and more sccurate information to
customer services Tepresentatives

Another tangible benefit might be faster response
time for inquiry requests from five minutes to 15 sec-
onds. An intangible bencfit from the same action
might be improved customer satisfacltion. More
satisticd customers are less likely to go elsewhere
for their products, but proving that customer sat-
isfaction 1s improved is difficult to guantify, und
is intangible.

Also in information gathering, the business envi-
ronment, competitive environment, and currcnt
method of performing the work that wonld be
revised are described in sufficient detail to allow
determination of appropriate changes. The functions
and procedures that are needed in the ncw applica-
tion are identified, as are problems with current pro-
cedures and new functions that arc not part of current
procedures.

After the current problem domain is understood,
alternative approaches to the problems are devel-
oped. Alternative approaches to an application arc
ditferent configurations of work, hardware, firm-
ware, or software. Alternatives can begin with non-
aufomation alternatives, such as change in work
flow, and progress (o different platforms, software,
and designs. Usually between rwo and five altcrna-
tives are considered. Alternative definitions include
the technology, benefils, and risks of ¢ach approach.
A henefit, as discussed above, is some improvement
in the work product o1 process that results from a

Definition of Feasibility Terms 149

specific alternative. Risks are events that would pre-
vent the completion of the alternative in the manner
or time desired.

Risk assessment determines possible sources of
events that might jeopardize completion of the
application. Tn general, the geal is to develop the
project on time, within budget, and without crrors.
Risk assessment and contingency planning help youn
meet this goal. Contingency planning is the identi-
fication of tasks designed o prevent risky events and
tiusks to deal with the events if they should occur,
The goal is to minimize the possibility of the evemt
occurring, but to also have a plan just in case the
worst happens. Having a contingency plan prevents
having to force decisions under pressure.

When the alternatives have been defined. they are
evaluated. The number of requirements met by the
approach is assessed, and the bencfits and risks of
each are weighed to identify the alternative with the
least risk and maost benefit. If an alternative exists
that meets all required and optional requircments,
meeis all benelits, and has the least risk, it would be
the recommended option. Most often, there is a mix
of requirements met and risk incurred, that prevent
sclection of an aliernative based on technical merits
alone. Rather, several competing alternatives might
be further evaluated Lo differentiate between them,
To decide between the alternatives, development
plans, costs, and financial analysis are developed.

A project plan is a schedule of tasks and esti-
mated completion times for application develop-
ment. A project plan includes tasks to be completed,
tentative task assignments, stafting plans, and com-
puter resources needed for the project. From the staff
and resource estimatcs, costs of development are
determined. If there are multiple alternatives, the
costs of each arc computed. The costs are used in the
financial analysis which occurs next.

Several different types of financial analysis might
be performed; the two most common ones are cost/
benetfit, and make/buy. Cost/benefit analysis is the
computation of net present value for each alterna-
tivc. Net present value (NPV) equalizes the cost
estimates by accounting for the time value of money
for multiperiod investments. A make/buy analysis
chooses between alternatives for providing an item,
such as a sofiware application. The make analysis

150 CHAPTER 6 Application Feasibility Analysis and Planning

estimates the cost of building a customized applica-
tion, while the brey analysis estimates the cost of pur-
chasing a package.

Other financial anzlyses, such as internal rate of
return and payback pericd, might also be computed.
Internal rate of return analysis determines the
interest rate which equates cash investment outflow
with positive cash flow. Payback period analysis
determines the number of years required to recover
the cash outlays based on the projected monetary
benefits.

After all the analyses are performed, a final rec-
ommended allernative is defined. Technical and
monetary considerations arc balanced and a recom-
mendation is based on some mix of them. For in-
stance, a recommendation might be based on the
fastest payback coupled with most requirements met.
Alternatively, the decision might be based on the
lowest NPV and the extent to which leverage can be
maximized. When the alternatives are virtually equal
in comparison, multiple approaches to the applica-
tion are presented and the user, IS managers, and
project team decide together what approach is best,
This is often the case.

Finally, a feasibility document is created 10 sum-
marize the feasibility analysis and the recommenda-
tion. The document is a summary of all of the
preceding steps and analyses taken during the feasi-
bility phase. Next, we discuss each feasibility activ-
ity in detail.

FEASIBILITY

ACTIVITIES

Feasibility analysis is an activity that ranges from
several days to several weeks in duration. In general,
a feasibility should be completed in fewer than
12 weeks; after that point, one of two problems
exists. Either the problem domain is too large and
should be broken into smaller problem areas, or the
feasibility team is going into too much detail and
should summarize at a higher level. The informa-
tion at the end of feasibility should be accurate
enough to allow managers to decide on the worth of
pursuing a project, but high level enough that an
analysis phasc to clarify details of requirements is

needed. The information is incomplete with about
95% confidence in the accuracy of the information.
Similarly, a budget and project plan produced at this
high level of abstraction should have about an 80%
level of confidence attached to it. This means that the
budget and time schedule are £20% inaccurate, and
implies budget adjustment later in the project. [n this
section, we dctail the actions of feasibility analysis
and project planning cutlined in the previous section,
For each topic, guidelines for completing the work
are presented and followed by an example of the
activity for ABC Video.

Gather Information

Guidelines for Gathering Information

The four major tasks during information gathering
are:

1. Define the business and woerk environments
2. Describe current system of work

3. Identify key benefits and leverage points

4. Identify broad system requirements

The activities are done in parallel rather than sequen-
tially. As information is collected, leverage points
and requirements emerge from discussions on which
old procedures to keep and what new technology,
procedures, data, ot interfaces are needed.

If an eaterprise level plan exists, the data gather-
ing begins with the architectures to oblain an
overall view of the current data, processes, and tech-
nology of the target business area(s) (see Figure
fi-1). The process decompuosition is used to identify
and match the affected jobs and tasks with those sug-
gested by the requesting application sponsor, The
data architecture is used to identify what data are
involved and the extent to which the data are already
automated, The technolegy architecture is checked
to identify hardware, software, and applications sup-
porting the work functions today, and to Identify
polential platforms as operational sites [or the new
application. For each job affected, the technology
architecture matches jobs (from the process archi-
tecture) with applications capabilities.

The architectures, if present, are the basis for
obtaining information from the uscr departments

Feasibilty Activities 151

Modsl Process Dala Network Technology
T T T T
: I i i
1 Process | Entity Relationship Dia- | Logistics I Tachnology
' Higrarchy | gram | Network | Network
I i | i
1 1 1 I
1 1 1 I
1 1 1 I
1 H] |
Enterprise i ; : .
Leval | : I_l_"O‘l_I ! !
Analysis i i ! |
: ; : ;
I : ! i
I] I
i Function = | Entity = Business Entity ! Node = Business | Node = Computer
| Business Process | Relnship = Bus. Con- | Process I Link = Network Link
| \ straint ' Link = Comm. Need !
I l : !
| : 1 |
1] . 1
— | ldentify and match |dentify data and 1 Kentify potential 1 Identify hardware,
easiblity affected jobs | extentol data ! operational pratiorms | software, and
Study Use X and tasks | automation H ' applications
1 ! | 1
L | i L !

Adapted from Zachman 1987

FIGURE 6-1

invelved. Recall that the methods of data gathering
{from Chapter 4) might include interviewing, docu-
mcnt review, observation, talking to other compa-
nies, temporary work assignment, and questionnaire
surveys. During feasibility, interviews, document
review, and other companies are the primary infor-
mation scurces. Although the other meihods could
be used, they take more time and elicit more detail
than required for feasibility analysis.

Assume you are doing the information gathering
using interviews. You might work in two-person
teams for interviews so that the project has a built-
in backup for every person, should someone get sick,
called on jury duty, or be reassigned. One person
asks the questions while the other person acts as
scribe taking notes. This method of interviewing
results in fewer misconceptions and errors from for-
getting than interviews by one person. At the end of
every session, follow-up steps should be identified
for both you and the interviewee, For instance, you
might document the interview and ask the inter-

viewee to review and correct your documentation.
You commit te having the material back by a specific

Enterprise Architectures in Feasibility Study

date and request the review within a set time. In this
manncr, you conclude the meeting with a commit-
ment from the interviewee to do the review by a cer-
tain date.

During the writing of interview materials, graph-
ical techniques for both data and processes can be
used to synthesize the findings. The most common
graphical techniques are entity-relationship dia-
grams (ERDs) for data, and process decomposition
and process data flow diagrams for processcs
(PDFDs). Development of these diagrams is detailed
in Chapter 9. An older variant of PDFDs called data
flow diagrams {DFDs) are also used; they are de-
tailed in Chapter 7. In general, ERDs capture infor-
mation about the data entities that are within the
scope of the study problem demain, An entity is any
person, place, thing, or event about which the orga-
nization needs to kcep data. The relationships
belween entities define some business-related asso-
ciation that is within the problem scope. The process
decomposition diagram depicts the organization
tasks that are being studied. The problem area is
compared to the process hierarchy and ERD to

152 CHAPTER & Application Feasibility Andlysis and Planning

ensure correct scoping, PDFDs summarize the pro-
cesses of the problem and relate them to cach other,
the outside world, and (o data entities.

In addition to diagrams which summarize the pro-
cedures and data of the target problem domain, you
also create text documents that describe the current
process, the aspects of the current process to be
retained, and the changes and motivation for
changes. In general, text should be minimized
because it is easily misinterpreted. Diagrams and
graphics are preferred to text. Lists of items are pre-
ferred to paragraph form text. Requirements for the
new application should be as specific as possible,
For instance, a requirement might be stated ‘reduce
turnaround time from receipt of an order through
invoicing from 14 days to 2 days.’ During the sys-
tems analysis phase, the actual details of functions to
implement this requirement are developed.

As we said above, kev business and applicalion
leverage peoints are defined during the data collection
activity. Leverage points arc context specific. What
might be a leverage point in one company and
indusiry might be standard procedure in ancther
company and industry.

An example of leverage points is provided by
examining imaging technology. Imaging technology
automatcs facsimiles of business forms. lmage files
are databases of forms with indexes for retrieval and
linkage to data databases. Applications can be de-
veloped to integrate data and imagc information for
uscrs at terminals, The technology provides both
business and application leverage by improving
work flow and zllowing the management of paper
flow through an organization.

The leverage provided by imaging is highest in
organizations that are information and paper inten-
sive, for instance, insurance and financial services.
These paper intensive indusiries are required, by law,
to provide original document scarch capabilities.
Before imaging technology, these companies either
used microforms or paper, both of which have only
rodimentary indexing capabilities. Microforms
require their own vicwing cquipment that is neither
intelligent, nor capablc of intcgration to an applica-
tian. Paper, if kept, is so voluminous that whole
buildings are dedicated to document storage. Trying
to retrieve specific documents and files requires

armics of clerks and dedication to accurale refiling.
Simply applying imaging technology by itsclf buys
marginal improvement to paper management. The
big payoff s in integrating imaging with software
to manage work.

Work flow management software is integrated
with imaging technolegy to schedule work for
clerks, monitor document locations, and monitor
work progress through any number of departments
(see Figure 6-2). All of these actions can be done
without fear of losing the document because it
is an electronic Image. Printing of the image is pos-
sible if a paper copy is needed by a cletk for some
reason.

Imaging and work flow management together can
flatlen hierarchies, reduce the number of clerks
involved in image production, and eliminate the
need for clerks Lo manage files, Staff reduction is a
business leverage point and a benefit of the activity.
For individual jobs, frustration is reduced because
information can not be ‘removed for use’ from an
image file. Clerks are more productive and their jobs
can be upgraded because the emphasis now can be
placed on understanding and interpreting the infor-
mation rather than on simply collecting all the
information correctly. Thus, an application leverage
point is present in enhancing jobs of the people in the
work flow.

Leverage points identify benefiis of the proposed
application. Other benefits might be present and
should be identified; they may not have a direct
strategic impact. For instance, in keeping with the
idca that most proposcd applications arc to improve
work, benefits about more, faster access, integrated,
or improved quality data might be defined. Similarty,
automation of morg tasks, faster report generation,
intcgration of proccssing, or improved timing of
response might all be benefits. Conversely, the new
application might be expected to reduce staff, iink-
ages between departments, work crrors, and so on.
These benefits are all tangible and measurable and
should be identified.

Intangible benefits are equally important, but are
harder to quantily. Intangible benefits are indirect,
unmeasurable benefits with a high degree of uncer-
tainty. For instance, one benefit of personal work sta-
tions with access 10 software has been a rethinking,

Feasibility Activities 153

b
User | - DBMS Database
n
- d S
e T T
] e
x
o . el Image
Imaging Base
Software
[M
k4
Imaging
Hardware

FHGURE 6-2 Logical View of Work Flow Management Software

by many people, of how they do their work. They
now type their own documents directly and use sec-
retarial support for changes and formatting. They
do their own analyses and perform many different
types of analysis that they could not do, and there-
fote never thought of doing, before they had desk-
top computer aceess. This type of change is an
inditect benefit that increases the effectiveness of a
person’s work, while the tangible benefits deal
mosily with efficiency improvements. Both types of
benefits are important in application decisions.

The SE works with the users to define the tangible
and intangible benefits relating to a project. Benefits
identified are listed in the documentation of the pro-
posed application, and a value is attached to each
one. Tangible benefits are quantifiable by determin-
ing the change expected to result from the new
application. Intangible benefits usually are listed
with a possible range of benefit. In presenting this
information te decision makers, you must be able to
justify why intangible benefits exist. Managers will
ask and expect the reasoning behind any expected
financial gains, whether tangible or intangible.

Now let us tum to ABC Videa to discuss how to
perform the data collection activities.

ABC Video Information Gathering

Of the methods of data gathering available, several
can be eliminated immediately. First, questionnaires
for a total of six employees would be impractical.
All employees are available for discussions during
nonpeak times. Also, studying documentation is
not possible because the manual methods are not
documented. Observation and temporary work
assignment can give Some information about the cur-
rent problems to be solved through automation, but
are of limited value in actually designing the new
application.

Talking to competitors is not feasible because
they do not want to help the competition; however,
to define benefits that might accrue for the ABC
application, knowledge of competitor clerical
assignments and computer systems is valuable.
Observation of competitors is a good way to get
some insight to the benefits Vic might get from

154 CHAPTER &6 Application Feasikility Analysis and Planning

automation. The remaining data collection method,
interviews, should be used extensively for Vic and
the clerks to determine the work flow, problems,
and possibilities for the ABC appiication. To supple-
ment the interviews, we should observe competitors
by using their services for a period of time to get
information about their work assignments and
applications.

For ABC, we define the current environment,
proposed environment, leverage points, and benefits.
Through Vic’s interviews we find that ABC operates
in a highly competitive environment. Large chain
video rental businesses are crowding small one-shop
businesses, like ABC, out of the market. ABC must
remain competitive to stay in business and 1o grow
as Vic expects. Vic sees the future to be in services
offered to customers. In terms of video rental pro-
cessing, service translates into minimal bureaucracy
with as many variations on service to cuslomers
as possible.

Currently, ABC uses a manual method of video
rentals. The customer chooses a video and presents
the video cover (or title) to a clerk. The clerk locates
the video, locates a rental card for the customer, and
writes the current rental on the card. Charges for late
fees are computed from the card if any are owed, and
the customer pays for the current and any late
rentals. The customer signs the rental card which is
filed by the clerk. During the peak business period,
from 6 p.u. to 10 p.u, the rental cards are placed in a
pile for later refiling. Frequently, cards are misplaced
and the customer is then not charged late fees. If a
tape is ncver returncd and the accompanying card is
lost, Vic has no way to trace who has what tape(s).
This method is error prone and subject to whims of
clerks who huve been seen changing return dates for
friends who return tapes late. Alse, the time involved
in locating a given customer’s rental card ranges
from 30 seconds to several minutes during nonrush
time, and can be as high as 10 minutes during the
peak rush time because clerks are waiting to access
the card file.

Vic’s requirement for the new application is to
provide a fast, simple method of providing rental
processing and accounting wilhout introducing any
new burcaucracy into the process. The system must
be on-line, accommodate at least five clerks working

simultaneously, provide for growth in video inven-
tory, and expansion of the busincss to other related
sale/rental items, At a summary level, the data enti-
ties in ABC rental processing are customers, video
inventory, and rentals. Figure 6-3 is an ERD show-
ing the relationships belween these entities, Also ata
summary level, the major processes of rental pro-
cessing are customer maintenance, video mainte-
nance, and rent/return processing. These processes
are summarized in Figures 6-4 and 6-5.

Figure 6-4 is a hierarchic process decomposition
diagram for the business, showing many more func-
tions than just the rental processing. The rental pro-
cessing area has bold lines to highlight it from the
rest of the diagram. This diagram is developed at the
enterprise level to ensure that the correct depart-
ments and processes are accounted for in an appli-
cation development effort.

Figure 6-5 is a high level process data flow dia-
gram for the rental activities only. The diagram
shows the inputs, processes, and outputs of the rental
activity. Inputs are rent/return requests, payments,
process requests, new customer information, and
new video information. Praccsses are maintenance,
reporting, and rental/return. At the feasibility level,
this is an acceptable level of detail for data and pro-
cedure knowledge and documentation,

To determine leverage points for ABC’s applica-
tion, we examine what the application does for ABC
in the context of its industry and competitive envi-
ronment. To do this we ask and answer several ques-
tions. First, can this application give ABC a
competitive position in the industry? The answer to
this question must be no. ABC is a one-shop orga-
nization that might grow to several branches but is
not expected to grow to national prominence. There-
fore, the application might give ABC a presence in
the local market, but the application’s strategic
impact on the industry is zero.

Second, does the application give ABC competi-
tive advanlage in the local industry? All other things
being equal, the application could give some local
advantage over other video stores in Dunwoody,
Georgia, the town where the company is located.
The impact on the local industry, in terms of subur-
ban Atlanta, is close to zero. The other ‘things’ that
must be equal or beirer for ABC to obtain a local

Feasibility Activities 158

Customer
Requests
D
Refers to Video
[N | !
Open Rental > o 1 Gapy
~
D
|s Dascribed by
Vigkeo

FIGURE 6-3 ABC Entitv-Relationship Diagram

advantage include the numbcer and variety of videos
available, desirability of the location, and attitude
of clerks to customers. For this discussion, we
assumec that location, attitade and variety of videos
are at least equal.

Observation of the applications of the rival video
stores is required to assess the potential impact of the
subject application. There is a national chain store
down the street, approximately .8 miles away, That
store is cvaluated since it is the closest competition.
The chain store sells and 1ents Nintendo™, Sega
Genesis™, and computer software as well as videos;
plus, the chain store sells tickets to local rock con-
certs and events, and sells records, CDs, and audio
tapes. Thus, the chain store is a recreational elec-
tronics store while ABC is simply a vidco rcntal
store.

The fact thai ABC is specialized and the chain
store is general works in ABC’s favor because of rel-

ative staffing levels. There are usually four clerks
warking in the chain store. Of the four clerks, two
are at cash registers al which lines average three
waiting patrons during peak periods. One of the
other clerks roams the store assisting customers
while the other clerk processes ticket orders. There
are frequently lines at the ticket counter, especially
when a tamous rock group’s tickets go on sale.
Sometimes there are several hundred people on line.
On average, there are 12 customers in the store at
all times, with a peak average of 20. The peak times
are the same as ABC’s—& pM. to 11 rM. Of the
20 customers during peak time, about 10 people
actually rent or purchase something. The average
age of a rental customer is about 19.

Contrast this situation with ABC. Five clerks
work at ABC during the pcak hours of 6 p.m. 10
11 p.M. The remainder of the time, three clerks are on
hand. The clerks, in general, do not roam the store

156 CHAPTER & Application Feasibility Analysis and Planning

ABC Video Company

(Purchasing j Gtenlalmelurn] (Aocounting) (P?’Z;:;'?” J

Aent/Relurn

Customer
Maintenance

Video \
Maintenance

Periodic
Processing

il

FIGURE 6-4 ABC Hierarchic Process Decomposition Diagram

assisting customers; they are all behind the counter
doing payment processing for customer rentals. The
lings, if any, form in the peak times and average two
peopte per clerk. If a customer has a question, she
or he waits until a clerk is free, then gets assistance
and rental payment at the same time. On average,
there are five people in the store at all times, with an
average of 25 during the peak times. Of the 25 peak
customers, 18 rent videos and seven leave empty-
handed.

ABC’s rental ‘hit rate” of .72 (i.e., 18 of 25) is
much higher than the industry average of .50.! Their
single purpose may work against them for some cus-
tomers who want full service electronic entertain-
meat, and may work for them for other customers
who only rent videos. The average age of an ABC
rental customer is 22. Thus, the customer is slightly,

1 The industry average is Incated by doing library research on
the industry.

but not significantly, older than the chain store’s
custormets.

So far, the company conirast neither favors nor
disfavors ABC over the chain store. Next, we com-
pare the company’s procedures for rental processing.
The chain store requites a subscription to their com-
pany s services that includes the presentation of a
valid driver’s license and credit card to establish an
account. To use the account, each family member is
assigned their own number and given his or her own
1D card. The 1D card is presented at the time of
rental and payment of all current and past charges is
required for a rental to take place. The presence of a
family member ID allows parents who get stuck pay-
tng their children’s fees to track the guilty party. Ef
two family members make rentals in the same day,
the clerk may or may not mention that a rental
already exists to Lhe later person. There is no proce-
dure for clerks to help customers control the num-
ber of rentals in one day, nor is there a way for
previous rentals to be known.

Feasibility Activities 157

Rent
Request

NewfChange
Cust infe

New/Change
Video Info

Frocess
Request

Periodic
Processing

ﬁ

Rent/Feturn

} Customer

'i Videa

Maintenance

Customer

Mairtenance

- —| Copy
Video

Open Rental

Video

Copy

Open Rartal

Customer

FIGURE &-6 ABC Process Data Flow Diagram

ABC’s cxpected rental processing is detailed in
Chapter 2. Vic’s vision of ABC’s rental application
docs slightly favor ABC over the chain store. ABC
will also assign family members their own IDs, but
an ID card is not required of a customer. Rather, Vic
envisions using the telephone number as the ID and
asking the person for their name al the time of rental.
A list will appear on the screen of all authorized
renters for a given phone number with a sequential
number the clerk selects beside each name. The pro-
cedures to accompany rental processing assume that
customers wart fo know if a previous rental that day
has occurred. Also, Vic envisions keeping (rack,
electronically, of the previous rentals for a family

and giving them the chance to stop a rental transac-
tion on a previously viewed video, Thus, Vic’s sce-
nario has less bureaucracy, more service, and more
customer-oriented clerical procedures than the chain
store. These three improvements are the leverage
points for ABC in its local market,

Nexi, we define other poncompetitive benefits of
the application. The application eliminates many
of the crrors that can happen in a manual system
of work. For instance, clerks can no longer decide
who pays late fees by changing return dates. Cus-
tomer cards, which can be lost, are climinated and
replaced by automated file records which can only
he deleted by Vic. Both videos and customers must

158 CHAPIER 6 Application Feasibility Analysis and Planning

be on an automated file to be eligible for rental
processing.

The applicaiion will provide for automatic gen-
eration of end-of-day rcports on teceipts and trans-
actions by clerk, by register, or by customer. If a
discrepancy is found between receipts and money
in the cash rcgister, having a log of transactions that
can be printed will assist the accountant in tracing
crrors. Both of these types of reports provide signif-
icant improvement over the current manual methods.
Under the current method, receipts are tied to money
in each register by sorting the paper copies of trans-
actions and adding the totals. If there is an error, it
is almost impossible to trace since no money is
actually tied to an individual transaction. At the pres-
ent, the accountant writes off errors.

Developing a list of the benefits for ABC’s
application is fairly easy because automation so
improves a manual vperation level task. Take the
adjectives faster, better, more and, for each, define
all the tasks or data that will be improved in some
way relating to the adjective. For instance, process-
ing an individual transaction will be faster because
manual card lookup is gone, data entry is minimized
to Customer [D and Video ID(s) with the computer
retrieving and displaying all other information about
cach entity, Individual transactions will have im-
proved data integrity by eliminating manual errors,
such as writing the wrong amount, cntering a wrong
amount at the register, writing the wrong tape ID, re-
trieving the wrong cuslomer card, and so forth. More
information will be available for management use.
For instance, end-of-day reports provide the accoun-
tant more information and Vic might develop ad hoc
reports of all automaled information. The benefits
for ABC’s rental application are summarized next,

Simplify customer IDs—I.ess bureaucracy than
competition

Provide help to customers in finding tapes—
More service than competition

Give customcrs information on previous rentals
the same day and on videos they have
previously rented—More customer-oriented
clerical procedurcs than competition

Increase data accuracy for customers, videos,
rentals

Allow tracking of late rentals

Allow accurate computation of late fecs

Increase speed of customer and video informa-
tion retrieval

Improve customer service

Provide accounting record of transactions

Allow tracking of transaction errors

Decrease time for individual transactions
through minimal typing

Increase speed and accuracy of fee processing

Decrease file update time

Provide more accurate and timely end-of-day
reports

Improve customer satisfaction with overall
rental process through the above changes

After general benefits are identified, they ate
made specific and quantified for evaluation of costs.
The benefits listed above are specific enough to
quantify directly (see Table 6-1). Quantification,
though, requires detailed knowledge of the business
and expected benefits. Vic is the business expert and
he participates in the quantification activity. For each
benefit, he is asked how much revenue (or expense)
is related to each item for one occurrence of cach
benefit. For each, Vic is also asked the degree of cer-
tainty for the benefit and his estimate. The numbers
provided are multiplied for the total number of cach
benefit expected. The degree of certainty (ranging
from 0.0 to 1.0) is then multiplied by each total
amount to provide a range of estimates for each. In
the example shown in Figure 6-6, the bengfit of more

$500,000
2% of revenues

Total revenues

Losses from
inaccurate data

Dollar loss from $10,000

bad data

Cenainty factor 80%

Benefit of more .8 7 10000 = $8,000-510,000
accurate data

FIGURE 6-¢6 Example of Benefit
Computation

TABLE 6-1 ABC Quantified Benefits

Feasibility Actlvities 159

Benefit

Expected Encrease in Revenue

Simplify customer IDs—Less bureavcracy than competition

Provide help to customers in finding tapes—More service
than competition

Give customers information on previous rentals the same
day and oo videos they have previously rented—More
customer-oriented clerical procedures than compelition

Increase data accuracy [or customers, videos, rentals

Allow tracking of late rentals
Allow gceurate computation of late fees

Increase speed of customer and video information retricval
Improve customer service

Provide accounting record of transactions
Allow tracking of transaction crrors
Pravide more agcurate and timely end-of-day reports

Dccreasc time for individual transactions through
minimal typing

Increase speed and accuracy of fee processing
Decrease file update time

Improve customer salisfaction with overall rental process
through the above changes

$1.000
$1.000

$ 500

$8,000-10,000

$10,000-15,000

$1,000
$1,000
$3,000-5,000

$1,000

$1,500
$5,000
$2,500

accurate data entry, Vic figures his current losses at
2% of total revenues of $500,000, or $10,000. He
feels the $10,000 estimate is about 80% accurale.
Stated another way, by eliminating errors in data
entry, Vic will gain $10,000 with 80% certainty.
Thus, the benefit to be gained from more accurale
data entry is $8,000-310,000.

Table 6-1 shows the benefits [rom the list on
p. 156 with dollar values associated with them. For
the benefits resulting in $1,000 increases in revenue,
Vic was unsure that there was much tangible out-
come, but estimated about $3, or one rental, per dav.
For the higher dollar estimates, he worked through
the estimates in the same way shown above for
increased accuracy.

Develop Alternative Solutions

The activities in developing alternatives include
definitions of technical altcrnatives, and benefits and
risks of each alternative.

Define Technical Alternatives

There are no specific, theory-based guidelines for
developing technical alternatives. Rather, the tech-
nical alternatives within a specific business are
explored to determine what is possible and practi-
cal. First, define the application concept (see Table
6-2). How up-to-date does information maintained
by the application need to be? If the answer is four

160 CHAPTER S Application Feasibility Anailysis and Planning

TABLE 6-2 Steps in Developing the
Technical Alternatives

m Define the overall application concept
= Evaluatc usefulness of existing hardware/softwarc

® If new cquipment or software is needed:

& Determine dala sharing requirements
® Determine the criticality of data to the company

®]f shared or critical data, select equipment {¢ither LAN
or mainitame) and software that allow centralized
control over data.

® If noncritical and nonshared data, select the smallest
equipment that allows necessary level of control. In
multilocation settings., consider decentralizing or
distributing the application hy duplicating equipment,
application, or data in several locations.

® Define special hardwarc requitements and ensure

that the special hardware works with the selected
hardware/software platform{s).

hours or more, a batch application is sufficient. If the
answer is between two and four hours, interactive
data entry with batch updates throughout the day
might be acceptable. If the answer is in the range
from seconds old to four hours, an an-line applica-
tion is also sufficient. If the answer is that the system
uscr must react to all transactions as they occur, a
real-time zpplicalion is needed. (On-line is the most
frequently selected option.

Next, for individual processes, determine the con-
cept at the lower level of detail. For instance, for
rcporting, should answers be developed as a report
request is cntered or can they be run overnight?
Some reports might need to be on-line, vthers might
be tun in batch mode. The volume of print, estimated
time for processing, and urgency of data all are used
to select the concept for individual processes, For
instance, an ad hoc report that generates 10,000 lines
of print should not be sent to a display screen; rather,
it should be printed. Also, « long report might be cre-
ated al the time of the request, but sent to a print
queue for convenicnee of printing. The decisions
made during feasibility arc not expected to be per-
manent at this point, rather, you are estimating the

concept to help in the evaluation of complexity of
design.

Aller the concept is developed, hardware and
software are evaluated. 1f there is hardware and sell-
ware already installed, investigate thelr use first. Can
the application be developed for operation on the
existing equipment? Can the existing software
accommodate the application? Can the application
coexist with other applications currently used? If
the answers to these questions are “ves,” the plat-
form recommended is the cxisting equipment and
software. [f a “no™ answer is given, then investigate
new hardware or software as needed.

If no hardware or software are currently used, or
the current equipment cannot be used to do the
application, select the likely hardware platforms.
First, determine whether the application users need
Lo share information or not and how vp-to-date the
information must be. For instance, can copics of the
application run in different locations with daily
update of [iles, or must the users share all informa-
tion throughout the day? Second, determince the
*corperateness’ of the data. How critical to the
organization 1 the application data? If the company
depends on the dala to slay in business, then a more
centralized, controlled environment is required than
il the dada 1s not critical to the company.

The need for centralized control over data that is
critical to the organization is one factor to con-
sider in recommending a platform and environment
[or an application. The exlent to which the company
relies on application operability, the importance of
data integrity, audit trails and security, and the ability
of the environmenl o accommodate these needs
are all assessed. Although there are no clear dif-
ferences in application management between a
LAN and a mainframe, software doees make a dif-
ference. The levels of security, number of simul-
tanecus users, size of database, locking of records
for simultaneous update, and many other technical
considerations differ widely actoss networks, oper-
ating systems, databases, and languages. When dis-
tribution is an alternative, the centralization i1ssue
becomes cven morc important to cvaluate and
resolve. Full discussion of the decisien criteria for
distributing data and applications are deferred until
Chapter 10.

To determine hardware alternatives identify the
smallest size computer possible that can accommo-
date the task, providing for data sharing and central-
ized control as needed. The cheapest and smallest
platforms that meet the criteria are alternatives. For
hardware we then ask if any other special purpose
hardware is needed for this application. If other spe-
cial purpose hardware is needed, enough research on
the hardware should be done to determine what is
requited and whether or not it can be used with the
wdentified alternatives.

From the hardware identification activity, the
most likely platforms should be narrowed to two or
three. The key factors in narrowing the selected plat-
forms are reliability and flexibility. Portability might
also be important, depending on the environment.
Reliability is the extent to which the hardware, sofi-
ware, and application will be operational. Flexibility
is the extent to which the hardware, software, or
application can be modified ¢asily, Hardware flexi-
bility relates to the extent to which upgrades can be
made, for example the number of additional boards,
the maximum memory upgrade, the type bus, and
type disk channel, to name a few. Software flexibil-
ity relates to package design and how often the ven-
dor releases updates of new functions. Application
flexibility relates to methodology, implernentation
language, and skill of the developers. Reliability and
flexibility are important issues in, for example,
selecting a PC workstation, because of the diversity
and quantity of alternatives available. If you evaluate
five different vendors of IBM PC-compatible equip-
ment, you will have different reliabilities and flexi-
bilities for each. But even more confusing is that five
different configurations of a PC from the same
vendor might also have five different reliabilities
and flexibilities.

Portability is the extent to which the software
can be moved to another hardware/operating system
environment without change. The fewer changes
when moving the application, the mote portable it is,
Portability is an issue when the application is devel-
oped in one envirenment (e.g., 1« LAN) and is ported
or moved to another envirenment [or operations
(e.g., a mainframe). Portability is also important
when an application is developed in one location and
is implemented in multiple locations which may not

Feasibility Activities 161

have the same configuration. Multiple locations with
heterogeneous environments are the norm in distrib-
uted applications.

Hardware alone rarely determines the recom-
mended altemative. In addition to picking hardware
platforms that can accommodate the needs for mulsi-
ple. simultaneous users, you also choose the soft-
ware most likely to be used in each environment.
Again, these selections might change as the design
progresses, but their purpose during feasibility is to
allow assessment of skills, training needs, cost, and
application design complexity.

In choosing software, you identify a program-
ming language, database environment, and any
special software needed. Each alternative is devel-
oped to solve the entire problem, meeting all re-
quirements and as many optional requests as
possible. Only the best alternative(s) for a given
environment is considered. Two sets of alternatives
illustrate this statement.

The first set of alternatives is for a mainframe
environment using different operating environments.
The first alternative {see Figure 6-7a) identifies an
IBM mainframe, running the MVS operating sys-
tem, and using IBM"s DB2 for database and IMS/
DC for telecommunications control. The second
alternative (see Figure 6-7b) identifies an 1BM
mainframe, running the conversational ¥vM/CMS
opcrating system, and using a Focus database,
Telecommunications control is hidden from the

Figure 6-7a. Alternative 1

Hardware: IBM Maintrame 309x
{Operating System: Mvs

Database: DBz

Talecomm Control: IMS/DC

Figure B-7b. Alternative 2

Hardware: IBM Mainframe 309x
Operating System: VM/iCMS
Databasa: Focus

Telecomm Control: SNA through VM

FIGURE &-7 Two Alternatives Using
Different Software

162 CHAPTER & Application Feasibility Analysis and Planning

Figure &-8a. Aliernative 1

Hardware: (BM Mainframe 309x
Operating Systern: VMICMS

Database: Focus

Telacomm Contrai: SNA thraugh VM

Figure §-8b. Alternative 2

Hardware: IEM PC-Compatible
Qperating System:; MSE/DOS, Windows
Database: Focus

Telecomm Control: Novelt Ethernet

FIGURE 6-8 Alternatives Using Different
Operating Environments

application and is through VM (i.e., using VTAM
and SNA}). Both of these scenartos might be pro-
posed, with the deciding factors rclating to time of
development and expertise of staff, rather than 1o the
desirability of one environment over the other.

The second set of scenarios is for a network ver-
sion of an application (see Figure 6-8a) versus a
mainframe version (see Figurc 6-8b). Both environ-
ments would use a database which is already avail-
able in-house. [n this case, the decision relates to
environmenial and cost factors since both alterna-
tives use similar database software, Then, reliabil-
ity, flexibility, and portability are issues,

Estimate Benefits of Recommended
Alternatives

Two kinds of benefit estimates are developed. First,
the general benefits defined are analyzed to deter-
mine that thcy are {or are not) met by each pro-
posed alternative. Second, new benefits that relate
to a specific proposed alternative are defined.
Again, benefits are context specific, relating to a
given alternative for a given company at a given
time.

The first benefits estimate is a tally of the num-
ber of general application benefits met and, it it can
be determined, the effectiveness of implementation
within the proposed alternative. Effectiveness, for
our purpose, is the extent to which an alternative will
implement the application requirements smore,

better, and faster. To measure the number of re-
quirements mct by cach alternative, we simply
count which are met in ar implementation of each
alternative.

To measure effectiveness, we need to determine
the extent to which each requirement will be devel-
oped. This extent can only be defined in a specific
context for a specific application. For instance, two
requirements for ABC might be “Provide minimal
data entry for customer and video identification” and
“Use a scanner for data entry whenever possible”
(see Figure 6-9). One alternative might assumc the
eniry of scanned data only. A second altcrnative
assumes the entry of scanned data while providing
for keyboard eniry in case of scanncr hardware fail-
ure. A third alternative might assume the kcyboard-
ing of a minimal number of characters for each type
of data. The first two alternatives meet both criteria,
The third alternative docs not meet the second
requirement. Only the second alternative, how-
ever, provides both the requirement and a backup.
The second alternative would be rated more effec-
tive in meeling the requirement than the others,
while both the first and sccond alternatives meet the
benefits. On a scale of one to three, the alternatives
would be rated two, one, and three, respectively.
In a different company with a different context,
the same alternatives might be rated one, three,
two respectively.

Define Risks

The purpose of risk assessment is to determine all
the things that can go wrong. If you have heard of
Murphy’s Laws, you know they apply to applica-

Alternative 1: Scan Data Entry

Alternative 2: Scan Data Entry
ar
Keybeard Data Entry with Minimal
Typing

Alternative 3: Keyboard Data Entry with Minimal
Typing

FIGURE 69 Sample Evaluation of
Alternative Effectiveness

Feasibility Activities 163

TABLE 6-3 Sources of Risk

Source of Risk

Risks

Hardware

Nat installed when needed

Cannoi do the job

Does not work as advertised

Installation not prepared in lime

Installation requirements (e.g., air-conditioning, room size, or electrical) insufficient
Wiring not correct

Hardware delivered incorrectly

Hardware delivered with damage

Software

Not installed when needed

Cannot do the job

Does not work as advertised

Contains ‘undocumented features’ that cause compromise on application requirements
Vendor support inadequate

Resource requirements are over budgeled, allocated amounts

Group

Key person(s) quit, are promoted elsewhere, go on jury duty, have long-term illness
Skill levels inadequate

Training not in time to benefit the project

Project management

Schedule not accurate
Budget not sufficient

Manager change

User

Quits, transfers, is replaced
Not cooperative
Nol supportive

Proes not spend as much time as original commitment requested

Computer FeSOuUrces

Test time insufficicnt
Test time not same as commitment
Inadequate disk space
Insufficient logon IDs

Insufficient interactive time

tion development. The three most common of Mur- Table 6-3 is a list of possible sources of risk. For
each item on the list, you determine the likelihood of
it occurring for this project. For instance, if you are
1. If anything can go wrong, it will. using only existing equipment, you could skip the
2. Things go wrong at the worsi possible time. risks dealing with hardware installation problems.
3. Ewverything takes longer than it should. As sources of risk are identified, they should be

phy’s Laws are:

164 CHAPTER 6 Application Feasibility Analysis and Planning

placed in a separate table and rated for likelihood of
occurrence for each alternative. In addition, other
possible risks for the project might be added to the
fist. For instance, if revenue for current year drops
25%, the company might not be able to afford
the project,

ABC Video Alternatives

First, technical alternatives for developing ABC's
rental application are developed. Next, benefits and
risks relating to each alternative are estimated.

To develop technical alternatives, the application
requiremnents shouid be listed as follows:

1. Provide add, change, delete, inguiry
functions for customer, video, and rental
information

2. Automate processing of rental transactions,
including

s Interactive processing and data display for
all outstanding video rentals, including
fees owing

w The maintenance of customer history ol
rentals, rental history for each video tape,
creation and change of rental transaction
records

= Monitoring of outstanding rentals by
customer

a Computation of late fees owing from
prior transactions

= The ability o create new customers as
part of rental processing

» The ability to add new vidcos 1o the sys-
tem as part of renlal processing

= Query of any rental related infor-
mation

3. Minimize data entry in rental processing by
using bar codes or similar technology

4. Provide intcractive, on-line updating capa-
bilities for all files

3. Provide transaction logging for database
integrity

6. Do daily backup of all files and application
programs

7. Provide ad hoc reporting capability for all
files and legal combinations of files {e.g.,

customer with video rentals with customer
rental history)

8. Provide end-of-day reports of activity by
{ransaction with summarics by transaction
type (i.c., rental, late foes, other fees)

8. Provide for future growth of 15% per year
per filc

10. Provide for future growth in number of sys-
tem users to be one every 18 months for five
years. A total of nine concurrent vsers
should be supported.

11. Provide SQL compatibility for future
growth and compatibility between software
applications

12. Provide mean time between failures
{(MTBF) of 1 year for hardware selection
and mean time to repair (MTTR) of 1 hour
in hardware maintcnance contracts

13. Provide on-line processing for all funclions
from 8 a.m. to 11 pm. daily

ABC has specific requirements that imply an on-tine
application, significant ad hoe reporting, and inter-
active processing with immediate file update
throughout the day. Batch processing should be fea-
sible as a background task to on-line processing
since the on-line portion of the day is so extensive
and there might be a problem trying to staff the balch
hours. Beginning with a hardware platform, then
continuing to software and applications, the pro-
posed alternatives are defined. Only allernatives that
can meet all requirements should be identified; how-
ever, it that is not possible, any feasible alternatives
are identificd and cvaluated later. In ABC’s case,
only alternatives that can meet all requircments are
identified.

In a small business, the two most likely hardware
platforms are multiuser minicomputers or client-
server local area networks. These are considered
here. The competing hardware platforms arc an IBM
AS/A00 minicompuler versus a token ring local area
network (LAN}. Each of these decisions requires a
minianalysis of the alternatives in their respective
environments that are bevond the scope of this text.
To specify the LAN, for instance, requires compari-
son of options and costs of prababilistic versus de-
terministic networks, cabling requirements, network
operating systems (NOS), network interface card

TABLE 6-4 Hardware Platform Estimates!

Client/Server Alternative

Ttem Cost
Workstation (6) $ 48000
Server § 2.000
Softwarc $ 3,500
Cable—Shielded Twistcd Pair (STP) £ 1,800
Nelwork Interface Cards (7) $ 1,000
Network Operating System $ 2,500
(Ethernet), 6-10 stations

Total $15,700

Minicomputer Alternative

[tem Cost
Workstation (6) $ 4,800
Minicomputer $15,000
Soltware $ 5,000
Plus §200/
month
Cable—STP 5 1,904
Total 826,700
Plus $200)
month

'Keep in mind that these are estimates lor (he sake of discussion
and moe real dollar estimates.

(NIC), compatible sofiware, and so on, Both hard-
ware platforms can be implemented successfully in
ABC’s environment, can support the volume of
fransaclions, and can support the expected company
and applications growth.

Once the platforms are ideatified, the hardware
cost of implementing the application on the alterna-
tive platforms is estimated (see Table 6-4). From
these estimaies, the most likely (e.g., the cheapest)
twao to three alternatives are selected. Also, if there is
doubt about the economic feasibility of the applica-
tion, the client/uscr can determine whether to con-
tinue with the analysis or not. As Table 6-4 shows,
the client/server LAN is cheaper than the minicom-

Feasibility Activities 165

puter hardware alternative. Both alternative defini-
tions exclude software for rental processing which is
estimated separately because the option to purchase
software versus custom development of software
should be evaluated.

The client/server alternative is recommended to
Vic and he approves although he is concerned about
the cost. As a small business person, his company
nets under $1,000,000 per vear and, in ABC’s case,
is closcr to $300,000. A rule of thumb in automa-
tion expenditures is to spend under 10% of net in-
come. Vic’s concern is that the total cost may exceed
$50,000 and his financial risk becomes a problem.

The remaining estimatcs use only the client/
server solution to develop software application alier-
natives. The choices are between purchasing a soft-
ware package and developing a customized package
for rental processing. Mary rescarches available sofl-
ware packages and finds that the cheapest onc is
VidRent® which costs $7,500 plus $1,500 mainte-
nance per year {see Table 6-5). VidRent will be com-
parcd to building a customized applications using
either SQL Server” or Focus. SOL Server is selected
as represenling software specifically designed to

2 VidRent is a fictilious name.,

3 SOL Server™ is u trademark of Sybase and Microsoft
Corporations.

TABLE 6-5 Alternative Software
Packages

Maximum
Number of

Software 1nilial Cost Maintenance Users

SQL S517,5000 81,800 year Up to 20

Scrver™

[.LAN $12.000 $1,200/year Up to eighl

Focus™

with SQIL.

VidRent § 7,500 $1.500/year Any number
of users on
one LAN

*Keep in mind that these are estimates for the sake of discussion
and wot Teal dollar estimates.

166

take advantage of client/server environments. Focus
is selected as representing software with which
Mary's tgam has cxtensive experience. The costs of
each alternative are completely different and provide
for different numbers of users. These factors are kept
in mind, but the requirements must be analvzed to
determine if one software should be favored func-
tionally over the others.

The requircments are recvaluated and rated for
each development alternative as shown in Table
6-6. First, consider the softwares” capabilities.
VidRent provides neither query capabilities nor his-
torical customer or video processing. It also cannot
create new customer or video records as part of
rental processing. VidRent also does not provide
transaction logging,. If this package were chosen,
these requirements would go unmet. Through dis-
cussion with the vendor. Mary detcrmines that query
processing can be done by using any software that
can access ASCIT files. Thus, the addition of
dBase™ or Oracle™ or some other single-user pack-
age 1o provide Vic with query capabilities is a cheap
alternative that adds about $1,200 (o the alternative,
This alternative is still limited in that querying would
be limited to an off-line function when the on-line
application was not in operation. This requircment is
caused by the record locking scheme in VidRent.
Also, the sofiware package could be modified
by Mary’s group to provide the history process-
ing desired by Vie, without violating the vendor
warranty. Thus, VidRent's cost increascs, and it is
capable of doing most requisite processing (see
Table 6-7).

Both Focus and SQL Server are fully capablc of
supporting the application. Both require compiete,
customn development of the application, but both pro-
vide application gencratars and have built-in query
capability. A quick estimate by Mary based on her
cxperience and without a detailed project plan is that
the total development work would take about six-
person months, At $150 per day, for a 26-day month,
the custom soflware developmentl will be about
$23,400 (i.e., 6 * 150 * 26). Except for cost, there is
no advantage or disadvantage to either package
based on applicaticn requirements. SQL Server's
ticense allows 15 concurrent users which is more
than Focus,

CHAPTER 6 Application Feasibility Anaiysis and Planning

Next, consider the organizational impacts of each
package. Mary’s leam requires training for either
VidRent or SQL Server. Training for SQL Server,
which is supplied by the vendor, would not be
charged to Vic since the knowledge is uscful to
the tcam after the rental application is complete,
VidRent training, also from the vendor, would be
paid by Vic. Training costs must be added lo its cost
(sec Tablc 6-7).

Next, consider vendor reputation and market sla-
bility. SyBase and Microsoft, the vendors of SQL
Server, are both relatively young companies, with
Microsoft the current leader in software for the PC
market. Focus’ company, [nformation Builders, Inc.,
is over 15 years old and has cnjoyed stcady growth.
Therefore, both vendors are expected to remain
viable market forces for the foreseeable future.
vidRent’s vendor, VidSoft, is 5 vears old and still is
run {rom the owner’s home, The company has grown
stecadily by selling to the single video store firms
such as ABC, but the owncr, Mark Denton, does not
publicize his earnings,

In summary, SQL Server and Focus both meet all
software requirements of the application; VidRent
could be made to provide most requircments, Cost
favors the VidRent proposal with a total esti-
mated software cost of $22,000, At this point, Vic
must decide how much he wants the cusiom foa-
tures of his application and whether the compro-
mises on guerying and eas¢ of processing are worth
$13,000.

Vic und Mary discuss Lhe alternatives frankly,
Mary recommends not going with VidRenl because
of thc company size, lack of features, and need for
customizing for any features not already in the pack-
age. Vic is staggered by the cest of custom software
devclopment and is inclined to purchase VidRent
and forget his grand plans. Mary reminds him that
if he does not develop his application as envisicned,
the competitive advantages might disappear. Vic
gventually decides that he does want the application
as currently defined and that he is nol willing 10 com-
promise his vision in any way. Therefore, only SQL
Server and Focus alternatives are developed fuither
to determine the benetits and risks of the softwares.

Only general benefits are evaluated for each
alternative; there are no apparent benefits of one

Feasibliity Activities 167

TABLE 6-6 Rating Software Development Allernatives

Function SOL Server Focus VidRent

Provide add, change, delete, inquiry functions for Yes Yes Yes

customer, video, and rental information

Interaclive processing and data display for all Yes Yes Yes

oulstanding video rentals, including fees owing

On-line processing from 8 A, to 11 p.u. daily Yes Yes Yes

The muintenance of customer history of rentals, Yes Yes Yes

rental history for each video tape, creation, and

change of rental transaction records

Moaitoring of outstanding rentals by customer On-line On-line Off-line

Computation of late fees owing from prior transactions Yes Yes Yes

The ability to create new customers as part of Yes Yey No

rental processing

The ability to add new videos to the system as part Yes Yes No

of rental processing

Query of any rental-related information On-line On-line Off-line

Minimize data entry in rental processing by using Yes Yes Yes

bat codes or similar technology

Provide immediate file update Yes Yes Yes

Provide transaction logging for dalabase integrity Yes Yes No

Do daily backup of all files and application programs Yes Yes Yes

Provide ad hoc reporting capabilily [or all files and Yos Yes Only with

legal combinations of files another package

Provide end-of-day reports Yes Yes Yes

Provide for growth of 15% per year per file Yes Yes Yes

Provide for nine concurrent users 15 10 Any number

Provide SQL compatibility Yes Yes For ASCII files
Total requirements met out of 18 18 18 15

softwarce over the other. The benefits of the applica-
tion identified in an earlier step are compared to
cach proposcd software alternative. As you can sec
from Tablc 6-8, the benefits are identical for each
implementation.

Finally, risks of the alternatives arc defined. The
list of possible risks is custemized for the applica-
tion and each risk is assessed for probability of

occurrence with a specific alternative (scc Table
6-9). The Lable of risks is repeated here with an
analysis of the two language environments. Hard-
ware risks apply equally to both alternatives. Soft-
ware risks vary because ol differences in product
knowledge by the development team, product
functionality, and expected cost, all of which favor
Focus.

168 CBAPTER S Application Feasibility Analysis and Planning

TABLE 6-7 Total Estimated Cost of Software Alternatives

Software [mitial Cost Purpose
SQ1. Server™ $17,500! Licensce fee
$23.400 Custom software
Total $37,900
LAN Focus™ with SQL $12,000 License fee
$23,400 Custom sofrware
Tolal $35,000
VidRent $ 7,500 License fee
$ 2,500 Database query software
§ 5,000 Training
$ 7,000 Customizing

Total 522,000

TKeep in mind that these are estimates far the sake of discussion and #o¢ Teal dollar estimates.

TABLE 6-8 Benefits of SQL Server and Focus Alternatives

Benefits SQL Server Focus
Simplify customer IDs Yes Yes
Provide help to customers in finding tapes Procedure Procedure
Give customers information on previous rentals (he same day and on Yes Yes

videwos they have previously rented

Provide data accuracy for customers, videos, rentals Yes Yes
Track and display late rentals Yes Yes
Compuie and display late fees Yes Yes
Increase speed of customer and video information retricval Yes Yes
Improve customer service Yes Yes
Provide accounting record of transactions Yes Yes
Altow iracking of transaction errors Yes Yes
Fravide accurate and timely end-of-day reports Yes Yes
Decrease time for individuoal transactions through minimal typing Yes Yes
Increase speed and accuracy of fec processing Yes Yes
Decreasc file update time Yes Yes
Improve customer satisfaction with overall renlal process through Yes Yes

the above changes

Total benefits met out of 15 15 15

Feasibllity Activities 169

TABLE 6-¢ ABC Risks of Software Development Alternatives

Risks SQL Server Focus
Hardware rot installed when needed Low Low
Hardware cannot do the job Low Low
Hardware does nol work as advertised Low Low
Hardware installation not prepared in lime Low Low
Hardware installation requirements {air conditioning or clectrical) Low Low
insufficient

Wiring not correct Low—Medium Low—Medium
Hardware delivered incorrectly Low Low
Hardware delivered with damage Low Low
Sofiware not installed when needed Low Low
Software cannot do the job Low N/A
Software does not work as advertised Low—Medium N/A
Software contains ‘undocumented features’ that cause compromise Mediuvm N/A
on application requirements

Software vendor support inadequate Low-Medium N/A
Software resource requirements are over budgeted, allocated amounts Low N/A
Key person(s) quit, are promoted elsewhere, go on jury duty, Low Low
have long-term illness

Group skill levels inadequate Low—Medium No
Training not in tine to benefit the project Low—Medium N/A
Schedule not accyrate Low Low
Budget not sufficient Low Low
Manager change No No
Vic quits, transfers, is replaced No No
Vic/clerks nol cooperative Low Low
Vic/clerks not supportive Low Low
Vic does not spend as much time as original commitment requested Low Low
Test time insufficient N/A N/A
Test time not same as commitment N/A N/A
Inadequate disk space N/A N/A
Insufficient logon IDs N/A N/A
Insufficient interactive time N/A N/A

170 CHAPTER 6 Application Feasibility Analysis and Planning

Once the benefits, risks, and alternatives are de-
lined, they are evaluated to narrow the field to one
{or two) proposed alternative(s).

Evaluate Alternative Solutions

The recommended alternatives are evaluated for
technical adequacy, organizational feasibility, ex-
tent to which benefils arc met, and severity of asso-
ciated risks. In general, wc sclect the alternative that
mcets the most requirements, yields the greatest ben-
efit, and has the lowcest associated risk. When these
characteristics do not relate to the same technical
alternative, one or two are selected for further analy-
sis and the remaining altcrnatives are eliminated
from consideration. In this scction, we discuss tech-
nical, organization, benefit, and risk evaluations for
narrowing the decision to one or two alternatives.

Evaluate Technical Feasibility

Technical feasibility assesses the technology, its
maturily in the market, its availability to the com-
pany, and the likelihood of successful use. Techni-
cal feasibility is most important when using new
technologies Lhat are leading edge. You want to be
leading the compelition, not bleeding, when using
new technologies!

The key questions used to evaluate lechnical fea-
sibility are:

Is the technology in use clsewhere?

Is the technology used elsewhere for similar
applications?

How mature is the technology?

How much industry experience is there with this
lechnology?

Ate staff with cxperience using this tcchnology
easy to find?

How does each alternative manage the applica-
tion sources of complexity?

Does the propoesed alternative require any
compromise of applicalion requirements?
What type of compromise and which
requirement(s}?

Each question is cvaluated for each technical alter-
native proposed. Any issues about a technology’s

ability to perform as required for an application
should be identified. Objective answers that may not
be what managers want to hear are required to ade-
quately assess lechnical feasibility. Maintaining
objectivity is difficult when market pressure to
develop an application exists and managers wan! to
develop an application.

To perform technical feasibility analysis, the
technical alternatives are listed and compared across
alternatives. Then, the application requirements are
listed and evaluated for number of requirements met
across the alternatives. The alternative meeting the
most requirements is favored during this analysis.
If there is a difference in the extent to which a
requirement would be met, that information is noted
in the analysis.

Evaluate Organizational Feasibility

Organizational feasibility is the extent to which the
organization is ready to implement the proposed
application, First, using the questions bclow, orga-
nization structure is assessed to define organizational
changes required.

Dees the organization structure need 1o be
changed?

Do all groups that create the same information
report to the same manager?

Da user jobs require new procedures?

Do uscr jobs require new work organization?
For instance, do they move from individual
assembly line-type arrangement to work
groups?

Do users have the required level of computer
litcracy?

Do users have the required level of typing
skills?

Will users requirs training for the new
application?

Can training be done by other users?

Are users involved in screen design, accep-
tance test design, and/or gencral application
development?

Dees the IS siall know the problem domain?

Does the IS staff know the software being used?

Does the IS stafl know the operating environ-
ment being used?

QOrganization structurc is cvaluated to determine
if the people who have creation authority for data
all report to the same management and that all
departmcents and jobs that will be needed in the new
application are defined or currently cxist. Second,
expected users are evaluated to determine the extent
to which training is required to implement the pro-
posed application. For instance, some computer lit-
eracy and typing skills might be required. If vsers
musl know how to turn the machine on and activaie
an application, but do not currently use computers,
you might need to do a short questionnaire or inter-
view users to determine their level of computer
literacy. Any needs identified are added to the im-
plementation plan as a task (and cost) of the pro-
posed application. The goal of this first type of
organization analysis is to idcntify user department
changes and user requirements for training, both of
which must be salisfied before the organization can
effectively use the proposed application.

A second type of organizational feasibility
assesses Lhe readiness of the IS organization to
develop the proposcd application. When a custom
development is being done by consultants, you eval-
vate their skills with the technology and similar
problems to determine their readiness. The asscss-
ment deiermines staff skill with the hardware,
operating environment, programming language,
database, and similar environments. As with the user
organization, feasibility, level of expertise and train-
ing requirements are determined. Technical staff
training requirements defined during this assessment
are added 1o development plans for cost analysis,

The last type of [easibility assessment, financial
feasibility, is performed after a plan for the recom-
mended alternative(s) is developed. Financial feasi-
bility is discussed in a following section,

Assess Benefits

Benefils defined for the application in general, and
for specific implemenlation altcrnatives, are assessed
to determine which proposed altcrnative yields the
outcome with the highest reward to the organization.

Benefits are tallied for each alternative. First, a
simple count of the benefits for each alternative is
done. Then, for benefils assigned monetary values,
the amounts of increased revenucs or avoided

Feasibility Activities 171

expenses are summed to provide a single dollar-
value benefit for cach allernative. If there are no
alternativc-specific benefits, the number and value of
benefits are the same for all alternatives. If there are
alternative-specific benefits, then one or several
alternatives might be preferred. These are identified
by this analysis.

Assess Risks

Similar to the benefits analysis, the risks of each pro-
posed alternative are assessed to determine the
altcrnative with the least risk. First, a simple count of
the risks for each alternative is done. Then, for
alternative-specific risks, the extent to which they
are likely to occur is assessed. If there are no alter-
native-specific risks, the risks are the same for all
alternatives. When the risks are not the same, alter-
natives with lower, less likely risks are preferred to
alternatives with a high likelihood of occurrence. If a
dollar value of exposure is assigned to the risk, it is
considered, with lower values of risk preferred to
significant potential losses,

Propose New Application

Next, the reccommended solution(s) are defined in
sufficient detail to allow project planning and finan-
cial analysis. The development plans include hard-
ware, software, operating cnvironment, development
concept, technical feasibility, organization feasibil-
ity, benefits, and risks.

The proposal of the new application might docu-
ment the recommendations formally to begin to
develop the feasibility report, or may stiil bc an
informal coliection of information that supports the
remaining analyses. The formality of this gathering
of information is decided by the Project Manager
and SE, based on their confidence in their decisions,
If they are fairly confident that no major changes wilt
take place, they might develop final versions of doc-
umentation and begin an informal revicw of their
findings and recommendations with users.

ABC Video Evaluation of Alternatives

The alternatives first arc assessed in terms of the
technical and organizational feasibility. Then, the
benefits and risks of cach are asscssed. Based on

172 CHAPTER ¢ Application Feasikility Analysis and Planning

the differences between alternatives, a recommended
solution is seiected.

Both packages, SOL Server and Focus, appear
capable of providing the complete application as
envisioned by Vie. The implementation would prob-
ably be smoother with Focus given the high skill
level of Mary and her staff with the product. SQL
Server might have intangible benefits in that, if
another store were opened, the seftware could eas-
ily communicate between stores, having been built
specifically for distributed processing. This benefit is
not immediate, however, and the curreat technical
solution favored is Focus. Focus has a longer history,
and is thus, a more mature product, has a large com-
pany backing it, provides all fechnical requirements
for current and future plans; and is cheaper than SQL
Server in the example.

From an organization perspective, neither product
offers any distinct advantages or disadvantages. The
staff at ABC would have to learn both products.
Both vendors offer classes in the Atlanta area. The
company does not need reorganization to accommo-
date the application regardless of software chosen.
From the perspective of Mary’s staff, Focus is pre-
ferred since they already have experience using it,
but she feels confident that they could also build the
application using SQL Server if desired.

The benefits analysis is simple in this case. The
benefits do not favor either implementation scenario
since they all apply to both. Thus, all benefits are
expected to accrue from either implementation,

The risk analysis favors Focus over SQL Server
slightly. The main difference in risk exposure is from
the lack of usage experience of Mary’s group with
SQL Server. This lack of knowledge can only be par-
tially removed by training. Experience in using the
product is really reguired to develop knowledge of
the ‘undocumented features’ and unanticipated lim-
itations of the software. In this case, Focus is known
to Mary’s team and is therefore preferred.

In the example for ABC, both packages could
probably be used with success in developing the
ABC rental application. Both softwares appear capa-
ble of future growth and have apparent company sta-
bility. The cost differences favor a Focus sclution,
while the specific client/server orientation provides
an as yet unneeded benefit to SQL Server. Vic

decides in favor of the Focus solution, but is clearly
unhappy with the overall cost of $50,700. Vic wants
to continue with the planning and financial analysis
for the application, but is also interested in some way
to reduce or defer the development costs of Mary's
team services for customized softwarc. In any case,
the Focus, LAN solution will be planned and evalu-
ated financially in detail. Before we continue with
ABC’s problem, we first talk about project planning.

Plan the Implementation

Estimating Techniques

Users are easy to deal with when they feel you
understand their problem, when they think you can
improve their situation through automation, you
can estimate how long the job will take, and you
can estimate their costs. These are not easy items to
know or to develop. When users are comfortable that
they can afford and use the proposed application
within a reasonable amount of time, they become the
champions of the project, fighting for its develop-
ment in the political environment of the business.
Research shows that a champion provides a major
contribution to application development success, In
this section, we discuss the last two important issues
to making the user feel comfortable: planning and
costing the project.*
Accurate estimates are important to

» allow cost-benefit and other financial analyses

= allow hardware/software trade-off analysis

» provide a basis for management evaluation of
multiple projects

= act as the basis for schedule, staffing, project
management, and structure definition

® avoid problems such as contract renegotiation,
overtime, user cost increascs; T project costs
increases

At the feasibility level, estimates should be within
209% accurate. This means that the estimates might
be overstated or understated by 20%. Planning

4 All the methods in this section are based on methods
discussed in Barry Bochm's bock, Software Engineering
Economics. Englewood Cliffs, NI: Prentice-Hall, 1981,

should be redone at the end of the analysis phase, at
which time the estimates should be within 10%.
Again, planning at the end of design should refine
the estimates to within 5%. The redefinition of costs
is one activity that meets with resistance from man-
agers who tend to cast in concrete the first estimate
they hear, Part of the Project Manager’s role is to
educate the managers and users involved to under-
stand that as the degree of uncertainty about project
activities decreases, the certainty of time estimates
and costs increases. Therefore, the plans should be
redone af the end of every major phase of activity.

The planning methods discussed in the next
section are ways (o generate time estimates for the
person-days of project work. These arc then con-
verted into costs by allocating an amount of money
for each person required. Ultimately, the Project
Manager and SE rely on their knowledge of the
organization and salaries of individuals, Additional
costs are allocated for computer resources, acquisi-
tion of hardware, software, or consultants, and other
supplies needed to complete the application.

There are many different approaches to planning
which are discussed in the first section below. After
that, we take a practical, experience-based approach
to developing a critical path plan. The experience-
based estimates are then reality checked against two
sets of algorithmic planning formulae. The two plan-
ning methods used are function peints and the
CoCoMo model. Both have known flaws, By com-
bining planning methods rather than using only
ane, you improve the likelihood of more accurate
estimates.

Planning methods are usually classified into cat-
egories for algorithmic methods, expert judgment,
analopy, Parkinson, price-to-win, top-down, bottom-
up, or function points. These are defined here, and
several methods are discussed in detail because
they are the most frequently used. Advantages and
disadvantages of each method are summarized in
Table 6-10.

ALGORITHMIC METHODS. An algorithemic

estimating relies on one or more key formulae to
develop an estimate of person-power required for
project work. There are five types of algorithmic
planning methods. The sequence in which they were

Fecasibility Activities 173

developed and found to be inadequate is linear (see
Figure 6-10), multiplicative (see Figure 6-11), ana-
Iytic (see Figure 6-12), tabular (see Figure 6-13), and
compaosite, which combines the others. All but the
composite method are rarely used because they
offer too simplistic a model of project work. The
noncomposite methods do not support adjustment
of the model for expertise of staff, tools used to aid
development, or other factors that might alter the
time and cost of development. All algorithmic meth-
ods suffer the same fazal flaw that they rely on some
initial estimate that is difficult to guess and on which
the accuracy of the entire estimute rests.

There are two key variables in the Composite
Cost Model (CoCoMo): number of delivered source
instructions and project mode. Delivered source in-
structions refers to lines of code vsed in a produc-
tion version of an application and omits any modules
or programs written to support the development
effort. Since any sizable project has thouvsands of
instructions, this term is expressed as thousands of
delivered source instructions or KDSI. Delivered
instructions are those that actually are in the finished
product and excludes any code that is generated to
facilitate project development. For instance, in a
DBMS application, you frequently write programs
to do a formatted print of the file that are not part of
the finished application. These modules would be
omitted from the ¢stimate. The second important
word is source. Source code means uncompiled,
wnlinked lines of code in whatever language 1% used.
The implication is that some compiled language such
as Cobol, Fortran, Pascal, or PL/1, is used. Control
language code is omitted from KDSE, while the num-
ber of Cobol statements is reduced by a factor of .33
to compensate for the high percentage of nonexe-
cutable code.

The model is based on three critical assurmptions.
First, it assumes that KDSI can be estimated with
some accuracy. Second, it assumes that the water-
fall life cycle approach is used. Third, the language
of application development (Caobol, PI/1, APL, and
0 on) is assumed to have no discernible impact on
the arnount of effort or staffing for a project. The lat-
ter two assumptions can be corrected for by the mul-
tipliers. The first assumption, that accurate estimates
of KDSI are possible, is only true when projects are

174 CHAPTER 6 Application Feasibility Analysis and Planning

TABLE 6-10 Advantages and Disadvantages of Estimating Techniques*

Method

Advantages

Disadvantages

Algorithmic

Objeclive, repeatable, eflicient,
analyezable [ormula

Good for sensitivity analysis

Objectively calibrated to experience

Subjective inputs

Does not accommaodate exceptional
circumstances

Assumes history predicis future applications

Expert Judgment

Assessment of representativeness,
interactions, and exceptional circums-
stances can be factored into the judgment

No better than participants
Biases, incomplcte recall

Representativeness of experience

Analogy Based on gxpericnce No better than participants
Biases, incomplete recall
Representativeness of experience

Parkinson Might relate to experience Reinforces poor practice

Price to Win

Often wins the contract

Produces large overruns

Pnethical misrepreseniation of information

Top-Down System level focus Less detailed and slable than other methods
Efficient use of resources Overlooks lechnical complexity
Bottom-Up More detailed hasis May overlook system level complexity

Morc stable than top-down

Fosters individual commitment when
individual cstirmates own work

and costs

Requires more effort than most other
methods

Funection Points

Objective, repeatable, objective inputs

Rased on history

Must be calibrated

Focuses on application externals

* Adapted from Boehny, Barry W, Software Enginecring Economics. Englewood Cliffs, NJ: Prentice-Hall, 1981, p. 342,

similar over time, and accurate siatistics of past proj-
ect KDSI are maintained.

Project mode refers to a combination of size,
staff, and technology. The three main project modes
are organic, semidetached, and embedded (see Table
6-11), An orgamic project is developed by in-house
staff, is small to medium in size, and uses existing,
familiar technology.

A semidetached project is onc that is developed
by in-house staff and contractors, is intermediate to

large in size, and uses technology that is familiar to
some of the project ream.

An embedded project is onc that is developed by
contractors, is medium to very large in size, and uses
state-of-the-art technology which is new and unfa-
miliar to all project members.

The five project sizes referenced by CoCoMo are
small, intermediate, medium, large, and very large.
Each size has an average number of thousands of
source instructions to which it relates (see Table

Feaslbllity Activities 175

Effort = Ao+ A1X1 + .. AnXn Effort = Ag A17 A252 _ Ap*t
Where An = Weight Whera An = Source of Cost i {e.g., Personns! time}
Xn = Source of Cost n (e.g., Parsonnel ime) xn ==1, 0 or 1 depending on pressnce of cost
Ex.: Ex.:
Effort = 3.6 Effort = 6 *
+3 {2} High Uncertainty of *.95! High Lincertainty of
Requirements Reguirements
+10.7 {2) Unstable Design s tnstable Design
+55.7 {1) Concurrent Hardware " 55! Concurrent Hardware
Development Development
+15 (1) New Technology * 150 Mew Technology
+29.55 {1} Multiple Target Hardware t2.55 Multiple Target Hardware
Platforms Platforms
+2.2{.6) Parcent 110 100 Ferzon Months Test Code
+.52 (.4) Percent Match Instructions = 1359 Person Months
=137.58 Persan Months

FISURE &-10 Linear Estimating Formula FIGURE 6-11 Multiplicative Estimating
and Example Formula and Example

N1A 2K log 2N / 25N2

Where:
N1 = Mumber of Program operators {g.9.. Add)
M2 = Number of Program operands {e.g., Data Fields)
N = NI + N2
S = Approximately 18
N2 = IN2 usage, i.e., the number of time the operands are used in instructions
N = ZNI+ ZIN2usage
Example: If
N1 = 30
K2 = 1000
N = N1+ N2 =30+ 1000 = 1030
] = Approximately 18
N2 = ENZ usage = 2500
N = INL+ZXN2=1000 + 2500 = 3500

then N1N2NlogzN/ 28N2
= 3072500~ 3500 log2 1030/ 2 * 18 * 1000
= 75000 " 4.5 /36000
= 9.1 Person Months

FIGURE &-12 Analytic Estimating Formula and Example

176 CHAPTIER & Application Feasibility Analysis and Planning

Estimate nurmber of functions by type.
Estimate number of LOC for each function.
Table lookup of productivity.

Sum all time,

Distribute according te table formula.

Type MMAQ0G LOG”
Math 6 MM

Report 8 MW

Logic 12 MM
Signal/Process Control 20 MM
Real-Time Control 40 MM
Example:

5 Math functions = 2000LOC
15 Reports = BOOOLOC
25 Logic functions = 5000 LOC

6 Signal control functigns = 1200 LOC

0 Real-time control = oLQoC

= (28] + (B"B) + {12"5) + {20"1.2)
= 12 + 64 + 60+ 24
= 160 MM

MM = Person Months
LOC = Lines of Code

FIGURE 6-13 Tabular Estimating Formula
and Example

TABLE 6-12 Five CoCoMo Project Sizes
Thousands of Lines

Size ol Source Code

Small

Intermediate

Medium 32

Large 128

Very Large 512+

From Boghm, Barry W, Software Engincering Economics.
LCnglewood Cliffs, NJ: Prentice-Hall, Inc., 1981, p. 75,

6-12). Tables of the cstimates, completed for each
of the standard sizes, are provided in Boehm’s book.
These sizes provide 1 guide for calibrating nonstan-
dard KDSI estimates.

To use ColloMao, the mede i1s defined, KDSI are
estimated, the formula for the matching project
made is computed. Table 6-13 shows the CoCoMo
*hasic” tormulae for each mode. The appeal of such
a simple model is obvious. The model is reusable,
objcctive, and simple to learn and use. The model’s
major source of uncertainty is in the need for an
accurate cstimate of KDSI. This difficulty of accu-
rately estimating KDSI should not be minimized.

TABLE 6-13 CoCoMo Basic Formulae

TABLE 6-11 Three CoCoMo Project
Modes
Organic ln-house developed
Small-medium size
Existing, familiar technology
Semidetached Partially in-house and partially
contractor developed
Tntermediate—large size
Existing, familiar technology
Embedded Coniractor developed

Mediam—very large size

State-of-the-art, unfamiliar
technology

Mode Effort Schedule
Organic MM = TDEV =
2.4(KDSI'"%) 2.5(MM")
Semidetached MM = TDEV =
LO(KDSI 'Y 2.5(MM™*y
Embedded MM = TDEV =

3.6(KDSI"-2")

2.5(MM®2)

MM = Person Months
TDEY = Time of Development

From Bochm, Barry W., Software Enginecering Economics.
Englewond Cliffs, NJ: Prentice-Hall, Ine_, 1981, p. 75,

Next the multiplicrs are evaluated and used to
modify the person-month estimate based on project
specific factors (see Table 6-14). Risks, uncertain-
ties, conslraints, and staff experience are all evalu-
aled lo determine their potential impact on the
schedule. The basic person-months estimate is mul-
tiplied by each relevant subjective multiplier o
adjust for project contingencies.

Total months of effort is not very useful for a
multiperson project unless there is also some way to

TABLE 6-14 Sample CoCoMo Multipliers

Range of
Type Variance Multiplier
Product
Reliability 75414
Data Base Size 941,16
Software Complexitly JJ0-1.65
Computer
Execution Time 1.00-1.66
Memory Constraints 1.00-1.56
O8 Volatility B7-1.3
Turnaround Time £7-1.15
Project
Modern 82-1.24
Practice
Use of Software Tools H3-1.24
Schedule Constraints 1.10-1.23
Personnel
Analyst Capability F1-1.46
Programmer Capability 70-1.42
Application
Expericnce 82-1.29
Operating System
Experience 80-1.21
Programming
Language Cxperience 95-1.14

Rate Cach Cost Driver on a scale of 0 (Not applicable) to
5 {Highly applicable)

Multiply rating times multiplier lo oblain final multiplier

Multiply MM Computation by final multiplier

EFrom Boelm, Barry W., Sofiware Engincering Economics.
Englewood Clifis, NJ: Prentice-Hall, Tne., 1981,

Feasibility Activities 177

know how much elapsed time the project should take
and when to phase people onto and off of the project.
CoCoMo providcs these estimates. The second set of
formulae are used to estimate total development time
{TDEV) which accounts for multiple people work-
ing on the project. (Table 6-13 also shows the algo-
rithms used o compute development effort.) To use
these algorithms, you simply plug in the person-
months value from the first formula into the TDEV
formula matching the project mode.

Finally, the CoCoMo model includes a formola to
estimate staffing levels over time in the shape of a
Rayleigh (pronounced RAY-lee) curve. A Rayleigh
curve (Figure 6-14) starts at some point above zero,
increases to a high point, and gradually decreases to
near zero, The formula for develeping the number of
people at any time requires an cstimate of the time of
the highest staffing level for the project (see Figure
6-14). This formula assumes a peak about one-third
of the way into the elapsed time (TDEV).

The advaniages of any formula for estimating is
that it is objective and repeatable (see Table 6-10).
Further, they are easily understood and require little
effort to use. The disadvantages are that the formulae
all rcquire some initial estimate that ts hard to
devclop and frequently inaccurate. The formula
might not fit the project and may be complicated
to learn.

EXPERT JUDGMENT. Expert judgment esti-
mating is a technique by which the Project Man-
ager and SE usc their experience to guide the
development of the time estimates. Each task is
defined in terms of the program types likely to
result [rom the task. Then, using their cxperience,
the PM and SE assign times to cach program, adding
design time and analysis time.

For instance, assume there are 15 report pro-
grams, If a batch Cobol report interfacing with a
DBMS averages onc week to code and unil test,
3-5 days of design, and 24 days of analyses, then
15 reports will average 15 weeks for programming
and one week is allocated per program. The other
phase estimates arc similar. A range of 30-60 days
of analysis and of 45-75 days for design are allo-
cated for the 15 reports. Similar estimates are made

178 CHAPTIER & Application Feasibility Analysis and Planning

0.15TDEV + 0.7t, _
—_———]

[Y I I |
T 1T 1T 11
345678

.
(0.15TOEY = 0712
a 3TeEv)Z

is man-manths
is 1otal development tims

1 is the periad far which the estimate is made

Full Time Equivalent Staff 8 —
7
E ——
5 —r—
4 R
3 ——
2 ——
1+
||
T
1 2
Periods
FTE, = MM (
0.33(TDEV)?
where hM
TDEV
*Adapted from Boehm, 1981. FTE,

is Full Time E quivalent staff in time t

FIGURE 6-14 Rayleigh Curve of Staffing Estimates

for batch updates, on-line queries, on-line updates,
and so forth.

When all program estimates are complete, the
entire group is summarized to develop a project
estimate. These are then presented as a range of
estimates with the lowest number representing the
optimistic schedule, the average number represent-
ing the most likely schedule, and the highest num-
ber representing a pessimistic schedule.

Costs are similarly assigned. Each program type
is used to define the skill level of the desired pro-
grammer. For instance, a junior programmer might
be assigned to batch reports, a senior programmer
assigned to on-line processing, and a mid-level
programmer to on-line reports. The times for each
program type and programmer type are summed and
multiplied by the cost of that level person. Similarly,
the level of analyst or programmer-analyst needed
for analysis and design of the tasks is estimated.

Finally, all costs are summed to develop a {otal cost
for the project.

The advantages of expert judgment are the
ability 1o factor experience into cstimates, to tailor
estimates to assigned personnel, and to develop
estimates quickly and efficiently (see¢ Table 6-10).
The disadvantages are that the estimalcs are no bet-
ter than the expertise of the PM and SE, they may
be biased, are hard to rationalize, and not objectively
repeatable. That is, the experience cannot be faught
to others so two PM/SE teams estimating the same
project will develop different estimates for the same
problem. Finally, expert judgment is not useful in
novel sitvations using new technelogy, methodol-
ogy, or languages.

ANALOGY. Analogical estimating is similar to
applying experience. In estimating by analogy, a
recently completed similar project is selected to act

as a prototype bascline for developing cost estimates
for a current proposed project. Costs arc determined
based on the match or mismatch of tasks and pro-
grams Lo the baseline, In other words, if a task is
essentially the same, then the actual time of the task
in the baseline project is used to estimate the actual
time of the task for the proposed project. Analogy is
applied to time, staff skill levels, and, eventually,
resource, hardware, software, and other costs.

The advantage of analogy is thal it is based on an
actual, recent experience which can be studied for
specific differences and only those differences
require new cost estimates (see Table 6-10). The dis-
advantages of analogy are that the analogous pro-
ject may not be representative of the proposed
project, constraints, techniques, or functions. Some
of the disadvantages can be reduced by matching
project tunctions. This fechnigue might work in
large companies with many similar projeets, but is
not particularly useful in small companics, unique
projects, or projects using new technology. method-
ology, or languages.

PARKINSON'S LAW. Parkinson’s Law’ states
that “Work expands to fill the available time.” Based
on this law, any time can be allocated and that is the
time the project will take (see Table 6-10). For
instanee, there are 6 people available for 6 months,
therefore the project will take 36 person-months.
This is a cynical view of estimating that reinforces
poot development practices by random assignment
of time and people.

There are obvious flaws to Parkinson’s Law. This
method is likely to be grossly inaccurate in estimates
generated (see Table 6-10). if peaple are allocated
because they are available and not because they are
needed, their skills are likely to be wasted and the
project is more likely to be late. This method is nor
recommended.

PRICE-TO-WIN. Price-to-win is a consultant
strategy that uses a low estimate to obtain a job, with
the implication that the time and cost will later be
renegotiated. Like Parkinson’s Law, this strategy is

5 Parkinsen’s Law was first published in 1957,

Feaslbility Activities 179

rot recommended. Price-to-win leads to forced user
compromise on application requirements to try to
meet a cost/time estimate, gives the consulting com-
pany bad public relations, always requires staff over-
time, and most always results in cost overruns for
both time and money.

You might ask, Why would anyone ever use
a price-1o-win strategy? Unfortunately, historical
estimates by IS personnel are not very accurate
unless combinalions ol modern techniques such as
CoCoMo and function points are used and few prob-
lems oceur on the project. Following this logic, peo-
ple who use a price-to-win strategy vsually believe
any estimate is good as long as they get the job, since
there is little relationship between real and estimated
costs anyway, Frequently, in government projects
especially, the lowest bid wins the job. This logic
of choosing the lowest bid leads to price-to-win
estimates. This has led to problems for several gov-
crnment entities.

TOP-DOWN. Uscd with one or more of the other
estimating techniques, top-down estimates use
project properties to derive an estimate. Then 1otal
cost is split among the components. After a time
estimate is derived, the 40-20-40 rule is applied to
the estimate. According to the rule, 409 of project
time is spent on analysis aund design, 20% is spent on
coding and unit testing, and 40% is spent on project
testing.

The advantage of using a top-down approach is
that, by focusing on global properties of the appli-
cation, an cslimate can be developed quickly—in a
day or two. Using analogy to assess global proper-
ties, the proposed project is assumed similar to some
other whole project. For instance, ABC’s applica-
tion is an on-line database application with create,
change, delete, and query capabilities for all data,
and an overall query facility for grouped data; sys-
tem functions include start-up, shutdown, and
monthly file maintenance processing.

The major disadvantage of a top-down approach
is that the above description fits most on-line data-
base applications (see Table 6-10). Such a high level
focus cannot identifly low level techrical problems
that drive up costs. For instance, in a complex data-
base application, cne particular data access nced

180

might require a month of design and prototyping
time to prove that the concept works. This type of
special process would be missed in a top-down
estimate. Whole softwarc components might be
missed in the global assessment that, when devel-
oped, account for a disproportionate amount of time
and cost. On balance, top-down estimates are less
stable than more specific estimates.

BOTTOM-UP. The bottom-up approach takes the
opposile view of an application from the top-down
approach. Using a bottom-up estimating approach,
each software component is identified and estimated,
ofien by the person who would do the development.
All individual component costs are summed to arrive
at the estimated cost of the entire software product,

The bottom-up approach is as likely to miss com-
ponents for development as the top-down approach
(see Table 6-10). At the low level, integration work
to combine modutes and programs may not be esti-
mated or is easily underestimated. Also, the bottom-
up approach requires significantly more effort to
develop because every module, program, screen,
database interaction, and so on must be identified
for estimating.

The advantages of the bottom-up approach
arc that the estimatcs arc based on a more de-
tailed understanding of the project than the other
methods, and, when estimated by the person doing
the work, the cstimates are backed by a profes-
sional’s commitment.

CHAPTER 6 Applicaticn Feasibility Analysis and Planning

FUNCTION POINTS. The function point method
takes un organizational history approach to estimat-
ing. Function points are a measure of complexity
based on global application characteristics. A base-
ling developed by analyzing all previous applica-
tions is developed for each type application. The
baseling number of function points is divided by the
actual cost/time of development to get an cstimate
for one function point per application type (or lan-
guage, or person-month). New applications are ana-
lyzed to determine an cstimatc of thc number of
function points in the project. Then, the base time
and cost estimates for one function point are multi-
plied by the number of estimated function points for
the proposed application to develop a total time and
cost cstimate,

Function point analysis rests on the ability of the
project team to predict the inputs, outputs, queries,
intcrfaces, and fies. Figure 6-15 shows the counts
and weights assigned for each type of 1/0, Each
item is counted and weighted for complexity. The
weighted counts are summed,

Then a series of 14 questions to determine differ-
ent types of application complexily are evaluated
on a scale of zero to five to measure increasing
importance of the item to the application (see Table
0-15). The answers 1o the 14 questions are also
summed. The summed complexity weights and
weighted counts are combined in one formula shown
below to compute the total function poinis [or a
project.

Application ltem Count Simple Average Complax FP = Count * Weight
Inpuds (i.e., Trans Types) 3 4 g
Outputs {i.e., Reports, Screens) 4 5 7
Programmed Inguiries 3 4 6
Files / Relations 7 10 15
Application Interfaces 5 7 10

From Pressman, Roger 8., Software Engineering: A Practitionar’s Approach, third edition. NY: McGraw-Hill, 1892, p. 49

FIGURE 6-15 Function Point Weighted Count Table

TABLE 6-15 Function Point Questions
and Rating Scalc*

Rating Scale from 0 (No influence) to 5 (Essential)

Factor Questions:

1. Is reliable backup and recovery required?

[]

. Are dala communications required?

. Are any functions distributed?

. Is performance critical?

. Is operational environment volume high?

. 15 on-line data entry reguircd?

o I o L ¥ T~ % }

. Does on-line data entry require multiple screens or
opcrations?

8. Is on-line files update uscd?

9. Are queries, screens, reports, or files complex?
10, Is processing complex?
11, Is code design for reuse?

12. Does implementation include conversion and
installation?

13, Are multiple installations and/or mulliple organiza-
tions involved?

14. Does application design lacilitate user changes?
Henw inegral is ease of use?

*From Pressman, Roger 5., Software Engineering: A Pracii-
rioner’s Approach, third edition. NY: MeGraw-Hill, 1992, p. 5.

FP = Total weighted count * {65
+ (0.1 * Z{complexity adjustments}))

Function points have become popular enough that
several companies and sofiware packages are avail-
able for developing function point estimates. In ad-
dition, tables of function points per number of lincs
of code are also available. For instance, 100 lines of
Cobol is equal to 20 lines of Focus is equal to one
function point. Translating function points into lines
of code, then, requires a simple table lookup.

The appeal of function points is similar to that of
CoCoMo. Any algorithmic method is likely to be
¢asy to use, understand, and repeat (se¢ Table 6-10).
An algorithm gives the appearance of objectivity

Feasibiiity Activities 181

that other methods do not. Of course, the function
point estimate has flaws similar to those of CoCoMo,
too. Function points must be calibrated for the orga-
nization based on its history of project development.
It assumes that history predicts the future, Further,
it assumes similar technology and skills across proj-
ects. The model assumes that methodology and
CASE have no impact on project development time.
To summarize, there are several useful methods
of project person-month or lines-of-code estimat-
ing. The most popular are expert judgment, analogy,
CoCoMo, function points, top-down, and bottom-up.
All of these methods have advantages and disadvan-
tages. If a history of projects and function points is
kept, that appears to be the most accurate estimai-
ing technique at the moment. If function points are
not calibrated to the company’s history, no one esti-
mating technique is better than any other. Rather, the
methods might be paired or used several at a time to
develop estimates that are closer to reality than esti-
mates developed using any one method alone.

Planning Guidelines

In the absence of calibrated function points for ABC,
we will discuss the use of scveral methods in devel-
oping a plan for an application, By combining the
methods, the schedule and plan developed shoutd
be better than using any one plan on its own.

Several variations for combining estimating tech-
niques are feasible. They are:

1. Estimate inputs, owtputs, interfaces, queries,
and files according to function point
directions.

2. Answer 14 questions and estimate project

complexity.

Compute function points,

4. Lookup lines of code per function point (FP)
in language table and compute total lines of
code (LOC) for the project.

5. Decide the CoCoMo mode.

6. Using FP LOC as input to the CoCoMo
model, compute person moenths of effort.

7. Analyze multipliers and adjust the gstimate.

8. Compute total development time and project
slaffing estimates using the other CoCoMo
formula.

o

182

If the company uses function point analysis for its
baseline, function point planning is the first type per-
formed. Then, the plan can be compared to the Co-
CoMo modei estimates to verify its goodness of fit.
Alternatively, the project manager can develop a top-
down plan while the SE and any other project staff
working on the feasibility develop a bottom-up plan
by using the following steps:

!. PM and SE together estimate the develop-
ment approach and all functions in the
application.

2, PM uses top-down analysis {o develop a list
of activities to be performed and the times for
each.

3. From this list, deliverable products and &
schedule are developed.

4. The list is analyzed to determine task depen-
dencies, and a first-cut eritical path chart is
developed.

5. Concurrently with steps two Lo four, the
SE analyzes each function botlom-up
to determine the complexity, possible
problems, nondeliverable programs, and
amount of effort to be assigned to each
technical task.

6. Any new tasks identified by either the PM or
SE are added to the plan and estimated. The
SE and PM compare and adjust their time cs-
timates until they agree.

Another alternative is to combine expert judg-
ment, analogy, top-down, and bottom-up 10 develop
a first set of estimates. Then, these estimates are
compared to the standard function point estimate for
a reality check. 1 the expert estimate is more than
15% lower than the function point estimate, then the
plan should probably be revised upward. In this sec-
tion, we use expert judgment and analogy, using a
top-down approach to devefop the estimatc, then do
a bottom-up analysis of each picce Lo ensure they are
all present.

The steps (o developing @ plan are:

1. Decide the Development Life Cycle (DLC),
appreach, and methodology.

2. For each phase, list the deliverable products
that mark completion of the phase.

CHAPTER 6 Application Feasibility Analysis and Planning

3. Decide on information gathering tech-
nique(s) and use of JAD, prolotyping, or
other variants to DLC.

4. Decide which products the technical project
team members will develop and which the
users will develop.

5. Define dependencics and develop CPM
chart.

6. Assign times to tasks and compute total
project time,

7. Estimate inputs, outputs, interfaces, querics,
and files according to function point
directions.

8. Answer 14 guesticns and estimate project
complexity.

9. Compute {unction points.

10. Lookup lines of code per function point
(FP) in language table and compute total
lines of code {LOC) for the project.

11. Estimate productivity in LOC/month.

12. Compare FF number of person months to
the estimated (otal time.

13. Adjust time estimates, as required, and com-
plete the CPM diagram by adding times.

For instance, assume the waterfall is followed and
the phases include Feasibility, Analysis, Design,
Program Design, Code/Unit Test, System Testing,
Acceptance Testing, and Installation. Then, list de-
liverable products. Phases might have more than one
deliverable product. Products usually coincide with
the ending of life cycle phases. Products for these
phases include a feasibility report, functional re-
quirements specification, design specification, pro-
gram specifications, plans for testing, conversion,
training, and implementation, opcrational documen-
tation, and vser documentation.

From the choices in Chapter 4, decide the ap-
proach to information gathering. If you use JAD, for
instance, the amount of time allocated to analysis is
less than if you use interviews over time. Decide the
overall system design approach. Is prototyping
needed? How involved will users be in the develop-
ment process? How extensive will user training be?
Will CASE be used? Which tool? (Some tools add
analysis and design time, some reduce it). How ex-
tensive are documents expected to be? Is on-line

help software geing to replace user manuvals? Who is
respoasible for planning and executing the conver-
sion? How much data scrubbing to remove errors
from existing data is required? The answers to these
questions increase or decrcase the time allocated for
each task.

Next dectde which products the technical project
team members will develop and which the users will
develop. These tasks are estimated just as the techni-
cal team tasks are estimated, but they are also sin-
gled out for several reasons. First, the dependencies
should clearly show the split of assignmeats for the
technical team and users. Second, users should be
allowed to comment on tasks for which they are
responsible. The technical team usually takes
responsibility for the tasks if the users will not
take it

Develop a list of tasks and define dependencies,
developing a critical path chart for the project.
Assign times to tasks. Compute function points.
Using an cstimate of LOC per month per person on
the project, compute a total projcct time, and com-
pate the FP estimate to your estimate, Adjust your
estimate as required if it is morc than 153% less than
the FP estimatc. In general, always use a higher
estimate rather than a lower one. Project schedules
have a way of losing time for meetings, nonproject
responsibilitics, and other legitimate, but nonpro-
ductive uses of time.

Now, let’s go through each step to using com-
bined technigues for estimating. To develop a critical
path diagram, list the tasks on a sheet of paper. Begin
with high level tasks, or tasks of a singlc phase,
adding lower level lasks as they come to mind.
Development of the task list requires some experi-
ence and is always done more easily by several peo-
pte rather than one who is likely to forget some
critical task. The task list, in critical path method
terms, is called a work breakdown.

Define durations for each task. Durations may be
an absolute number or a range of time, The critical
path method recommends the identification of opti-
mistic, likely, and pessimistic estimates. Then, the
weighted formula ((Optimistic + 4(Likcly) + Pes-
simistic) / 6) is applied 1o develop one number for
use in financial analysis and software planning tools.
Use either method for developing the time. Planning

Feasibility Activittes 183

software packages allow early, most likely, and latest
possible dates 10 be entered. For some software you
enter the project completion date and the software
coemputes the early and latc dates for tasks based on
their durations.

Extend the times to develop dates at which each
task ig expected. A work breakdown shows the earli-
est start and end dates for each task, plus the latest
start and end dates per task. The early dates assume
that each preceding task took the minimum esti-
mated number of days. The latest start and end dates
assume that each preceding task took the maximum
estimated number of days.

Next, create the CPM chart (see Figure 6-16). List
all tasks on a piece of paper. Draw lines from later
tasks to early tasks on which they arc dependent. By
dependent tasks, we mean those tasks that cannot
be begun until information (or products or ap-
provals) from the previous task are complete. The
early task feeds the later one.

When the diagram is complete, compute the time
to complete each leg of the diagram. The leg with the
longest time 1s the critical path, that is, the tasks on
which meeting the deadline for the project depends.
If any one of the critical path tasks is late, the proj-
ect will be late. When monitoring the project, the
critical tasks get priotity. When assigning staff to
tasks, the critical tasks should be assigned the most
experienced and skilled personnel.

Some sensitivity analysis on critical path and on
task dependencies might be done, if using an auto-
mated tool for the analysis. Manual analysis is so
time-consuming that it may not be worth the effort.
The impact of different end dates is analyzed. For
instance, if the nser were to mandate a date two
months earlier than the estimated end date, what is
the impact on the project and tasks? Does the criti-
cal path change? Can other tasks, not fully analyzed,
be made more parallel? Can any dependencies be
removed by altering the plan or tasks? If the project
suffers penalties (loss of revenue) from not meeting
deadlines, the risks for each task might be reasscssed
to ensure that nothing is missed. The project man-
ager continues this type of analysis until he or she is
comfortable with the result.

After the critical path is identified, staff should be
assigned to cach task to complete project planning.

184 CHAPTER & Application Feasibility Analysis and Planning

FIGURE 6-16 Sample Critical Path Method Chart

Assign people to minimize the amount of stack time
for which they have no assignments, but allow some
slack time in casc problems arise. Assign the criti-
cal tasks first, allocating them to the best, most
experienced pecople. A general rule of thumb is that,
in absence of artificially short deadlines, peaple can
be assigned to develop a whole leg of the critical
path, The purposc for assigning scquential tasks in
& leg are to leverage the knowledge gained from
carly tasks to later tasks, and to provide cach indi-
vidual a sense of contribution to the overall project
by allowing them to take responsibility for a large
chunk of work,

When the estimates arc complete, develop a func-
tion peint estimale, or have someone else do it in
parallel. Weight the FP cstimate by the answers to
the 14 questions. Lookup the lines of code {L.OC)

per function point (FP) in a table (see Figure 6-17).°
Estimate your productivity in LOC per month; for
instance, 1000 LOC/Month for a 4GL. is not uncom-
mon. If your company keeps statistics, use its his-
torical numbers for project type and language.
Compute total persan-months for the project using
the formulae in Figure 6-18, Compare the FP esti-
mate to your estirnate and adjust as nesded. Don’t
just blindly take the higher number. Rather, a dif-
ference means that information was interpreted dit-

6 Reler 1o Capers Jones™ 1986 book, Programming
Productivity, for extensive tables with this information.

Nurmnbier of Lines of Code per Function Point *
Number of Function Points = Total Lines of Code

Example 25 LOC/FP (4GL} * 100 = 2500 LOC
Total Lines of Code / Lines of Code par Month
= Number of Person Months

Exampte 2500 LOC / 1000 per Maonth = 2.5 Person
Manths

Lines of Code/FP Language

25 4 GL

25 SQL

100 Cobaoi
FIGURE 6-17 Examplc of LOC/FP for

Different Languages

FIGURE &-18 Function Point Computations
for Total Person Months

ferently by the two methods of estimating. See if
you can find what is different and which estimate is
more realistic.

Use the 40-20-40 rule to check if the effort looks
like it is reasonable across the phases. Analysis/
design should be about 40% of effort if manual and
55% if using CASE. Codc/unit test is about 20%
effort if manual and 5% if a CASE tool generates
code. System testing should be 30-40%. Testing
estimates are usually low. If testing is the difference,
ask if there is some reason to be optimistic, for
instance, a skilled programmer. If the difference
cannot be found, and the percentages are allocated
about right, then changing your estimate is a judg-
ment call.

For manual allecation of staff to a project, a list of
tasks in CPM /egs should be created and a person’s

Feasibitity Activities 185

name assigned to each task. This allows easy track-
g of assignments and dates at which people rotate
an and off the project. If using an automated tool,
allocation of staff usually requires entry of the per-
son’s name and assignment of tasks by CPM D, In
either case, as people are assigned to tasks, note who
they are and when they begin (and end) project
work. Make sure you do not change the critical path
by the assignment of personnel to overlapping or
conflicting duration tasks.

Upon completion of task assignments, a Gantt
Chart is developed to summarize the project. A
Gantt Chart shows the entire sct of project tasks,
people assigned, and completion times esiimated for
the development effort (see Figure 6-19). A list of
people and amount of time assigned to the project is
created for use in the costing activity.

Day

Schedulad Task

-
r
o

10 12

Interviews
J. Smith
G. Jones
M. Mayhew

SB

5B

Develop DFDs

Defing Data
and ERD

Ravigw and
Revise DFD

and ERD SB

SB-

Begin Data Dict.

Define Problams

wiCurrent System 85

Define Business
Cpporlunities

sB

BE

Legend:

B = Barbara James, SE
S = Stan Smits, PM/SE

Where initials alternate, both Barbara and Stan participate in the activity.

FIGURE 6-19 Sample Gantt Chart

186

ABC Video Implementation Plan

ABC’s rental application is a fairly average project
with no obvious complexities, no state-of-the-art
technologies, and a single, small organization. Mary,
the PM, and Sam, the SE, decide to use a combina-
tion of analogy, top-down, and bottom-up and to
check their estimate with function points based on
the estimate of 25 LOC/FP for a 4GL. Before Mary
and Sam begin, they first decide their approach and
assumptions cn which the estimates are based.

The project is expected to be implemented on a
Novell cthernet LAN using PCs as workstations and
a superserver {50 Mhz, 486-based machine). The
software environment will be some SQL language
with custom application software. There will be four
main files, corresponding to the four main colites
in the ERD. The main processing cenicers around

CHAPTER 6 Application Feasibility Analysis and Planning

rental activity with standard maintenance procedurcs
for the other files. Other files, which will be main-
tained during rental processing, include history and
an end-of-day summary of transactions, The appli-
cation will accommodale up to ten concurrent users
for all processing.

If two people are estimating, as Sam and Mary
are, a good approach is to split the two types of esti-
matcs between the individuals. Sam would do one
and Mary the other. Then they compare and rational-
ize their work.

First, we develop a function point cstimate for the
work. The function point estimate (see Figure 6-2())
shows that the project is not very complex in any of
the key inputs or outputs. The weighting questions
idenlify the on-line, interactive, and multiuser char-
acteristics as contributing the greatest complexity to
the application. The total function points are esti-

Application Hem Gount Simple

Average Complex FP = Count * Weight

Inputs (i.e., Trans Types) 3

5
6 4
: ©)
8 7

© 5

Qutputs {i.2., Reports, Screens)
Programmed Inguiries
Files / Relations

Application Interfaces

6 20

©
®

7 30

6 18

@) »

15 -

7 10 Q

Factor Questigns

Reliable backup and recovery

Data communications

Distributed functions

Critical performance

High volume operations environmant
On-line dala entry

Multiple data entry screens or operaticns
Cn-ling file update

Complex queries, screens, reports, or files
Complex processing

Feusable code design

Gonversion and installation

Multiple installations and/or multiple organizations
User change; ease of use

Total

Total 148

Score

FP = Total Weighted Count *
{.65 + (.01 * Z{Complexity Adjustments)})

=148~ (B85 + (.01 * 37))
=148 * (65 + .37)
=151 Functian Points

WO LRDREROARAUDDRRDQA

(]
-

FIGURE 6-20 ABC Function Point Estimate

mated at 151. Carrying the FP analysis through. at
25/LOC per function point, there are about 3775
LOC (i.e., 25 * 151) for the project. At u productiv-
ity rate of 2000 per month, the total number of per-
son months for the project is about 1.9 months {ie.,
3775/2000). The estimate of 2,000 LOC/month is a
company statistic based on the average productivity
of each of the project participants.

Mary, in parallcl, creates a task list which she
converts into a work breakdown. The work break-
down identifies the tasks to complete the project, and
the optimistic, likely, and pessimistic times for each
task (scc Tablc 6-16). The most likely time for each
task is then computed and a total time for the
pruject is estimated.

At this point, the two sets of estimates should be
compared. The FP estimate suggests 1.9 person-
months, while the work brecakdown estimate of
172 hours translates into slightly under one month
{25 days). The FP estimate is almost twice as high.
Let’s see where the differences might lie, At the cnd
of Table 6-16, the total times for each phase are
shown with percentages of the total computed for
each number. The percentages do not follow the
40-20-40 rule closely. The realistic estimate shows
46% of time for analysis and design, 32% for cod-
ing and unit testing, and 22% for system testing. The
estimate for system testing is low relative to the rule
while thc other estimates are somewhat inflatcd.
Mary knows she and Sam are the only two people
who are expected to work on the project and she
based hcr cstimates on their ability to debug and test
quickly. But cven she cannot defend this low number
to Sam. Sam also points out that, if Vic wants much
documentation, her estimates for all the tasks might
be low. Mary has assumed that Vic, being a small
company owner, will opt for less documentation to
save on the expense.

On the other hand, Sam identified several com-
plexities with which Mary takes issue, in particular
with the difficulty of on-line update and the difficulty
of interactive programming. Both of these were
given a °5’ rating of complexily. Mary feels that if
the application were on a mainframe and using
mainframe software and tools, the fives would be
justified. Since the application platform is a LAN
with which they have cxtensive experience, she feels

Feasibility Activities 187
that the highest rating should be a four. This would
then reduce the FP estimate. Both Mary and Sam
discuss their estimates, defending their reasoning
processes and subjecting them to criticism by their
partner. In the end, they confirm with Vic that he
does want only minimal documentation, and they
decide to split the difference on their cstimates
adding a total of 90 hours to the project. Of that time,
18 hours (20%) is allocated to code/unit test and the
remaining 72 hours (80%) to testing of the project.
The final estimates would then show code/unit test
time of 73 hours (28% of total) and testing time of
110 hours {42% of total}. While these percentages
arc now slightly skewed away from analysis and
design, which is now 30% of the total, these per-
centages are in line with the 4GL need ta do less
analysis and design. The 1otal estimated project time
used in the financial cstimates will be 262 hours or
1.5 person-months.

The final work breakdown is converted into a
CPM diagram to identify the critical path of work
(see Figure 6-21 for the Analysis CPM). Based on
the critical path, contingencies are planned to
ensure meeting of the schedule. Figure 6-22 is a
Gantt chart for analysis showing how Mary and Sam
split their responsibilities.

If project planning software were uscd, the CPM
is built first, then selection of an option converts the
CPM into the work breakdown. To create either dia-
gram, the tasks and durations must be known,
Sophisticated software supports the insertion of a
start date for the project and, based on the optimistic
and pessimistic task durations, ard on the depen-
dencies from the CPM, the software computes all the
dates for the project.

Evaluate Financial Feasibility
Financial Feasibility Analysis

Financial feasibility analysis evaluates the firm’s
ability to pay [or a project, and compares recom-
mended alternatives to determine which is more
economically attractive. In general, projects are eco-
nomically feasible when the sum of all IS projects
plus the proposed project is less than 10% of firm net

188 CHAPTER & Application Feasibility Ancalysis and Planning

TABLE 6-16 ABC Work Breakdown with Durations

Task: Analysis Optimistic Likely Pessimistic (O+4L+P)/6
Define Customer Maintenance Processing 2 3 4 3
Define Video Maintenance Processing 3 4 3
Define Rental Process 1 2 3 2
Define Retumn Process 1 2 3 2
Define How Intertwined 2 3 4 3
Detine History 1 2 3 2
Define EQODay, Audit, Trans Log 2 3 4 3
Define Cust Create, Video Create in Rental 1 2 3 2
Define Ercor Msgs, Abort Procedures 1 2 3 2
Define Screen Contents 2 4 6 4
Diefine Flow of Processing 1 2 3 2
Define Slart-up/Shuidown 1 2 3 2
Define File Purge) 1 1.5 1
Define Backup/Recavery 5 1 15 1
Befine Conversion/Training 1 2 3 2
Analysis Total Time 19 34 49 34
Task: Design Optimistic Likely Pessimistic (O+4L+P)/6
Cust Maint Process 3

Video Maint Process 2 3 4 3
Rent/Return

Includes: Display, Pata entry, Retrieval,

Payment, Accounting, File Update,

History, EOD, Audit, Controls 7 11 21 12
Screens 10 14 16 15
Start-up/Shutdown 4 6 12 6
Backup/Recovery 1 1 1 1
Conversion, Training 2 5 8 5
Design Total Time 28 43 66 45

income. This uses industry averages as the guideline.
To compare alternatives, several methods discussed
in this section are used.

Cost-benefit analysis is the cornpatison of the fi-
nancial gains and payments that would resuit from

selection of some alternative. The analysis facilitates
comparison of alternatives for one project or alterna-
tive projects.

Critcria used in alternative comparisons might
be maximizing benefits, ratio of benefits to costs, net

Feasibility Activities 18%

TABLE 6-16 ABC Work Breakdown with Durations (Continued)

Tusk: Code/Unit Test Optimistic Likely Pessimistic (O+4L+P)/6
Cust Maint Process 2 4 6 4
Video Maint Process 2 4 6

Rent/Retum

Includes: Display, Data entry, Retrieval,
Payment, Accounting, File Update,

History, EOD, Audit, Controls 8 14 28 15
Screens S 10 15 10
Start-up/Shuldown 8 10 12 10
Backup/Recovery 1 2 3 2
Conversion, Training 3 10 15 10
Code/Unit Test Total Time 31 54 85 55
Task: Testing Optimistic Likely Pessimistic {(O+4L+P)/6
Scaffolding Z 4 5 4
Screen tost 2 4 6 4
Subsystem Test 7 14 21 15
System Test 7 14 21 15
Testing Total Lime 18 36 53 K}]
Project Totals by Phase Optimistic Likely Pessimistic (O+4L+P)/6
Analysis Total Time 19 34 49 44

19% 20% 19% 20%
Design Total Time 28 43 66 45
29% 26% 26% 26%
Code/Unit Test Total Time 31 54 85 55
2% 32% 34% 32%
Testing Total Time 18 36 53 38
199 22% 21% 22%
Project Total Timce 90 167 253 172
100% 100% 100% 100%
benefits, minimizing costs for given level of benefit, Three types of costs are considered: acquisition,

or maximizing project internal rate of return. The development, and operating costs are all considered
most popular criterion is maximizing net benefits, in the development of the cost-benefit analysis. Sev-
which requires analysis of the present value of ben- eral different sources of costs relate to each of these
cfits and costs. cost types:

190 CHAPTER S Application Feasibility Analysis and Planning

4 2
Dafine .
Rental/Return &2:2}3
Processing :
Relationship Processing
2
Define Error
Messages /
Abort
Pracessing
3 2 Realistic
Duration)
Milest
Defing Define How lasiene
Customer crﬁ?;ggilft !
Maintenanoe * Rentsl Works \ 27 2
Doculment All Raview
Requirements Reguirements
inPGFO, with Vic
3 ERD, DD
Define 3 / \
Video
Maintenance) Defing Task
Define Screen * End of Day
Gontents and Audit Trail
Process Flow Trans F_ogl
1 1 b 1
Defing - Define Define File
Stariup / [;:gns e?baofrl:;lg Gonversion Purge / History
Shutdown Requirements and Training File Creation
Processing Requirements Not Done in Rental

*Bold {ing indicates the critical path.

FIGURE 6-21 ABC CPM Chart for Analysis Activities

Acquisition Costs Education of personnel

Consulting Testing

Equipment Conversion

Software Losses relating to changeover, downtime,
Sile preparation reruns

Instailation Aggravation cost

Capital Operating Costs

Management staff assigsed to acquisition
Development Costs
Application development

Personnel allocated for maintenance
Hardwatre operating expensc (e.g., air
conditioning, electricity, etc.)

Feasibility Activities 191

1/2 1/3 1/4 145

1/6 17 178 1/9

Sam

" ine Rental/Return Progessing Relatignship

How Create ¢

Dafine Error Mes

Defing

ust/Video in Rental Works

n Conteqts and Procesgt Flow Procesging

ages/Abort Pipcessing

Mary

h tdown Procegsing

Celine Backup and Recovery Requifements

Detina Conversion and Training Bequirements

Vie

L 1

Assigned time (white area)

Slack Time (gray area)

FIGURE 6-22 ABC Gantt Chart for Analysis Phase

Lease/rental costs
Depreciation on related capital acquisitions
Operating personncl overhead

[n general, any time you spend money, a cost is gen-
erated. Whether the money is for salaries, personnel
bencfits, copy machine rental, PC acquisition, oper-

ating system acquisition, DBMS acquisition, and so
forth, a cost is generated. The breakdown of costs
into acquisition, development, and operating cate-
gories allows managers to do sensitivity analysis on
allernatives, For instance, Alternative A might have
a high acquisition cost relating to hardware site
preparation and expense, whereas Alternative B has

192 CHAPTER & Application Feasibility Anglysis and Planning

none. If the benefits are greater with Alternative A,
we might ask if the acquisition of hardware is justi-
fied by the extra benefits relating to Alternative A.

All of the costs of cach alternative arc assembled
according Lo type for the analysis. Depreciation
schedules, leasing schedules, and any ancillary
information relating to how costs are generated over
time are alse used in the analysis.

Similarly, all information about benefits expected
from the application are assembled for the analysis.
Benefits are identitied as “one time’ or as continuous
improvements. If a strcam of revenues is generated
over time by the application, these are identified as
annual revenues.

The net present value formula is applied to the
benefits and costs to develop a net present value for
the application {see Figure 6-23). The formula
accounts for the time value of money in computing
the net benefits over costs, If inflation or fluctnating
interest are expected, the intcrest rates might be
changed for each time period to account for such

NPV = I{{B— Gy M0 +d ¥)

where: | isthe time period, varying from 1 to n
& is the discounted interesi rate
B8 is the value of period benefits

C is the value ot period costs

Example: ¢ = .08

t B Cy (1+a)
1 0 50,000 1.0000
2 10,000 5,000 1.0800
3 30,000 5,000 11664
4 50,000 5,000 1,2587

NPV = =(50,000/1)
+ 5,000/1.08
+ 25,000/1.1664
+ 45,000/1.2587

= -50,000 + 4,629 + 21 433 + 35,722
=$11,784

FIGURE 623 Net Present Value Formula and
Computation

fluctuations. Keep in mind that exactly the same
analysis is required for all competing alternatives to
cnsure consistent NPVs, The example shown in Fig-
ure 6-23 shows a project for which the benefits out-
weigh the cosis; such a project would be desirable.

The problems arise when a project does not gen-
grate a favorable NPV, but numbers alone do nor
express project value. Benefits may be insufficient to
pay for the projcct. For instance, in complying with
government regulations, there may be no specific
benefits to the company. Similarly, when responding
to a competitive need, the benefits might not out-
weigh the costs, but the cost of not doing the project
might be the loss of the business. Start-up companics
frequently build applications to support anticipated
work; the applications might not be profitable until
they are several years old, Benefits from such appli-
cations are difficult, if not impossible, to quantify
because of the uncertainty associated with a new
business. Finally, companies wishing to gain signif-
icant competitive advantage must frequently under-
take a financially unjustifiable project to oblain their
goals. American Airlines, for instance, in developing
their $1 billion airline reservalion sysiem was bet-
ting that their ability to gain market share would out-
weigh their expenses. The financial analysis could
not justify the project because of the high level of
intangible benefits and the difficully in estimating
their worth. The risk paid off, but counld just as easily
have backfired. That is the nature of risk and why
good managers develop skill in knowing when such
a risky project is worth attempting.

Make/Buy and Other Types of Analysis

Other types of analysis that might be developed are
make/buy, internal rate of return, and payback
period. Each of these uses NPV as a starting point
for determining the value of a project, Each develops
a different analysis. Make versus buy decisions eval-
uate two types of development alternatives, First,
mauke/buy compates the valve of a customized appli-
cation to the purchase of a software package. This
sounds like a simple comparison, when in fact,
it is not. Purchasing software for a complex appli-
cation usuvally requires customizing and alteration.
Packages are rately used off-the-shelf. Conscquently,

the analysis concentrates on the extent to which
changes to the package are required and the cost
of purchase plus changes versus the cost of custam
development.

Second, make/buy is also used to compare the
competitive value of building a software product
internally versus development by a consulting firm.
Occasionally companies which charge for in-house
IS devclopment services begin to overcharge their
users. Users are then justified in obtaining competi-
tive bids from consulting companies and vsing their
services when the cost is less.

Internal rate of return (IRR) is a financial analysis
of NPV such that positive cash flows (i.e., benefiis)
are equatcd to negative cash flows (i.e., costs). This
means that the 4, discount rate, in the NPV formula
is found. This gives the truc cost of funds for this
particular project. When projects have similar NPVs,
an IRR analysis identifies differences in cost of
money based on when the cash flows are generated
that might differentiate the allernalives.

Payback period is (the number of years required to
recover the investment (acquisition and develop-
ment) costs trom projected benefit cash flows. The
payback period might deerease revenues for the time
value of moncy or might use a simple analysis of
payback. Payback analysis is popular because it is
easily understood. It can discriminate aguinst proj-
ects which have a long lead time to realizing bene-
fits, but should not be the primary criterion for
project selection decisions. In the example shown in
Figure 6-23, the payback period would be 3 years
and 2.4 months. This number is arrived at by identi-
fying $10,000 in year 4 as contributing to the pay-
back along with all benefits in years 2 and 3. 10,000
is 20% of 50,000, the fourth year’s projected return.
Therefore, 20% of 12 months is 2.4 months. The
payback, rounded, is 3 years and 3 months.

Document the
Recommendations

The documentation of the feasibility study pulls
together all information relevant in developing the
finai recommendation. The purpose of the sustmary
document is to provide managers a basis for decid-

Feasibility Activities 193

ing whether or not to continue with the development
cffart. With this thought in mind, the feasibility doc-
ument should contain mainly supporting diagrams,
lists, and summary analyses. Text should be kept to a
minimum to explain the attached diagrams and
analyses. An outline of a feasibility document is pro-
vided in Table 6-17.

TABLE 6-17 Feasibility Report Outline

10 Management Summary

2.0 Current Environment
2.1 Business Environment
2.2 Work Procedures

2.3 Evaluation of Strengths and Weaknesses of
Current Procedures

3.0 Proposed Solution

3.1 Scope of Proposed Solution

3.2 Fugctional Requiremcats Overview
4.0 Technical Alternatives

4.1 Altcrnative 1
4.1.1 Description of Alternative
4.1.2 Benefits of Alternative
4.1.3 Risks of Alternative

42 Alternative 2 . ..
4.n Alteroalive n
5.0 Recommended Technical Solution

5.1 Comparison of Alternatives
5.1.1 Technical Comparison
5.1.2 Benefits Comparison
5.1.3 Risk Compatison
5.1.4 Recommendation and Risk
Contingency Plan

6.0 Project Plan
6.1 Critical Path Chart
6.2 Staffing Plan

7.0 Costs

7.1 Cost of Recommended Alternative
Hardware/Software

7.2 Projected Staffing Cost

7.3 Analysis of Alternatives (il necessary)

194 CHAPTER 6 Application Feasibility Analysis and Planning

The Management Summary section is the most
important because it is the only item rcad by most
of the audience. Therefore, it should be brief, less
than two pages, and should summarize the remainder
of the document. In particular, the cost, NPV, other
financial analyses, scope, purpose, technical recom-
mendation, and importance of the project to the
organization are highlighted in the summary section.
All organizations involved in the development
effort and the nature of their involvement should
be highlighted.

The remaining sections summarize each of the
main activities completed during the feasibility
siudy, The current environment and proposed alter-
natives arc described in sufficient detail to give the
reader an understanding of the differences proposed.
This scction identifies hardware, operating environ-
ment, software, items for custom development, and
requirements met by the alternative, Benefits and
risks associated with cach alternative are also listed
and discussed to trace the rcasoning leading to
a selection.

The section on the recommended technical solu-
tion is more detailed than the alicenatives discussion
and discusses different topics, The tasks, key fea-
tures, and development life cycle, methodology, and
concept are highlighted in the proposed application
section. [n addition, the discussion lists constraints,
assumptions, level of security, recovery, and audit-
ability for the recommended solution. A contingency
plan for minimizing the probability and for dealing
with risks of the rccommended alternative are
detailed. Potential impediments to successtul devel-
opment, such as decisions or information not cur-
rently available, are identified. Ideally, the person
responsible for resolving the outstanding issues is
named and dates for resolution arc identified.

The project plan section summarizes the plan-
ning effort. A critical path chart and staffing plan
are presented with any attendant assumptions and
requirements. Finally, the costs of the recommended
alternative(s) and the financial analysis are detailed.
Any assumptions, for instance, the discount rate for
NPV, are listed. If sensitivity amalysis was per-
formed, the extent to which the estimates are sensi-
tive and the source of sensitivity are idcntified.
Sources of scnsitivity might include, for instance,

interest rates, economic fluctuation, or the presence
of a key salcsperson.

AUTOMATED
SUPPORT ToOLS
FOR FEASIBILITY
ANALYSIS

There are two classes of tools that suppart the work
performed during feasibility analysis: planning tools
and analysis tools. Analysis tools can span any of the
thrce methodologics covered in this text and are
discussed in the respective methodology analysis
section.

The planning tools might include project cstimat-
ing products, project scheduling products, risk
analysis products, or spreadsheets for financial
analysis. Spreadsheets are general purpose and are
not discussed here. Estimating products are based on
an algorithmic method from those discussed above.
Products based on CoCcMo estimating, Rayleigh
curve, and function point techniques are included in
the list. The tools assume that the underlying input
information, for instance, KLOC, is known by some
other, unspecified technique.

Planning products assume that a work breakdown
with task duration assigament exists. The work
breakdown planning tools support the definition of
tasks, task intcrrelationships, assignment of staff,
determination of early and late start dates, expected
end dates, and cost of resources. From this informa-
tion, the tool can generate Gantt Charts, critical path
networks, cost summaries, and manpower planning
guides. There are many good project management
software products of both types on the market, sev-
eral of which are listed in Table 6-18.

Twao risk analysis products are incloded in the
summary list. These products walk you through the
assignment of risk types, prabability of risk cccur-
rence, and cost of the risk to develop a monetary
value of risks related to the project. The cost of
risk is factored into the financial analysis. More
products of this type should be expected to be avail-
able as companies become more sophisticated in

TABLE 6-18 Automated Tools to Support Project Planning

Summary 195

Product Company Technique

DEC Plun Digital Equipment Corp. CoCoMo Based
Maynard, MA Estimation Took

ESTIMACS Computer Associales, Inc. Function Poinl

Harvard Project Manager

Long I[sland, New York

Harvard Graphics Corp.
Boston, MA

estimates extrapolated to
include staffing, cost, risk,
hardware configuration,
and cost estimating

Pert, CPM, and Gantt Charts
Resource Allocation
and Tracking

MacProject Apple Computer Pert, CPM, and Gantt Charts
Cupertino, CA Resource Allocation
and Tracking
ProMap V LOG/AN, Inc. Risk Analysis
RISNET J. M. Cockerman Associates Risk Analysis
SLIM Quantitative Seftware Management Costing Software based
on Rayleigh curve
and LOC
SPQR20 Software Productivity Research, nc. Multiple choice
Cambridge, MA approach to
function point
eslimation
Time Linc Symantec Sofrwarc Pert, CPM, and Ganit Charts
Cupertina, CA Resource Allocation
and Tracking
WINGS AGS, Inc. Pert, CPM, and Gantt Charls

New York, NY

Resource Allocation
and Tracking

their assessment of the risk associated with capital
projects.

SUMMARY

Feasibility analysis is an important activity that gives
a development project a scope and refined defini-
tion of application purpese, while providing infor-
mation that allows the determination of technical,
organizational, and financial readiness of the organi-
zation. The steps to performing feasibility analysis

are: collect data, define scope and functions, defing
technical alternatives, define benefits and risks of
each alternative, analyze organizational and techni-
cal feasibility, select technical alternative(s), define
project plan, assess financial feasibility, and select
final alternative. Data collection most frequently
uscs intervicws or JAD-like sessions to define cur-
rent work envirenment, problems, and desires for the
new application. From the information collected, the
team and user define the scope of the activity,
including all departments involved, Then, the fune-
tions to be kept from the current work environment

196

and functions to be addcd to provide the new func-
ticnality are defined at a high level.

Technical alternative definition begins with an
asscssment of the project’s criticality te the organi-
zation and the need for different departments to
share data. Based on that information, existing com-
puter resources are analyzed to determine their use-
tulness for the proposed application. If existing
resources are not adequate, new computer cquip-
ment, software, or packages are defined for acquisi-
tion. In general, the smallest size computer (or LAN)
that can do the work and provide a migration path for
growth is selected. Distributed resources might be
identified as an option but are not fully analyzed at
this time. Several technical alternatives are devel-
oped and analyzed to select onc or two that meet the
most requirements, provide for the greatest benefits,
and posc the fewest risks,

The next activity is to define a project plan. There
are many different estimating techniques for projeci-
ing lime to complete a project: algorithmic, top-
down, bottom-up, pricc-to-win, Parkinson’s Law,
expert judgment, function point analysis, and anal-
ogy. Of these, CoCoeMo and function point are the
most popular when a history of project development
is maintained by a company. Fuaction point analy-
sis complements CoCoMo in developing an eslimate
of LOC. CoCoMo can use the LOC estimate as input
to its formulae to devclop total person-menth, total
development time, and project staffing cstimates.
Parkinson and price-to-win are nor recommended.
When other techniques are used, they are best used
in cembination. So, top-down, bollom-up, and
experl judgment might be combined to develop best
guesses of the timne and effort involved in a devel-
opment project. The project plan is used 1o develap
personnel costs and computer resource usage. These
and the other costs are factored into the financial fea-
sibility assessment.

Financial feasibility techniques most commonly
used include nct present value analysis which
accounts for the time value of money, internal rate of
return which identifies the real interest rate ol a proj-
ecl, and payback analysis which identifies the ¢time at
which net revenues cquals net costs of project.
Financial analysis also supports the comparison of

CHAPTER & Application Feasibility Analysis and Planning

makec versus buy alternatives for a project. Two
types of make/buy analysis can be developed. First,
custom development of software versus purchase of
a package can be cvaluated. Second, in-house versus
contracior development can be evaluated. Finally,
alternative selection is based on financial valee of
the alternative(s) when more than one technical
alternative for a project exisis. Also, [rom the finan-
cial analysis, managers can evaluate several different
projects using an objective method and can identify
the project with the fastest, strongest returns,

REFERENCES

EEEEE—]

Albrecht, Albert I, and James E. Gaffney, “Software
function, source lines of code and development effort
prediction: A software seience validation,” JEEE
Transactions on Software Fugineering, November,
1083, pp. 639648,

Boehm, Barry W, Software Engineering Economics.
Englewood Cliffs, NJ: Prentice-Hall, 1981.

Charctte, Robert N, Software Engineering Risk Analysis
and Management. NY: McGraw-Hill, 1989,

Collins, Eliza G. €., and Mary Anne Devanna, eds., The
Poriable MBA. NY: John Wiley & Sons, 1990,

De Marco, Tom, “An algorithm for sizing software
producis,” Performance Evaluation Review, ACM
S1GMelrics Publication, Vol. 12, #2, Spring-Summer,
1984, pp. 13-22.

Gause, Donald C., and Gerald M. Weinberg, Exploring
Requirements Qualiry Refore Design. NY: Dorset
House Publishing, 1989,

Jones, Capers, "'Program Quality and Programmer
Productivity: A Survey of the State of the Art,” Pre-
sentation through Software Productivity Research,
Inc., Boston, MA: March 15, 1989,

Jones, Capers, Programming Productivity. NY: McGraw-
Hill, 1986.

Kendall, Ken E., and Julie E. Kendall, Svszems Analysis
and Design, 2nd Ed. Englewood Cliffs, N1: Prentice-
Hall, Inc. 1992,

King, John L., and Edward L. Schrems, “Cost-benefit
analysis in information systems development and
opcration,” Computing Surveys, Vol. 10, #1, March,
1978, pp. 20-34.

Ruhin, Martin 8§, Documentation Standards and Proce-
dures for On-line Systems. NY: Van Nostrand Rein-
hold Company, 1979.

KEY TERMS

algorithmic estimating
allernative approaches
analogical estimating

indusiry environment
iniangible benehis
Internal rate of relurn

application leverage analysis
poinl KDSI
benefit leverage point

bottom up estimating
business leverage point
CoCoMao estimating
competitive environment
contingency planning
cost/benefit analysis
critical success factor

make/buy analysis

net present value (NPV)
ohjective

organic project
organizational {casibility
Parkinson’s Law
payhack period analysis

customer environment pert chart

delivered source platform
instructions portability

Delphi mcthod of price to win strategy
estimating project mode

discounted cash flow
embedded project

project plan
quick analysis

cxpert judgment reliability

estimating risk
feasthility risk assessment
financial feasibility semidelached project
Nlexibility tangible benefils

[unction point
Function point analysis

technical feasibility
top down estimating

Gantt Chart vendor environment
goal work breakdown
imaging work Now management
EXERCISES

1. Using Table 6-6 as a guide, develop a CPM for
the design phase of ABC’s project. While you
do the diagram, rcason through the dependen-
cies. Assuming Sam and Mary do the project
alone, how should the work be allocated
between them to (a) allow Mary 1o do project
management tasks, and (b) leverage the work
they did during analysis?

2. Using Tablc 6-6 as a guide, develop a more
detailed task list for some phase of portion of a
phase (e.g., all rental/relum processes, or con-
version/training). Then, develop an estimate of
the work based on your expertise and the idea

STUDY QUESTIONS
1.

3

9,

10,

11.

12.

13.

14.

15.

16.

18,

Study euestions 197

that you would perform the work. How docs
your estimale differ from Table 6-67 Why? Are
the ditfcrences completely justifiable? Present
your estimates to a group of classmates and pro-
vide your reasoning for the changes.

I

Define the following terms:

Bencfils Function point

Net present value Leverage point

Risk Technical feasibility
Why is feasibility analysis perfermed?

What arc the three main types of feasibility and
why are they important?

List the steps (o performing feasibility analysis.
What are the main data collection techniques
used during feasibility analysis?

. What is a leverage point?
. How do business and application leverage

points differ? How do they complement each
other?

List five sources of benefits.

Discuss the differences between tangible and
intangible benefits.

List five sources of risk and give an example of
each.

Why is risk analysis performed? What do you
do with the risks once they are identificd?
How are technical alternatives generated?
Once technical alternatives are complete, how
are they assessed? What is the basis for selcct-
ing one alternalive as the preferred one?
Compare the advantages and disadvantages of
algorithmic, function point, and combined top-
down, bottom-up estimating.

What is the major weakness of CoCoMo
estimating?

What is the major weakness of {unction point
estimating?

. Why do we have so many estimating tech-

nigues? Is one better than another?

What is the major financial analysis used to
analyze project altcrnatives? Why is it the pre-
ferred method?

198 CHAPTER 6 Application Feasibility Andlysis and Planning

19, What is the purpose of muke/buy analysis?
20. Describe the two types of make/buy analysis.

X EXTRA-CREDIT QUESTION

1. The Office Information System described in the
Appendix is an application that automates the
support division of a large company. The units
involved include a typing pool, copy center,
print shop, and graphic arts department. Other
projects are being developed in the IS Depart-
ment that will cost approximately $2.4 miltion
per year, and an additional $1.5 miliion in oper-
ating cxpenses,

The proposed budget for the OIS is $200,000
for a Cobol, mainframe applicalion using a
DBMS to store the data. Is this a reasonable
amount? Develop one to three aftcrnatives that
are more financially attractive. One of the alter-
natives might be on the mainframe but can use
different resources; at lcast onc alternative
should use different technology, Who should
develop the application? Under what circum-
stances would you recommend to do/not do
the application?

ANALYSIS

PAR

AND

DESIGN

11

INTRODUCTION

Analysis is the act of defining what an application
will do. Design is the act of defining how the re-
quircments defined during analysis wil! be imple-
mented in a specific hardware/software environment.
The next eight chapters define and describe func-
tional analysis and design. Each sct of analysis-
design chapters uses major representatjon techniques
from the methodology class it presents. Tn a tradi-
tional application development, there are many more
analysis and design activities than we address here
(see Tables III-1 and 11-2). Most of these topics
should already be part of your knowledge base from
a systems analysis and design course. Many activi-
ties we do cover in this text are also in a systems
analysis and design coursc. The difference is that
here we develop three methodologies instead of one
as in systems analysis. 1n this text, we concenirate on
the activities which differ across the methodelogies.
Chapter 13 summarizes the similaritics, differcnces,
and automated support across the methodologies. It
also discusses the future bascd on current research in
methodologies. Chapter 14 discusses the forgotten
activities in most methodology-related books and

many systems analysis texts, These activities include
human interface design, input/output design, conver-
sion design, and user documentation design.

At the end of the nexl eight chapiers, you should
be able to do the following:

1. Understand the conceptual foundations of the
three classes of methodologies and how they
are similar and how they ditfer.

2. Represent the functional requirements of
an application using cach of the thrce
methodelogies.

3. Be able to translate a functional requirements
definition inte a SQL-based design for an
application using each of the three method-
ologies.

4. Compare the advantages, values and dis-
advantages of methodologies’ uses for
analysis.

5. Develop a critical understanding of the diffi-
culties of translating what users want into
representations that convey meaning.

6. Know some computer-aided and organiza-
tional supports for completing analysis and
design work.

199

!

200 PARTIl Anclysis and Design

TABLE lll-1 Representative Project Development Analysis Activities

Recurring activities/tasks
Lnitiate phase
Plan next phase
Prepare report
Review phase products

Analysis Phase Activities

Initiate hardware/software evaluation {as required)
Initiate prototype development {as required}

Define current system (as required)
Dacument and files
Data clements
Compile data dictionary
Processing
Controls
Volomes and timing
Interfaces with olher systems
Responsibilities
Work distribution
Opcrating costs

Assess current sysiem
Review project objectives and scope
Compare system in operation with recommended
solotion
Identify opportunities for immediate improvements
Assess organizational design appropriatcness for
application

Define proposed application’s business requirements
System concept and overview
Major functions
Scope
User organizations involved
Interface organizations
Interface application systems
Context diagram
System concept—technology (i.e., DBMS, [LAN,
distribution plan, etc.)

Major issues, unresolved problems that might hinder

application development
Schedule summmary by phase
Staffing summary by phase
Asgess proposed system requirements
Identify alternatives for system design {e.g., data-

base environment(s), hardware platform, software
platform, special technology, packaged software,
4GLs, user software (e.g., Lotus)]

Discuss and, as necessary, reassess tcchnical, orga-
nizational, and economic feasibility as each re-
lales to the alternatives identified

Define processing requirements

DFD {or analogous graphic for the methodology)

Sleps (i.e., procedures to be followed; should match
methodology)

Required sequences of processing only

Constraints (e.g., timing, memory, concurrency,
other applications, etc.}

Accuracy (e.g., to x decimal place, or timing as of
y minutes)

Formulae

Performance criteria (e.g., volume, timing, response
time)

[nputs—name, source, frequency, volume, data
elements, media

OCutputs—name, purpose, frequency, screen format,
copies, clements, sequence, media

Database—data requirements as expressed in
methodology, rolations, user views, organization,
required reviews, access, security

Reports—name, purpose, destination, frequency,
form/screen, data elements, sequence

User acceptance criteria

Define interface requirements
ldentification—name of interface, sending system/
organization, receiving system/organizaiion
Responsibility/approvals
Interface schedule—ILesting schedule and responsi-
bilitigs, conversion schedile and responsibilities,
delivery to production
Requirements
Inputs—name, purpose source, frequency, media,
form #, components using each input, data ele-
ments, data controls, data descriptions, formu-
lae for compitation
Input layout—data direction, terminal devices,
comm software, time outs, moden require-
ments, linge usc, data characteristics, linc
characteristics, line protocol
OQutput—name, purpose, frequency, format/screen
#, copies, elements, sort sequence, media, com-
punent generating the output, source of data
and name, data description, layout {transmitted
output should have sarne information as input
layout above)

TABLE [lI-1

Infreduction 201

Representative Project Development Analysis Activities (Continued)

Files—system name, system D, filc name, file
ID, type of file {I1/0), purpose, source, update
cycle, sequence, frequency, volume, growth,
media, nsage (R, W, R/W), retention character-
istics, security, blocking factor, file records
types, components using file, file conirol char-
acteristics

Record description—record name, file 1D, record
type {fixed, variable, spanned), record size,
update cycle, form # for input, data elements
and characteristics (definition, purpose, use in
computation, formulae, precision, edit criteria,
defaulis, required/optional data, ¢tc.)

Define control requirements
Batch totals, item counts
Hash totals, record counts
Operation intervention and inquiry logs
Exception reporting and responsibilities
Processing controls—equipment failure
Document control (e.g,., for prenumbcered checks)
Transaction logging and on-line controls

Define security and backup requirements
Recovery requirements data criticality, recovery plan
in event of emergency
Password and internal security checks

Define conversion requirements
Data clean-up
Clerical effort
Systems effori—automated and manual files to be
converted
Volume and growth of files as it impacts conversion
Alternatives for implementation
Overall conversion timing requirements
Conversion impact on uscr arcas
Conversion impact on opcrations
Facilities alteration/site preparation
Changes or additions to desks, tables, work spaces,
cabincts, charts, ete.
Forms, tapes, manuals, ete.
Constroction—walis, floors, ducts, etc.
Cabiing and electrical—outlets, switches, cables,
lighting, other wiring, etc,
Saufety—extinguishers, alarms, first aid kits, etc,
Security—badge-cniry, guard service, etc.
Environmental-—air conditioning, humidification,
dust, etc.

Maintenance—cleaning, equipment maintcaance, ctc.
Contingency—disaster plans, backup procedures, etc.

Define training
Type of training, recipients, and details for all training,
including but not limited to on-tine data eniry, remote
location data input, native language manuals, general
introduction to new system

Drefine system acceptance criteria
Test data input by user
Parallel nans
Filot runs
Phased cutover
Depending on acceptance crileria, include the
following:
Amount of test data to be entered, and number of
clerks involved
Size of pilot parallel (e.g., number of accounts,
cycles, etc.)
Length of time
Performanee criteria
Impact on clerical stalf
Impact on operations

Define hardware

Accepiable limits of downtime

Average or maximum terminals down at the same time

[nquiry response time

Update response time

Batch turnargund time

Maximum percent of transmission errors

Backup “firedrills’ plan and frequency

Maintenance/reliability

Peak and average time requirements

Geographic consiraints on terminal location

Purchased hardwate required cost/benefit analysis and
RFP selection process

List of hardware for this syslem, type, location, ‘own-
ership,” system role, backup, criticality (This list
should include terminals, PCs, controllers, modems,
transmission lines, mini-computers, workstations,
mainframes, peripherals, disks, CDs, tapes, etc.}

Deline software/system/misc.
Volume of cach transaction type
Growth
Delivery timc constraints

(Continued on next page)

202 PARTIII Analysis and Design

TABLE Hl-1

Representative Project Development Analysis Activities (Continued)

Number of reruns

Backup ‘firedrills’ plan and [requency

Distribution of cutput messages

List of hardware for this system, type, location, ‘own-
ership,” system on which it rons, backup, criticaliry
| This list should include DBMS, operating system,
LAN, communications, remoie access (e.g., Carbon
Copy), on-line help, etc.]

Define initiate request for proposal (RFP)
Determine criteria lor decision
Lisl requirements for proposal
Select vendors
Prepare RFP report

Define data requirernents
Dala dictionary should be an appendix o documenta-
tion if it is not automated. For avtomated application
documentation, print the information from the dic-
tionary. For manval applications, include the follow-
ing for each data element:

Field name, allernative name, description, pur-
pose, use in computation, use in determining
conditions (with other fields}, code relerence,
length, decimal pesitions, type, unit of mea-
sure, optional/required, allowable values
(range, code structure, meaning of values), de-
fault value, external data source

In this section, we introduce the general charac-
teristics of analysis and design thai all methadolo-
gics have in common,

APPLICATION

DEVELOPMENT AS
A TRANSLATION

ACTIVITY

The process of building applications is a serics of
translations. Historically, we first examine and trans-
late the current physical system to develop an
abstract, logical definition of the current system (see
Figure I[I-1). Then, with the application users, we
define the requiremecnts of the new logical system
which retains the aspects of the old systerm while
incorporating the new requirements defined by users.
The new logical system definition is the basis for
translating to a working physical application.

This historical strategy is useful only sometimes.
The strategy works when a new application will
maintain 30% or more of the old application’s func-
tions. Tor cxample, we might redevelop an account-
ing application to move trom baich to on-line, but
to perform all the same funcrions. Another use of
this strategy is when study of the old application can
save lime in providing code tables. For instance,
state abbreviations, zip codes, and customer name

abbreviations all might be retained from an old
application.

In many situations, however, the existing applica-
tion is antiquated, full of obsolete design or riddled
wilh errors. To study it is to learn erroneous design
and procedures that must be unlearned. Why learn
it in the first place? Rather, a frequently better
approach is to begin analyzing the requirements of
the new application. This is called ‘essential® sys-
tem analysis' and requires only that you, the ana-
lyst, attend 1o what relates to the new application.
The old application or procedures may be studied for
specific information, code tables, or crucial steps in
the process; but in general, the old application and
procedures arc ignored.

The essential approach is used in this text. We
ignore the details of the manual methed of perform-
ing rental processing because the computerized
method will completely replace the manual method.
The major value of studying, for instance, what man-
ual forms are filed and when they get retricved, is to
help get a scnse of file processing in the new appli-
cation. When the old procedures are being replaced,
you may want to use the old methods as a way to
confirm your thinking after vou have developed the
application concepts,

Whichever anatysis method you use, translations
peeformed during analysis all have the following five

1 Sce McMcenamin and Palimer, 1984,

Application Development as a Translation Activity 203

TABLE lll-2 Representative Design Phase Activities

Recurring activitics/tasks
Initiate phase
Plan next phase
Prepure documentation
Review phase products

Design Phase Activities
Initiate business system design

Design functional cutling
Review business functions
Review interface requirements
Develop atternative functional outlines
Select best alternative
Design dala structure/database
Normalize, optitnize, then . . . denonnaiize as
required
Design interprogram flows and controls

Design input, output, and data
Design output screens/documents
Design inpat requirements/screens
Design screen dialogue and system navigation

Design processing
Design computer pracessing
Design noncomputer processing

Design controls
Describe business cantrol procedures
Define security and backup procedutes

Design business system test plan
ldentify aceeplance criteria
Prepare ienlalive user acceplance stralegy
Identily crilical resource reguiremenis
Prepare testing overview
Develop system test plan

Complete business system design

Complete data dictionary with elements, processes,
messages, objects, modules, files/relations, data fiows

Define proposed organization

Review conversion requirements

Prepare operating schedule

Perform program design as outlined below

Evaluate business system design

Assure technical, operational, and economic feasibility

Review risks

User procedures
Define manual procedures

Define user manual procedures
Define computer operations manual procedures
Prepare manual procedures test plan

Complete forms, documents, and screens
Prototype forms, screens, reports
Complete input documents/screens
Complete output forms/screens
Complete screen designs, ecror codes, screen inter-
action process

Develop training
Determing pedagogical training requirements
Determine training methods
Psepare Lraining sessions and software
Prepure Lraining schedule
Filot test training

Prepare for installation
Prepare and test uscr manual
Verify readiness of user environment
Train user personnc
Test manual, backup, and disaster procedures

Design the physical database

Define user views

Definc logical DB 1o DBMS

Map logical DB to media, deciding specific access
method, extra space allocation, algorithms, etc.

Build and test a sample DB

Work with test planners to build the (est DB
environment

Work with conversion team to implement the produe-
tion DB cnvironment

Build conversion subsystem
Work with user to translate and validate current data
Specify, write, aod test conversion programs
Train conversion personnzl
Execute conversion plan to build permanent DB

Program design
Develop modular program struclure
Study data structure
Develop logical program structure
Complele methodology-related graphics
Specify subprograms, modules, functions
Documenl programs/modules individually and as a
collection. Pay special attention to document inter-
modular relationships and message passing between
programs

(Continued on next page)

204 PARTII Andlysis and Design

TABLE lll-2 Representative Design Phase Activities (Continued)

Develop and unit test physical code
Implement programs top-down using stubs
Prototype as needed

Plan program testing
Prepare program tesi plan
Create program les(data
Create fest dialog for single user, multiple users,
multiple functions

Simitar plans for subsystem, system, stress, multiuser,
and acceptance testing are required and planned at this
point. (If the application is on a tight deadline, testing
and immediate conversion to production can be
planned and implemented together.)

Define program development plan
Determine development method

Define development sequence
Revise schedule and budget for programming phase

Create source library members
Write record descriptions for source library (This s
not done if an active dictionary is used or if the dic-
tionary for the DBMS monitors all interactions to
the database. Instead, copy books or analogous code
are included to describe user views.)
Write standard program code to source Hbrary

Refine operational requirements
Revise computet run procedures
Produce tentative production control cards (JCIL)

common subactivities (the activities are summarized
in Table III-3).

1. ldentification—Find the focal things that
belong. Identification, for instance, in the
definition of the new logical system requircs
finding requirements. Things to be found
include, for instance, entities, objects,
relationships, functions, processes, and
constraints. '

2. Elaboration—Define the details of each
thing identified. For instance, a requirement
might be to provide consolidated customer
account information for ad hoc reporting.
During claboration, you seek to answer ques-
tions like:

What information should be consolidated
about a user? Does it currently exist?

What does ad hoc mean to the uscr?

What type of queries do the users ask now?

What types of questions do the asers wan! t0
ask that they cannot ask now?

What kinds of data analysis do users need?

What form (for example, screen or paper)
does output take?

Where (geographically) are the users asking
the gquestions?

Where (centralized/distributed/decentralized})
is the data? and where should it be?

3. Synthesis—Build a unified view of the appli-
cation, reconciling any parts that do not fit
and representing requirements in graphic
form. The representation can be either man-
ual {i.e., on paper) or automated, using
computer-based tools.

4. Review—Perform quality control. At the end
of the phase (either analysis or design), rean-
alyze feasibility, schedules, and staffing,
Revise them as needed based on the more
complete, current definition of the new
application.

5. Document—Create uselul documents from
graphics and supporting text either manually
or with computer-based tools.

Each of the threc methodologics begins analysis
by defining requirements, but each has a different
starting (and ending) perspective for its analysis
process. Similarly, for each of the other analysis
activities, the results of the activity differ because the
perspective at the start focuses your attention to dif-
ferent aspeets of the application.

Keep in mind that even though we discuss these
methodologies as fairly linear, sequential processes,

Application Develocpment as a Translation Activity

205

Translale from

Transiate from
Physical ta
Legical System

Delina Current
Physical System

Define Current - Define New
Logical System ‘Olg Logical o Logical System
New Logical
System

Translate from
Logical to
Physical System

Define New
Physical System

FIGURE [l

they are nol. You get application requirements in a
nonlinear fashion, usually through interviews. Fre-
quently, yowu get high-, low-, and medium-level
information all at the same interview. Your job, as
the SE, is to make sense of the information reccived.
The sense-making activity is part of the process of
building your mental model of the application
domain. Sinee you reccive information at different
levels over time, your mental model of the domain
eets fleshed out at different tevels over time, too.
You constantly have to reevaluate the information
vou currently have against new information to deter-
mine if adjustments to the current mental model
arc NECessary.

A second point about the nonlinear aspect is that
specification and implementation are never really
separated completely in your thinking process. In
systerns analysis class you usually learn not to think
about the language or implementation environment
while you are performing analysis. You are told only
to think about functional requirements. You must
think of the implementation cnvirorment periodi-
cally in the real-world, however, because some
desired function might not be able to be done (ot
done easily) in the planned environment. When

Application Development Translations

expensive or complex funclions are requested, you
must alert the user/sponsor to be sure they agree with
the desired function. An expensive change is one
that adds more than 10% to the cost of the applica-
tion, A complex change is one that convolutes an
otherwise simple process (see Example II1-1).

Just as analysis is a translation activity, so too, is
design. The goal of design is to map the functional
requirements from analysis into a specific hardware
and software environment. In design, the same five
general subactivities arc donc, but they have differ-
ent definitions.

1. Identification—Design is the act of mapping
how logical requircments will work in the
target computer environment. This means
that we identify the system design structure
(if not alrcady decided). The system structure
is the underlying design approach. Possible
approaches include the following:

= Batch, on-line {portions of complete), or
real-time

= Which functions are connected and how
... how the application will work in the
production cnvironment

206 PARTIIN

Andlysis and Dasign

TABLE -3 Summary of Analysis and Design General Activities

Activity Analysis Design
Identification Find the focal things that are in the Refine the system concept and apply it
application. This includes, but is not 1o the functional requirements. Identify
limited to, entities, objects, relationships, any compromises of requirements that
functions, constraints, data elements, might be necessary 10 work around
cantrol, legal requirements, etc. implementation environment limitations.
Define the general standards and rules for
the implementation environment to which
all remaining work must adhere.
Elaboration Define the functional details of cach For each function, map the function to the
thing identified. Users provide hardware and software environment.
definitions for all terms and describe Identify reusable modules, Finalize details
all procedures, formulae, and pro- of message processing and intermodule
cessing. This elabaration is inde- communications.
pendent of hardware, software, or
location.
Synthesis Develop a unified view of the Develop a unified mapping of the appli-
application. Develop snd document cation to the intended hardware and
a representation ol the application. software environment. Determine geo-
Graphics, tables, and other technigues graphic and package tocations for all daia
arc preferred representations. and processes. Graphics, tables, and other
techniques are preferred representations.
Review Review and walk-through the analysis Review and walk-through design compo-
with peers and projecl members. Walk- nents, test plan. conversion plan, and
through he analysis with users. Review DB design, with pecrs and project
and revise schedules and costs as membcrs, program specifications
necessary. with the programmer and other peers, and
screenswith vsers. Review and revise
schedules and costs as nccessary.
Document Develop *final’ forms of graphics and Develop ‘final’ forms of graphics and

supporting text for aff analysis activitics.

supporting text for ¢ design activities.

= General user interface as menu-driven,
windows-icons-mnenus-pointers {WIMP),
command-driven

» Mode of operation, thal 1%, 1s user an cx-
pett, novice, or somewhere in between

2. Elaboration—Each requirement from the
analysis phase is cxpanded inte greater detail

and mapped to hardware and software within
the system desigh structure. Questions re-
late to:

How should the database be designed to
provide, for instance, the best possible
response time with the greatest
efficicncy?

Application Development as a Translation Activity

CARTER CORDUROY—YOU SHOULD HAVE ASKED AGAIN

Carter Corduroy, a $100 million company,
wanted to install an integrated database
application to perform order entry, inventory
contfrol, and manufacturing control. During
the analysis of the application, George Dare
was the user contact who approved ail re-
Quirements, acted as liciscn to the rest of the
company, and provided many requirernents,

The analysis phose of the project com-
pleted on time and all ten project team mem-
bers felt they had a good understanding of
the process required and what the resulting
apglication would do. The two people pre-
paring most of the documentation and all
of the program specifications were Maria
Martinez, SE/project manager for 10 years
who had done two other such integrated
order-inventory systems, and Charlie Chou,
SE with 12 years of experience who had de-
veloped applications using all of the saffware
involved,

During the middle of the analysis phase,
the systems manager was replaced with a
newly hired person, Robert Blake. Mr. Blake
came from c farger fabric manufacturer and
wdanted to maoke a name for himself guickiy
in his new environment. He quickly forged a
llaison with Harry Crater, the plants” manager.
The application would ke installed in his two
finishing plants: one in Virginia and coneg In
Arkansas.

Crater and Dare were political enemies.
Dare hod once worked for Crater and had
not goften clong with himn. Dare was young
and highly proficient at his job and soon sur-
passed Crater. Crater now reported to Dare
for purposes of developing the application—
the biggest in the company’s history.

These circumstances did not affect the
application team until late in design, after
programming had begun. Six weeks before
the application was supposed to go into pro-

duction, Dare was on vacation. Crater had
a validation meeting for reporting require-
ments with Martinez and Chou. At the mesat-
ing. he said that planned reports could not
identify ‘reworks,” goods that were defective
and reentared into the finishing process a
second time. He was adamant that ha must
have some way of knowing if a lot of goods
were ¢ 'first work’ or a ‘second work.” It was
the first mention of anything other than
one-time-through manufacturing. Maria said
this constitfuted ¢ major change to the re-
quirements andg a nontrivial change to all pro-
grams already begun. It was so significant
that the end date of the project was in jeop-
ardy. She decided to examine the spe-
cific impact, then talk to Gecrge about the
change.

Mr. Blake heard of the meeting and, that
afternoon, began pressuring Maria and Char-
lie to "do what Crater wants,” After all, he was
the real user.

Maria talked to the team and asked for an
assessment of effort to change their programs
to allow the same ot order to be processed
more than once. She and Charlie then did
their own assessment. The feam was unani-
mous. The change would add four to six
weeks fime for programming and testing, oll
documentation would have to be modified,
and all databases would be changed. In
short, the change could add as much as
$90,000 to the $225,000 contract—a 40%
increqse. Maria decided to speak to George
before committing to the change.

Mr. Blake coerced the team. as their
Immediate boss no matter who the user of
the application was, to begin work on the
change. When George got back, he was
immersed in another special project that was

(Continued on next page)

207

208 PARTIN

Andalysis and Design

CARTER CORDUROY—YOU SHOULD HAVE ASKED AGAIN, Continued

taking most of his time. When Maria finally got
to him, he said, "Yeah, if Blake approves and
Crater insists, we probably needit.” Still, Marnia
had doubfts.

She put the changes with cost estimates in
o memo 1o Blake, He never signed-off on the
change, but verbally agreed again. The ap-
plication was three weeks late when every-
one at Carter expleded. Suddenly, no one
remembpered that the application would be
late. No one remembered being warned that
this one, small change would cause so many
problems. Maria was to blame for a poor de-
sign that could not be made to work, Crater
now said that he ‘requested’ the change but
that it was not absolutely "necessary.” Blake
forgot the conversations, memo. and ap-
provals. Dare was furious because his special
project was now overbudget and ate.

When the written memo and other docu-
mentation from the meetings held ¢t the time

were produced, Dare’s comment 1o Maria
was, "You are the expert, you should have
asked again whether or not the change was
necessary. You were the only one who knew
how big it really was!”

In the end, the application was put into
production with only one run through the fin-
ishing plant per work order. Reworks were
assigned a new number and tracked ¢s if
it were the first time through the process.
The costly change and insufficient whistle-
blowing by the project manager led to un-
happy clients, overworked project team
members, and a less than optimal applica-
tion. Could they have been avoided? Prob-
ably not. The client should have been made
to reqlize the magnitude of the change, how-
ever. Maria and Charlie should have been
rmore insistent an a detailed review of the
request and sign-offs for this major change.

How should programs be packaged to fulfill
processing constraints? Examples might
be to provide five-sccond response time;
to provide completion of reporting within
a three-hour period daily; or to provide
24-hour access to information that is up-
to-the-minute.

Other claboration activities to be decided
include commen routines for commonly
used processes. For instance, how will
screen processing be performed? Will
cach programmer write his or her own
version of screen interface or will there be
common modules for sereen interactions?
The scope and details of system ‘utility’
programs 10 be used by all programmers
are defined.

The last major elaboration activity is to
examine the application constraints. We
ensure that each constraint is considered

in the design and that processing is within
the prescribed limits.

3. Synthesis—Build a unified physical design
of the application, reconciling any parts thal
do not fit and representing requirements in
more detail. We may add functions to the
application that arc cnvironment specific. For
instance, in @ mainframe IMS database envi-
ronment, applications require user views,
data base definitions (DBDs), data control
blacks (DCBs), and data service blocks
{DSBs). These control blocks are not re-

quired if vsing dBase I'V on a PC. The repre-
sentation can be ¢ither manual (i.e., on paper)
or automated, using computer-based tools.

4. Review—Perform quality contrel. At the end
of the phase, conduct a design walk-through,
comparing design to logical requirements to
validate completeness and correctness. Rean-

alyze schedule and staffing for coming stages
of implementation, testing, conversion, train-
ing, and turnover, revising them as required.

5. Document—Create useful program specifi-
cations and an overall design document. The
design document describes the database,
application structure, constraints, and so on.
Graphics and supporting text document the
design, The program/module specifications
include the details of processing, all intcr-
face designs, and any specific information
required to develop (he program.

As in analysis, these activitics vary by methodol-
ogy because the ending point of analysis, which pro-
vides the input to design, is different. However, the
intention of all methodologics is to define the appli-
cation such that programming and implementation
can be started after the design is complete. Program/
module specifications, in some form, are cthe desired
output of the design phasc.

Keep in mind that even though we discuss design
as a straightforward mapping of ‘what” to *how,” it is
not a onc-to-onc mapping. You might need to com-
promise analysis requirements during design. Com-
promise of requircments means that they mav be
rescoped, manipulated, dropped, or otherwise
changed to fit the environment’s limitations.

Pratotyping is an important activity in design to
minimize the amount of requirements compromise
that takes place. Especially when you use a package
or language for the first time, prototyping should be
uscd because prototypes frequently find the lan-
guage’s limits. You must verify that the application
structure and concept can be implemented using the
software as planned. Frequently in a PC environ-
ment, you will find you are bumping into language/
package limitations that cause you to rethink the
design. Vendors call this process “work around,” You
are finding a way lo work around the built-in
limits of the language. Vendors will usually help find
a work around if the application cannot be built in
known ways. They also challenge users to find work
arounds and broadcast them to others who have sim-
ilar problems.

The linkage belween analysis, design, and pro-
gram design is looser or tighter depending on the

Orgonizaﬂonol and Automated Support 209

methodology and implementation environment. For
instance, data information required differs if we use
dBASE 1Vv2 or if we use IMS DB/DC.? Level of
requirements detail differs if we usc the Focns® lan-
guage or if we use C-language.” Where possible, we
point out specific instances of these linkages.

You, as the SE, must constantly check your men-
tal model of functional requirements when building
a mental model of Aow Lhey will be implemented. Do
not be afraid to try different ways of thinking. Fre-
quently the old way was not teo good. We get
trapped in our thought processcs and don’t even
remember to do the out of the box thinking® that is
necessary for innovative designs.

Before we discuss methodologics, some organi-
zation and automatcd supports that facilitate ap-
plication development regardless of methodology
are discussed.

ORGANIZATIONAL

AND AUTOMATED

SUPPORT

Organizaticnal innovations that are wseful with
all methodologies are joint user-IS application
development activities, vser managed application

]

dBASE 1V is a trademark producl of Ashton-Tare, Inc.

3 IMS DB/DC is a trademarked mainframe prodoct of the IBM
Corporation. IMS, Information Management System, 15 4
hierarchic database product. DB stands for database; DC
abbreviates data communications.

4 Focus is a trademarked database, query, application generator,
experl systemn product of Information Builders, Inc. Focus is
thought of as a dth-generation language because of il power-
ful query capabilities.

5 C-language is a trademark product of Bell Labs; C++ isa
trademarked product of Borland International; and there are
other versions ol C-language.

6 Out of the box thinking meany to rethink the entire process as
if the current methads, procedures, and policies did not exist.
Put vourself in the shoes of a caveman (or an intelligent child)
who just walked into the company, and redesign the work as
they might. Chuestion everything. For instance. wha says you
need to keep a copy of an arder? Whal is the rec/, L., legal
requirement?

210 PARTIl Analysis and Design

development, structured walk-throughs, and data
administration. The goal of these organizational
innovations is to speed the development process,
foster user participation, and improve the guality
of the resulting application. Automated support
for structured analysis and design comes from
computer-aided softwure engineering (CASE) tools.
Each chapter will identify CASE tools that relate to
the phase and activities. In this scction we describe
the characteristics of CASE tools and the ideal
CASE environment.

Joint Application Development

Several technigues have been developed to describe
the joint, intensive definition of application require-
ments—Joint Requirements Planning (JRP),
Joint Application Design Development (JAD),’
and Fast-Track ® They arc all similar in that the goal
is a collaborative, user-IS definition of application
requirements. The planning and execution of a joint
session are also similar. The differences are the level
of participants, subject matter, and level of detail
of the discussions. These are more fully described
below.

JRP 15 an executive level user-IS activity to iden-
tify overall requirements at the enterprise level. Fast-
Track and JAD both are designed to produce a
functional requirements specification. If a JRP report
exists, the Fast-Track/IAD uses the JRP report as
constraining or defining the business environment
within which the application is defined.

JRPF, Fast-Track, and JAD activities are

» designed to shorten the application develop-
ment peocess

= productivity tools

= structured to improve the quality of the appli-
calion development deliverables.

These characlerislics of the joint development
activities can also provide opposite results if the scs-
sions do not adhere to the guidelines defined by their

7 JRP and JAD are design techniques of the IBM Corporation.

8 bast-Track is a design technique of the Boeing Compuler
Company.

developers. llowever, these techniques deo not sub-
stirute for experience, good project management, or
knowledge about the application! Even with vser
involvement in analysis and design, application
developers must develop knowledge and shared
mental models of both the application and problem
domain. One purpose of the joint sessions is to be
sure of a common mental model for all participants.
Requirements for a joint session relate to:

the team

the session

juint structured process
the meeting facility
documentation tools.

The Team

The team is composed of client representatives,
facilitator, systems representatives, and support per-
sonnel (see Table I11-4). The clicnts must include
decision makers at a high enough level to resolve
conflicts and make decisions that affect the scope
and content of the application. They must also be at
a low enough level to be conversant and able to
explain the daily functions and proccdures. Finally,
clients must represent every functional arca affected
by the application. You must also keep the number of
client participants less than 15 and idcally between
three to four people. The more people, the longer
the process and the more difficult the decisions. Ide-
ally, the whole session team is about seven people.

Systems representatives should inciude the proj-
ecl manager, an SE, and one to two analysts with
technical expertise. The systems representatives
must be ablc to asscss feasibility of requested
requirements and the expected complexity of imple-
menting the requirements in the target environment.
The main role of the system recprescntatives is to
learn the problem domain area during the sessions
and ensure accurate problem restatement in sys-
tem terms.

The facilitalor is a specially trained individual
who runs the session. The facilitator has several
roles:

= Elicit information from participants
a Keep the meetings moving

Organizational and Automated Support 211

TABLE lll-4 Joint IS-User Team and Responsibilities

Role Job Title Responsibilitics
Facilitator Consuliant Elicit information,
IS Munager Keep meeting moving,
Senior SE Minimize monopolization by ene or few individuals.

Facilitator

User Manager
Profcssional

Clerk

IS Represcntative Project Manager
Project Leader
SE

Systems Analyst

Secretary
Systems Analyst

Support

Identify and resolve conflicts,
Maintain professional atmosphere.

Mzke decisions about compromises, changes, or other
aspects of the application requirements that require
managerial approval.

Participate in and contribute to discussions about
requirements.

Provide information, requirements ideas, and
suggestions on the meeting topic.

Maintain open, professional atmosphere,

Interpret and explain application problem domain to
IS personnel.

Learn the application problem domain.

Assist in interpreting requiremnenls into graphical
representations.

Determine technological capabilities and limitations
as they relate to the application requirements.

Interpret and explain technical IS demain to usets.

Take notes as requested.

Plan for coffee, meals, etc.

Act as liaison with outside world,

Take notes as requested; assist in transcribing and
documenting daytime work.

Keep the discussion from becoming monoepo-
lized by one individual

Identify and resolve conflicts

Keep the meeting on a business (rather than
personal) level.

Frequently in joint sessions, organizational dis-
agreements on goals and objectives arise. Such con-
flict is to be expected and is normal. The facilitator’s
job is to identify and ensure resolution of disagree-
ments during the sessions. The conflicts are poten-
tially explosive and can lead to personal conflicts.

The facilitator must recognize such situations and

defuse them, Occasionally, defusing means asking
for a participant to be replaced.

The facilitator is a cheerleader, meeting leader,
and ring leader who keeps the session moving. Usu-
ally facilitators are senior staff fram the information
systemns organization who already know how to de-
vclop application requirements, but who are specifi-
cally frained to facilitate joint user-IS sessions.

Finally, support personnel are individuals who
take notes during the day and provide liaison with
the outside world, The notes include data-related

212 PARTIl Anolysis and Design

information and process-related information, Data
information includes identification, naming and
definitions of entitics, elements, and entity relation-
ships. Process information includes decision ration-
ales, process identification, procedural details of
processes, and policies that constrain processes. The
actual results of the data and process discussions are
reflected around the room (see the photo in Figure
[1I-2) on flip-charts, blackboards, and other visual
aids that are always accessible to the entire group.

A secend kind of support is administrative assis-
tarice, which includes documenting the information
during evening sessions, coordinating coffee and
meals, and ferrying messages to and from work for
participants.

Preparation

A meeting to prepare session attendees should be
held for afl participants. The primary purpose is to
give participants a list of tasks to complete before
they attend the joint session and Lo train participants
in the completion of the tasks.

The meeting includes an orientation, document
examples, data requirements, and training in devel-
opment of graphical techniques being vsed 1o docu-

ment processing. The orientation discusses the ex-
pectations of the organization and normal results of
such sessions. Then participants are given an
overview of the joint structured process: what it is,
how it is conducted, proper bebavior, and decision-
making necessity. The scope and purpose of the
application are discussed and agreed upon again by
all participants. If there is disagreement or problems
with the scope, they are revised at this meeting so
everyone has a shared understanding of what work
functions and information are in, and what are not in,
the application.

If data Aow diagrams are the graphical technique
being used, for cxample, the users are trained to
develop a context diagram and first-cut data flow
diagram of their current job. The list of tasks for
data flow diagrams would include the following
activities:

s Define the scope and functions of your
position

» Document the ‘whal is’ in a data Row diagram

a Try to draw a context diagram of all the
departments, groups, and applications with
whomm you exchange information in your job

» Define all data used in your job

FIGURE -2 Photo of Joint User-IS Session Room

m Collect statistics—how often, how much,
when—for all data and processes

= Collect samples of all input and output
documents.

Frequently these sessions are taught by an in-
house facilitator, but they may be taught by a con-
sultant who knows the techniques.

The Joint Structured Process

The ideal joint user-1S session is full-time, off-sitc,
lasts three to five days, and has five to nine partici-
pants. All of these ideal characteristics can be loos-
ened somewhat and still maintain the momentum
that comes from intensive work sessions. The idea
is to do the work intensively and quickly because
no one has time to spend in months of meetings. Par-
ticipants become very close and frequently become
good friends as a result of working together, At best,
the vsers and IS team rcalize they are business part-
ners in the application development and that reta-
tionship prevails throughout the project’s life.

Joint sessions are divided into mainly daytime
and nighttime sessions. The word mainiy is used
because the activities can be done at any time, In
general, daytime, when people are most alert, is
devoied to creating new information: evening is
devoted lo documenting the new information.

During the day, activities are the following:

» Confirm business functions

» Identify and analyze specific requirements
(precesses by function, inputs and outputs for
each process). For each process, identify what
is done, how frequently, exception and error
processing, periodic processing, problems
with current procedures, policies that might
need to be changed, and any new business
requirements relating to the processes.

» Jdentify general requirements for the applica-
tion. For data, how accessible and aceurate
does the information need to be? Can it be
accurate as of close of business yesterday or
must it be up to the minute? Can answers take
one or two hours, or must the answer be
within seconds?

Orgaonizationa! and Automated Supporf 213

Application constraints are a second type
of general requirement. Constraints place lim-
its on the application. For instance, upper
bounds of cost and time are allocated for de-
velopmenl, hardware, software, language. or
DBMS. These constraings are general, but
they place strict boundaries on how the appli-
cation will be designed. They also identify, to
the technical staff, activities that need to be
further elaborated during the detailed design
to accommedate the implementation environ-
ment. Censtraints from the first chapter dis-
cussion also apply. They include time, pre-
and postrequisites, structural, control, and in-
ferential constraints.

» Identify the likelihood of requirements change
over the next three to five years. [f require-
ments are identified as changing within the
expected implementation time of the project,
then the expected requirements become the
current requirements for the application.

For instance, users may currcntly need data
up to the close of business yesterday. They
discuss the industry as moving rapidly toward
instant access of up-to-the-minute informa-
tion and expect this requirement within 12—
18 months, and the application will be imple-
mented in 12 months. Build the new require-
ment inte the application now to be an early
leader and avoid costly redevelopment of the
new applicaticn.

» Have the support staff record all processes.
functions, data, outputs, data elements, terms
of processing, names given to itcms, and
50 ON.

Figure 1I1-3 shows the first-cut data flow diagram
developed by an accountant in a major company
for u JAD/Fast-Track session. The user, after one
training session, developed a DFD that was about
9(¥% correct. Figures [II-4 and III-5 show the related
Level 0 and Level 1 diagrams, respectively, from
the JAD which had minor changes during IS design.
Figure I11-6 shows the DFD level 2 as decom-
posed by the project team during design. Only one of
the processes changed: General Ledger was elabo-
rated to be Accounts Receivable and Accounts

214 PARTII Analysis and Design

Acounts

Expenses

Payabla

L

Financial
-

Purchases

bl | Reporting
3

Irventary
4
Accounts
Receivable -
FGURE -3 User-Developed First-Cut DFD
Payable. The other changes were to files and external ~ The Meeting Facility

entitics.
The evening sessions do the following:

Define all elements and terms

Decument all processes

Draw formal DFDs

Document general application requirements
and write an executive summary

Review documentation output of other mini-
teams.

The group works together during the day to create
information. In the evening, the group splits into
mini-teams to perform one of the above activities.
Documentation should be done using automated
tools, including word processors, CASE tools, or
other automated support tools that might be avail-
able. The goal is casily modifiable documents that
can be formatted and printed.

When the mini-tearns complete their work, they
jointly review each others” work products. This
review fosters the shared common view of the
application and cnds the participants’ day with each
having a clear sense of what was accomplished.

The location should be at least 20 miles from the
main work site of the participants 1o minimize inter-
ruptions and preclude people being pulled out of the
sessions. The facility should provide above average
meeting, sleeping, and eating arrangements in the
same building. Phone access must be available but
must be removed from the meeting reom(s). The
facility must provide computer accessibildity. The
location must be easily accessible for managers, who
are not participants, to attend sessions for resolving
conflicts. The facility must allow use of walls in the
meeting room. The recom should be equipped with
flip-charts, overhead projector, markers, slide pro-
jector, and other meeting equipment as needed.

Documentation Tools

Documentation tools should include some word pre-
cessing capability, dictionary support, and some
graphical form support. All of these should ideally
be in a computer-aided software engineering
(CASE) tool. The CASE tool should allow cus-
tomized reports of the information and should

Organizational and Autornated Support

215

General ——,
Ledger 2.0

[
L

Purchases

40

Inventony

3.0 10)

EXpanse lug » Sales
Mgmt.

FIGURE -4 JAD Team First-Cut and IS Final DFD Summary Level ¢

Std. Cost Sales
Rates
T & Current Unit
Stock —— , q.'?}@ 43 YCostApl
Reports { Adjusti 7
Consignment| " - r\djusttlng o L’Qp %‘3 Update S?s?i:'n
Areas nveniory ‘3% q _&_% 03:" Standard
\ B, N b_(-‘ oA, ost
i G -~ tp hase/E Fil
) urchase/Expense Fila
Exception | inventory File Em .
Rpt. Apt Exception
% 1 _Rpt.
& Furchase
@(4? Costs
)
Depletion 0@% A
%
’);Q? % Inv, Cost Controllers
o, Th Variance Rpt.
Sales involce File
Carry
Sales Forward
4.6 Invoices Rpt.
- Calculate Carry
Controllers Cost of Forward
Cost of Sales
Sales Rpt. Ending
Balances
Std. Cost Beginning
Rates Balances

| Invantory Fila

FIGURE -5 JAD Team First-Cut and IS Final DFD Level 1

216 PARTII Analysis and Design
Blend) -
Proportions { Biending Factor File
Sid. Cost{ 4.3.1 4.3.2 JCodes
Rates Coliect |Inventory - "
Sales » Curent %lancesf’” Invenlory File Eg:sg- 4_| Refarenca Filas
Btd. Rates/| Rates Blends
B - /
& Revised Rates/Blends w/ Stock
Location, Product, Pkg. PAL, Group
Std. Cost Validation Valid Updates
Calculation rrors Rates/Blends
Std. Cosl -
Controllers| Revigions Calculat?sns Controllers -
Updated
Std. Cast Inv. Blends
Report 'I Blending Factor File
4
([C1)
Cost Record 4>|| Inventory File
Systern Rates’
Blends | Rev. inv.
{Complter; Rates
FIGURE -6 IS Level 2 DFD for Updating Standard Costs

provide some intelligence on checking and cross-
checking both completeness and accuracy of the
information entered.

At a minimum, word processing should be pro-
vided via some toul such as WordPerfect,” Word
Star,!” MS Word," and so on that allows graphics 10
be imbedded in text, creates tables easily, and does
{ull text manipulation.

An active data dictionary is desirable for docu-
menting the objects (e.g., entities, files, flows,
objects) und object retationships defined during the
sessions. An active dictionary is one that allows cus-
tom report develepment, provides intelligent assess-
ment of completeness, and identifies potential
duplicates based on name and definition. Tf a passive
dictionary (i.e., has only vendor reports and no
intelligence) is an option, you are better off using a
word processor 10 document the information,

9 WordPerfect is a trademark of WordPerfect, Inc.
10 Word Star is a trademark of Word Star, Inc.

11 MS Word is a mademark of Microsaft, Inc.

A graphical drawing tool is the third type of soft-
ware needed. The tool should allow the type of
drawing you are using with your meihodology. An
automated graphical tool is preferred to manual
drawing because automated drawings are more eas-
ily changed and maintained. The joint groups frc-
quently do several iterations of a drawing before
they are satishied with the result.

To summarize, joint user-IS sessions are a way
to obtain quick results with a high degree of user par-
ticipation in the development of requirements plans
and application requirements. Joint sessions are
intensive and require high commitment from partici-
pants. The rewards are a user-centered requirements
document that frequently leads to more satisfied
users and high user involvement throughout project
development,

User-Managed Application
Development

Joint sessions are designed to bring users and IS per-
sonnel together with the underlying understanding

that users will always know more about their jobs
than IS people. Joint sessions foster commitment to
the IS development effort and give users a sense of
participation. The user aspects of application devel-
opment should not stop there. A user manager
should be appointed for the application and should
be the person ultimately responsible for the success-
ful completion of both the application software
and the erganizational changes that accompany a
new application.

The need for user-centered design seems obvious.
User-managed applications foster a sense of busi-
ness parinership; IS-managed applications foster a
sense of (hem-and-us, User-managed applications
provide a regular, natural communications line
between the technicians and users; IS-managed
applications provide a way for IS people to only talk
among themselves, User-managed applications tend
to require less 1S involvement in application train-
ing, because users do their own training; IS training
is notoriously condescending, inappropriate, and
iretfective. Users ‘own’ the application and train
their own staffs.

Not all is rosy with user managed applications.
If the IS project manager is not used to working
for a user, she or he will have te adjust some aspects
of work. For instance, conversations will use busi-
ness terms rather than technical terms. Variances in
time and budget will require explanation and
discussion. Rather than running the whole show,
the project manager is clearly relegated to a support-
ing roll and only manages the actual software
development.

User-managed development can also be sub-
verted by unsupportive IS personnel. For instance,
user teams can meet to develop functional require-
menis, but IS teams may not use them. 1S groups
have been notorious in ignoring user requirements.
The comment heard is, “ They can tell me anything,
I'll give them what [want.” The attitude is that mere
users could never define as good a system as an [S
person. How someone who does not know the busi-
ness could make such a statement defies logic, but it
13 made, IS developers frequently need indoctrina-
tion that the business partnership aspect of applica-
tion development does extend 1o the users,

Organizational and Autormated Support 217

Structured Walk-Throughs

Have you ever had a program bug that you spent
hours trying to locate? You give up in frustration and
turn to a friend for help. The friend takes a sideways
glance and says, “Oh yeah, this period is out of
place.” Just like that, your hours have been a waste.
That type of easily seen error is not a fluke. Your
friend is not necessarily a genius, just as you are not
necessarily stupid for not finding the error. The phe-
nomenon at work is that you are too close to the
problem to see the ‘big picture.” At some point, we
all reach this stape regardless of where on a project
we work. Walk-throughs were designed to formal-
ize the ‘friendly review’ described above.

A walk-through is a semifornal presentation of
some work product for the sole purpose of finding
errors. Work products might include all or part of
the following:

= Functional requirements specification
= Project plan

= Design specification

Logical or physical database design

= Program specification(s)

Program code

Test plan

» Test design.

This list is not complete. Its purpose is to give
you an idea of the range of items that can be the sub-
ject of a walk-through. Virtually any work product,
or piece of a work product, can be reviewed using
the walk-through technique.

Ideally, a walk-through should not be scheduled
for more than two hours at a time. If more time is
needed, then additional walk-throughs are sched-
uled. Like all rules of thumb, this one is frequently
broken, Participants who do not work on the devel-
opment team sometimes have a difficult time
walking-through application requirements in bursts.
When they focus on the application, they like to see
everything at once. So, occasionally you might have
a marathon session that runs a whole day.

Walk-throughs are formalized in that there is
preparation, a team with members having different
responsibilities, and a process. Preparation for the

218 PARTIl Analysis and Design

session is u4s follows: The team is identified and
approved by an SE or project manager. The day,
place, and tirne are agreed upon. A memo of meeting
details is seat to all participants several days in
advance. Arrached fo the memo is the work product
to be reviewed.

All participants are expected to review the work
product, annotating questions and potential errors in
the margins. They must come to the session already
having some understanding of the work product.

Participants in a session include the facilitator,
work producer, one or two peers who are on the
same project, one or two outsiders, and a scribe. Ide-
ally, the number of participants is between five and
seven. The facilitator is much like a JAD facilita-
tor. He or she keeps the meeting moving, makes sure
no personal or blaming remarks are allowed, and
maintains focus on the work product.

The producer presents his or her work. First, an
overview focuses attention on the purpose of the
product. Then, the work is reviewed in a page-by-
page or line-by-line manner following the logic of
the document. The peers and outsiders are there to
question the correctness, completeness, efficiency,
and effectiveness of the product. Questions, com-
ments, or errors are discussed as the presentation is
made. When an issue Is raised and appears legiti-
mate, the scribe notes the problem and its location
{see Table LII-5).

Possible *outsiders’ who might attend a walk-
through include representatives from auditing, qual-
ity assurance, operations, or other project teams who
need to approve or work with the final product.

After the session, the scribe types the notes and
presents a mema fo the auchor for resolution, The
author then responds to each item (see Figure 111-7).
If an item is an error, the response details how and
when it was fixed. If the item is an efficiency or
effectiveness issue, the response describes what
research was done and the resolution. Depending on
the extent of problems or the importance of the prod-
uct, another walk-through might be held. Usually, if
the products are for analysis or design, two or three
wilk-thronghs are held. If the product relates to pro-
gram or test design, then the number of walk-
throughs is determined by the number of errors. With

less than 10 errors, only one walk-through would
be needed.

Data Administration

Data administration is the management of data to
support and foster data sharing across multiple divi-
sions, and to facilitate the development of database
applications. The principle activity for the organiza-
tion is the development of a data architecture
which depicts the structure and rebationships of
major data entities, such as customer, vendors, and
orders. A data architecture is similar to the frame of
4 building. Once the [rame is construcied, the siding
and facade are added. The frame provides the skele-
ton to which the other substructures, such as electri-
cal wiring and plumbing, are added. In information
systems, the data architecture defines aufomated and
nonautomated data and how they are used in the
organization. The architecture provides a ‘frame’ for
defining new applications and documents all data
uses and responsibilities for existing applications.

The other major organization level activity is
defining, with users, data that is *mission critical” for
the organization. Critical data is defined as that data
required to maintain the organization as a going con-
cern. As such, critical data is subject to management
and standards through the data administration fune-
tion. Noncritical data is data that, while useful, is not
required to maintain the organization in event of a
disaster. Noncritical data does not require the same
degree of management as critical data.

At a more detailed level, data administrators
develop, administer, and mainiain policies and stan-
dards regarding data definition, sharing, acquisition,
integrity, and security for the corporation’s data
resource. Data administration provides guidance 1o
project teams on storage, access, use, disposition,
and standardization of data. Data administrators are
responsible for maintaining corporate definitions in
addition to the creation and maintenance of the data
architecture representing the enterprise.

Historically, the motivation for data administra-
tion relates to a maturing organization. When DBMS
software was installed in most organizations, a data-
base administration (DBA) group was crealed to

Crganizational and Automaoted Support 219

TABLE llI-5 Example of Errors Found in Walk-Throughs

‘Walk-Through Type

Representative Errors Found

Feasibility

Analysis

Logical Data Model

Design

Physical Data Madel

Program Specification

Acceplance Test Plan
(This could be any
test plan)

Code

= W R O N St R o R

— =

d D

N
SOFT

i H

h

e R T T

i

W@ b

. One of organization, technical, or financial analyscs is missing.
. Financial analysis has mathematical errors.
. Typos ar poor English render the document {or some part) incomprehensible.

Analysis contains incorrect information,

Data elements for data store, file, or other structure are incomplete.

. Data items do not have [ormal names ¢t names do not conform te standards.
. Subsyslem specificalion unclear.

Obvious ‘holes’ in the system as specified.

. Graphical representations contain syntactical errors or confusing, ambiguous terms.
. Nature of application interfaces not fully specified.

. Logical data model (LDM) is not in third normal form (3NF).
. Names do not conform to standards or are ambignous.

. Mapping to implementation environment does not include all functional requircments.
. Implementation as specified will be difficult to operate, maintain, or implement.
. Design is incomplete . . . one or more screens are missing, screen dialog is incomplcte,

allowable navigation not provided, cic.

Physical mapping docs not provide necessary user views and security simultaneously.
Numerous user vicws may be unwicldy in implemented environment.
Physical model does not provide growth anticipated.

Program specification does not clearly say what the program is to do.
Program specification does not map to design or functional requirements.
File requitements not specific . . . missing vser view, copy lib name, ICL, etc.

. Logic specification incomplete.

Faulty logic.
Access control for secure data not present.

. Test plan does not test that all requiremenis are met,
. Test cuse x data cannot perform as specified.

Missing/erroneous predicted results for reports, screens, file contents, or messages.
Missing on-line test dialog for single user lunclions.

. Missing scenario and test dialogs for multivser test.

. Results predicted cannot be attained with current test design.
. Test for breach of security missing.

. Specific audit contro! tests missing/faulty.

Logic error—missing, extra, or wrong logic.

. Nonstructured format will make maintenance difficult and expensive.
. Comments do not identify module linkages.
. Comments on user view copy books do not clearly identify the database, user view,

or JCL.
Access control for secure data not present.

. Control totals for end of program counts missing.
. Format ertor on report.
. Misspclled word on screen, report, ctc.

220 PARTII Andalysis and Design

Consolidated NY Bank
InterOffice Memo

DATE: December 7, 1992

TO: Ms. Sandra Jones,
Walk-Through Facilitator

FROM: Mr John James,

Producer

Error
Eror # Page Description
1 2 Overview inconsistent in ireaiment of

errors for iransactions.

2 10 System access code design not clear.
3 83 Test of screens is incompigte.
4 125 Security for accounting data not clear,
5 127 Interface 1o accounting sysiem has

inadequate control counts and security.

The following table includes all errors found during the Requirements Walk-Through on Dacember 1 {see H. Hines, Scribe
memo of 12/2). Each item has either been rescived ar found not to be an error as indicated. One item, #5, identified an
audit problem for which § am awaiting Audit Dept. resolution. They are supposed to respond by next Friday, December 11.
Since we decided not to have another walk-through, | will proceed with finalizing the analysis phase.

Resoiution

Rewritten

The lack of clarily was deliberate to prevent general
access 1o security procedures. The group felt that the
dacument should contain all of the information.

Upon reviewing this request with Mr. Fields, Project
Manager, we decided, for security reasons, not to
include the information. Mr. Fields has a dedailed
description of security procedures and the document
now refars individuals requesting the security information
ta him.

Missing information was added.
Same as #2.
Referred to the Audit Dept. for recommendead action.

HGURE -/ Sample Walk-Through Error Resolution Memo

maintain and monitor the DBMS’ use. There was no
necessity for other data-related organizations be-
cause applications, for the most part, were isolated
from one another and data sharing across organiza-
tional boundaries was low. Most industry followed
this pattern of development.

In the normal process of maturation, companies
realized that sharing and censolidation of databases

across organization houndaries was desirable. The
need to share data frequently accompanics the real-
ization that individual division and work groups
have their own vocabulary which often overlaps or
conflicts with the vocabulary and terms used by
other work groups. When divisions automate data,
they incorporate local rules, policy, and definitions
in their applications. Data, while having the same

name, then, may have several different meanings,
uses, formats, and connotations across an organiza-
tion. Conversely, data may have different names hut
the same definitions. This lack of consensus about
terminology and data characterizes predata admin-
istration organizations.

The lack of consensus about data definitions leads
to the realization that data standards pertaining to
definitions, usage, ownership, security, access, and
maintenance are not only desirable, but mandatory,
in large-scale devclopment of shared databases. This
need for standurdization increases with the recogni-
tion of data as a shared resource of the organization.

A formal data administration function is needed
to define and manage data company-wide. Data
administration requires recognition and commitment
to the notion that data is a resource of the corpora-
tion. As a critical corporate resource, data requires
the same careful planning and on-going management
as cash on hand, office equipment. or personnel.

Commitment to DA is sometimes difficult to
develop beeause data are fundamentally different
than other resources. Data are abstract and nonphys-
ical, do not decay, and are easily replicated as the
need arises. They are also subject to different confi-
dentiality, accuracy, and access requirements. Data
are all of these things. In service industries, espe-
cially, information is a primary product, and the
quality of the data resource directly affects the com-
pany’s bottom line and how customers perceive the
quality of service delivered. Data administration
consolidates information across the organization to
simplify the development of applications to service
customers.

Benefiis of data administration outweigh the frus-
trations and difficulties of establishing the function.
Some of the benefits include:

1. Creating and documenting a data architecture
leads to formal recognition and agreement of
business rules and relationships which are
inherent in the data. This agreement im-
proves communications and understanding
of corporate data.

2. By defining and documenting data only once,
efficiencies are realized throughout the sys-
tem development life cycle. All subsequent

Organizational and Automated Support 221

application—using previously defined data
items—identify data required and obtain
access to already automated data. The data
design and documentation phases are short-
ened. Edit routines are reused, just like the
data definitions, and ultimately the cost of
program cade is reduced.

3. Data administration leads to faster response
to changing business conditions. The devel-
opment of applications to support new prod-
ucts, for instance, can be speeded due to fully
specified definition of data required to sup-
pott a product.

4. Data administration provides a means for
deciding what data must be controlled as part
of the corporate data resource, and what data
can be user-owned and controlled (including
data that is oif-loaded 1o PCs and LANs).

5. Data administration maintains definitions of
atl data in the corporation regardless of hard-
wure platform or criticality. The central
repository for this information, then,
becomes the focal point of data-related
activities.

6. By fostering data sharing, the cost of creat-
ing, sorting, updating, and backing up multi-
ple copies of the same data items is reduced,
if not eliminated. That is, we only introduce
planned data redundancy. Just as DBMSs
allow us to minimize intraapplication data
redundancy, DA allows us to minimize inter-
application data redundancy.

In summary, the creation of data administration is
reccommended to guarantee minimal redundancy,
shared understanding of data item definitions, and a
managed approach to providing for future data-
basc epvironments. Data administration should not
be confused with DBA data management which
includes physical DB design, disk space alloca-
tion, and day-to-day operations support for actual
databases.

Data administration has numerous interfaces both
within and outside of the IS area. Therefore, data
administration interfaces occur at all levels of all
divisions specifically to perform user liaison and
application liaison.

222 PARTII Anclysis and Design

User Liaison

The data administration function works with busi-
ness areas to define the data which that area uses to
perform its function. All data, whether it is under
the control of a current information system or not,
ts subject to data administration review. Thus, all
data on any hardware platform is subject to review.
During the review, critical data entities and data
itemns are¢ defined, maintained, and managed by data
administration, Applications with critical data will
be required to comply with standards on data,
access, and security.

The person performing user liasson must be able
to understand and converse in business terminology,
not technical jargon. He or she should have problem-
solving and analytical skills but also should have
excellent communication/negotiation skills, user ori-
entation, and understanding of the role and functions
of data administration. The individual must be able
to translate user data, definitions, and rules into
information in the corperate data repository.

Application Liaison

Data administration works with application project
teams to define the data requirements of the appli-
cation. The data administration analyst identifies
what data is already automated and works with the
project team to define logical descriptions of the
data. The DA analyst, DBA, and project analyst
together transform the logical database definition
into a specific database’s logical definition. The DA
analyst down-loads the data definitions from the cor-
porate central repository for use by the project team
and DBA. DBA then works to develop a physical
database definition of how best to store the daia.

In project-oniented work, the project analyst and
DA analyst reconcile all data requirements with
existing nformation in the corporate repository. For
instance, if a team needs a “plan™ field, but their
definition varies from that of the corporate defini-
tion, one of three actions is possible:

1. The corporate definition is changed to
accommodate the new information.

2. The application redefines its use to be consis-
tent with the corporate definition and usage.

3. A new data item is defined by the project
analyst and DA; the new item is entered
into the corporate central repository by
the DA,

The skills, then, needed to perform application
project liaison include analytical, communication,
prablem-solving, negotiation, data analysis, and
modeling skills,

Where in the Organization is
Data Administration

Ideally, the recommended organizational location of
the DA function is independent of the corporate IS
area, reporting to the president of the business
entity it supports. DA affects and interacts with all
departiments and areas of the organization, includ-
ing all of the application development groups as well
as users, regardless of organizational position or
hardware platform. The DA group could be part of
an internal consulting/technology-related organiza-
tion whose mission 15 to provide services across the
entire organization. The DA group should be neu-
tral about hardware, software, development, or man-
agement of applications as long as the data is not
defined as critical.

CASE Tools

Computer-aided software engineering (CASE) is
the automation of the software engineering disci-
pline. You will find descriptions of ICASE, Upper
CASE, and Lower CASE. These are variations on
the therme with ‘T’ standing for *integrated,” ‘Upper’
standing for conceptual or logical design only, and
‘Lower’ standing for programming support only.
While these differences do exist, this text concen-
trates on CASE tools that support at least the analy-
sis phase and may support others; they are all called
*CASE" here. We will identify which phases are now
supported (of course, this might change by publica-
tion time).

The typical CASE environment includes a repos-
itory, graphic drawing tools, text definition software,
repository interface software, evaluative software,

Crganizational and Autemated Support

Graphic
Processing
Tool

Hurman
Interface

k —

Repository

Manager Repositary

Text
Processing
Tool

Intslligent
Analytical
Software

FIGURE lI-8 CASE Architecture

and a human interface (see Figore [11-8). A reposi-
tory is an active data dictionary that supports the
definition of different types of objects and the rela-
tionships between those objects. Graphic drawing
tools support the development of diagram types and
evaluates the completeness of the diagram based on
predefined rules. Text software allows definition of
names, contents, and details of items &n the reposi-
tory. The interface software is the interpreter which
determines the form the data should take (either
graphic or text). Evaluative software is the intelli-
gence in CASE. Evaluative software analyzes the
entries for a diagram or repository entry and deter-
mines if they are lexically complete {i.e., conforms
to the definition of the item type), and if they are
compatible with other existing objects in the appli-
cation. The human interface provides screens and
reports for interactive and off-line processing.

In this section, we discuss the characteristics of
the ideal CASE environment. This is just an ideal

and is the author’s own invention.'? No commer-
cially available products and no research prototypes
are known to embody this ideal.

The ideal CASE should provide complete auto-
mated support for the entire project life cycle, begin-
ning with enterprise level analysis and working
through to maintenance and retirement. The ideal
CASE then becomes the focal point for all work that
takes place in software engineering, and the work
of the SE concentrates on the logical aspects of
design. The ideal CASE tool would provide for the
technical, data, and process architectures of the
organization, project planning and monitoring,

12 The ideal CASE in this secticn is partialiy the result of re-
search done with Judy Wynekoop, UT San Antonic and
Nancy Russo, U of Notthern Illinois, published in
Wynekoop and Conger [1991], Conger [1989], Conger and
Russo [1990]. It also results from 10 years of frustration in
using CASE tools and waiting for vendors and researchers to
build decent products.

224 PARTII Anglysis and Design

group work on applications, application and manual
procedure definition, normalization of data, DB
schema generation, generation of bug-free code in a
user-selccted language, automatic testing of gener-
ated code against the application logic, and intelli-
gent assessment of completeness and correction
along the way. Really advanced CASE would rec-
ognize compoenents already in the repository for
reusability of analyses, designs, and code.

The repository of CASE determines both what is
supported and, to some extent, how much support
can be provided. The repository is something of a
super dictionary that captures and maintains meta-
data. Meta-data is information about data (see Chap-
ter 1). For example, a data element in an application
is data, and its attributes constitute the meta-data that
would be stored in the dicticnary. Attributes of an
element mclude, for instance, data type, size, vol-
ume, frequency of change, and edit criteria. A CASE
repository acts as the DBMS for the engineering
effort, provides the capability for expanded meta-
data capture, and tmaintaiss all components and their
interrelationships.

The ideal repository should allow customizing of
the methodelogy supported ard enforcement soft-
ware that can evaluate the correciness of user-
defined repository entries. To do this requircs some
decoupling of the repository from a specific method-
ology and an abstracting of methodology compli-
ance rules within the repository. These are not trivial
tasks! This decoupling would allow organizations
to adopt and use the components of methedologies
that work for them, and ignore those that don't. The
initial sacrifice for this capability will be less intelli-
gence. But, decoupling the intelligence from & spe-
cific methodology and type of tepository entry will
also allow customizing of evaluation software and
enforcement of local rules.

Intelligence in CASE comes in two major forms:
intelligence of the interface and intclligence of the
CASE product itself. The interface should provide
both novice and expert modes of operation. it should
allow work to be saved and restarted as part of the
functionality. The toel should be customizable by
individual users. For instance, if [want veilow print
on a blue background, and I call a data flow diagram

a DFD, [should be allowed to change the defaults
to use my terms and formats.

Alternate forms of inputs should be reflected
throughout the diagram sets. This means that if a
user enters entities and attributes in a repository,
when she or he moves to developing a graphical
entity-relationship diagram, the information in the
repository should be reflected on the diagram.

Inielligence of the CASE product includes analy-
sis within and between both diagram types and
repository entries. ldeally, application A’s require-
ment that conflicts with enterprise goal Z, should be
flagged for management consideration.

The ideal CASE should allow users 1o separate
and integrate diffcrent applications easily. For
instance, the company may want to document
already operational applications and begin te man-
age them electronically. Users defining a new appli-
cation may want to integrate it with an old
application. They should be allowed to create an
integrated third definition that highlights the over-
laps, redundancies, inconsistencies, and other prob-
lems that the integrated pair have.

According to the 40-20-40 rule of systems devel-
opment, 40% of project time is used for analysis and
design. 20% 1s devoted to programming, and a full
40% is devoted to testing.'* The current direction of
vendors is to eluninate code, thereby cutting 20% off
development time. But, the ideal CASE would cut
the 40% devoted to testing as well, The urgency for
CABSE testing tools 1s low relative to other current
caoncerns (like getting the products to work bug-
free). At some point in the 1990s, vendors will
begin to provide testing support it their CASE
cnvironments. Ideally, such support will include
black- and white-box tests with human interveniion
allowed but not required. Black-box testing is for
correctness of output based on inputs; white-box
testing is for specific logic paths in a program.
Intelligent software will analyze the type of process
and determine the most appropriate testing strategy.
Additional intelligent software will develop test data
based on logical requirements, conduct the tests, and
maintain test results. Test results will be integrated

13 Pressman [1987].

across test runs, phases of testing, versions of the
software, and even hardware platform environments.
When bugs are found, backiracking to find its
source, possibly across modules, will be provided.
Since the software built the bugs, it should be able to
fix them; but, if the source is a logical, human speci-
fication, notice to the SEs will require correction of
the errors,

Future products will eventually tackle the
remaining 40% of project time by providing intelli-
gence to identify reusable components of applica-
tions. Reusability of designs will have the most
payback but is also the rost difficult. Initially,
reusable code modules will be enabled, then reusable
designs, and finally, reusable logical analyses. Code
reusability recognition sheuld be available in CASE
tools by the mid-1990s; the others will take until the
turn of the century to surface.

This description of ideal CASE characteristics
concentrates on what CASE should do rather than on
what it currently does. For that, we discuss CASE
as it supports each methodology and phase of
development in the coming chapters. Although
CASE and artificial intelligence (Al) are both in their
infancy, the developments described above are cur-
rently focasible with current state-of-the-art technolo-
gies. The CASE repository will become the hub for
all of the work that takes place in 1S organizations.
The limits to CASE intelligence that can be built are
only due to human limitations,

SUMMARY

In this section preview, we identified the major ac-
tivities of analysis and design. Analysis identifies
what the application will do: design describes how
the application will work in production. Both analy-
sis and design have the same five generic activities:
identification, elaboration, synthesis, review, and
documentation. These activities are constrained and
guided by a methodology. Each methodology takes a
different perspective of an application leading to dif-
ferent phase-end results.

The organizational supporsts facilitate application
development regardless of methodology. Organiza-

References 225

tional supports described in this chapter included
joint requirements definition, joint application
design, user-managed application development, data
administration, and walk-throughs.

Software support that most facilitates application
development is computer-aided software engineer-
ing (CASE). The ideal CASE envircnment has both
expert and novice modes, can be customized for
hybrid methodology use, and provides many addi-
tional intelligent functions beyond analyzing com-
pleteness of work, Future environritents will identify
reusable components of previous work to further
reduce application development time.

The next six chapters discuss the analysis and
design phases using the following example meth-
odologies:

Process—Structured Analysis (Chapter 7) and
Design (Chapter 8)

Data—Information Engineering—Business
Area Analysis (Chapter 9) and Business Sys-
tem Dcsign (Chapter 1)

Object—Object-Oriented Analysis (Chapter 11}
and Object-Oriented Design (Chapter 12).

Chapter 13 summarizes and compares the meth-
odologies and their CASE support. Chapter 14 dis-
cusses forgotten activities of systems anatysis and
design.

REFERENCES

A

Blum, B., Software Engincering: A Holistic View, NY:
Oxford University Press, 1992,

Conger, S., “The active dictionary in a CASE environ-
ment,” Dara Base Management, #25-01-20, NY:
Auerbach Publishers, 1989, pp. 1-12.

Conger, 8., and N. Russo, “A Taxonomy of Applications:
A Bramework for Selecting and Designing Method-
ologics,” Georgia State University Working Paper
#90.0201, 1990.

Couger, J. D., M. A. Colter, and R, W, Knapp, Advanced
System DevelopmentiFeasibility Technigues. NY: John
Wiley & Sons, 1982,

McClure, C., CASE s Software Automation. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

McMenamin, S. M., and I. F. Palmer, Essential Systems
Analysis. NY: Yourden, Inc., 1984,

226 PARTIN Analysis and Design

Pressman, R., Software Engineering: A Practitioner’s
Approach, 2nd ed. NY: McGraw-Hill, 1287,

Olle, T. W., . Hagelstein, I. G. MacDonald, C. Rolland,
H. G. Sol, F. J. M. Van Assche, and A. A. Verrijn-
Stuart, fnfermation Systems Methodology: A Frame-
work for Understanding, Workingham, England:
Addison-Wesley, 1988,

Swartout, W., and R. Balzer, “On the inevilable inter-
twining of specification and implementation,” Com-
munications of the ACM, Vol, 25, #7, July, 1982,
pp. 438—44{.

Wynckoop, J. L., and 8. Conger [1991], A review of
computer-aided software enginecring research meth-
ods,” in Information Systems Research: Contempo-
rary Approuches and Emergent Traditions, (H-E.
Nissen, H. K. Klein, and R. Hirschheim, eds.). NY:
North-Holland, 1991, pp. 301-326.

KEY TERMS

active data dictionary

analysis

CASE repository

compromisg of
requircments

cemputer-aided software
engineering (CASE)

critical data

data administration (DA)

data architecture

database administration
{DBA)

design

document

elaboration

facilitator

Fast-Track

identification

1S-managed application

Jjoint application design
(JAD)

joint requirements planning
(JRP)

out of the box thinking

Tepository

review

synthesis

user-managed application

user manager

walk-through

work around

PROCESS-

CHAPT

7

ORIENTED

ANALYSIS

INTRODUCTION

In this chapter, we review process-oriented analysis
using structured analysis following DeMarco
[1979], Yourdon [1989], and McMenamin and
Palmer [1985]. Structured analysis was the first well-
documented, and well-understood method of
describing application problems. While the tech-
niques have changed as our understanding and
application types have changed, the technigues will
remain useful for many years te come. This mate-
rial should be a review, and for that reason, you
might want to skim or skip it altogether, You might
rate your knowledge by tracing the development of
the ABC Rental Processing ¢ase. If you understand
and can reproduce the work, skip the chapter,

CONCEPTUAL
FOUNDATIONS

Structured analysis (and design) follow the archi-
tectural notion that “form ever follows function.”!
Functions of an information system are the processes

I Sullivan, Louis, “The Tall Office Building Artistically Con-
sidered,” Lippencott's Magazine, March, 1896.

that transform application data. Therefore, we em-
phasize processes and the flows of data into and out
of thase processes in structured analysis.

Structured analysis also is based on systems the-
ory which assumes inputs are fed into processes to
produce cutputs. To complete the systems model
(sce Figuee 7-1), there must be some sort of feedback
to eliminate system entropy, that is, to keep the sys-
tem from ‘runming down.’

To conceptually analyze complex systems as we
have in IS, pieces of a problem are analyzed in iso-
lation. We might look at inputs, outputs, and pro-
cesses separately, then integrate them to produce a
unified system. As system processing gets more
complex, we study pieces of processes separately
then integrate them. The pieces of the processes

Input - System COutput -
f)
Feedback
FIGURE 7-1 Systerns Model

|

228 CHAPTER7 Process-Oriented Analysis

must themselves be self-contained, small systems.
These smaller systems comprise a hierarchy of sys-
tem components, such that a component at any level
is itself a system of components. Each system, re-
gardless of level, has its own inputs, processes, out-
puts, and feedback. At the lowest level of the
hierarchy are the elementary components which
can no longer be subdivided and retain their system
characteristics.

Struciured development provides heuristics,
guidelines, and diagram sets for dividing an infor-
mation system into a hierarchy of logical component
parts,

SUMMARY OF

STRUCTURED

SYSTEMS ANALYSIS
TERMS

Structured analysis begins with two assumptions.
First, we assume that we are most interested in what
the application is fo do. That is, what are its func-
tions or processes? A function or process is some
activity that transforms an input data flow into an
output data flow. Second, we assume that we will
treat the problem in a top-down manner. In top-down
analysis, we analyze the external interfaces of the
application first, then high level functions, and
finally, lower level functions.

At the highest level, we define the scope of proj-
ect activity. The scope defines the boundaries of the
project: what is in the project and what 15 outside of
the project. We document the scope of the project in
a context diagram. A context defines a setting or
environment. In structured systems analysis, the
context diagram defines the interactions of the
application with the external world. External world
interactions occur between external entities and the
application via the data flows that pass between
them. An external entity is a person, place, or thing
with which the application interacts, such as

Accounts Receivable Application
Citibank
Customer

Customer Service Department
Medicaid Processing Application
Medicaid Administration

The Federal Reserve Bank

The Internet (or other public network)
U.S. Internal Revenue Service

A data flow is data or information that is fx rransit.
A data flow might be a piece of paper, a report, a
diskeite, or a computer message. Data Hlows in a
diagram are directed arrows that depict data move-
ment from one place to another.

A context diagram depicts the scope of the proj-
ect, using circles, squares, and arrows. A large cir-
cle designates the application (see Figure 7-2),
Squares identify external entities with which the
application must interact. Directed lines (i.e., with
arrows) are the data flows which indicate movement
of data between entities and the application.

At the next lower level of analysis, we look inside
the circle representing the application to define the
major functions and files. Again, the functions are
the major transformations triggered by input data
flows to create output data flows. Files or data
stores are relatively permanent collections of
data. Data flows are distinct from data stores in
their time orientation. Data flows are temporary
and cease to exist once they are acted upon by a
process, Data stores are persistent and maintained
over time. Data stores may represent cne or more
data structures.

A data flow diagram (DFD) (see Figure 7-3) is a
graphic representation of the application’s compo-
nent parts. Notice in Figure 7-3 that the entities and
data flows from the context are all present. Also
notice that data flows may connect processes 1o other
processes, data stores, or external entities. Data
stores and external entities do not interact directly
with each other. If we compare the context to the
data flow, we can perform quality assurance for com-
pleteness and consistency. Completeness checking
ensures that a/f data flows and entities are included.
Consistency checking ensures that oaly expected
data flows and entities are included and that they are
in the cotrect locations in the diagram set.

We do several iterations of DFD process analysis.
At the highest level of analysis, the DFD is said to

Surmmary of Structured Systems Andlysis Terms

229

External
Entity Name 1

QOutgoing
Data Flow

Inceming
Data Flow

Application Name

Incoming
Datz Flow 2

Extarnal
Entity Name 2

FIGURE 7-2 Sampie Context Diagram

describe Level) of the application. Each iteration
is a deeper level of analysis to look into the pro-
cesses from the previous level, analyzing the sub-
processcs, their constituent data flows, and their data
stores. We link DFD levels through the process num-
bering scheme (see Figure 7-4). For example,
process 1.0 from the level 0 diagram is decomposed
inte processes 1.1, 1.2, 1.3, and so on (o describe
the Level 1 DFD. In Figyre 7-4 Process 1.0 1s de-
composed into two subprocesses, Notice that a new
file and an entity are other details added to the dia-
gram. Level 1| DFDs may be further decomposed. To
continue the cxample, precess 1.1 might be decom-
posed into processes 1.1.1, 1.1.2, 1,1.3, and so on,
until we reach the primitive, basic level. The primi-
tive level is the level of cach process at which no fur-
ther decompaosition can be done without fracturing
the function. In other words, the decompositions a
cach level fully define the function, but may not

define all of the functional details. At the primitive
level, all files, flows, entities, and individual func-
tions have been defined. There is no right level of
definition; level is usually related to the type of
application and target implementation language. You
may do only two or three levels of decomposition for
a nonprocedural, fourth generation language; you
may do six or seven levels of decomposition for as-
sembler or low level procedural languages (e.g.,
COBOL or Pascal).

The structured decomposition technique is a
mechanism tor coping with application complexity
through the principal of ‘divide and conquer.” A
large, complex application problem is divided into
its parts for individual snalysis. Each part is further
divided and individually analyzed. Complexity is
reduced by allowing us to analyze small parts of the
problem in isclation. The difficullies in structured
decomposition are in correctly identifying the

230 CHAPTER7 Process-Criented Analysis

Ingoming
Data Flow 1

External
Entity Mame 1

Outgaing
Data Flow
Ganarate
Results

Data

File B

Get Input

Inter-Process
Flow 2

File
Input/C utput
Data

-]

File A

Flow 1

Inler-Praocess
Flow 1

Get Input
Flow 2
Ingcoming
Data Flow 2

Extarnal
Entity Name 2

FIGURE 7-3 Sample Data Flow Diagram

isolated parts, and keeping the level of abstraction
consistent.

After each analysis, the current level of DFDs is
balanced with the previous level. Balancing is the
act of checking entities, data flows, and processes
across the levels of the diagram set. All entities and
data flows from the higher level processes rust be in
every more detailed diagram. The names of entities
and data flows must be consistent across the levels of
the diagrams. We also balance processes. Lower
level processes ‘explain’ or provide the details of
higher level processes. Lower level processes are
checked to be sure that they all relate to one, and
only one, of the processes named at the higher level.
They are then checked to be sure that they are in the

diagram set for their related higher level process.
When complete, processing is fully documented in
a leveled set of DFDs.

While a set of balanced DFDs is being created,
the secondary documentation is also being created.
The secondary documentation includes creation of
a data dictionary and optional graphics for real-time
applications called state-transition diagrams. The
data dictionary? compiles detailed definitions for
each clement in a DFD (see Figure 7-5 for contents
for each entry type}. The dictionary entries for
processes contain details of how to accomplish the

2 See DeMarco [1979] and Yourdon [1989].

Structured Systerms Analysis Activilies 23

External
Entity Nama 1

Generate
A Report

Appllcation

Code Validation Fite

Gel Input
Flow 2

Soldface ilems show new information on
detailed, decompuosed diagram that is
ornitted on the higher level diagram. The
dotted lines mirror the net inflows and
outflows of the level § diagram. Process
3.0 is only here o show the nei outtlow
connection.

FIGURE 7-4 Example of Decomposed DFD

process. For instance, a process description for order
creation might contain requirements for daia entry,
customer validation, item validation, order printing,
and order filing. Since you get information on data
piecemeal throughout the analysis (and design), it is
easiest to documnent what you know as you go along,
Surfacing assumptions, misconceptions, and data
conflicts can be easier with this approach because the
dictionary is always up to date with information and
its source. If you collect pieces of paper and create
the dictionary late in the analysis phase, identifying
the source of conflicting information can be difficult.

Although not criginally part of structured analy-
sis, state-transition diagrams are frequently used to
supplement DFDs in structured analysis for on-line

(and real-time) applications. A state-transition
diagram shows the time ordering of processes and
identifies relationships between processes. State-
tramsition diagrams are an integral part of object-
oriented analysis and are deferred until that
discussion in Chapter 11.

STRUCTURED
SYSTEMS ANALYSIS
ACTIVITIES

The specific activities in structured systems analy-
sis are:

232 CHAPTER? Process-Criented Analysis

oL O

. Develop a context diagram
. Develop a set of balanced data flow diagrams
. Develop a data dictionary

. Optionally, develop a state-transition

diagram if building an on-line or real-time

application.

Data File or
Data Basse

Data Field or
Attribute

Daia Flow

Process

External Entity

File/Database Name
Aliases

Primary Key

Alternate Keys

Size of Relations/Records
Growth Percentage per Year
Security

Data Structure

Organizatign

Uger Name

Systern Name

Aliases

Definition, if needed

Greating Process{as)

Length

Data Type

Allowable Vaiues and Meanings

Validation Method (e.g., cross-
raference file, code
check, etc.)

Name

Aliases

Timing {e.g., daily, weekly, as
ocours, ate.)

Conlents

Constraints {&.g., requires
§ second rasponse; only oc-
curs for sales arders, stc.)

Process Name

Process Number

Description

Constraints {e.g., must be
complete within 20 seconds or
Process x times out.)

Entity Name

Aliases

Dafinition

Relationship to Application

Contact (if entity is an
organization)

FIGURE 7-5 Data Dictionary Contents by

Type of Entry

Structured analysis can be likened to a video cam-
era with a zoom lens, At a distance, with no zoom,
the itemn being examined is abstract and fuzzy. It has
shape but no details. We can tell the photo is a build-
ing but little else (see Figure 7-6). When we draw a
context diagram, we are examining the abstract
shape of the item, in our case an application. Next,
we zoom in with the camera to identify a greater
level of detail about the object. In the photo, colors
are distinct and some features of objects stand out.
Pieces of the structure, for instance, celumns, can
be discussed in isolation of other pieces, Internal
photos might show position, size, and type decor of
rooms. There are still details which remain indis-
tinct. When we develop the Level 0 diagram, we
zoom in a level to expose more details of the prob-
lem. At this level, we describe the major normal
processes, data tlows, and files, and how they inter-
relate with external entities from the context.

In the third photo, we see all of the details; loose
tiles on a roof, a crack in a foundation. Internal
photos at the same level might detail construction
materials (e.g., hardwood or concrete floors), and
windows and doors to the outside. We can describe
the context and surroundings, as well as the photo
item, in as much detail as needed to suit our purpose.
Similarly, at each additional level of application
problem decomposition, we are zooming in to
exarmine ever more detailed layers of the item, until
we arrive at the essential processes in the applica-
tion. At the lowest level of decomposition, we
analyze not just the normal processing but all
exceptions, errors, and details of reporting that
accompany the normal processes. From systems the-
ory, we know we are finished decomposing when we
can no longer identify minisysiems as the compo-
nents of subprocesses,

The problem with the photographic zoom anal-
ogy is that the activities in structured analysis are not
strictly top-down. First, we do not think in a strictly
top-down manner. We jump back and forth between
levels of detail to ‘test” how a higher level decision
might look at a lower level, to get details of a new
process so we are sure how it ‘fits™ with the other
processes, and so on. When we are developing an
application similar to something we have already
done, we have a good understanding of familiar parts
and little understanding of new parts. We spend time

Structured Systems Analysis Activities

FIGURE 7-6 Zoom Analogy to Structured Analysis

analyzing the new parts of the application 10 see how
they fit with what we already know. We have to
change our preconceptions based on the new infor-
mation, and alter our ‘mental model” at all levels of
detail to accommodate the new informalion. We may
go into great detail on a new aspect of the applica-
tion, ignoring the known aspects temporarily. Then,
when we understand the new parts, we can go back
up to a high level of abstraction to document how the
parts fit together.

Second, application analysis is iterative. We have
already discussed planned iterations to move to
lower levels of detail in documentation. We also
reiterate through analysis when we find some unex-
pected, unknown, or changed reguirement to ensure
that it fits what we already know. To decide that fit,
we must walk-through the entire process top to bot-
tom. Recall that a walk-through is a formal review
of analysis, design, program code, test design, or
some other component of application development
work. A walk-through can be used to determine

where the new requirement fits
what other processes, flows, stores, or entities
are involved in the change

what are the ripple effects of the change through
the set of DFDs.

Another analogy for structured analysis, as
equally applicable as the photo zoom, is from geol-
ogy (see Figure 7-7%). If we are trying 1o drill for oil,
we might find a variety of different formations and
even have different drilling results, depending on the
depth and angie. So, too, in structured analysis our
results depend on our approach and the information
we obtain from interviews and information gather-
ing. The information differs for each user because
their perspective of the problem, their job goals, and
their personal aspirations all distort their view, We
require multiple approaches, multiple interviews
with both the same and different people. and multi-
ple perspectives of analyzing the information. Figure
7-6 shows unfocused probing. The pieces and views
do not fit together, We know we are at the end of
analysis when all users agree and all the disparate

3 This analogy is from Gary Moore, University of Calgary, who
originally used it to describe research in information sysicms.
1t fits the application development context as well.

CHAPTER 7 Process-Oriented Analysis

Drillng Lines __

Earth Surface

Shale/
Sedimentary
Rock

Water

Hard Rock

FIGURE 7-7

views fit together coberently. Recall that triangula-
tion is a data gathering technique comparing multi-
ple verifying sources of all information. The purpose
of triangulation is to ensure that cur resulting view
of an application xccurately depicts the requirements
of the work process it supports. So, we analyze top-
down, sideways-out, bottom-up, a#ad do them all
more than once in the analysis process,

Now, we turn to the discussion of hew to
actually develop the documentation in structured
analysis.

Develop Context Diagram

Rules for Developing Context Diagram

The context diagram summarizes the scope of the
project. The rules for developing the context dia-
gram are listed below for easy reference.

Geologic Analogy to Structured Analysis

1. Define the boundaries {i.e., scope) of the
application. Specifically, define what the
application will do and what it will not do.
Draw the circle identifying the application
and write the application name in the center,

2. Using the application boundary as a starting
point, identify all external entities with which
the application must interact. For each entity,
draw one square on the diagram and label the
square.

3. For each entity, create a definition in the data
dictionary.

4. For each external entity, identify the specific
data flows that define the interface.

5. For each data flow, create a definition and list
of tentative contents in the data dictionary.

Scoping may take place before analysis actually
accurs and is usually part of the feasibility study as

discussed in Chapter 6. Some organizations which
might not performn feasibility analysis stilk require a
bounding of the application, Review that portion of
Chapter ¢ tf you do not remember the politicul and
organizational issucs involved. Here, we assume that
boundaries are defined and that the application and
its interfaces to external entities are reasonably well
defined.

Definition of external entities is next. External
entities are people, places, or things which interact
with the application. Usually. we identify titles/roles
(e.g., Customer), departments (e.g., Accounts Re-
ceivable), organizations (e.g., Medicare Adminis-
tration), or applications (c.g., Accounts Receivable
Application) as entities. The phrase ‘interact with the
application’ has a very specific meaning. The entity
is outside the control and/or processing being mod-
eled for the current application. That is, external
entity processing, procedures, and data are not sub-
ject to analysis or change. Relationships between
external entities are nof shown on the diagramds)
{i.e., extermal entities cannot connect to each other).
For example, if you are modeling an order process-
ing application that does not do inventory control,
the warehouse would be on the context diagram, If
inventory control and warehouse processing are
within the scope of the application, the warehouse
would not be ¢on the context diagram.

After entities are identified and drawn on the
diagram, they should be defined in the data dictie-
nary. The entries for an entity include a name and
definition (see sample Figure 7-8). This step is
important for two reasons: to develop a commeon
vecabulary, and to develop documentation as unaly-
sis proceeds. Frequently, individuals might believe
they have a common vocabulary because they vse
the same words in their discussions, Only when they
develop a common definition of the terms can they
be sure that their shared terminclogy also means
they share the meaning of the terms (see Example
T-1). Finally, in organizations having a data admin-
istration function, a dictionary (or repository) of
‘corporate’ data is an integral part of the organiza-
tion's data architecture (see Chapters 9 and 10 for
more on this topic). The name and definition of each
entity (and, eventually, each attribute) should be
matched against the organizational definitions to

Structured Systerms Analysis Activities 235

Entity Name Customer
Aliases None
Definition A company, government

agency, nonprofit organization,
or individual who orders goods
and services fram X Company

Retfationship Order goods, return goods,

to Application receive invoice

Caontact, if entity None

is an organization

Entity Name Medicaid Administration
Aliases Medicaid
Relationship Raceaives claims, sends

to Appiication claim reconciliation, payment

Mary Jones 202-445-0011,
NY State Claims Adjustor
Medicaid Administration
1401 Avenue C, NE
Washington, D.C. 01010

Contact, if entity
is an arganization

FIGURE 7-8 Example of External Entity
Description

ensure consistency with other uses of the same
name, or uniqueness of the name if 4 ncw definition
is developed.

There are several reasons for documenting defin-
irions in the dictionary as work proceeds. First, the
dictionary provides the basis for intraproject com-
munication. Whenever a definition is developed and
added to the dictionary, the more the team builds a
shared view of the application reflecting the dictio-
nary contents. Second, documentation is best done
as the project progresses to cnsure that it gets done.
Il documentation is delayed until after implementa-
tion, it rarely includes the wealth of detail and his-
tory of decisions that can be incorporated if done
instream,

The next action in developing the context dia-
gram is to define data flows between the application
and each extemal entity. The questions you ask your-
self to identify data [lows are, *What information
do 1 (as the application) need from this entity?" and
“What information do I feedback or provide to this
entity?” Frequently, bul net always, input flows (to

236 CHAPTER7 Process-Criented Analysis

A CASE OF NO SHARED MEANING

The XYZ Annuity Company was developing a
new application to defing the institutions
which defined ifs customer base. The exercise
was prompted partially by o lament from the
head of marketing who ¢laimed, "There are
6.400, 7,600, or @.650 institutions, depending
on who | ask and which application they are
getting the numbers from. Can’t | have one
number of institutions?”

A newly founded Data Administration
team decided that the first “corporate” defi-
nition they would tackle was institution. The
data analyst assigned first asked appii-
cation developer cokeagues, "What is an
institution?”

The replies were varied and generally,
unsatisfactony:

Anyone we do business with.

An organization we do businass with,

Any legal entity we do business with,

A school, research and development
institution, not-for-profit foundation, or
other organization which is approved
by the IRS to confract for annuity bust-
ness with XYZ Annuity.

An organization that has a plan defining o
group of annuity contracts,

Then the analyst asked the users, “What is
an institution?”

Some organization that remits annuity
payments (¢ remittance clerk's
definition)

An organization with a plan defining o
group of contracts (a accounting man-
aget's afternpt at a genetic
definition)

An approved organization which may or
may not have a contract plan (a mar-
keting definition)

An organization to whom annuity and
pension product counseling is provided
{a coungelor’s deflnition)

A target audience for marketing and sell-
ing annuity products (a marketing
definiticon)

The analyst then asked the senfor manager
in charge of institutional relations to please
define an institutlon. His response was g three-
page, single-spaced memo that defined six
major variants and over 30 different situa-
tional definitions for an institution.

Two important ideas here are, first, alf of
these definitions are correct, and second,
each definftion has some generally ac-
cepted component. Definitions relate to per-
spective. A systemns person defines an
institution in relation to the application’s use
of the term. A user defines the term in rela-
tion to their jol's use of the term. The man-
ager tried to synthesize all perspectives and
highlighted the variation and divergence
that had evolved throughout the organiza-
fion. Third, aff of these definitions have some
element thatl appears important to defining
“institution.”

When asked about the differences In the
definftions, one user said. *Oh, yes, we know
we don’t all mean the same thing when we
use the term institution, | even mean different
things depending on the topic.”

Rasclution of the differences took over six
rmonths of part-time work, resulted in the defi-
nition of 20 new aftributes of an institution,
and reguired the approval of 72 managets in
the process. Several applications under
development that were using an institu-
tional billing code as the primary key identi-
fier underwent substantial redefinition as ¢
result of the development of a shared term,
“institution.”

Structured Systems Analysis Activities 237

Summary Context

Insurance
Company
Patient
Entity
\ F
Patient
State Claims
Processing — Entity
G
E ntity /
G
Entity
Physician H
Inflcres Context
Personal
Information ;
Fatisnt Claim Payment Insurance
Company
Company Patients Adjustment
Coverage Claims
Irtormaticn Processing
Claim Rules
State Prescriplion N
Physician

FIGURE 7-9 Example of Complex Context Diagram

the application) are matched with output flows to the
same entity. For instance, customers place orders;
the application sends an invoice {and goods) back
to the customer. Check for reciprocating input-
output flows such as these. When you identify single
flows 1o/from an entity, you want to double check by
asking, “How do 1 know they got this output?” or
“Dao I have to tell them I got this input?™ As you
define each data flow, draw the directed arrow on the
cantext diagram, and label the flow. For a complex

application, you might need two levels of context
diagrams (see Figure 7-9). One level summarizes
all entities with directed arrows that are unlabeled.
The cther level shows (nput flows on one diagram,
and output flows on the other diagram with labeled
data flows on both diagrams.

Duta flows are information about some business
event being tracked by the application. They do not
identify physical items. For example, an invoice is
information about an order that would also have

238 CHAPTER 7 Process-Criented Analysis

Name Crder
Aliasas None
Timing As Oceurs
Contents Customer Name
+ [Address | Customer 1D]
+ Shipping Instructions
+ 1{ltem name
+ (ltem number)
+ (Color)
+ {Size}
+ CQuantity ordered}m
Constraints 80% must be billed and

shipped within 24 hours

100% orders in by noon must _
e billed and shipped the same
day

FIGURE 7-10 Example of Data Flow
Dictionary Description

actual goods, A data flow to a customer shows the
invoice but not the physical goods.

Last, for each data flow, create a definition in the
data dictionary. The dictionary information provided
for a data flow is its name, contents, and contents’
source when it is not obvious (see Figure 7-10 for
sample data Aow description).

ABC Video Example Context Diagram

The scope of the project for ABC Rental Processing
system i3 to provide rentalfreturn processing for
videos, including customer maintenance, video
inventory maintenangce, historical information main-
tenance, and reports to management. At the end of
the day, accounting totals of sales information are
generated, but there is no automated accounting
interface, There is no purchasc order processing
in this application. The application’s main function
is rental processing, so we will call it ‘ABC Rental
Processing.’ We draw the circle for the application
in the context diagram and label it ‘ABC Rental
Processing.™

4 The names of iterns from a diagram are in italics to set them
off from the rest of the discussion and, hopefully, minimize
your confusion.

Then we define the entities. Possible entities are
customer, video vendor, ABC management, ABC
accountants, and the Internal Revenue Service (IRS).
The IRS is omitted because there 1s no tax-related
processing performed in the application. ABC ac-
countants are included because they receive an end-
of-day report of receipts. How management and/or
accountants use that information is beyond the scope
of the application. ABC management could conceiv-
ably be on the diagram. Now, we ask ourselves, “Do
we have control over what ABC manuagement does
with respect to the Order Processing application?”
The answer, iz this case, 1s yes, because ABC is s0
small. In other circumstances, the answer could be
no. For instance, with a large application generating
reports for many levels of management or for other
departments' management, the answer might be no.
Here, ABC management is not on the context dia-
gram; in other companies or contexts it might be,

The entities left are Customers, Video Vendors,
and video. Customers should be obviously correct,
All remtal and return processing relate to interactions
of the application with customers. ABC has no con-
trol over customers’ rental choices.

WVendors as an entity might be less obvious. Even
though there 1s no automated purchase order process,
the videos entered into the application come from
somewhere, so video verdors should be identified as
the source of video information.

Las1, we deal with video. Is video an entity that
the application interacts with? The answer is yes. Is
video an entity that the application can control? The
answer is again yes. Video is not on the context dia-
gram because it is fn the application. In effect, the
video is within the circle that describes the ABC
Renral Processing.

As a result of this analysis, we add three external
entity squares to the context diagram labeled Cus-
tomer, Video, Vendor, and Accountant (see Figure
7-113}, and define the eatities in the dictionary (see
Figure 7-12).

Next, we deline the data flows and document
them in the dictionary. What happens in this applica-
tion? When a customer selects a video, they first tell
the clerk their phone number. The clerk uses the
phone number to *look up’ the custorer and validate
their rentals, If the customer is new (i.¢., not on file),

Structured Systems Analysis Activities 239

Accountant

Customer

ABC Rental
Processing

Video
Vendor

FIGURE 7-11

the customer information is entered and stored. After
phone number processing, the customer either gives
the clerk the cardboard shell, or tells the clerk the
video name (see Chapter 2). This sentence identifies

Entity Name Customer
Aliases None
Relationship Renis and Pays for Videos,
o Application Provides New Customer
Informaticn, Aeturns Vidacs
Contact None
Entity Name Video Vendor
Aliasas Vendor
Relationship Provides New Videos
to Application
Contact None
Entity Name Accountant
Aliases None
Relationship Part-time employee receives
to Application end-ol-day reports
Contact None

FIGURE 7-12 ABC Rental Processing Data
Definitions for Extermal Entities

Skeleton ABC Rental Processing Context Diagram

a data flow; rental request. After entering the infor-
mation into the computer system, the clerk needs to
provide some record with customer signature that
the rental took place. This record accounts for the
transaction and establishes customer liability for the
rental property. This information identifies a recipro-
cating outward flow to the customer: rental receipt.
When the tape is returned. the charges are com-
puted based on the due date of the rental{s). This
identifies another incoming data flow for a video
return, So we have identified four data flows be-
tween the ABC Order processing application and
CUSLOMErs:

8 New Customer to store customer information

» Renmtal request (analogous to placing an order)
from the customer to create a video rental and
payments

8 Renial Receipt from the application to confirm
the rental

s Video Return to determine late charges, if any,
and payment due.

For these four flows, there are four arrows be-
tween customer and ABC Rental Processing. Three
arrows are from customer for new customers, rental
requests, and returns. One arrow is fo customer for
the rental receipt.

240 CHAPTER 7 Process-Criented Anclysis

Accountant

New Customer
Video Rental, Payment J

Customer
Rental Receipt \

-

ek

Videc Return

ABC Henial
Processing

End of Day
Rental Summary

MNaw Vided
Video
Yendor

FIGURE 7-13 ABC Order Processing Context Diagram

The data flow relating to verdors is somewhat
obscure, but is identified by the need to enter new
video information. Since new video information
comes from somewhere, its source must be identified
as the entity. There is one data flaw from vendor to
ABC Rental Processing for video information.
There are no data flows back fo vendor because
the scope does not include erdering videos from
the vendor,

Last, we define the data flows to and from the
accountant. The accountant does not feed any infor-
mation into the application, and receives only an
end-of-day rental summary, So, there is one data
flow to accountant for the ‘end-of-day rental sum-
mary.” Next, we draw the data flows on the context
diagram and label them (see Figure 7-13).

While we label the flows, we evaluate the names
of the data flows 1o ensure their meaningfulness.
Rental request implies a request for assistance in
rental processing and is a weak name. Stronger,
more meaningful names are ‘Video remtal’ or “Video
rental information.’ Either of these might be used.
Here, we use Video rental since the word ‘informa-
tion’ is not particularly meaningful. Also, rentals
are always accompanied by payments which are
added to the name to be more expiicit.

Novice analysts frequently have trouble differ-
entiating between the thing, and information about
the thing. Keep in mind that what we document on
DFDs is always information about the thing. So,
when we name a data flow *Video Renfal” we really
mean information about ‘Video Rental.” That is why
the word ‘information” is weak in the data flow
name. The other names: Rental Receipt, Video Re-
turn, New Customer, New Video (not New Video
Information), and End-of-day Rental Summary are
all acceptable. Again, there are no ‘right’ or *wrong’
names for data flows. Some names are more descrip-
tive than others, and, therefore, stronger. Many com-
panies define their own conventions, or local rules,
for naming data flows, eniities, and processes.

Last, we define data flows in the dictionary (see
Figure 7-14). Keep in mind that just because the
information is in the dictionary does not mean it is
cast in concrete. [t is subject to review and change
throughout the life of the project. The goal is to
define the application at a level of detail so that
changes can be made before they becomc costly, that
is, during analysis.

Upon completion of the context diagram, you are
ready to do the next level of analysis, opening up
the circle, to define a data flow diagram,

Structured Systams Analysis Activities 241

Name New Customer
Aliases None
Timing As Qcours
Contents Name + Address + Phone
Number + Cradit Card Type
+ Credit Card Number
+ Cradit Card Expiration Date
Constraints None
Name Rental, Payment
Aliases None
Timing As Occurs
Cortants Phone Numbet + 1{Viges ID}m
+ Total Amount of Order
Constraints MNone
MName Copy of Order
Aliases Printed QOrder
Timing One per rental transaction
Contents Phane Number + Customer
Marne + Customar Address
+ 1{Video ID + Video Name
+ Rental Charge + Due Date}m
+ Tetal Amount + Total Amount
Paid + Total Amount Due (should
be zero}
Constraints Must be signed by customer,

Optional that customer takes a
copy.

Name New Video
Aliases None
Timing As Occurs
Contents Video 1D + Video Name
+ Date + Rental Frice
Censtraints None
Name End of Day Summary
Aliases ECD Rental Summary
Timing Close of Business
Contents Videos Fented + Total Fees

Collected + Videos Returned
+ On-Time Returns + Late
Returns + Totat Late Days

+ Late Fees Collected

Constraints MNone

FIGURE 7-14 ABC Video Data Flow Definitions—Tentative

Develop Data Flow Diagram

Rules for Developing
a Data Flow Diagram

To develop a data flow diagram, iterate through the
tollowing steps uatil a primilive level is reached:

1. Define the processes.

2. Detine the files and other data flows required
to support the processes.

3. Brraw a Level 0 DFD. At level O, ignore
trivial error paths and data stores. If you
define a validation process, you must eveniu-
ally identify an error path. Define the error

3.

path at the primitive level. Similarly for data
stores, define files when Lhey are shared
between processes. [ntroduce files that are
only used within a given process at the level
at which the file is shared between two or
MOTE SUBProcesses.

Balance the DFD with the context diagram.
Compare the net inpuls and outputs to exter-
nal cntitics on the DFD to the net inputs and
outputs on the context diagram. There should
be a one-to-one correspondence between the
diagrams.

lterate through this procedure until the primi-
tive level of DFD is reached for all processes.

242 CHAPTER 7 Process-Criented Analysis

Always balance the current level DFD’s net
inputs and outputs with those of the previous
level.

First, we will discuss how to identify the Level 0
processes that are within the circle of the context
diagram, without defining any data stores. The diffi-
culy of this activity varies with your understanding
of the problem domain and the scope of the project.
One of the hardest parts of this activity is to decide
the ‘right’ level of abstraction. What is right in one
instance may not be right in another. For instance, if
you have a multidepartmental, multiapplication en-
vironment you are trying to describe, the Level 0
diagram might link departments and the net data
flows of the context diagram {see Figure 7-13). If
you have a multidepartmental, single application
environment, you might identify major functions
and their relationships (see Figure 7-16). Or, if you
have a single department, single function applica-

tion, such as ABC Rental Processing, you try to
define the general functions to be performed. The
approach in this text is to define the simple environ-
ment, discussing the common features for all levels
of abstraction,

During the information gathering stage of the
application, you discussed with vsers what they did
and how they did it {see Chapter 4). The individual
steps that each user performs in the tasks relating to
the application are components of the applications’
processes, There are a variety of ways to identify
processes; some examples are:

1. Direct identification: H you have girnilar
experience and either know the processes, or
have articulate users who know the pro-
cesses, identify them directly.

2. Top-down: Decompose the problem into its
constituent parts. The functions at each level
should completely define the problem and

Counsel
Patient

Maintain
Patiant
Records

Accounting

Process
Medicaid
Claims

FIGURE 7-15 Multidepartment, Multiapplication Level 0 DFD

Structured Systems Analysis Activities 243

Maintain
Psychiatric
Counseling
Visit Information

Visit
Daoctor _Eaie.
ime,
o .
!&gﬂos‘,. Patllgnt
' . ‘r
Maln?aln_ Diagnosis
Psychiatric #= Patignt File
Counsaling Notes
Information
New and Update
Patient
New and information
Update 3.0 |
Patient Patient Maintain
Information Patient
Information

FIGURE 7-16 Multidcpartment, Single-Application Level 0 DFD to Maintain Patient Records

should be as independent of each other as
possible. The resulting independent functions
can be analyzed in isolation of the other parts
to develop each part’s subprocesses. Decom-
position continues until atomic levels of pro-
cessing are identified.

3. Bottom-up: Do boettom-up analysis siarting
with the details of task steps and procedures
described by users, synthesizing and combin-
ing the steps to define processes.

4. Qutward-in: Use context diagram entities
and data flows to identify ‘boundary’
processes with which they directly interact.
Work outward-in to define what other trans-
formations are required to link the input and
cutput bowndary processes.

5. Funetional sequence: Examine the input
data flows from external entities to identify

the “first process’ in a scquence of processes,
From that first process, define the other trans-
formations that are required to go through
each function from beginning to end.

All of these approaches can work. None is mose
right than another. We all use one or more of these
in performing analysis without thinking about how
we actually do it. A good approach is to use two or
three of the methods as a way of double-checking
that all processes are defined and connected prop-
erly. For ABC, we will combine the last two
approaches, wsing the information from the context
diagram.

Once processes are identified, you draw them and
connect them to the external entitics via the named
data flows. Other data fiows and processes are iden-
tified to connect the initial ones defined until you feel

244 CHAPTER 7 Process-QOriented Analysis

the diagram completely describes the overall pro-
cessing. Keep in mind while you are performing this
activity that you do not pay attention to timing or
sequencing of processes. You do not show start-up or
shutdown activities on a data flow. If you have end
of day, end of month, or other periodic processing,
the DFD shows the processes without nccessarily
identifying the timing of the processing. As the
processes arc drawn, name each with a verb and the
data they create, and number them. Numbering of
processes is not meant to sequence them, even
though we unconsciously tend to do this.

Also, at Level 0, ignore exception processing.
You might have a data flow named ‘Vaiid X' without
a matching ‘frvalid X.” The exception process is
added at the next lower level. This avoids unneces-
sary clutter at the highest level.

After the processes are identified, next define file
locations on the Level (1 data flow diagram. You
could leave files for a lower level of analysis as
many texts and companies do by convention. In that
casc, you are ready to draw the diagram. Here, we
will develop the thoughts that are used to identify
data stores.

To identify data stores, first consider each pro-
cess. Can the process be completed without reading
or writing to a data store? If your answer is yes, then
you do not need a file at this level. If the answer is
no, you need one data store for every required read
action and every required write action. Many times,
the reads and writes are to the same data store. Then,
you have one data flow per input/output action. As
these required reads and writes are identified, you
add to the DFD to include the data store name and
data flow{s). When you do this part of the drawing,
make sure that each flow and store has a name.

Finally, when you have reviewed each process for
determining whether to include data stores, review
the diagram to make sure that its DFD syntax con-
forms to the rules. The first seven rules relate orly to
processes and their connectivity. Processes with con-
nection errors are called ‘pathological’ processes
because they do not follow the philosophy of DFDs
that processes arc connccted via flows, files (data
stores), or entities.

The next four rules check that all connections in
the diagram are legal. The rule about no dangling

arrows” is our own. Work and teaching experience
have proven that novices use dangling arrows to hide
their lack of understanding of what they arc doing.
The final two rules deal with balancing, error han-
dling, and the introduction of files.

The DFD syntax rules are:

1. Al processes are connected to somcething
else,
2. All process have both inputs and outputs.
3. No processes have only outputs or only
inputs.
4. Processes may connect to anything: other
precesscs, data stores, or entities.
. All processes have a unique name and
number.

6. Each process number is used once in the
diagram set.

7. Only subprocesses of a process shall follow
thc numbering scheme of the parent
Pprocess.

8. Entitics and data stores may connect only 10
processcs. Another way to state this is that
gach data flow must have at least one end
connected te 4 process.

9. Data flows arc the only legal type of con-
nection between entities, processes, and
data stores.

10. Make sure there arc no dangling arrows.

11. The net data flows to and from context dia-
gram external cntities muse batance, that is,
be present, in each Ievel of DFDs.

12. Trivial errors and exceptions are not han-
dled until L1 or lower in the DFD set.

13. Trivial data stores show up in the diagram
set the first time they are referenced by a
process.

When the Level 0 DFIY is complete, walk through
the DFD with your peers, then review it with your
user. Keep in mind that you are teaching the users

h

5 [realize that this is contrary to DeMareo, Yourdon, and many
undeegraduate texts. For novices, dangling arrows frequently
mean you have no clue aboul what attaches at the other end.
In addition, most companies want ail terminators identified ta
ensure accuracy and (o simplily quality assurance. Unul you
are proficient, draw the erire diagram!

Docter

Maintain
Caunsaling
Information

Maintain
Visit
Intormation

Maintain
Patient
Information

Patient

FIGURE 7-17 Context Expansion of Level O
Processes: Maintain Patient Records

as well as having them review your work. If they do
not understand what you are showing them, they
cannot adequately comment on it. So, use a top-
down approach to the presentation, too. First, show
the users the context diagram. Define all of the items
in the diagram. Once they agree on the external
cntities, show them a blowup of the context diagram
that includes the inside of the circle: the major
processes and the data flows connecting them to
external cntitics (see Figure 7-17). Then, replace that
diagram with a Level O DFD showing the entities
and processes. Use overlays, adding the data stores
and remaining data flows. Finally, review the
detailed definitions from the data dictionary for each
process, data low, data slore, and entity. If you take
a step-by-step approach, users can more easily
accept and assimilate the information.

Structured Systemns Analysis Activities 245

Do not expect to have agreement on the first, or
even second, review. One benefit of data flow dia-
grams is focusing thoughts on the problem. Users
will frequently ‘see’ what is missing when they lock
at a diagram that they could not ‘sec’ when they dis-
cussed the topic verbally. When they begin a sen-
tence, “Well, what about . . .” pay close attention;
the subject is usually some variation, exception, or
forgotten information that they did not discuss
previously.

As you understand and users agree on the con-
text and Level 0 processes (see Figure 7-18), begin
work on the lower level DFDs. For each Level 0
process,

1. Draw the input and output flows and the
icons to which they connect from the higher
level diagram. This forms the skeleton of the
diagram (see Figure 7-19). These are called
the net® inflows and outflows.

2. Define the subprocesses by asking, “What are
the steps required to do this process?” Then
for each step, “Can I separate this from the
other steps and do it in isolation?” For each
subprocess you isolate, draw a process rec-
tangle on the lower level diagram.

3. Identify whether data stores are required or
not. Add them and, if they are new, name
them,

4. Identify data flows to complete the diagram
(see Figure 7-19). Make sure vou provide afl
and only the information required to perform
the process.

5. Review the diagram for unnecessary connec-
tions and, if found, remove them.

6. Update the data dictionary with all new
information.

The goal of subprocess identification is to de-
compose the upper level processes into what will
eventually be programmable modules. A good, that
18, correct, design has certain characteristics that are

& Net, from accounting, means remaining after all necessary
deductions. Here, net means remaining data flow and data
store cunneciions afier Lhe higher level process is removed.
The net data flows in and out of a higher level process may
connect Lo different subprocesses at the lower level.

246 CHAPTER7 Process-Oriented Analysis

Doctor

L
Maintain Diagnosis.
Counseling - Patient File
Information Notes

Maintain
Visit
Information

New and Update

Fatiant
New and Infarmation
Update . m
Patient Patient o
Information Malr]taln
Patient
Infarmation

FIGURE 7-18 Completed Level 0 DFD to Maintain Patient Records

traceable back to a properly decomposed DFD. The
two most important characteristics are maximal
cohesion and minimal coupling. Cohesion measures
the internal strength of a process (this is also called

intraprocess strength). We want modules that result
from process descriptions to have exactly the logic
required to perform the task, and nothing more. Min-
imai coupling measures the interprocess connec-

Doctor

Visit

Date,

Tima,

Patient
iD

Patient File

FIGURE 7-19 Skeleton Level 1 DFD with Net Inflows and OQutflows for Process 1.0: Maintain

Visit Information

Structured Sys’rems Analysis Activities 247

Review

Unreconcilable

Doclor File

and Code
Visit Info

Doctor

Emors

%
5 cCcD
% Time
i Keeper
Patient File

FIGURE 7-20

tions. Ideally, we want data flows and stores to con-
tain exactly the information needed to trigger or per-
form each task, and nothing more. The questions and
evaluation of pirocesses in the decomposition
process, if done properly, result in cohesive, mini-
mally coupled processes.

Three types of quality checking are performed
on the analysis results. First, correctness checking
determines that the syntax and connections used in
diagrams, charts, and so forth are accurately used.
Next, completeness checking is performed with
the users to validate the meanings of all terms
and to verify the semantics used in all documenta-
tion. Last, consistency checking ensures con-
sistency and correctness of alt entries that span
multiple diagrams, text, charts, and so on. Consis-
tency checks evaluate the interitem syntax and
semantics. These checks are first performed by the
project team during walk-throughs or other quality
assurance evaluations. Then, they may be reviewed
by independent quality assurance analysts as an
added check.

If you find data flows that are identical, with no
transformations, going 10 many processes, reassess

Completed Level 1 DFD: Maintain Visit Information

the processes definitions (see Figure 7-21). On the
other hand, if you have a transaction processing
application in which each transaction has its own
version of some process, this type of diagram is cor-
rect (see Chapter 8). If the processes all do different
transformations and have either unique inputs or
unique outputs, leave them separate. If the transfor-
mations have an if-then-else logic, they are at too
tow a level and should be combined (see Figure
7-22). If they all do different transformations to the
incoming data, are the processes’ outputs going
to the same place? If so, you may have over-
decomposed and should combine the processes. Fig-
ure 7-23 shows two possible corrections to the over-
decomposition. Either correction may be acceptable
depending on the Y.y’ data complexity and theic
processing complexity. Semantic (i.e., interpreting
problem meaning) DFD problems are discussed
again in the next section.

At Level 0, we did not concern ourselves with
exception processing. At the lower levels, when a
data flow is named ‘Valid X, you must balance that
flow with another one called ‘/nvalid X.* In other
words, you do define errors and exceptions at the

248 CHAPTER 7 Process-OQriented Analysis

BEFORE

FIGURE 7-21

same level at which you define the split of valid and
errar/exception processing.

Let’s examine how to apply these thoughts to
develop a set of DFDs for ABC Rental Processing.

ABC Example Data Flow Diagram

We said above that in ABC Rental processing we are
combining the analysis of context with analysis of
the sequecnce of actions for each data flow. So, we

Example 1 of Excessively Detailed Processes

start with a customer placing a video rental request.
Customer and video information trigger a “Create
rental’ process. The first check in ‘create rental” is
to vialidate the customer; if the customer does not
currently exist, we want to “add new customer’ 1o the
company's files before rental processing. Here, we
have a decision te make. We just described two input
data flows to the create rental process. We need to
decide if they are refated or not. In this case, the is-
sue is whether we can add new customers as a sub-

BEFORE
If Yas

Y

Ext,
Ent

AFTER

Ext. |
Ent

Y1

FIGURE 7-22 Example of If-then-else Logic
in DFD)

process of rental processing, or whether they are sep-
arate, If we separate the two, we have the two data
flows we defined. If we combine them, we only have
one data flow that optionally contains new customer
information with rental information. If you do not
know how the user wants the processing petforrned,
you go back and ask. So, we will set this
issue aside for the moment and finish defining what
it means to ‘create rental.’

7 Postponing decisions that are noncritical to the main logic is
an important problem-solving behavior. Notice that we first
identify alternatives and implications of the postponed item
before setting it aside. If there are more side effects we have
not identified, we arc more likely to notice them with altcrna-
tives and implications than without.

Structured Systerns Analysls Activities 249

Adfter customer validation, we next have to vali-
date the video and get a rental price. This requires
reading some sort of video inventory file. Again, we
ignore invalid video information for the moment.
Once we have found the information on all the
videos to be rented, we compute the total amount
due. Again, we have a decision. At this point, how
do we know whether late fees have been paid or not?
Do we assume that people always return videos as
thev come into the store, and rent videos on their
way out of the store? The rule is, never assume any-
thing. If we know how to deal with this issue from
the data gathering, we continue; otherwise, we add it
1o the list of questions for the user and continue.

After the rental amount is created (whatever it is
and however it is computed), payment information is
entered and customer change is computed. Then, the
rental “order” is written to a file and a paper copy is
created for customer signing.

So, we have a process, ‘Create rental,” and we
have several subprocesses, ‘Validate customer,’
“Validate video,” ‘Compute rental total,” *Process
payment,’ ‘Write rental,” and *Print rental.” We also
have several questions and decisions that we
deferred. We can create the Create rental process on
the Level 0 diagram whether we deal with the
deferred issues or not. But we cannot identify the
other processes, with certainty, until the issues on
new customers and late fees are decided. So, we
review the interview information and po see Vi for
the detailed answers.

Mary gocs back to Vic and says: “We are talking
about the options for entering rentals and we
have several questions. The first question is
about new customers. One opticn is to scparate
the functions, that is, add new customers in a
separate process from rental processing. A sec-
ond option is to allow adding a new customer as
part of video rental processing. A third option is
to allow both. Do you have a preference?”

Vie: “I don't know. What will the cost differences
be?”

Mary: “No matter whait, you want to be able to

add, change, and delete customers. it seems
desirable to do that without being tied to the
rental process. However, rental processing is

250

CHAPTER 7 Process-Oriented Analysis

BEFORE

New ¥ from A.B

Cefinitely has excessive detail

AFTER 1

FIGURE 7-23 Example 2 of Excessively Detailed Processes

90% of your activity and you don’t want to slow weeks, there will be a cost, as high as several

it down by having to leave that process to add a thousand dellars.”

new customer. The slow-down for going from - Wie: “OK, let’s do both, then. It sounds more con-
rental processing 10 add customer and back will venient this way anyway.”

range from 4 to 30 seconds depending on the Muary: “OK, we will allow entry of new cus-
PC’s speed and the software we use. Unless you tomers as a process to be mn by itself, or as part

have a business reason for separating the two of rental processing.® My second question
processes, I would suggest that you allow both. :

If we decide this direction now, there is no 8 Notice that Mary recontirms the decision by repeating the
added cost. If we change direction in a few agreed upen solution.

relates to video returns. When we collected our
information, we observed people returning
videos in several ways. First, they can put them
into a slot and pay the fee the next time they rent
a video. Second, they can return them and pay
when they come in to get a new rental, Third,
they can return them and rent a new video both
at the same time. Do you want all of these
options in the new system?”

Vic: “Yes, why wouldn’t 1?7

Mary: "It is easier for us if we have a somewhat
fixed method of returns. But, if you want no
changes, then we allow for all return methods.
This may have a cost implication, but I can’t tell
right now. Should we talk about this again when
[know what the cosl of the options are?”

Vic was a little upset: “] told you at the beginning,
NO bureaucracy and changes only if it improves
convenience to my customers. If we don’t allow
them to return in all three of these ways, some-
one will get mad. Besides, don’t customers pay
when they rent? So, my only risk is on the 10%
of customers who have late fees.

“Also, if T limit the ways they can return
tapes, 1 lose my edge over Ajax Video's chain
up the street, If there is a cost to allowing all of
these things, why can’t you tell now, and, if you
can’t tell now, when will you know?”

Mary tried to placate Vic somewhat but is still com-
pletely honest: “Usually, there is little incre-
mental cost when all variations are known at this
stage of the analysis. But I can’t tell until we’ve
proceeded a little further and have a sense of
how many different programs will result from
the most flexible design. 1 will know when we
get to about two more levels of detail which will
be in a few days. If therc is no added cost, we
will go for the flexibility. If there is an added
cost, | will let you decide and give you an esti-
mate for the different choices.

“Let me summarize: We will analyze for
refurns through the drop box, returns as a person
coming in, or returns as part of rentals, and get
back to you with cost implications, it any.”

From the application perspective, maximum flex-
ibility for both customer and rcturn processing

Structured Systerns Analysis Activities 251

means, at least, that the rent and return screens and
processing must be clesely linked to each other. Now
we need to goard against having the processes too
closcly coupled. Idcally, we want to accommodate
Vic’s wishes and still have processes separated as
much as possible. To obtain this goal, we need to
decide the minimum information needed to link cus-
tomer and rental processing, and rental to return pro-
cessing. Then, visualizing an implementation, we
might be able to use, for example, windows for cach
process. We might open a new window to add a cus-
tomer during rentals and maybe open another win-
dow to process returns during rentals. Also, with
minimal coupling, we maintain separation even
though the processcs are interleaved.” This decision
process is another example of how not top-down a
top-down process is. We are going to an implemen-
tation level of detail to jump back up and define the
data at the higher, more abstract level. Don’t think
this is the final answcr. It is ane way to reason
through the problem and figure out how it might
work at the computer level. Then, we back off to the
logical level to describe that possible model.

We said before that the first step in ereate rental is
to validate customer. If either the phone number or
customer rame is nof retrieved, we know we have a
new customer and can switch to that process. (nce
the new customer information is entered and saved,
we can pass it back to rental processing as if it were
in answer to an original requesl. Once we have the
customer information in the creare rental process,
we can automatically check outstanding rentals. If
there are any, we can ask if they want to return them
or add the ncw rentals to the list. Qur problem is
solved unless Vic wants late fees processed whether
or not the outstanding rentals have been physically
returned, This decision, however, does not affect us
until we try to define the details of processing, At the
moment, we will assume late fees are only processed
when the physical tape is returned.

9 Interleaving means weaving pieces of multiple processes to-
gether to give the appearance of parallel processing. Each
process progresses a little. First, we switch to a process and
do some of its function. Then we switch to another, then back
to the first process, and so on.

252 CHAPTER 7 Process-Oriented Analysis

Accountant

End of Day
Rental Summary

New Customer /

Video Rantal, Payment (

Customer

Rental Raceipt \

Video Return

Create

Video
Vendor

New Video

FIGURE 7-24 ABC Video Expanded Context Diagram

The result of this discussion so far is that we have
three processes identified: create rental, create cus-
tomer, and process returns. Each process could be
initiated by the creare rental process, or could be ini-
tiated by a customer action. We draw these processes
(see Figure 7-24) and attach them to the correct data
flows. Within the context circle expansion, de not
show connections between processes. Processes still
unaccounted for are ‘create video’ and *Create end
of day report’ for summary totals. We know we have
to get video information into the system, so we add
that process and connect it to the data flow from
video vendor. Since we must print an end-of-day
summary for the accountant, we add the process to
the diagram. *

Figure 7-24 shows our high level processes of
ABC Video Rental Processing, expanding the con-
text diagram within the circle. The processes are
shown in small circles or in rounded vertical rectan-
gles, depending on local customs. This text uses
rounded vertical rectangles. Notice that the data
flows to/from each external entity are attached to a
process, and all data flows are labeled and have a
directional arrow showing which way the data is
flowing. Also notice that the processes each have an

action name beginning with a verb, and each process
has a numeric identifier.

The next step is to expand to a Level 0 DFD,
defining the data stores' in the application and link-
ing processes, as required (see Figure 7-25). Data
store identification usually occurs naturally during
the identification of processes and subprocesses. For
instance, what actions are done to enter a rental?
First, you would check to verify that the customer
is, in fact, a customer. This means checking some
permanent ‘list’ or file for presence of the customer.
Then, you would ask for cach video they want to rent
and verify the description and its price. To retrieve
the description and price, we need a permanent file
of the video inventory. When the rental is complete,
it is stored somewhere (in a rentat file), completing
the process. Following this logic, we need at least
three files at this level of analysis: customer file,
video inventory file, and rental file. At this stage, we
don’t concern ourselves too much with the file con-

10 Other names for data stores are files, relations, or databases.
The term data store means data relating to this name and
does not imply normalized form. Data stores can contain
more than one dara structure [Gane, 1990).

Structured Systerns Analysis Activities 253

Accountant
L
New Customar 3
Customer End—of Day
Create ental Summary
> Customer
]
[}
g o ¥
2 \Q
% 3 Customer Fila
2,
Today's
&
3.0 Y \..:s; Rentals
Create New Rentat Rental File
Rental -
Order
Return
Rental
FReturn, Late Fee Paymant Proce Information

Video New Video
Vendor -

Returns

Vidao
Inventory File

FIGURE 7-25 ABC Video First Cut Level 0 DFD

tents, although we identify the contents throughout
analysis as they become known. As attributes, or
fields, are discussed, it is a good practice to add to an
attribute list for each file. The linkage between cre-
ate rental and create customer is shown on the DFD
as a data flow. The details of initiating create cus-
tomer processing when a customer 18 not found are
deferred to the next level of detail.

Before showing the DFD to Vie for his com-
ments, we evaluate its level of abstraction and cor-
rectness (see Figure 7-25). Are create customer,
create rental, creaie video, and Process Returns all
on the same level of abstraction? The first clue that
they are is that the first three processes all have the

same vetb. Process refurns is the removal of rentals
just as create rental is the creation of rentals; they
are reciprocal processes. The reciprocal processes
alsc appear to be at the same level. The name pro-
cess returns is not the best we could choose to show
reciprocity; return rental is a stronger name that does
and we change the process name.

Next we evaluate correctness of the diagram. Are
all the connections legal? Yes. Are there any patho-
logical connections? No. Is there a flow through the
application? Yes, the main flow is for rental and
TEtUIn processing.

Now, we could return to Vic and ask his opinion,
giving him a verbal presentation of the details

254 CHAPTER7 Process-Oriented Anadlysis

TABLE 7-1 Decision Table for Decomposing Another Level of Detail

Conditions

Domain Knowledge H H - - H H H L L L L
Language 4GL 3GL 3GL 3GL 2GL 26L 2GL 4GL 4GL 3GL 2GL
Similar Experience - Y N N Y N N - - - -
Simple Process/

Few Files

or

Complex Process or -) C - 5 C S C - -
Many Files

Recommended Decomposition Levels

Level 0 X X X X X X X X X X X
Level 1 Opt. X X X X X X Opt. X X X
Level 2 Opt. Opt. X Opt. X X Opt. X X X
Level3...n X Opt. X Opt. X X
Legend:

H Extensive experience

L Little experience

4GL Fourth Generation Language, e.g., SOL

3GL Third Generation Language, e.g., COBOL

2GL Second Generation Language, e.g., Assembler

Y Yes

N No

5 Simple

C Complex

underlying each of the processes, and in the details,
getting verbal agreement to the next lower level
of subprocesses.

At Level 1, we first decide which, if any, pro-
cesses necd decomposition. What happens when you
create customer? A quick definition of fields and the
type of validations required is necessary. According
to the information (sce Chapter 2}, we need customer
phone, customer name, customer address, and credit
card ID, number, and expiration date. Validation for
these fields is that the data are present and legal for
the data type. For complex validation, you fre-

quently use extra cross-reference fites to contain the
legal codes and their meanings.

Do we also need to provide modify and delete
processing for customers? Always is the answer,
... and query processing as well. Now, we nced to
know the implementation language to decide
whether or not to decompose further. The decision
table shown in Table 7-1 summarizes the decision
criteria and the most likely outcomes. Keep in mind
that you can always go to another level of detail and
can always get some benefit from the exercise. But,
why do the work if you don’t have to?

Structured Systerms Analysis Activities 255

New Customer

Maintain

End-of-Day
Rental Summary

Order

Return, Payment

Video

New Video
Vendor L

Retum

Customer

] s
Fé_ 1

2.]

o Y

%;. Customer File

Teday's
30 \?{') @ Rentals
| & o
New Renial Rental File

Return
Rental
Information

17
s,
(14 jvﬂ%

Video File

FIGURE 7-26 ABC Video Final Level 0 DFD

We are plarning to build this application for a
LAN environment, using a 4GL-nonprocedural lan-
guage. For create customer there are no other data
stores needed for validation. There wilt be add,
change, delete, and query processing. The corre-
sponding decision cell—4GL, simple process, one
file—shows Level 1 to be optional. The decision
depends on who is doing the programming. Is the
person experienced with similar applications? Is the
persen involved in analysis fully knowledgeable
about the reqguirements for this application? If the
answer to either of these questions is ‘no,” the next
level of DFD should be developed with the details
entered in the dictionary.

For ABC Rental Processing, we will opt not to
discuss development of the Level 1 DFD for create
customer. We will change the process name to
‘maintain customer” to denote the more general and
expanded processing. The final Level 0 DFD is Fig-
ure 7-26; the Level 1 DFD is shown as Figure 7-27
for reference.

A similar set of arguments for Process 4.0, ‘create
video,” is possible. We also rename that process
‘maintain video' to denote the expanded process-
ing, and omit the level 1 DFD.

Both rental processing and return processing
should be expanded regardless of the implementa-
tion language because they are fairly complex and

256 CHAPTER 7 Process-Crientad Analysis

New Customer
Customer

¥

Create
Custorner

Custamar

3.0

Delete Cust ID

F

ABC
Marnagement

Delete
Cuslomer

FIGURE 7-27 ABC Rental Level 1 DFD for Maintain Customer

we have not discovered how they work vet although
we have described rental processing in some dctail,
First we examine the DFD from cur knowledge so
far, then expand it as required (sce Figure 7-26). In
the level 0 DFD, the create rental process interacts
with customers twice and with all three data stores.
To untangle and clarify the processing of these five
interactions, we decompose the process further.

The first interaction is to get rental information
from the customer. The ‘rental information’ includes
customer 1D {or name) and video IDs (or names).
The customer 11} is used to validale the customer and
get the rest of the customer information for the
rental. Similarly, the video ID) is used to validate the
video and get the rest of the video information for
the rental. Customer 1D is also used to check for late
fees and to retrieve outstanding rentals. We also
know that if the customer is not on file, we want to
initiate process 3.0, maintain customer. When com-

bined, this processing is [airly complex and some-
what cxtensive. It is complete when the clerk does
something to show that entry of rentals is complete.
We can group these processes together and call them
‘get valid rental’ (process 1.1) because ence these
actions are complete, the rental 1s ready for the next
step of processing. The detailed steps we identified
are either used to create another level of DFD) or arc
documented in the dictionary for process 1.1,

A valid rental is totaled by adding all of the rental
fces for the current set of entries and any late fees
outstanding from past rentals. Once the tolal is dis-
played, the amount of money paid by the customer is
cntered into the system by the clerk. The total paid is
subiracted from the lotal due 1o get the change due to
the customer. When the change and total due
amounts are both zero, the rental is complete and
ready for the last part of the process. Because this
stage is discrete, beginning with the successful vali-

Structured Systemns Andlysis Activities 257

Get Valid

Customer File

Video File

Rental

Fess and
Money

and Print
Rental

Rental File

FIGURE 7-28 ABC Rental Processing Level 1 DFD

dation and ending when the change and total due are
zero, we group these actions together and call them
‘process fees and money’ (see Figure 7-28).

Finally, u rental is completed by saving ail the
information in the rental file and printing the receipt
for customer signature. When these actions are com-
plete, the create and print rental process is complete
(see Figure 7-28).

Notice that we have decomposed the data flows
as well as the processes. Where we group rental and
payment on the level 0 diagram, we separate them on
the level 1 diagram. We add change to the process
because now we are dealing with the details. Simi-
larly, the data flows connecting to the data stores are
decomposed to show details of data passing back
and forth. On a DFD, we assume all data can be

passed when the data flows are not labeled, and it
is okay to summarize on level 0. At level 1, we
become specific and show the interface accurately
and in detail.

Whén you are drawing the DFD, you have teo
guard against being too detailed. This is difficult,
especially for novice analysts. If your drawing has
these symptoms, vou are foo detailed and must com-
bine processes to a higher level of abstraction. The
semantic process problems to look for are listed with
examples below. These problems violate one or
more of the DFD Semantic Rules and Heuristics:

1. Processes that have only one data flow
from the previous process as its input are
probably overspecified. The solution is to

258 CHAPTER7 Process-Criented Analysis

AFTER

BEFORE

Px1-
x.2

FIGURE 7-29 Examplc of Pathological
Data Flow

combine the data flows {(see Figure 7-29).
Another solution may be the addition of a
missing external entity (see Figure 7-30).

2. When scveral processes have interactions
with the same external entity and at least
one process has no other interactions,
check that the data flows and transforma-
tions are different. If any two processes
have the same outflow or are closely
related, that is, passing one’s input data to
the next, they are probably overspecified.
It muy be possibte to localize all external
entity interactions in one process, and to
perform all processing on the information
obtained in the other process (see Fig-
ure 7-31).

3. When several processes have interactions
with the same filc and at least one process
has no other interactions, check that the file
contents read/written and transformations
are diffcrent. Ore goal of all application is
cfficiency. If you read the same data more
than once, it is inefficient. It is somewhat
better to pass the data between processes, [f
you are identifying only logical processing
and have the reading to show where data is
used, make a note that during design you
will need to redevelop the DFD to show

physical reads of the file. It may save time
to redevelop the DFD at this stage rather
than wait. Several selutions are possible
(see Figure 7-32). In the first solution, all
fite interactions are localized in one progess;
in the other, inputting from the external cn-
tity and flle are in onc process and out-
puiting is in the other. Both of these
solutions require rethinking of the func-
tional decomposition.

4, If several processes have more than one
write to the same file, check that the
processes are distinct and that the data must
be written disjointly. Again, to have effi-
cient file processing, minimal reading and
writing is desired. The alternatives are to
focalize reading and wriling as in the first
solution (see Figure 7-33), or to combine

BEFQRE
Pt
Pxz2
AFTER
Ext. Px1
Ent
Px.2

FIGURE 7-30 Example of Spontancous
Process

BEFORE
Ext. | Pxt
Ent
Px2
Px2
Px2
AFTER
Ext. Pt
Ent [Lo
Px.2
FIGURE 7-31 Example of QOverspecified

Entity Processes

some of the processing but include writing
in more than one process as in the second
solution,

5. Any imbedded if-then-else logic that
describes process interaction is wrong.
Remove the logic by consolidating the
processes, The logic belongs inside the
process box, not oulside; one solution is
shown as Figure 7-34. If this problem
occurs, make a note to include the control
on the structure chart for the if-then-clse
logic, as required.

6. Processes that do only one very minor
process, for instance, check customer num-
ber for validity, may be overspecified. A
better process would check the customer

Structured Systems Analysis Activities 259

10.

11.

12,

information, do a credit status check, and
identify oulstanding late fees (see Figure
7-335). This example is an improvement
because it is reading and validating all cus-
tomer data only once.

Make sure that no physical entities, such as
cash register or bar code reader, have
sneaked into the DFD. Alsc make sure that
no immediate users of the application are
identified on the DFD, The solution to this
problem is to remove all physical entitics on
any diagram in which they occur (see
Figure 7-306).

Make sure that data flow names are fietd
contents being passed or some group name
for field contents that clcarly identifies the
information (see Figure 7-37). Unnamed
data flows are frequently masking overspec-
ified processes. If you cannot dcvelop a
unique, meaningful name, reevaluate the
process they attach.

. Data stores may show up on diagrams

multiple times with the same name. To
show that you know it is repeated, placc a
vertical bar down the left side of the file
symbol.

Similarly, data flow names may show up
multiple times with the same name, This
condition is okay if, and only if, the contents
are identical. This condition is rare, so when
multiple data flows with the same name are
present, there is frequently an error. Double
check any data flows with the same name
and give any unique data flows their own
descriptive name (sce Figure 7-38),

To simplify the design phase activities,
make sure that process names include the
transformation name and identify the data
being transformed.

If data stores have only one input or one
output, check that it is correct. This condi-
tion may be okay on the input side as long
as maintenance is performed in some other
application, or for files that are cross-
reference tables only. The condition for
output-only connections may be correct, for
instance, for temporal databases in which

260 CHAPTER7 Process-Oriented Analysis

BEFORE
Px1
P2
Pxd
AFTER 1 or

AFTER 2

Pxif

Px.12

FIGURE 7-32 Example of Overspecified Read File Processing

nothing is thrown away. Check the business
rules relating to the data and verify the
processing.

For return processing, we necd to walk-through
the process to define if we need subprocesses. A
video ID is entered and used to retrieve the rental,
The system assigns today’s date as the return date,
Late fees, if any, are computed. The total amount due
is computed. The total amount due is displayed, an
amount of money received from the customer is
entered, and change is computed. When both total
amount due and change are zero, payment proccss-
ing is complete, If no late fees are owing or payment

is complete, the open rental record is removed [rom
the vpen rental file and history information is up-
dated. If {ate fees are owed but not paid, the open
rental record is rewritten with refurn date and late
fee information, Return processing has several steps,
but each is simple, requiring at most one file per step.
There is little need for 4 Level 1 DFD for this pro-
cess at this time.

Notice that the process fees and money is identi-
cal to the same process for rental processing. We can
develop a common, reusable modulc for both rental
and teturn processes. Also, notice that we introduce
history here. If we decide to have a history file, it
would show at this level of DFD.

At this point, we are ready 10 reevaluate the now
DFDs and proceed to development of dictionary
entries for all DFD information. Check the final
DFDs for legal connections, similar levels of ab-
straction, and balanced net inflows and outflows be-
rween levels. Then, continue to the data dictionary.

Develop Data Dictionary

In this section we briefly discuss the contents and
rules, if any, for each type of dictionary entry. Then,
we will document the information from the ABC
renial application. Since you have seen examples of
cach type of entry, this section is short.

Structured Systemns Analysis Activities 261

Data Dictionary Contents
and Rules—Entities

The contents of the dictionary for external entities
are listed in Table 7-2. The most important are the
name and the definition of the entity. In organiza-
tions with data administration functions, this infor-
mation must conform to the ‘corporate’ dictionary
definitions or must be reconciled with it to define
new terms. The SEs work with users and data
administrators to name and define the entities for the
organization. [§ personnel do rotr name and define
the terms by themselves. Most external entities are
people, job titles, organizations, or applications with

BEFORE

AFTER 1 or

¥
]
%

Px.2

Px3
NS

AFTERZ2

FIGURE 7-33

Exarnple of Overspecified Write File Processing

262 CHAPTER7 Process-Oriented Anclysis

BEFORE

AFTER

FIGURE 7-34 Example of If-then-else Logic in DFD

TABLE 7-2 Data Dictionary Entity which the application under development interacts,
Contents Choose a meaningful business name that describes
the entity accurately and completely. If you have a
Entity name data administration function, use their name. The
Aliases definition should be a busingss definition and should

Definition be completely independent of any technology.

Make sure you include in the definition any
aliases or names used in your application that do not
Conlact, if entity {s an conform to the corporate standard. Describe the
organization entity’s relationship to the application in terms of
the nature and timing of the interaction. If the entity

Relationship to application

is an organization, include the name, address, and
phone number of the person most frequently
contacted,

Figure 7-39 shows the notation to be used in
describing the contents of an entity to a dictionary.
Keep in mind that this convention works weli if you
are using a manual method. Automated tools have
their own format and notation for repository con-
tents. There is one notational structure for each type

Structured Systems Analysis Activities 263

of entry: optional information, multiple repeating
information, required information, selection between
attributes, and primary keys.

ABC Example Data Dictionary—Entities

The external entities in ABC Rental are customer,
vendor, and accountant. The entries for cach of these
are shown in Table 7-3. If the accountant is an

Cust#
Customesr
AFTER
Cust# Got
Gustomer st a

| Cust#

Cisplay
Cust

Info

BEFORE

Get
Cust #

Cust #

Custamer File

Cust #,
Cust Record

~ Cust #,
} Cust Record,
Credit Status

Validat l
aCL; 9 Customer File
Cust #.
Cust Record,
/—\Credit Status

———»

FICURE 7-35 Example of Excessive DFD Detall

264 CHAPTER? Process-Oriented Analysis

BEFORE

Customer

History Record

Customer History File

Cust #
Customar Record
Clerk
Customer File
Rental File
Bar Video # o
Code -
Reader
Video Inventory
Display| Rental Info
Screen [
AFTER Customer
History Record
Cust #, " Customer History Fils
Video # ‘f“l?"j “"Customer I:
e Val Record
Customer Cust

Valid
Videa

Cisplay
Rental

T

Open Ren Customer File
ecﬂ-"ﬂg af

Rantal Fils

Video Invaniory

rans

[

FIGURE 7-3¢ Example of Physical Entities

employee, you would not include his or her name in
the dictionary. If the accountant is an outside firm,
you would include the information,

Data Dictionary Contents
and Rules—Processes

The contents of the dictionary for processes are
listed in Table 7-4. For processes, we include the
process number from the DFD to allow quality
assurance, and to easily link back to the process
model. In a computer-aided software cngineering
teol (CASE), if you used one, you usually have
automatic linkage between the diagram and the

dictionary entrics, The name of the process should
be exactly the same as the process name used in
the DFD.

The process description details the steps to com-
plete the process and can take several forms. The
most commen are pseudo-code and structured Eng-
lish, supplemented by decision trees or decision
tables as needed. Pseudo-code uses the syntax from
a language in abbreviated form for easy translation
into the target language. Strnctured English is
a computer-language independent description of a
process using only simple verbs and terms from the
dictionary; no adjectives or adverbs are used. Struc-
tured English is used here.

Structured Systerms Analysis Activities 265

BEFQORE
Customer
History Info
Cust Info, Customer Histary Fila
Videa info
Customer Customer Info
C | Customer File
Rental File
Videao Inventory
AFTER
Custormer
History Record -)
Cust #, /“ Customer History File
4
Customer g:z;rzn or
O | Customer File
valid Gust, R"ﬁ‘ora%”’a’
Video ID s
Rental File
Valid .
Rental l Video Inventory

FIGURE 7-37 Example of Weak Data Flow Names

ABC Example Data Dictionary—
Processes

The process entries for ABC are all included at the
level O detail level (see Table 7-5). To document the
entire application, you would create a data dictionary
entry for each lower level process, then refer to that
process in the higher fevel dictionary entries. In this
way, the hierarchy of processing and linkages
are decumented.

Notice that there are some uneven levels of
detail in the process entries. For instance, the process
fees and money routine is fairly detailed, while the
reference to create history in return rental is not

detajled at all. You document the information you
have, replacing the high level abstract thoughts with
the details as you come to know them. The dictio-
nary is constantly evolving and changing as more
information becomes known.

Data Dictionary Contents and Rules—
Data Stores

The data store defines persistant data; contents of a
data store dictionary entry are listed in Table 7-6.
There is a significant amount of detail that is even-
tually documented. You begin completing the infor-
mation as it becomes known and complete the rest

286 CHAPTER 7 Process-Oriented Analysis

BEFORE

Cust Info,
Video Info

Customer

OK

AFTER

Cusfomer

Cust
Summary

_

Custamer History File

Customer File

Rental File

Cust#,

Widao # for

Previous Rentals
Cust #, Customaer History Fite
Video # Customer

Custamer File

Rental File

FIGURE 7-38 Example of Nonunique Data Flow Names

when 1t is avatlable. Also, some of the information
may not be relevant in your organization (for
instance, if all projects always usc DB2 relational
files, you may not need detailed documents because
the information alrcady exists). The goal of the doc-
umentation is to present necessary information with-
out much verbiage. Keeping that in mind, teim the
dictionary entries to fit your situation.

ABC Example Data Dictionary—
Data Stores

The dictionary entries for data stores are in Table
7-7. For now, we know very few of the details about,
for instance, volume, growth, and security. Those
entries are left blank.

Above, we said that you trim the contents of the
dictionary entrics to fit the project. In a consulting
sityalion, such as Mary and Sam are in at ABC, the

lik¢lihood of them also maintaining the application
is unknown. So, the more detailed the documenta-
tion, the more you simplify future maintenance.

Data Dictionary Contents—Data Flows

Data flow contents are important pieces of docu-
mcntation becausc they causc the creation and
change of files and determine the data each process
actually accesscs. The data flow contents are shown
in Table 7-8. Contents have a primary Key to
uniquely identify the data. The difference between
primary key for a data flow and for a data store is one
of time. What pcriod of time is the flow *alive’? Data
flows usually have a short life which means that less
data is required for a unique ID. For instance, the
flow payment is a money amoeunt which is accept-
able here. At the implementation level, that field
might also require a terminal ID or a transaction 1D

Symbol Definitlon

= is composed of
+ and

Parentheses show an optional entry
which may or may not be present

Braces show iteration

n is minimum entries

m is maximum entries

If na limit to entries, the maximum is
shown as m.

Bquare brackets identify selection
from among alternaiives

} Vertical bar is a separator of alterna-
tive choices within square brackets

* Comment

Undering identifies a componant of
a primary key

*Adapted from Yourdon, Edward, Modern Soffware En-
gineering. Englewood Cliffs, MJ: Prentice-Hall, Yourdon
Prass, 1988, p. 191.

FIGURE 7-39 Data Dictionary Notation*

to be unique; implementation requirements are not
dealt with in analysis. Data flow constraints are most
often present in real-time applicalions or in applica-
tions with contingent processing of data. The source
of the data flow is a cross-reference back to the
entity, process, or file from which it flows.

ABC Example Data Dictionary—
Data Flows

The data flows [or ABC rental processing are shown
in Table 7-9. There is nothing difficult about any of
them. Keep in mind that these definitions arc not cast
in concrete; they can change whenever the need
arises. It is important to keep this information up to
date, because programmers use the dictionary to
check that their modules are receiving the correct
information.

Structured Systems Analysis Activities 267
TABLE 7-3 ABC Entity Dictionary
Entries
Cotity Name: Customer

Aliases: None

Definition: A Customer is any individual, organi-
zation, or other ¢ntity authorized by
ABC management to rent videos.
Relationship: Rents and pays for videos

Signs rental order
Provides new customer information
Returns videos

Contact: 1A

Entity Name:

Aliases:

Definition;

Relationship:

Video Vendor
Vendor

A Video Vendor is any organization or
individual from which ABC purchases
or otherwise acquires videos.

Provides new video information

Contact: N/A
Entity Name: Accountant
Aliases: Nane
Definition: The employee providing accounting

Relationship:

Contact:

services for ABC vidco.

Gets end-of-day summary accounting
reports

NiA

TABLE 7-4 Data Dictionary Process

Contents

Process 1D NMumber
Process Name
Process Description

Constraints (e.g., concurrence, sequential
with another process, time-out, etc.)

268 CHAPTER7 Process-Oriented Andlysis

TABLE 7-6 ABC Process Dictionary Entries

Process Number:
Process Name;

Description:

1.0
Create Order

For each customer,
Enter customer ID (or name)
Read customer file using
customer ID (or name)
as key
If NOT present display
‘Customer not currently on
file, switching to creatc
customer”
Call New-customer
routing,
Dasplay all customer infor-
mation.
Read Rental file using customer
ID
If rentals exists, display
rentals
If returns
Cail Retumn routine
else
continue
else
If late fees outstanding add
late fees to total.

For each video,

Read inventory file using
video ID {or description)
as key
If NOT present display

“Video not on file,
switching Lo create
video’

Drisplay video description
(or number}, price.,

Add all extended price to total.

Perform process-money
routine.

Write order Lo order-file.
Print order confirmation.
Return.

Process money routine

Display total.

Get amount.

Subtract total from amount
giving change.

Display change,

If change and total = zero,
return,

else go to pracess money.

Constraints: Nong
Process Number: 20
Pracess Name:! Return Rental
Drescription: For each video,

Enter video [D
Retrieve rental
If NO rental,
display error message and
return.
Use Customer 1D to retrieve
other rentals.
Display entire rental.

Move to today’s date to return
date.

If retorn-date-rental-date > 2
compuie late charges
display late charges
add late charges to total.

Create history.

If new rentals,
return

else
call process money routine.

Constraints: MNone

Data Dictionary Contents—Attributes

Attributes, or fields, are facts about an entity. At-
tribute definitions are tedious and tend to be over-
documented unless vou are using a CASE tool. As
you can see from Table 7-10, there is a large amount

of information about attributes that is needed to
fully document them. In organizations with a dala
administration function, much of the information
for the type of attributes used here would already
bc documcnted, and you would just copy that
documentation.

Structured Systems Analysis Activities 289

TABLE 7-5 ABC Process Dictionary Entries (Continued)

Process Numbet: 3.0

Process Name: Maintain Customer

If new
create now customer
clse
If modify
prompt customer 1D
retrieve customer record
get changes and verify
rewrile customer
else
if delete
prompt customer ID
retrieve customer record
prompt “Are you sure you want
to delete?”
If yes,
delete customer
else
else
if query
call query routine,
Return,

Description:

Constraints; None

Process Number; 4.0

Process Name: Maintain Video

If new
create new video
¢lse
If modify
prompt video 1D
retrieve video record
gel changes and verify
rewsite video
else
if delete
prompt video ID

Description:

retrieve video record
prompt “Are you sure you want
to delete?”
If yes,
delete video
else
clse
if query
call query routine.
Return.

Constraints: None

Process Number: 5.0
Create EOD Report

Read rental file

count today s rentals

total today’s rental receipts
Read cash register

count today's returns

count today's late returns

total today’s late fees

count today’s rentals

total today’s rentat receipts
Format and print end-of-day
. SUmmary report.

Process Namte:

Description:

Constraints: None

ABC Example Data Dictionary—
Attributes

As the two examples provided in Table 7-11 show,
the contents get quite long and take quite a bit
of paper. In the interest of saving a few trees, and

keeping the dictionary useable, when using a paper
dictionary, capture only the essential information
about attributes and put it in a short-form attribute
table as shown in Table 7-12. Essential informa-
tion is usually the user name, system name, data
type, data length, and edit rules. If there is other

270 CHAPTER7 Process-Criented Analysis

TABLE /-6 Data Dictionary Data Store Contents

Data Store Name
Aliases
Definition

Data Attributes (Contents in normalized
form)

Data Structure (¢.g., relation,
hierarchy)

Organization (¢.g., Vsam enltry
sequenced)

Sequence and sequence aftributes
Size of Relations/Records
Primary Key

Alternate Keys

Indcx Attributes

Volume
Percent change per cycle

Frequency of cycle (c.g., as occurs, daily,
weekly, etc.)

Growth percentage per year

Allowuble actions (read, write, or
read/write) by process

Security access restrictions
Backup/recovery requirements
Special processing considerations

If in a distributed environment, form of
partitioning, schematic showing
number/location of replications for each
partition,

information required, such as security restrictions
or cross-reference file names, you would add it for
that attribute but not all of the others. The short form
is used in this text to document ABC'’s aitributes,

AUTOMATED

SUPPORT TOOQLS

Structured analysis and process methods, in general,
are the oldest and most widely used methods,
Because they arc most widely used, a large number
of CASE tools to support structured analysis are
available on the market. All of the tools support
DFDs; all have a dictionary (although they are not
all ‘active’). A table of representative CASE tools
supporting structured analysis is listed below in
Table 7-13.

If you did not get the impression that CASE tools
represent a ‘buyer beware” situation, perhaps some
comments from a recent survey will prove that it is.
Data low diagrams in 12 CASE envirenments were
compared on DFD correctness checking.”' The

11 See Vessey, Jarvenpaa, & Tractinsky [1992).

authors developed 19 rules by which automated
DFDs might be evaluated. The most checked by any
of the CASE tools evaluated was 13 (by two CASE
toels); the least rules checked was three; the aver-
age was eight. The extent of intelligence in CASE
obviously varies and is inconsistent with the collec-
tive wisdom about how DFDs should be developed
and drawn.

Thus, there are many CASE tacls available which
‘support’ structured analysis. The teols vary widely
in the diagrams supported and in the extent to which
rules about developing DFDs and other diagrams
are enforced.

SUMMARY

Process-oriented structured analysis originated
in the work of DeMarco, Gane and Sarson, and
Yourdon. In structured analysis, we first define
the application context then follow a top-down
approach to progressively more detailed levels
of process analysis. The application is docamented

(Text continuex un page 274)

TABLE 7-7

ABC Data Store Contents

Summary 2N

Dala Store Name:
Aliases:

Definition:

Data Attributes:

Data Structure:
Organization:

Sequence:

Sequence Attributes:

Record Size:
File Size:
Primary Key:
Alternate Keys:
Index Attributes:

Volume:

Percent Change:
Cycle Frequency:
Growth:

Allowable actions
by process:

Security Access:

Backup/Recovery:

Special processing:

Customer File
None

A computer file of information
about customers who are
allowed to rent from ABC.

Customer Phone =
[Area code + exchange
+ number)
+ Customer Last Name
+ Customer First Name
+ Customer Address line 1
+ Customer Address line 2
+ Cusiomer City
+ Customer State
+ Customer Zip+4
+ Credit Card Type
+ Credit Card Number
+ Credit Card Expiration Date
+ Datc of entry

Relationat

Random

Entry

N/A

198 Bytes decompressed

Customer Phone
Address ling 1

Customer last name, Customer
zip, Credit Card Number,
Address line 1

Data Store Name:
Aliases:

Definition:;

Data attributes:

Data Structure:
Organization;

Sequence:

Sequence Attributes:

Size:

Primary Key:
Alternate Kcys;
Index Attributes:

Volume:

Percent Change:
Cycle Frequency:
Growth:

Allowable actions
by process:

Security Access:

Backup/Recovery:

Specizal processing:

Rental File
None

A computer file of rental orders
outstanding. When a rental is
made, it is added to the file.
When it is returned, if there are
no late fees, it is removed. If
there are late fees, the rental
stays on filc unti] the late fees
are paid.

Customer Phone

+ Customer Last Name
+ Customer First Name
+ Rental Date

+ Video [D

+ Video Title

+ Date Due

+ Date Relurned

+ Rental Price

+ Late Fees

Relational
Random

Entry

134

Customer Phone + Video 1D

Customer Last Name, Customer
Phone, Video 1D, Customer
Phone+Video ID, Video Title

Rental = Add, Change, Read
Return = Change, Delete, Read

TABLE 7-8 Data Dictionary Data
Flow Contents

Data Flow Name

Aliases

Timing (e.g., as occurs, daily, weekly, ete.)
Contents

Constrainis (e.g., requires 3-second
response; only occors for sales orders, etc.)

Source
TABLE 7-9 ABC Data Flow Dictionary Entries
Data Flow Mame: New Customer Data Flow Name: Pavment
Aliases: None Aljases: Moncy
Timing: As oceurs Timing: One per complete rental transaction
Contents: Customer Phone = Conteats: Total Paid
Area code + exchange .
[g Canstraints: None
+ number|
+ Customer Last Name Sourcei Customer
+ Customer First Name
+ Customer Address line 1 Data Flow Name: Copy of Order
+ Customer Address line 2 Aliases: Printed Rental Order
: gﬁ;gﬁ:; (S:tlilife Timing: One per complete rental transaction
+ Customer Zip+4 Contents: = Rental
+ Credit Card Type Constraints: None
+ Credit Card Number Source: System
+ Credit Card Expiration Datc -
+ Date of entry Data Flow Name: Retum
Constraints: None Aliases; Video Return
Source: Customer Timing: As Occurs
Data Flow Name: Rental Contents: Video ID + (Customer Phone)
Aliascs: Rental Information Conslraints: None
Timing: As Occurs Source: Customer
Contents: [Cuslomer Phone | Customer Name] Data Flow Name: Late Fee Pavment
+ 1{[Video 18| Video Name]}m) ’
. Aliases: None
Constraints: None o .
Timmg: As Occurs
Source: Customer
Contents: Total Late Fee
Constraints: May be included within rental
payment
Souree: Customer

272

Summary 273

TABLE 7-10 Data Dictionary Attribute Contents
Attribute User Name Primary Data Store
System Name Other files where stored
Aliases Flows where used
Attribute Definition Edit/Validation Rules
Data Type Validation Method {(2.g., cross-
Data Length reference file, code check, etc.)
Allowable values and meanings Security access resirictions
Creating Process(es) Special processing considerations
TABLE /-11 Sample ABC Attribute Dictionary Entries
User Name: Customer Phone User Name: Video ID
System Namc: CPhone System Name: Video ID
Aliases: None Aliases: None

Attribute Definition:

Data Type:
Data Length:

Allowable values
and meanings:

Creating Process(es):
Primary Dhata Store:
Other Files:

Flows:

Edit/Validation:
Validation Method:
Security Access:

Special processing:

The customer’s phone
number

Numeric

10, Area code (3}, exchange (3),
and number (4)

Numerig
Add custor
Customer
Rental File

New rental order
Customer record

Rental

Retumn rental information

Numeric
Software check
None

None

Attribute Definition:

Data Type:
Data Length:

Allowable values
and meanings:

Creating Process(es):
Primary Data Store:
Other Files:

Flows:

Edit/Validation:
Validation Method:
Security Access:

Special processing:

The numeric identifier for a spe-
cific videotape. Uniquely identi-
fies a copy of a group of tapes
with the same title.

Numeric
15

Numeric

4.1 Create video
Video File
Rental File

Video Information,
Rental Information,
Return rental information,
New Rental Order

Numeric
Software check
None

None

274 CHAPTER 7 Process-Oriented Analysis

TABLE 7-12 ABC Attributes—Short Form Dictionary

User Name System Name Data Type Length Edit/Validation Rules

Customer Phone CPhone N 10 Must be present, Check for
numeric

Customer Last Name Clast A 50 Must be present, Check for
alpha

Customer First Name CFirsl A 25 Must be present, Check for
alpha

* Customer Address CLinel AN 50 Must be present

Line 1

Customer Address Cline2 AN S0 None

Ling 2

Customer City City A 30 Must be present, Check for
alpha

Customer State State A 2 Post Office Abbreviation

Customer Zip Zip N 10 Must be present, numeric

Credit Card Type CCType A 1 A=AmExpress
V=Visa
M=Mastercard

Credit Card Number CCNo N 17 Must be present, numeric

Credit Card Expiration CCExp N 8 Valid Datc, Format

Date YYYYMMDD

Date of Entry EntryDate N 8 Valid Date, Format
YYYYMMDD

Credit Rating CCredit A 1 0=0K,1=n0l 0K

via graphical forms including a context diagram, lev-
eled set of data Qow diagrams, a dats dictionary, and,
optionally, a state-transition diagram. Diagram sym-
bols and their meanings include {1) circle, entire ap-
plication; (2) square, external entity; (3) rounded
vertical rectangle, process; {4) open ended rectangle,
data store, and (5) directed arrow, data flow, Each di-
agram symbol has a formal definition that is docu-
mented in a data dictipnary. DFDs identify processes
and the tlow of data through those processes fo
achieve some business function. DFDs start at a high
level of abstraction to summarize the processing tak-
ing place. At successively more detailed levels, pro-
cedural and data are added to describe the processing

in more detail. Graphical representation replaces
much of the text, but does not completely replace
text descriptions of individual processes. The data
dictionary (or repository) is used to maintain defini-
tions of all DFDs and other analysis information,
including files, ficlds, flows, and external entities, in
addition to processes.

The reasoning process for defining the applica-
tion context and the detailed levels of data flow dia-
grams was presented. The definitions and contents of
data dictionary entries were described. All diagrams
and dictionary cntries were developed using the
ABC rental processing application to show varia-
tions and nuances in the thought processes.

TABLE 7-13 CASE Support for Structured Analysis

Summary 275

Product Company Technique
Analyst/Designer Toolkit Yourdon, Inc, Context Diagram
New York, NY Data Flow Diagram (DFD)
State-Transition Dagram
Anatoo] Advanced Logical SW DFD
Beverty Hills, CA Structured English
Dett Deft DFD
Ontario, Canada
Design/1 Arthur Andersen, Inc. DFD
Chicago, IL Warnier-Orr Diagram
The Developer ASYST Technology, Inc. DFD
Napicrville, IL Matrix Diagram (for decision
tables and real-time systems)
Excelerator, Teton Intersclv DFD
Cambridge, MA State-Transition Diagram
Matrix graph (for real-time
sysiems)
IEW Koowledgeware DFD
Atlanta, GA Database diagram
MacAnalyst, Excel Software DFD
MacDesigner Marshalltown, TA Decision Table
State Transition Diagram
Structured English
Maestro SoftLab DFD
San Francisco, CA
MetaSystem Tool Sel Meta Systems DFD

Ann Arbor, MI

(Continued on next page)

276 CHAFIER 7 Process-Oriented Analysis

TABLE 7-13 CASE Support for Structured Analysis, Continued

Product Company Technique
Multi-Cam AGS Management Systems DFD
King of Prussia, PA State-Transition Diagram
Matrix graph (for real-time
systems)
PacBase CGI Systems, Inc. Context Diagram
Pear] River, NY DFD
ProKit Workbench McDonnell Douglas DFD
5t Louis, MO
FProMod Premaod, Inc. DFD
Lake Forest, CA State-Transition DHapram
Silverrun Computer Systemns Advisers, Inc. User-Controlled Modeling
Woodcliff Lake, NJ
SW Thru Pictures Interactive Dev. Env. Data Structure

System Engineer

Teamwork

Transform

Visible Analyst

vs Desigrer

San Francisco, CA

LBMS
Houston, TX

CADRE Tech. Inc.
Providence, RI

Transform Logic Cerp.

Scottsdale, AZ

Visible 3ystems Corp,
Newton, MA

Visual Software Inc
Santa Clara, CA

DFD
State Transition Diagram

DED

Decision Table
DFD»
State Transition Diagram

Uses ProKit, Excelerator

DFD

DFD
Ward-Mellor Biagram for real-
time systems

REFERENCES

Curtis, B., M. I, Kellner, and J. Over, "'Process model-
ing,” Communications of the ACM, Vol. 35, #9, Sep-
tember 1992, pp. 75-90.

DceMarco, Tom, Structured Analysis. New York: Yourdon
Press, 1979,

Frances, B., “A window inte CASE,” Daramation, March
1, 1992, pp. 43-44.

Gane, C., and T. Sarson, Structured Systems Analysis:
Tools and Technigues. Englewood Cliffs, NJ: Pren-
tice-Hall, 1979,

(rane, Chris, Computer-Aided Software Engineering:
The Methodology, The Products and the
Future. Englewood Cliffs, NJ: Prentice-Hall,

1990,

Krasner, J., J. Terrel, A. Lindhan, B Arnold, and W. I1.
Ltt, “Lessons learncd from a software process model-
ing system,” Communications of the ACM, Vol. 35,
#9, September 1992, pp. 91-1(0).

Lee, T, “Bridging the CASE/OOP gap,” Datamation,
March 1, 1992, pp. 63—64.

Lindholm, E. “A world of CASE toals,” Daramation,
March 1, 1992, pp. 75-81.

Marlin, Jumes, Systems Design from Provably Correct
Consiructs. Englewood Cliffs, NJ: Prentice-Hall,
1985,

McClure, C., The Three R's of Software Automation:
Re-Engineering, Repository and Reusabiliry. Engle-
wood Cliffs, NT: Prentice-Hall, 1962,

McMenamin, Stephan M., and John F, Palmer, Essential
Systems Analysis. NY: Yourdon Press, 1984,

Slater, D., “PacBase, IEF lead rising CASE satistaction,”
Compuierworld, August 3, 1992, p. 81.

Sullivan, Louis, “The tall building artistically
considered,” Lippincott s Magazine, March
1894.

Vessey, L, 5. Jarvenpaa, and N. Tractinsky, “Evaluation
of vendor products: CASE tools as methodology com-
panions,” Commurications of the ACM, Vol. 35, #4,
April 1992, pp. 90-105.

Yourdon, Edward, Modern Structured Analysis.
Englewood Cliffs, NI: Prentice-Hall, Yourdon Press,
19849,

KEY TERMS -
attribute bottom-up
balancing cohesion

Study Questions 277

completeness checking
consistency checking
context

context diagram
correctness checking

functional sequence
level 0 DFD

level 1 ... n DFD
leveled set of DFDs

net inflows and outflows

coupling cutward-in
cross reference file primitive level
data attribute process

data dictionary process description

data flow pseudo-code
data flow diagram (DFD) quality assurance
data slore structored decomposition

direcl idenlificalion
elementary componenis
external entity

structured English
structured sysicms analysis
systems modcl

field systems theory
file top-down
function

EXERCISES

1. Complete the level 1 DFD for 2.0 Rental return
process and discuss it in class. Compare several
of the answers. Are they the same? Why, or
why not?

2. Make a list of outstanding and deferred issues to
discuss with Vic.

The next three gquestions have bothered my stu-
dents for several years. For each question, identify
and discuss the issucs and ramifications of each
decision, technical issues, user issues, legal or other
issues.

3. How should customers be identified to the appli-
cation? What are the security issues? What are
the bureaucracy issues? Is there a way to ‘mini-
imize bureaucracy’ and still have good security?

4, Should late fees relate to a person or a tape or a
rental? What are the issues? How do you
decide? Can Vic be helpful in deciding this
issue?

5. Where should history get created—at tape rental
time? or at tape return time? Can Vic be helpful
in deeiding this issue? How do you decide?

278

CHAPTER 7 Process-Criented Analysis

STUDY QUESTIONS
1. Define the following terms:
balancing external entity
context function
data flow net inflow
data store top-down

™

10.

direct identification
How do you define the scope of a project?
Who should define the scope?

. What is a leveled set of DFDs? How do you

know you have that?

. Why is the strategy of using net inflows and

cutflows from the previous level of DFD
as a starting point for a new level of detail a
good idea?

. Is structured process analysis more like analyz-

ing with a zoom feature on a set of photos or
mote like analyzing a geologic formation?
Define structured decomposition. Why do you
use this technique?

What is the purpose of the data dictionary?
Discuss the reasoning process used in struc-
tured analysis. Does it guarantee that everyone
will get the same analytical result? If not,

why not?

. How might the process of structured analysis

be improved (o be more rigorous, i.e., guaran-
tee the same resulis regardless of who performs
the analysis?

Evaluate the following diagram. What type of
diagram is it? What 15 its purpose? Label

errors and list all reasons why they are wrong.
Redraw the diagram correctly.

Customer |————a=| Maintain

(10 Y {11)

Customsr
Raparting

Error valid Cust
Info

Customer File

11. What are the major diagrams in the analysis
phase? How are they derived?

12. List and briefly describe the five approaches to
identifying processes.

13. Describe all data dictionary entries and give an
example of each.

14. Why might CASE tools be useful in structured
analysis”

15. Draw and identify five common DFD errors
and their corrections.

16. Discuss the three types of quality checks done
on DFDs.

Y EXTRA-CREDIT QUESTIONS

1. The cxampie used in Figures 7-15 through 7-20
refers to a psychiatric clinic and processing
performed for Medicaid claim processing. Per-
form a structured analysis of this problem as
described in the Appendix Case: The Child
Development Clinic. Refer to the figures in the
text to help you if you get stuck.

2. Perform a structured analysis of any of the prob-

lems in the Appendix. Decide what information
in the problem description is relevant to an auto-
mated application. Then, build a context dia-
gram, a levels set of DFDs and a data dictionary.

PROCESS-

CHAPT

ORIENTED

DESIGN

INTRODUCTION

Structured design is the art of designing system
components and the interrelationships between those
components in the best possible way to solve some
well specified problem. The main goal of design is to
map the functienal requirements of the application to
a hardware and software environment. The results of
structured design are programming specifications
and plans for testing, conversion, training, and in-
stallation, In addition, the design may result in pro-
iotyping part or all of the application. This section
discusses the mapping process and the development
of program specifications. The other topics are dis-
cussed in Chapter 14.

The goals of structured design, as first docu-
mented by Yourdon and Constantine [1979], have
not changed much over the years. They arc to mini-
mize cost of development and maintenance. We can
minimize the cost of development by keeping parts
manageably small and separately solvable. We can
minimize the cost of maintenance by keeping parts
manageably small and separately correctable. In
design we determine the smallest solvable parts as a
way of managing application complexity.

B

I
L
— I

Conceptual Foundations

The concept ‘form follows function’ that informed
analysis is again the basis for structured design. The
application processes determine the form of the
application. The divide and conquer principle guides
the definition of the smallest solvable parts while
keeping the general goals of maintainability and low
cost in mind. Partitioning and functienal decomposi-
tion are the basic activities uscd in dividing pro-
cesscs into modules. The basic inpat-process-output
(IPQ) model from the DFD} results in a structure
chart that adds a contrel component to the [PO
model (see Figure 8-1).

Principles of good structured desige are informa-
tion hiding, modularity, coupling, and cohesion.
Information hiding mcans that only data needed to
perform a function is made available to that function.
The idea is a sound one: You cannot mess up what
you don't have access 1o. Modularity is the design
principle that calls for design of small, self-
contained units that should lead to maintainability.
Following systems theory, each module should be a
small, self-contained system itself. Coupling is a
measure of intermodule connection with minimal

279

280 CHAPTER 8 Process-Otiented Deasign

IO Model
nput |::> Process |::> Qutput
Becomes tha Control PO or CIFD Model
Control
Input Process Qutput

FIGURE 8-1

coupling the poal (i.c., less is best). Cohesion is a
measure of internal strength of a module with the
notion that maximal, or functional, cohesion is the
goal. These principles are related to the process of
design in the next section,

DEFINITION OF

STRUCTURED

DESIGN TERMS

The major activities of structured design are:

Transforra or transaction analysis of DFD
Refine and complete structure chart
Identify load unils and program packages
Define the physical database

Develop program specifications

el s

The terms associated with cach of these activities are
defined in this section ard summarized in Table 8-1,

In design we partition the application to divide
subprocesses into codifiable program modules. Par-
titioning is the divide and conquer strategy by which

Input-Process-Output Model and Structure Chart

we divide existing subprocesses from the DFD into
groups for implementation. The two methods of par-
titioning used are transform analysis and transac-
tion analysis.

D¥D processes transform data from one form to
another; these transformations will eventually be
automated by programs each containing several
modules. Transform analysis is the process of iden-
tifying the clusterings of subprocesses based on their
major functions. The functions are either input, out-
pul, or transform-oriented. The input-oriented pro-
cesses are called afferent flows, Afferent mcans
bringing inward to a cenfral part. Afferent processes
read data and prepare it for processing. The output-
oriented processes are called efferent flows, where
efferent means moving away from the central part.
Efferent processes write, display, and print data. The
remaining processes are collectively called the cen-
tral transform. The central transform processes
have as their major function the change of informa-
tion from its incoming state to some other state.

An example of a data flow diagram with its
afferent and efferent flows and its central transform
identified is shown in Figure 8-2. Notice that multi-
ple afferent or efferent flow streams may be found.

TABLE 8-1 Structured Design Concept

Definitions

Term Definition

Stepwise The process of defining functions

refinement that will accomplish a process;
includes definition of modules,
programs, and data

Program The shape of a program, including the

morphology cxtent of fan-out, fan-in, scope of

control, and scope of effect

Data structure The defimition of data in an application
includes logical data definition and

physical data structure

Modularity A property of programs meaning they
arc divided into several separate
addressable elements

Abstraction Attention to some levei of generaliza-
tion without regard to irrelevant low-
level details

Information Design decisions in one module are

hiding hidden from other modules

Cahesion A measure of the intemal strength of
a module

Coupling A measure of the intermodule strength

of a module

The streams are partitioned off from the rest of the
diagram by drawing arcs showing where they end.
Examples of transform-centered applications
include accounting, personnel, payroll, or order
entry-inventory control. For these applications, get-
ting data into and out of the system is secondary to
the file handling and manipulation of numbers that
keep track of the information. In accounting, for
instance, balancing of debits and credits takes place
at end-of-day, end-of-month, and end-of-year pro-
cessing. These periodic process transfor-mations
summarize and movce data, erase some information,
archive other information, and write data to the gen-
eral ledger to summarize the details in the re-
ceivables and payables subledgers. All of these
transforms process data that is already in the files,

Definition of Structured Design Terms 281

These processes are the heart of accounting process-
ing, Without these processes, the application would
be doing something else.

Not all applications are transform-centered. Some
applications do simple processing but have many
different transaction types on which the simple
processes are performed. These systems are called
transaction-centered. Transaction analysis re-
places transform analysis for transaction-centered
applications with partitioning by transaction type,
which may not be obvious from DFDs. Figure
8-3 shows an example of a partitioned DFD for a
transaction-centered application. This detatled DFD
looks like it contains redundancy because many of
the same processes appear more than once. Look
closely and you see that each set of processes relates
10 a different type of transaction.

When the high-level partitioning is done, the
information is transferred to a first-cut structure
chart. We will develop the structure chart from Fig-
ure 8-2. A structure chart is a hicrarchic, input-
process-output view of the application that reflects
the DFD partitioning. The structure chart contains
one rectangle for each lowest level process on the
DFD. The rectangles are arranged in a hierarchy to
show superior control and coordination modules.
Individual process modules are the lowest in their
hierarchy. The rectangles in the hierarchy are con-
nected via undirected lines that are always read top-
down and left to right. The lines imply transfer of
processing from the top to the bottom of the hierar-
chy. Diamonds overlay the connection when a con-
ditional execution of a module is possible using
if-then-else logic. Reused modules are shown in one
of two ways. Either they are repeated several times
on the diagram and have a slash in the lower left cor-
ner to signify reuse, or they are connected to more
than one superior module via the linking lines.

The identification of afferent flows, efferent
flows, and trarsforms results in chains of processes,
each its own ‘net cutput.” If we look at Figure 8-2
again, we sce the net afferent output is data flow
Good Input. For the central transferm, the net out-
put is Sofusion. For the efferent flows, the net output
is Printed Solution. These net outputs are used to
determine the initial structure of the structure chart,
using a process called factoring.

282 CHAPTERSB Process-Oriented Design

Input

"‘”Pu
— fS.'r
— t".-‘am
- b —

Afferent Flow

Qutput Stream

|
|
|
|
|
|
|
|
|
|
:
|
\

Centrai
Transforn

i

\

Formatted

Solution Efferent Flows

)

Display
Solution

Printad
Salution

FIGURE 8-2 Transferm-Centered DFD Partitioned

Factoring is the process of decomposing a DFD
into a hierarchy of program components that will
eventually be programmed modules, functions, or
control structures. Each stream of processing is ana-
lyzed 10 determine its IPO structure. When the
structure is identified, the processes are placed on
the structure chart and named until all low-level
DFI processes are on the structure chart (see Fig-
ure 8-4).

Next, data and control information are added to
the structure chart. Data couples identify the flow of

data into and out of modules and match the data
flows on the DFD. Data couples are identified by a
directed arrow with an open circle at the source end
{see Figure 8-3). The arrowhead points in the direc-
tion the data moves.

Control couples identify the flow of control in
the structure. Control couples are placed to show
where the control data originates and which mod-
ule{s) each couple affects. A control couple is usu-
ally a program switch whose value identifies how a
moduie is activated. Control couples are drawn as

Definition of Structured Design Terms 283

Efferent Fiow

| Updated File
d

Thing
Bata

New 80

Customer o

Afferent Flow

Thing

Writs

Trans

Edited

Raconciliation
Raport

Process
Coordinator

Transform

FIGURE 8-3 Transaction-Centered DFD Partitioned

directed arrows with a closed circle at the source end
(see Figure 8-6). The arrowhead points in the direc-
tion the control travels, If a control couple is in, set
and reset in the same module, it is not shown on the
diagram, A control couple that is st and reset in one
place, but used in another, is shown. If a control cou-
ple is set in one module and reset in another, it is
shown as both input and output. Contro] is ‘designed
into’ the application by you, the SE, based on the
need for one module to control the processing of
another module. The goal is to keep control to a min-

imum. Figure §-4 shows the completed structure
chart for the DFD in Figurc 8-2.

Next, we evaluate and revise the structure chart to
balance its morphology. Morphology means form or
shape. The shape of the structure chart should be bal-
anced to avoid processing bottlenecks. Balance is
determined by analyzing the depth and width of the
hierarchy, the skew of modules, the span of control,
the scope of effect, and the levels of coupling and
cohesion. When one portion of the structure chart is
unbalanced in relation to the rest of the diagram, you

284 CHAPTER 8 Process-Criented Design

Produce
Best
Solution

Get Good
Input

Compute
Best
Solution

Write
Solutign

[]

Read Edit
Raw Input Raw Input

[]

Display
Solution

Format
Solution

FIGURE 84 First-Cut Structure Chart

modify the structure to restore the balance, or pay
closer attcntion to the unbalanced portion to ensure
an efficient production environment.

The depth of a hierarchy is the number of lev-
els in the diagram. Depth by itself is not a measure of
good design nor is it a goal in itself. Rather, it can
indicate the problem of too much communication
overhead and not enough real work taking place (see
Figure 8-7}. Conversely, adding a level of depth can
be a cure for too wide a hierarchy.

The width of the hierarchy is a count of the
rmodules directly reporting to each superior, higher-
level module (see Figure 8-8). Span of control
is another term for the number of immediate sub-
ordinates and is a synonym for the width of the
hierarchy. Width relates to two other terms: fan-
out and fan-in. Fan-out is the number of imme-
diate subordinate modules. Too much fan-out can
identify a processing bottleneck because a supe-
rior module is controlling too much processing.

g Data Couple

The line between the modules
shows transfer of processing.

Incoming g Outgoing
Data Data

: Control
Couple

The line beatween the modulas
shows transfer of processing.

Incoming Qutguoing
Control : i Coritrol
Info Info

FIGURE 8-5 Data Couple Notation

FIGURE 8-6 Control Couple Notation

Definition of Structured Design Terms 285

FIGURE 8-7 Excessive Depth of Hierarchy

While there is no one number that says ‘how wide
is too wide,” seven *2 is the generally accepted
guideling for aumber of [an-out modules. One solu-
tion to fan-owt processes that are functionally
related is to factor another level of processing
that provides middle-level management of the low-
level modules. Another solution to fan-out problems
that are factored properly, but not functionally re-
lated, is to introduce a new control module at the
[PO level.

Fan-in, on the other hand, is the number of
superior modules (i.e., immediate bosses} which
refer to some subordinate module (see Figure 8-9).
Fan-in can be desirable when it identifies reusable
components and reduccs the total amount of code
produced. The major tasks with fan-in modules are
to ensure that they perform a whole task, are highly
cohesive, and are minimally coupled.

Skew is a measure of balance or lopsidedness of
the structure chart (see Figure 8-10). Skew occurs

FIGURE 8-8 Excessive Width of Hierarchy

286 CHAPTER 8 Process-Criented Deslgn

FIGURE 8¢ Example of Fan-In

when one high-level module has many subordinate
levels and some or most of the other high-level maod-
ules have few subordinate levels. Skew can indicate
incorrect factoring. If factoring is correct, then skew
identifies a driver for the application that might
require special consideration. If the skew is on the
input side, we say the application is input driven or
input-bonnd. Similuarly, if the skew is on the output
side, the application is output-bound. If the input
and output are skewed with little transform process-
ing, the application is I/{O-bound (for input/output).
Finally, if the application has little input or output,
but lots of processing, the application is process-
bound. The special considerations of each of these
occurrences deal with ensuring correct language se-
lection and meeting I/O and process time constraints.

The scope of effect of a module identifies the col-
lection of modules that are conditionally processed
based on decisions by that module (see Figure
8-11). The scope of effect can be identified by count-

ing the number of modules that are directly affected
by the process results of another medule. High scope
of effect relates to fan-out, fan-in, and coupling in
thar it may identifv potential problems with debug-
ging and change management. ldeally, the scope
of effect of any one module should be zere or one.
That is, no more than one other module should be
affected by any processing that takes place in any
other module.

The last measures of structure morphelogy which
are analyzed throughout the remainder of structure
design are coupling and cohesion. Cohesion is a
measure of the inframeduie strength, Coupling is a
measure of the infermodule linkage. Maximal, func-
tional cohesion and minimal coupling are the ideal
relationships. Coupling and cohesion are related in-
versely (see Figure 8-12). If cohesion is high, cou-
pling is low, and vice versa; but, the relationship is
not perfect. That means that if you have strong co- .
hesion, you may still have strong coupling due to

Definition of Structured Design Terms 287

Input-Bound
Application

LR mput-Skowedt

Process-Bound

‘Procoss-Skewed'

1] O

Qutput-Bound ‘

oupurskewsd | | [

FIGURE 8-10 Examples of Skewed Structure Charts

288 CHAPTER 8 Process-Oriented Design

End-of-file Sw :i
——

Pathological Connaction

End-of-file Sw :

Produce
Best
Salution

Get Good
Input

Read Edit
Raw Input Raw Input

: i End-of-file Sw
]

Normaf Connection

Produce

Solution

Best

Get Good
Input

End-of-file Sw i
[]

Read Edit
Raw Input Raw Input

FIGURE 8-11 Example of Scope of Effect
High
Cohesion
Low
Low High
Coupling
FIGURE 8-12 Relationship between

Coupling and Cohesion

poor design. So, attention to both coupling and co-
hesion are required.

Factoring and evaluation are followed by func-
tional decomposition, which is the further division
of processes into self-contained TPO subprocesses.
Balanced structure chart subprocesses might be fur-
ther decomposed to specify all of the functions
required to accomplish each subprocess. Fan-out,
span of control, and excessive depth arc to be
avoided during this process.! The decision whether

1 Some companies have as a local convention (a policy in their
company’ that a lower-level DFD iy developed o describe
programmable individual functions before partitioning. This
is decomposition at the DFD level and has the same effect as
decomposition here.

to decompose further or not relates to the details
needed for the implementation language and how
well the SEs understand the details.

Structure charts are only onc of many methods
and techniques for documenting structured design
results. Most of the allernatives would replace, rather
than supplement, structure charts. Each techaiqué
has its own slightly different way of thinking about
the processes to finalize a design, even though
the goals are the same. Scveral alternatives are
IBM Hierarchic input-process-output diagrams
(HIPO) (see Figure 8-13), Warnier diagrams (scc

Definition of Structured Design Terms 289

Figure 8-14), Nassi-Schneiderman diagrams (sce
Figure 8-15), and flow charts (see Figure 8-16).

Te complete design, program specifications (spe-
cifications is abbreviated to ‘specs’) must be devel-
oped, but before specs can be developed, several
other major activities are required. First, the physical
database must be designed. Then, program package
units are decided. Several activities not discussed
here (these are covered in Chapter 14) are per-
formed, inciuding verification of adequate design for
inputs, outputs, screens, reporis, conversion, con-
trols, and recoverability.

In all methods of documentaticen. the starting peint is a structure char.

Produce X
Getinput Make X PutX
Format Print

Visual Table of Contents
1.0 Produce X

1.1 Get Input
1.2 Make X
1.3 PutX
1.3.1 Format
1.3.2 Write
INPUT PROCESS ouTPUT
Input Data I::> Get input a Output File
Make X [Outpet Report
Put X :

FIGURE 8-13 Other Structured Program Documentation Methods: IBM’s Hierarchic Input-
Process-Output (HIPO) Diagram Example

290 CHAPTER 8 Process-Oriented Design

Get Input
()
Produce Make X
X (n) Disk
Fermat (0.1
PutX @
Write
Disk
(0.1)
Legend:
@ Either/or
Name Not Name to be performed
Narme Name to be performed
(1) Execute { } times, here 1
[0.1) Executs zero or one times
[m) Exacute n times
1. Warnter, J-D., Logical Construction of Systems. NY:
Van Rostrand Reinhold Company, 1981.

FIGURE 8-14 Warnier Diagram!

Physical database design is concurrent with fac-
toring and decomposition. Several common physical
database design activities are:

» design user views (if this is not already done)

m select the access method

= map user views to the access method and
storage media

= walk-through the database design

= prototype the database

» document and distribute access information to
all team members

= train team members in access requirements

» develop a test database

s develop the production database

Kecp in mind that many other activities may be
involved in designing a physical database for a spe-
cific implementation environment.

While the details of physical database design and
decomposition are being finalized, project team
members are also thinking about how to package the
modules into program units. A program unit or a
program package is one or more called modules,

Do while
i
Then Eige
Sequence Sequence

General Form of Nassi-Schneiderman

2. Nassi, .. and B. Schnaiderman, *Flawchart techniques far structured programming,”
ACM SIGPLAN Nolices, Vol. 8, #8, August 1973, pp. 12-26.

Do until end-offile = 1
Process
Not
e:d-ai-file End-of-file
Get Input]
Make X Sat end-of-file = 1
PutX

Example of Nassi-Schneiderman Diagram

FIGURE 8-15 Nassi-Schneiderman® Diagram Example

Definition of Structured Design Terms ad|

Flowehart Symbols Structured Constructs
<> Selection {If . . . then . . . alse)
Process or Module
Sequence
5 InputCutput
@ Temminator,
i.e., start/stop
Secondary Storage,
£.g., disk Else
Then Selection
Da Whilg 4 Flowchart Example
Iteration
]
) .¢ Do Until
Make X
F
Wirlta X
/ ‘
- siop

X File

FIGURE 8-16 Flowchart Symbols, Structured Constructs, and Example

292 CHAPTER 8 Process-Criented Design

functions, and in-line code that will be an execute
unit to perform some atomic process. In nonrcal-
time languages. an execute unit is a link-edited load
medule. To real-time languages, an execule unil
identifies modules that can reside in memory at the
same time and are closely related, usually by mu-
tual communication. The gniding principles during
these design activities are to minimize coupling and
maximize cohesion {(see Tables 8-2 and -3 for defi-
nition of the seven levels of coupling and cohesion).

An atomic process is a systcm process that can-
not be further decomposed without losing its system-
like qualities. An execute unit is a computer’s vnit
of work (t.e., a task). A module is a ‘small program’
that is setf-contained and may call other modules.
Modules may be in-line, that is, in the actual pro-
gram, or may be externally calted modules. In-tine

TABLE 8-2 Definition of Cohesion Levels

code is the structured program code that controls and
sequences execution of modules and functions. For
instance, a ‘read” module might do all filc access; a
screen interaction module might do all screen pro-
cessing and have submodules that perferm screen
input and screen output.

A function is an external ‘small program’ that is
sclf-contained and performs a well-defined, limited
procedure. For example, a function might compute
a square root of a number. Functions usually do not
call other modules but there is no rule against it.
Even though the definitions of modules and func-
tions are similar, they arc different entities. Func-
tions sometimes come with a language, for instance,
the mathematical and statistical functions that are
part of Fortran. Modules arc usually user-defined
and have a broader range of applicability, such as a

Type of Cohesion Definition

Functional

Elements of a procedure are combined because they are all required ta complete one specific

function. This is the strongest type of cohesion and is the goal.

Secquential

Flements of a common procedure are combined because they are in the same procedure

and data flows from one step to the next. That s, the output of one module, for example, is
passed in sequence as input to the next module. This is a strong form of cohesion and

is acceptable,

Commumicational

Elements of a procedure are combined because they all use the same data type. Modules that

all relate to cusiomer maintenance—add, delete. update, query—are related through com-
munication because they all use the Customer File.

Procedural

Elements of a common procedure are combined because they are in the same procedure and

control flows from one step to the next. This is weak cohesion because passing of control
does not mean functions in the procedure are related.

Temporal

Siatemenls are logether because they oceur at the same time. This usually refers to program

modules, for example, ‘housekeeping’ in COBOL programs to initialize variables, open
files, and prepare for processing. Temporal cohesion is weak and should be avoided wher-

ever practical.

Logical

The elements of a module are grouped by their type of function. For instance, all edits, all

reads from flies, or all input operations are grouped. This is undesirable cohesion and should

be avoided.

Coincidental

This is the random or accidental placement of functions. This lowest level of cohesion

occurs when therc is no real relationship between elements of a module. This is undesirable

cohesion and should be aveided.

Process Design Activities 293

TABLE 8-3 Definition of Coupling Levels

Level of Coupling Definition

Indirect relationship No coupling is possible when modules are independent of each other and have neither a
need nor a way 1o communicate. This is desirable when modules are independent. An
example ol no direct relationship 1s a date translate routine and a net present value rou-

tine. There is no reason for them to be related, so they should not be related.

Data Only necessary daia are passed between two modules. There are no redundant parame-

lers or dala items. This is the desirable form of coupling for related modules.

Stamp The module is given access to a complete data struclure such as a physical data record
when it only needs one or two items, The module becomes unnecessarily dependent on
the format and arrangement of data items in the structure. Usually, stamp coupling
implics external coupling. The presence of unneeded data violates the principal of
*information hiding” which says that only data needed to perform a task should be avail-

able to the task.

Control Control “flags’ are shared across modules. Control coupling is normal if the setting and
reselting of the flag are done by the same module. It is a pathological connection ta be

avoided if praciical when one module sels the flag and the other module rescts the flag.

External Two modules reference the same data itermn or group of items such as a physical data
record. [n traditional batch applications, external coupling is unavoidabie since data are
passive and not directly relating to modules. External covpling is to be minimized as
much as possible and avoided whenever practical. Externat coupling violates the pringi-

pal of information hiding.

Common Modules have access to data through global or common data areas. This is frequently a
language construct problem but it can be avoided by passing paraineters with enly a
small amouni of additional work. Common coupling violates the principai of information
hiding.

Content Onc module directly relerences and/or changes the insides of another module or when
normal linkage mechanisms are bypassed. This is the highest level of coupling and is to

be avoided.

screen interaction module. Functions are usually
reusable across applications without alteration; mod-
ules are not.

When program packages arc decided, program
specifications are developed. Program specifica-
tions document the program’s purpose, process
requirements, the logical and physical data defini-
tions, input and output formats, screen layouts, con-
straints, and special processing considerations that
might complicate the program. Keep in mind that the
term program might also mean a module within a
program or an cxternally called function. There are
two parts to a program specification: one identifies
interprogram (including programs in other applica-

tions}) relationships and communication; the other
documents intraprogram processing that takes place
within the individua! program. Another term for
interprogram relationships is interface,

PROCESS
DESIGN
ACTIVITIES

The steps in process design are transform (or trans-
action) analysis, develop a structure chart, design the
physical database, package program uvnits, and write

294 CHAPTER 8 Process-Oriented Design

program specifications. Each of these steps is dis-
cussed in this section,

Since both transform and transaction analysis
might be appropriate in a given system, the first
activity is to identify all transactions and determine
if they have any common processing. This activity
can be done independently from the DFD and func-
tional analysis, or it can be done as a side activity
while you are doing functional analysis as the pri-
mary activity. If you cannot tell which is morc
appropriate, do a rough-cut structure chart using
both methods and use the one which gives the best
overall results in terms of coherence, understand-
ability, and simplicity of design.

Transaction Analysis

Ruies for Transaction Analysis

The basic steps in transaction analysis are to de-
fine (ransaction types and processing, develop a
structure chart, and further define structurc chart ele-
ments. A detailed list of transaction analysis activi-
ties follows.

1. Identify the transactions and their defining
actions.

2. Note potential situations in which modules
can be combined. For instance, the action is
the same but the transaction is different—this
identifies a reusable module,

3. Begin to draw the structure chart with a high-
level coordination module as the top of the
transaction hierarchy. The coordination mod-
ule dctermines transaction typc and dis-
patches processing to a lower level.

4. For each transaction, or cohesive collection
of transactions, specify a transaction module
to complete processing it,

5. For gach transaction, decompose and creatc
subotdinate function module(s) to accom-
plish the function{s) of the transaction. If a
transaction has vnly one unique function,
then keep the unique action as part of the
transaction module identified in the previous
step.

6. For functions that are not unique, decompose
them into commeon reusable modules, Make
sure that the usage of the module is identical
for all using transactions. Specifically iden-
tify which transactions use the module.

7. For each function module, specify subordi-
nate detail module(s) to process whole detail
steps as appropriate. [f there is only one func-
tional detail step, keep it as part of the func-
tion module defined in step 5.

A typical transaction application is money trans-
fer for banks. Transactions for money transfer all
have the same information: sending bank, receiving
bank, sender, receiver, receiver account number, and
amount, There might be other information, but this is
required. What makes money transfer a transaction
system is thal transaclions can come from phone,
mail, TWX/Telex, fax, BankWite, FedWire, and pri-
vate network sources. Each source of transaction has
a different format. Phone, mauil, and fax are all es-
sentially manual so the applicalion can require a per-
son to parse the messages and enter them in one
format. The other three are electronic messaging sys-
tems to be understood electronically. TWX/telex,
which are electronic free-form messages, may have
field identifiers but have no required order to the
information, A summary DIFFD for a moncy transfer
system might look like Figure 817, which shows a
deceptively simple process. What makes the process
difficult is that the data entry-parse-edit processcs
are different for each message type, having differ-
ent edit criteria, formats, and acceptance parameters.
The partitioning for the transaction DFD can be
cither a high-level summary or detailed, The sum-
mary pariition (sce Figure 8-17) shows afferent
flows on the summary DFD, which is annotated that
structuring is by transaction type. The delailed DFD
(see Figure 8-18) shows each tvpe of transaction
with its own set of afferent and efferent flows.

To create a first-cut structure chart, one control
module is defined for each transaction’s afferent
stream and efferent stream; there may be only one
transform center, For each transaction, the afferent
data flows are used to define data couples. The
control couples relate to data passed between
modules. When control is within a superior mod-

Process Design Activities 295

Trans File
Updated File

Afferent Flow S
Valid MNew &
Raw ' Trans Rec Data
Trans Trans Trans Edited Processed
{10y (20) Trans(40 y |[Trans{ 50
n Process
Read Parse w Edit - - » Ack
Customer Trans Trans Trans E’?Iat:g Trans
A . M N
f
£.0
Central
Transform Ack
Trans
Effarent Flow

FIGURE 8-17

ule, it is shown via a diamond to indicate selec-
tion from among the transaction subprocesses (see
Figure 8-19).

ABC Video Examplc Transaction
Analysis

The first step lo determining whether vou have a
transaction application or a transform centered
application is to identify all sources of transactions
and their types. Table 8-4 contains a list of transac-
tions for ABC Video. As you can see from the list,
there are maintenance transactions for customer and
video information, there are rental and return trans-
actions, and there are periodic transactions. The only
common thread among the transactions is that they
share some of the same data. The processing in
which they are involved is different and there are no
commonalities except reading and writing of fites.
Therefore, we conclude that ABC Video Rental pro-
cessing is not a transaction-centered application and

Summary Money Transfer DFD Partitioned

move to transform analysis to complete the struc-
ture chart.

Transform Analysis

Rules for Transform Analysis

In transform analysis we identify the cenlral trans-
form and afferent and cfferent flows, create a first-
cut structure chart, refine the chart as needed at this
high level, decompose the processes into functions,
and refinc again as needed. These rules are summa-
rized as follows:

1. Identify the central transform

Produce a first-cut structure chart

Based on the design strategy, decompose the
processes into their component activities
Complete the structure chart

Evaluaie the structure chart and redesign as
required.

bl

o

296 CHAPTERB Process-Oriented Dasign

Affgrent Streams

Mail, Phone
Transaction

1.0 3

{20 Yy {30 3

——
Read

Message

TWXTelox

(40 Y {50 Y (60)

Transaction
——]

BankWire
Transaction

—_—

Fedwire
Transaction

—_———]

Efferent Sireams
{ 110 Y {120

Format Gend
Acknowledge- 2

merit {ACK) Ack

14.0
Send

Gy

Central
Transform

)

Format Send
ACK Ack

FISURE 8-18 Detailed Money Transfer DFD Partitioned

To properly structure modules, their interrelation-
ships and the nature of the application must be well
understood. If a system concept has not yet been
decided, design cannot be finalized until it is. The
coneept includes the timing of the application as
batch, on-line or real-time for each process, and a
definition of how the modules will work together in
production. This activity may be concurrent with
transform analysis, but should have been decided to
siructure and package processes for an efficient pro-
duction environment. This activity is specific to the
application and will be discussed again for ABC
rental processing,

First, we identify the central transform and affer-
ent and effercnt flows. Look at the DFD and locate
cach stream of processing for each input. Trace each
stream until you find the data flow that identifies
valid, processable input that is the end of an affer-
ent stream. The afferent and efferent arcs refer only
to the processes in the diagram. During this part of
the transform analysis, files and data flows are ig-
nored except in determining afferent and efferent
flows.

After identifying the afferent flows, trace back-
ward from specific outputs {files or flows to entities)
to identify the efferent flows. The net afferent and

Process Design Activities

297

Money
Transfer

Ack
Trans
{3

T™WX

Formatl | Sand |
Atk Ack

e
&
Mail, TWX/ Bank . m
Phongs Telex Wire FedWire
| | | - | |
Read] ormat | | Send
Edit (E Ack
& e B EE |
o
Parse (P} I:P—] [ﬂ E

armat| [Send| jFormat]| Send
Ack || Ac Ack Ack
FIGURE 8-12 Sample Transaction Controt Structure
TABLE 8-4 ABC Transaction List
Transaction General Process Data
Add Customer Mezintenance Customer
Change Customer Maintenance Customer
Delete Customer Maintenance Customet
Query Customer Periadic Customer
Add Video Maintenance Video
Change Video Maintenance Video
Delete Video Maintenance Video
Query Video Periodic Video _
Rent Video Rent/Return Video, Customer, History
Return Video RenifReturn Video, Customer, History
Assess special charges Rent/Return Customer
Query Periodic Video, Customer, History
Create History Periodic Video, Customer, History
Generate Reports Periadic Video, Customer, History

298 CHAPTER 8 Process-Oriented Design

Customer

Master Flle
Trans Master|
f Data
I
1.0
Gt
Trans
Trans

Krocess

Coordination

Reconciiialion

Updated Report
Mgster
Edited 6.0 70
Updats | Write
: f
Collect Matched rom Tra 5 Master
Trans- Master-Trans New
actions
Eror Record
Report
4 Mew Master
File
Afferent Process Cenral
Flows GCoordination Transform \ Efferent
Flow

FIGURE 8-20 Master Filec Updatc DFD Partitioned

efferent outputs are used to determine the initial
structure of the structure chart, using a proccss called
factoring., Factoring is the act of placing each
unbroken, single strand of processes into its own
control structure, and of creating new control
processes {or splil strands at the point of the split.
The new controi structure is placed under the input,
process, or output controls as appropriatc.

A master file update is shown as Figure 8-20 to
trace the streams. In this diagram, we have two
afferent data streams which come together at Martch
Trans to Myster. The {irst input, Trans Data flows
through process Get Trans and through Edis Trans 10
become Edited Trans. Successfully edited transac-
tion parts flow through Collect Transactions Lo
become Logical Trans Record.

The second input stream deals with the master
file. The Master Record is input to Get Master
Record, successfully read master records flow
through the process. Onee the Logical Trans Record
and Master Record arc both present, the input trans-
formations are complete. These two afferent streams
completely describe inputs, and the arc is drawn over
the Logical Trans Record and Master Record data
flows (see Figure 8-20).

The two strecams of data are first processed to-
gether in Match Trans io Master. Information to be
updated flows through Update Master from Trans to
become Updared Master. The error report coming
from the match process is considered a trivial out-
put and does not change the essential fransform na-
ture of the process. The argument that Match Trans

to Master is part of the afferent stream might be
made. While it could be treated as such, the input
data is ready to be processed; that is, transactions
by themselves, master records by thcmsclves, and
transactions with master records might all be pro-
cessed. Here, we interpret the first transformation
as matching.

The data flow out of Updaie Master from Trans is
a net outflow, and Write New Master is an efferent
process. The efferent arc is drawn over the data flow
Updated Masier.

Next, we factor three basic structurces that relate
to input-process-output processing (see Figure 8-21),
If there is more than one process in a stream, get-
ting the net output data may require some inter-
process ceordination. The coordination activities are
grouped and identified by a name that identifies the

Process Dasign Activities 299

net output data. So, in the example, the input stream
is Get Inpus; the transform stream is Process; the
output stream is Write New Master. Each stream rep-
resents the major elements of processing. Because
the process and Iinput streams both are compound,
each has ar feass two streams beneath them—one tor
each sequential process stream to reach the net out-
put data.

Notice that the DFD process names identify both
data and transformation proccsscs. Make sure that
the lowest-level names on the structure chart are
identical to the name on the data flow diagram to
simplify completeness checking.

Notice also that there is transformation process-
ing within the afferent and efferent streams. Modules
frequently mix input/output and transform process-
ing, and there is no absolute way to distinguish into

Master File
Update
Updated
Master Card
Record EGF

? 1

Get Input Process Write New
Master
Waster
: EOQF hMaster
Card ECF
$ Master g‘lastecrj EOF
Record ecor
Edlited Card Edited Updated
EOF Mastsr Master
Trans ECF Trans Record
Get Update
Comgleta Get Master Match Trans Ff)rum
Transaction Record to Master Master

Card Edited .
Card | & £ o Edte Foed
Image Image Card
Get Edit Callect
Trans Trans Transactions

FIGURE 8-21

Master File Update Structure Diagram

300 CHAPTERE& Process-Oriented Design

which stream the module belongs. The rule of thumb
is to place a module in the stream which besi
describes the majority of its processing.

Once the module is on the structure chart, we
specifically evaluate it to ensure that it meets the
principles of fan-out, span of control, maximal cohe-
sion, and minimal coupling. If it violates even one
principle, experiment with moving the module to the
alternative streams and test if it better balances pro-
cessing, without changing the processing. If so,
leave it in the new location; otherwise note that the
unbalanced part of the structure chart may need spe-
cial design attention to avoid production bottlenecks.

Decompose the structure chart eatries for each
process. The three heuristics to guide the decompo-
sition are:

= [5 the decomposition alse an JPQ structure? If
yes, continue; if no, do not decompose it.

= Does the control of the decomposed process-
ing change? If ves, do not decompose it. i no,
centinue.

= Does the nature of the process change? That
is, if the process is a date-validation, for
instance, once it is decomposed is it still a
date-validation? If no, continue. If yes, do not
decompose it. In this example, I might try 1o
decompose a date-validation into month-vali-
date, day-validate, and year-validate. I would
need to add a date-validate to check all three
pieces together. Instead of 4 plain date-vali-
date, [have (a) changed the nature of the
process, and (b) added control logic that was
not necessary.

The thought process in analyzing depth is simi-
lar to that nsed in analyzing the number of organi-
zational levels in reengineering, We want only those
levels that are required to control hierarchic cam-
plexity. Any extra levels of hierarchy should be
omitted, Now let us turn to ABC rental processing to
do transform analysis and develop the structure
chart,

ABC Video Example Transform Analysis

The decisions about factoring are based on the prin-
ciples of coupling and cohesion, but they also

require a detailed understanding of the problem and
a design approach that solves the whole problem. In
ABC Video's case, we have to decide what the rela-
tionships of rent, return, history, and maintenance
processing are to each other. If vou have not done
this yet, now is the time to do it. Before we continue
with design of transform analysis, then, we first dis-
cuss the design approach and raticnale.

DESIGN APPROACH AND RATIONALE. In
Chapter 7, Table 7-5 identified the Structured Eng-
lish pseudo-code for ABC’s rental processing and
we did not discuss it in detail. Now, we want to
examine il carefully to determine an cfficient, cohe-
sive, and minimally coupled decomposition of the
process. When we partition the ABC Level 0 DFD
from Figure 7-26, customer and video maintenance
are afferent streams, reports are efferent, and rental
and return are the central transforms (see Figure
8-22). We will attend only to create and return
rentals since they are the essence and hardest pottion
of the application.

There is a design decision to have returmn process-
ing as a subprocess of rental processing that nceds
some discussion. Then we will continue with the
design. The overall design could be to scparate
rentals and returns as two different processes, but are
they? Think in the context of the video store about
how the interactions with customers takes place.
Customers return tapes previously taken out. Then
they select tapes for rental and pay all outstanding
fees, including current and past returns that gcner-
ate late fees. To have late fees, a tape must have been
returned.? Rentals and returns are separated in time;
they have scparate actions taken on files. ABC has
any combination of rentals with returns (with or
without late fees) and open rentals, All open rentals
are viewed during rental processing, but need not
be during return processing. Adding a return date
and late fees is a trivial addition, Returns could be

2 In a real video rental system, you would also have a delin-
quent or exceptional charges process to add fess for lost and
damaged tapes. We do not consider that complexity here as it
does not materially add to the discussion,

Process Design Activities 3ol

Afferent

New Custome
Customer

Maintain

Customer

Accountant

End of Day
Rental Summary

2 Effarant
2
2
Customer File
N Today's
\.:3;(r @9 Rentals
o
New Rental & Renta! File
Order
Return
Rental
Return, Payment Information
Ceniral Transform
Video File

Video
Vendor

New Video

Afferent

Maintain

FIGURE 8-22 ABC Video Level 0 DFD Partitioned (same as Figure 7-26)

independent of rentals, so there are three design
alternatives:

m Returns are separated from rentals.
= Rentals are a subset of returns.
= Returns are a subset of rentals.

If returns are separated from rentals, there would
be two payment processes—one for the return and
one for the rental. If a rental includes a return, this
is not *‘minimal bureaucracy’ and is not desitable,

Howewver, since returns can be done independently
from rentals, the system should not require rental
processing 10 do a return. This alternative is an
acceptable partial solution, but the rest of the solu-
tion must be included.)

The second alternative is to treat rentals as parl
of the return process. This reasoning recognizes that
a rental precedes a return, All returns would need a
rental/ne rental indicator entry and assume that more
than 50% of the time, rentals accempany réturns.

302 CHAPTERB Process-Oriented Design

Which happens more [requently—returns with
rentals, or rentals without returns? Let’s say Vie does
not know and reason through the process. Since
relurns can be any of three ways, only one of which
is with rentals, coupling them as rental-within-return
should be less efficient than cither of the other
two choices.

Lasl, we can treat returns as part of the rental
process, If returns are within rentals, we have some
different issues. What information identifies the
beginning of a rental? What identifies the beginning
of a return? A customer number could be used to sig-
nify rental processing and a video number could sig-
nity a return, If we do this, we need to make sure
the numbering schemes are distinct and nonoverlap-
ping. We could have menu selection for both rental
and return that determines the start of processing;
then return processing also could be called a sub-
process of rentals, Either of these choices would
wark if we choose this option. For both alternatives,
the software needs to be reevaluated to maximize
reusable modules because many actions on rentals
are also taken on returns, including reading and dis-
play of open rentals and customer information.

Having identified the alternatives and issues, we
conduct observalions and colleet data to justify a
selection. The results show that 909 of returns, or
about 180 tupes per day, are on time. Of those, 50%
are returned through the drop box, and 50% (90
tapes) are returned in person with new rentals. The
remaining 10% of returns also have about 50%
(10 tapes) accompanying new rentals. So, about
100 tapes a day, or 50% of rentals are the return-
then-rent type. These numbers justify having returns
as a subprocess of rentals. They also justify having
returns as a stand-alone process. We will allow both.

Deciding to supporl both separate and return-
within-rental processing means that we must con-
sciously decide on reusable modulcs for the
activilies the two functions both perform: reading
and display of open rentals and customer informa-
tion, payment processing, and writing of processing
results to the open rental files. We will tey Lo design
with at least these tunctions as reusable modules.

DEVELOP AND DECOMPOSE THE STRUC-
TURE CHART. To begin transform analysis, we

start with the last DFD created in the analysis phase,
and the data dictionary entries that define the DFD
details. Figure 7-28 is reproduced here as Figure
8-23, with a first-cut partitioning to identify the cen-
trul transform.

First, we evaluate each process. We will use the
pseudo-code that is in the data dictionary (see Figure
§-24}. The DFD shows three rental subprocesses:
et Valid Rental, Process Fees and Money, and Cre-
ate ard Print Rental. Each of Lhe subprocesses might
be further divided into logical components. Try to
split a voutinc into a subreoutine for each function or
data change. First, evaluate the potential split to
make sure the subroutines are all still necded to do
the routine. This double-checks that the original
thinking was correct. Then, evaluate each potential
split asking if adding the subroutine changes the
cortrol, nature, or processing of the routine. If yes,
do not separate the routine from the rest of the logic;
if no, abstract out the subroutine.

For ABC, Ger Valid Rental is the most complex
ol the routines and is evaluated in detail. Ger Valid
Rental has three subroutines that we evaluate: Ger
Valid Customer, Get Open Renials, and Get Valid
Video. These splits are based on the different files
that are read (o obtain data for processing a rental.
Without all three of these actions, we do not have a
valid rental, so the original designation of Get Valid
Rental appears correct. Figure 8-25 shows refined
pseudo-code for ABC rental processing with clearer
structure and only structured constructs. Subroutines
are shown with their own headings.

If we are to accommodate returns during rental
processing, we have to decide where and how rentals
fit into the psendo-code, We want to allow return
dates to be added to open rentals. We alsa want to
allow returns before rentals and returns within
renlals. This implies that there are two places in the
process where a rental Video ID might be entered:
before or after the Customer ID. If the Video ID is
entered first, the application would initiate in the
Return process; from there, we need to allow addi-
tional rentals. I[f the Customer fD is entered first, the
application would initiate rental; from there, we need
to allow returns. To allow both of these actions to
lead to rental and/or return processing, we need to
add some control structure to the pseudo-code (sce

Process Design Activities 303

Customer

Afferant Get Valid

Customer File

Rental

y
1.2

Process
Fees and

Central
Transform

Efferent | 4nq Primt

Rental
S

Video File

Rental File

FIGURE 8-23 ABC Video Level 1 DFD Partitioned (same as Figure 7-28)

Figure 8-26). The conirol structure also changes the
resulting structure chart somewhat even though the
DFDs are not changed.

Next, we evaluate the refined pseudo-code and
inspect each subroutine individualty to determing if
further decomposition is feasible (see Figure 8-27).
For Ger Valid Customer, does the processing stay the
same? That is, are the detail lines of procedure
information the same? By adding the subroutine we
want to add a level of abstraction but not new logic.
In this case, the answer is yves. Now leok at the
details of Get Valid Customer. The subprocesses are
Get Customer Number—a screen input process,
Read and Test Customer File-—a disk input process
with logic to test read success and determine credit
worthiness, and Display Customer info—a screen
output process. Again, we have decomposed Get

Valid Customer without changing the logic or adding
any new functions.

The resulis of the other evaluations are presented.
Walk-through the same procedure und see if you
develop the same subroutines. Here we used the
pseudo-code to decompose, but we could have used
text or only our knowledge of processing to describe
this thinking. When the deccomposition is complete
for a parlicular process stream, it is translated to a
structure chart.

Complete the Structure Chart
Rules {or Completing the Structure Chart

Completion of the structure chart includes adding
data and control couples and evaluating the diagram.

304 CHAPTER8 Process-Oriented Design

Get Valid Rental.
For all cusiomer

Get customer §

Read Customer File

If not present,
Cancel

else
Create customer
Display Customer info.

Read Open-Rentals

For all Open Rentals,
Compute late fees
Add price to total price
Display open rentals
Display totat price.

For all video
Read Vides file
H not present
Cancel this viden
else

Create Video

Display Video

Add price to wotal price
Display total price.

Process Fees and Money,
Get amount paid.
Subtract total from aboul paid giving change,
Display change.
If change = zero and total = zero,
mark all items paid
else
9o to process fess and money.

Create and Print Rental.
For ali open rentals
if item paid
rewrite open rental.
Faor all new rentals
write new open rental.
Print screen as rental confirmation.

FIGURE 8-24 ABC Rental Pseudo-code

Get Valid Rental,
Get Valid Customer.
For ali customer

Get customaer #

Read Customer File

H not present,
Cancel

else
Create customer
Display Customer info,

Get Open Rentals.
Read Open-Rentals
For all Open Rentals,
Compute late faes
Add prive to total price
Display open rentals
Display total price.

Get Valid Video.
Far all video
Read Video file
If not present
Cancel this video
else
Cali Create Video

Display Video
Add price to total price
Display total price, change.

Process Fees and Mconey.
Get amount paid.
Subiract 1otal price from about paid giving
change.
Display total price, change.
If change = zero and iotal = zero,
mark all items paid
else
go 1o process faes and money.

Create and Print Rental.
Update Open Rentals,
For all open rentals
if itern paid
rewrite open rental.
Create New Rentals.
For al! new rentals
write new open rental.
Frint screen as rental confirmation.

FIGURE 8-25 ABC Rental Pseudo-code Refined

Process Design Activitles 305

Get Valid Rental.
Get entry.
If entry is Video
Call Retum
else
Cali Rental.

Rental,
Get Valld Customoer.
For all customer

Gel customer #

Read Customer File

If not present,
Cancel

else
Create customer
Display Customer info.

Get Open Rentals.
Read Open-Rentals
For all Open Rentals,
Compute |ate fees
Add late fees to total price
Display open rentals
Display total price.

Get Valid Video.
For all video
Read Video fila
If nol present
Cancel this video

else
Call Create Video
Digplay Video
Add price o total price
Display total prce, change.

Process Fees and Payment.
Create and Print Receipt,

Return.
Get Cpen Rental.
Read Open-FRentals
Read Customer
Display Customer
Display Open Rental
Add return date.
Using customer ID, Aead Open Rentals.
For all Opan Renlals
Display open rentals.
Fer all return reguest
Add retum cfate to rental.
Compute late fees
Add late fees to total price
Display total price.
If rental
Call Get Valid Video.
Call Process Fees and Payment.
Call Create and Print Recelpt.

FIGURE 8-26 Get Valid Rental Pscudo-code with Control Structure for Returns

Structure chart completion rules are:

. Tor each data flow on the DFD add exactly
one data couple. Use exactly the same data
flow name for the data couple,

2. For each control module, decide how it will
control its subs. If you need to refine the
pseudo-code to decide control, do this. Add
control couples to the diagram when they are
required between modules,

3. For modules that sclcct one of several paths
for processing, show the selection logic with
a diamond in the module with the logic at-
tached to the task transfer line.

Rules of thumb for developing the structure chart

are:

1. Evaluate the diagram for cohesion, Does
cach module do one thing and do it
completely?

Evaluate the diagram for fan-out, fan-in,
skew, and redesign as required, adding new
levels of control. Nete skewed processing for
attention during program design.

Evaluate the diagram for minimal coupling.
Is the same data used by many modules? Do
control modules pass only data needed for
processing? Do coantrol modules minimize
their scope of effect?

g

b

These are all discussed in this section.

First, the structure chart is drawn based on the de-
composition exercises. Then data couples are added
to the diagram for each data flow on the DFD. If the

306 CHAPTER8 Process-Criented Design

Gat Valid Rental.
Get entry.
If entry is Video
Call Return
olse
Call Rental.

Rental.
Call Get Valid Customer.
Call Get Open Rentals.
Call Get Valid Vidao.
RAsturn.
Call Get First Return.
Call Get Open Rentals.
If rental
Call Get Valid Video,

Process Fees and Money.

Create and Print Rental.
Update Open Rentals.
Create New Rentals.

Prirnt receipt.
Get Valld Customer,
Get customer #
Read Customer File
i not present,
Create Customer.
I CCredit not zero, display CCredit
Display Customer info.
Get Qpen Rentals,
Read Opean-Rentals
Far all Qpen Rentals,
Compute late fees
Add late fees to total price
Display open rentals
Display total price, change.
For all retum request
Cazll Update Asturmns.

Gt Valid Video.
For all video
Read Video file
If not present
Cancel this video
else
Call Create Video
Display Vidso
Add price fo total price
Display total price, change.
Get First Return.
Read Open-Rentals
Read Custamer
Display Custemer
Display Open Rental
Call Update Returns.
Update Returns.
Meove return date to rental,
Update video history.
Compute late fees.
Add late fees to tolal price.
Dispiay total price.
Process Fees and Money.
Get amount paid.
Subtract total price from about paid giving changs.
Display total price, change.
If change = zaro and total = zero,
mark all itemns paid
aise
go to process fees and monay.
Update Open Rentals.
Faor all cpen rentals
rewnte open rental.
Create New Rantals.
Faor all new rentals
wnite new open rental.

FIGURE 8-27 Complete Pseudo-code for Rentals and Returns

structure chart is at a lower level of detail, use the
data flow as a starting point and define the specific
data passed to and from each module. Show ai!
data requirements for each module completely.
Make sure that all names are exactly as they are in
the dictionary.

Next, for each control module, decide how it will
control its subprocesses and add the control couples
to the diagram. Decide whether the logic will be in
the control module of in the subprocess. If the logic
is in the contrel module, the goal is for the controller
to simply czll the subordinate module, pass data to

Process Design Activities 307

If data = x move 1 to go-sw.
If data = y move 2 to go-sw.
if data = z move 3 to go-sw.

Call GO-MOD. .

Pathological
Controf Go-Data

Shucture
Go-Sw

... Returmn

ii‘go-sw =1do
If go-sw = 2 do go-2.
If go-sw = 3 do go-3.

GO-MOD
go-1.

Solution 1
Control
~N Solution 2
T
Go- Go- Go-
Dala $ Data 3) Data ?
Go-
Data
GO-MOD
Go-1 Go-2 Go-3 if data = x do go-1.

If data = y do go-2.

If data = z do go-3.
... Retum

FIGURE 8-28

transform, and receive the transform’s data back. If
any other processing takes place, rethink the control
process because it is not minimally coupled.

A control couple might be sent o the subprocess
for it to determine what to do. This may or may not
be okay. Where is the control couple ‘set’ and
‘reset’? If in the control module, this is acceptable. If
somewhere else, rethink the control process and sim-
plify it. Any time vou must send a control couple for
a module to decide which action to take, you identify
a potential problem. The lower-level module may
be doing too many things: otherwise it would not
need to decide what to do, or the control may be in
the wrong module.

Pathological Control Structure and Two Solutions

An example of this problem and two solutions are
illustrated in Figure 8-28. If the lower level is doing
too many things, then decompose them to create sev-
eral single-purpose modules, If the lower level is
not doing multiple functions, then move control for
the module into the moduie itself. In both cases, the
goal of minimal coupling is attained.

Next, the diagram is cvalualed for cohesion, cou-
pling, hierarchy width, hierarchy depth, fan-out, fan-
in, span of control, and skew. Evaluate the diagram
for cohesion (see Table 8-2 for definition of cohesion
types). Check that each madule does one thing and
does it completely. If several modules must be taken
together to perform a whole function, the structure is

308 CHAPTER 8 Process-Criented Desig_n

excessively decomposcd. Regroup the processes and
restructure the diagram.

Evaluate the diagram for width, depth, fan-out,
fan-in, and skew. These are visual checks to see if
some portion of the structure is inconsistent with the
rest of the structure. The inconsistency does not nec-
¢ssarily mean that the diagram is wrong, only that
there may be production bottlenccks relating to the
out-of-balance processes, For a wide structure, dou-
ble check that the subprocesses really all relate to
pne and only ong process. If not, add 4 new control
module, else leave as is.

For deep structures, check to see if each level of
depth is performing some function beyond control.
Ask yourself why all the levels are needed. If there is
no good reason, get rid of the level and move its
functions either up or down in the hierarchy, prefer-
ably up. Ask yourself if fewer levels can accomplish
the same process. If the answer suggests reducing
the levels of hierarchy, restructure the diagram and
keep only essential levels.

For fun-in modules, check that each using module
has the sume type of data being passcd and expects
the same type of results from the fan-in module, If
there are any differences, then either make the
using medules consistent, or add a new module to re-
place the fan-in module for the inconsistent user
maodule, '

Skewed diagrams identify a fundamental imbal-
ance of the application that may have been hidden
before: that it is input-bound, output-bound, [/0-
bound, or pracess-bound. Skew Is not necessarily a
problem that results in restructuring a diagram.
When skewed processing is identified, you should
verify that it is not an arntifact of your factoring. If it
is, remove the skew from the diagram by restructur-
ing the modules.

Skew is not always a problem. When a skewed
application is being designed, the designers normally
spend more time designing the code for the bound
portion of the problem to ensure that it does not
cause process inefficiencies. For instance, Fortran is
notorrously inefficient at physical input/output (i.e.,
reading and writing files). For anything but a
process-bound application, Fortran is not the best
language used. For a process-bound Fortran appli-
cation, with many I/Os, another language, such as

asscmbler or Cobol, might be used to make read/
write processing efficient. The opposite is true of
Cobal. Cobol is not good at high precisien, scien-
tific, mathecmatical processing. In a Cobol applica-
tion, process-bound modules and their data would be
designed either for another language, or to minimize
the language effects,

Finally, evaluate the diagram for minimal cou-
pling. First lock at data couples. If you see the same
data all over the diagram, there may be a problem.
Either vou are noi specifying the data at the element
level, or data coupling is the least coupling you will
be able to attain. Make sure that only needed data is
identified for passing to modules. Data coupling is
not the best coupling, but it is tolerable.

Next look at control couples one last time. Make
sure that they are sct and reset in the same or
directly-refated modules, and make sure that, if
passed, they are passed for a reason., If either of these
conditions are vielated, change ihe coupling.

To summarize so far, decide the system concept;
partition the DFD; develop a first-cut structure chart;
decompose the structure chart using pseudo-code of
the functions as needcd to guide the process; add
data couples; add control couples; evaluate and
revise as needed.

ABC Video Example Structure Chart

ABC’s structure chart will begin with the Level 1
DFD factoring and progress to provide the detail for
modules as expressed in the pseudo-code. There are
three first level modules: Get Valid Rental, Process
Fees & Money, and Create and Print Rental (see
Figure 8-29). To get the next level of detail, we use
the pseudo-code o1 decomposed structure charts. In
our case, we use the pseudo-code, In Figure 8-27, the
high level pseudo-code has only module names. We
simply transfer those names to modules on the strue-
ture chart, attending to the control logic present in
the diagram.

For cach if statcment, we need to decide whether
that statement will result in a direct call {our choice,
here) or whether it will result in a control couple
being passed. Dircet calls are preferred to minimize
coupling. When a direct call is nsed, the module is
executed in its entirety cvery fime it is called.

Process Design Activities 309

Rent/Retum
Processing
| i]
Get Vaiid Process Fees Craate &
Rental & Money Prini Rental
Rent Update Cpen Print
Rentals Raceipt
Create New
Rentals
Get 15t Update
Get Valid | Update | Return Returne
Customer Heturns .
Get Open Get Valid
i Pental Video

Get Open
Rerital
Create New
Customer

‘ Get Valid |
ideo

Legend:

Reused from
another diagram

Reused an this
diagram

FIGURE 8-29 Rent/Return First-Cut Structure Chart

We identify reused modules by a slash in the
lower left corner of the rectangles to show the com-
plete morphology of the diagram. The first-cut struc-
ture chart shows that the processing is skewed
toward input, Because there are three data stores
affected by every process, there is no way to get rid
of the skew without getting rid of the control level. Is
the control level essential? If we omit the control
level is the processing the same? Do we violate fan-
out if we remove the control level? The answers arc
no, mostly, and no, respectively. If we remove the
control level, its logic must go somewhere. The logic
can move up a module and not violate fan-out. The

change may have a language impact, so we will not
change it until we decide program packages.

We note it tfor attention during packaging aad pro-
gramming. There are no other obvious problems
with the first-cut structure chart. Since we have
developed it bottom-up, using the pseudo-code as
the basis, it is as good as our pseudo-code.

Next, we add the data and control couples needed
to manage processing. The final diagram is shown in
Figure 8-30, which we evaluate next.

Each module appears to do only onc thing. The
diagram is inpul-skewed as already discussed. The
span of control and fan-out seem reasonable.

310

CHAPTER 8 Process-Criented Design

Rent/Retum
Processing

Cus! ID Ack
Gst Walid Total Process Foas| Buecess Create
Flenlal & Money Prial Ack
Success
vR OR VAR on? wy w
VFI OR, C. v i o
Update Open | nt |
Rent Return Rentals Receipt
2) aé Creale New
cc OF Rentals
Get 15l &Update
Get Valid m pda!a Fletum Returns
o] Retums
KE&IOpen l\Get Valid ‘
Get Open Gel Valid Rents! Video
I, Rental Video
g
Create New
Custormner
Legeand:
OR Opan Aontal
€ Customer
¥ Video
VR Vatid Hental
Upd.OR Updaled OR

FIGURE 8-30 Completed Rent/Return Structure Chart

The reused modules each have the same input data.
The hierarchy is not unnccessarily deep, although
the control code for Get Valid Rental, Rent, and
Return might be able to be combined depending on
the language. Coupling is at the data level and is
acceptable. Next, we turn to designing the physical
database,

Design the Physical Database

Physical database design takes place concurrently
with factoring ard decomposition. A person with
special skills, usually a database administrator
(DBA), actually does physical database design. In

companies without job specialization, a project team
member acts as the DBA to design the physical data-
base. Physical databasc design is a nentrivial task
that may take several wecks or even months.

Rules for Designing the Physical Database

The general physical database design activities are
summarized below. Keep in mind that many cther
activitics may be involved in designing a physical
database that relate to a specific implementation
environment,

1. Define user views based on transaction types
and data accessed for each transaction.

2. Identify access method if choices exist.

3. Map user views to access method and storage
technology to optimize disk space and 10
minimize access time.

4. Build prototype and test, revising as
indicated.

5. Develop database for application testing.

6. Document physicul database design and dis-
tribute user view information to all proicct
team members.

7. Work with conversion team to build produc-
tion databases.

Designing user views means to analyze the trans-
actions or inputs of each process to define which
database items are required. In gencral, the data
items processed together should be stored together.
These logical design activities constrain the physical
design and help thc person mapping to hardware
and software.

In selecting the access method, the physical data
designer secks to optimize matching available access
methods to access requirements. Access method
choices usually are data sequenced (i.e., indexed),
entsy sequenced (i.e., direct), inverted lists, or some
type of b-free processing. Each DBMS and operating
system has its own access method(s} from which
selection 1s made. The details of these access meth-
ods are beyond the scope of this text.?

Uscr vicws are mapped to the access method and
a specific media. Media mapping seeks to optimize
access time for individual items and sets of Htems.
It also seeks to minimize wasted space while provid-
ing for growth of the database. Since media have
become one of the major expenses in the computing
environment, there may be political issues involved
with physical database design. At this point, a data-
base walk-through reviews all database design
before a prototype is built.

The DBA documents and trains team members
in data access requirements. The DBA, working
from the application specification, maps data re-

3 For morg on ageess methods and storage considerations, see
references to Fabbri and Schwab [1992], Codd [1990], Bohl
[1981], and Claybrook [1983] in the refercnces.

Process Design Activities 31

guirements to user views to processes. Each process,
then, has specific data items assigned. Every team
member must know exactly what data items to
access and how to access them. If a module or pro-
gram accesses the wrong data item, an inconsistent
database might result. Also, minimal data coupling
requires that each process access only data that it
requires. [ncorrect use of aceess methods can lead
to process bottlenecks or an inconsistent database.
To assure that programs are using the data correctly,
the DBA may participate in walk-throughs to moni-
tor data access.

The DBA works with the test team to load the
data needed for testing. The DBA also works with
the conversion team to load the initial production
database. These activitics may be trivial or may
require hiring of temporary clerks to input informa-
tion to the database. The DBA and the two teams
work together to verify the correciness of the data, to
pravide program test database access to the rest
of the development tcam, and to provide easily
accessed backup when the test database is compro-
mised. After the test database is loaded, the backup
and recavery procedures, transaction logic proce-
dures, and other database integrity procedures are all
finalized and tested.

To summarize, a person who intimately knows
the technical production data environment acts as a
DBA, mapping the database to a physical environ-
ment and building both test and production data-
bases. The DBA provides training and guidance to
the other team members for data access, and partici-
pates in data related walk-throughs.

ABC Video Example Physical
Database Design

In arder to do the physical database design, a DBMS
must be selected. We will design as if some SOL
enginc were being used. SQL’s physical design is
closely tied to the logical design so the design activ-
ity becomes less DBMS softwure sensitive. In addi-
tion, SQL data definition is the same in both
mainframe and micro environments so the design
activity does not need to be hardware platform sen-
sitive. The amount of storage space (i.e., number of
tracks or cylinders) will vary, of course, since disks

312 CHAPTER8 Process-Oriented Design

on PCs do not yet hold as much information as main-
frame disks.

Beginning with the logical design from Table
7-7, we define the relations and data items that arc
required to devclop user views. Remember from
database class, that the logical database design can
tnap directly to the physical database. The relations
defining the actual database may or may not be
accessed by users. For securily reasons, user views
may be used to control access to data and only the
DBA would even know the real relation names.

To define user views, we examine each process
and identify the data requircments. List the require-
ments by process (see Table 8-5). Match similar data
requirerents across processes to identify shared user
views. The problem is to balance the number of
views against the number of processes, Ideally a
handful of user views arc defined: a heuristic for
large applications is about 20 user views. Beyond
that, more DBAs are required and database mainte-
nance becomes difficult. In a large application, keep-
ing the number of user views manageable may be
difficult and require several design and walk-through
iterations.

For ABC rental processing, we need a user view
for each major data store: Customer, Videa Inven-
tory, and Open Rentals. We also need vser views for
the minor files: Video History, Customer History,
and End (f Day Totals, If data coupling and memory
usage are not an issue, using a SQL database, we can
create one user view for each of Customer, Video,
and Open Rental, and create one joined user view
using the common fields to link them together, The
individual views are used for processes that do not
need all of the data together; the joined view can be
used for quety processing and for processes thal
need all of the data. The resulting data definitions for
customer, video, open rentals, and the related user
views are shown in Table 8-6. We also need scpa-
rate user views for the history files and EOD 1otals.
They are included in the table.

At this point, with SQOL software, we are ready
10 prototype the database. If ¢ither access method
seleclion or storage mapping is an issue, a prototype
should be built. Otherwisc. the next step is to map
user views 10 access methods and storage media.
This activity depends on the implementation envi-
ronment and is beyond this text. The database may

be wulked through again at this point to verify pro-
cessing requirements for the database. The database
is then prototyped and documented. The information
necded for each program is included in program
specifications. Tewm members are usually given an
overview of the database environment either as part
of the last walk-through or as a separate training
session. When the prototype appears complete
and workable, test and production databases are
developed.

Design Program Packages
Rules for Designing Program Packages

The activities for grouping modules inte program
packages are listed below; as you can see, they are
general guidelines, not roles. There are no rules for
packaging because it i8 an environment-dependent
activity, Packages for lirmware or an 8K micro
computer are enlirely different than packages for a
mainframe. Also, the implementation language de-
termines how and when some types of coupling are
done. With these ideas in mind, the guidelines apply
common sense to dentifying program cxecute units.

1. Identify modules that perform functionally

related activities, are part of iteration unils, or

which access the same data. The related mod-
ules identified should be considered for pack-
aging together [or execulion.

Develop pseudo-code for the logic functions

being performed. Use only structured pro-

gramming consirucls: iteration, selection, and
sequence. Document complex logic using
decision lables or decision trees.

3. Logically test the user views developed with
the DBA to reevaluate their usefulness for
cach program packagc.

4. Design each module to have ene entry and
onc cxit.

5. Design each module such that its contents are
unchanged from one execution to the next.

6. Design and document messages for called
modules. Reevaluate the messages to mini-
mizc coupling,.

7. Draw a diagram of the modulc and all other
modules with which it interacts.

o

TABLE 8-5 ABC Data Requirements by Process

Process Design Activities 313

Process Customer Video Inventory Open Rental Other
Get Valid Customer Phone,
Customer Name, Address,
Credit Rating
Get Open ' Customer Phone,
Rentals Video ID, Copy ID,
Video Name,
Rent Date, Return
Date, Latc Days,
Fees Owed
Get Valid Video ID, Copy 1D,
Video Video Name,
Rental Price
Get First Return ’ Customer Phone,
Video ID, Copy ID,
Video Name, Rent
Date, Return Date,
Latc Days, Fees Owed
Get Valid Video Video ID, Copy ID,
Video Name,
Rental Price
Update Rentals Customer Phone,
Video 1D, Copy 1D,
Video Nams, Rent
Date, Relurn Date,
Late Days, Fees Owed
Process Fees End of Day Totals

and Money Total Price +
Renlal Information

Create Video Video History File:
history Year, month,

Video 1D, Copy [D
Create Customer Customer History
history File; Customer Phone,

Yideo 1D
Update Open Customer Phone,
Rentuls Video ID, Copy 1D,

Video Name, Rent
Date, Return Date
Late Days, Fees Owed

Create New
Rentals

Customer Phone,

Video 1D, Copy ID,
Video Name

Rent Date, Return Date,
Late Days, Fees Owed

Print receipt

Customer Phone,
Name, Address,
For each Video:
Video ID, Copy 1D,
Video Name,

Rent Date, Return
Date, Late Days,
Fees Qwed,

Total Price

314 CHAPTER 8 Process-Criented Design

TABLE 8-6 SQL Data Definitions and User Views

Create Table Costomer

{Cphoze Char(190} Not null,
Clast VarChar(50} Not null,
Cfirst VarChar{25} Naot null,
Clinel VarChar(50) Nat null,
Cline2 VarChar(50) Not null,
Cily VarChar(530) Not null,
State Char(2) Not nuli,
Zip Char(10) Nol null,
CCtype Char(1} Not null,
Ceno Char(17) Not null,
Ceexp Date Not null,
CCredit Char(1),
Primary key {Cphone));

Create Tabte Video
{VideolD Char(7) Not null,
VideoNam Varchar{50) Not null,
VendorNo Char(4)
TotCopies Smallint Not null,
RentPrice Decimal(1,2) Nat null,
Primary key {videolD);

Create Table Copy
{VideoID Char(7) Not null,
CopyID {Char(2) Not null,
DateRecd Date
Primary key {VideolD}, CopylD}),

Foreign Key {{(VideolD>) References Video);

Create Table Rental

Cphone Char{10) Not null,
RentDate Date Not null,
VidcolDd Char(7) Not null,
CopyID {Char(2) Not null,
RentPaid Deccimal(2,2) Not null,
FeesOwed Decimal(2,2)
Frimary Key (CPhone, VideolD. CopylD},
Foreign Key {{VideoID) References Video)
Foreign Key ({VideoID), Copyld} References
Copy),
Foreign Key {CPhone) References Customer);

Create view VidCrsRef
as sglect VideolD, CopylID, VideoName, RentPric
from Customer, Video, Copy
where Video.VideoID = Copy.VideolD);

Create view RentRef
as select Cphone, Clast, Clirst, VideoID, CopyID,
VideoNam,
RentPaid, RentPric, FeesOwed
from Customer, VidCrsRel, Rental
where VidCrsRef. VideolD = Rental. VideoID
and VidCrsRef.CopyID = Rental . CopyID
and Customer.Cphone = Reatal.Cphone;

A program package is a collection of called mod-
ules, called functions, and in-line code that does
some atomic process, and that will become an exe-
cufe unit, The hierarchy of criteria for designing
packages is to package by function, by itcration clus-
ters, or by need to access the same data. At all times,
vou musi keep in mind any production environment
constraints that must also be part of the design. For
instancc, if the application will be on a LAN, you
may want to design packages to miaimize the possi-
bility of multiple users for a process,

Functional grouping is, by far, the most impor-
tant. Functional grouping ensures high cohesion for
the program. Any modules that are required to per-
form some whole function should be grouped

together. The other two censiderations frequently
apply to functional groups as wcll.

It a group of activitics repeat as part of an itera-
tive sequence, all activitics in the group should be
tagether in the program package. Individual mod-
ules can be coded and unit tested alone, but they
should be packaged for integration testing and
implementation.

Grouping modules that access the same data min-
imizes physical reading and writing of [iles. The
major goal is to read the same data record in any ong
pass of the processes no more than once. We want
to minimize physical I/O because it is the slowest
process the computer performs, Grouping modules
by data accessed minimizes the frequency of read-

ing. Real-time applications, especially, are vulnera-
ble to multiple reads and writes of the same data,
slowing down response time,

Grouping modules by data access is a form of
data coupling that minimizes the chance of unex-
pected changes to data. If we do not package mod-
ules together, but only read and writc data oncg, the
major alternative to common packaging is to use
global data arcas in memory. Global data is not pro-
tected and is vulnerable to corruption,

When the packages are complete, develop Struc-
tured English pseudo-code for the logic functions
being performed. Use only structured programming
constructs—iteration, selection, sequence. Docu-
ment complex logic using decision tables or decision
trees. Include control structures and names [or all
modules. Pseudo-code may have been done as part
of analysis, or earlier in design, as we did for ABC
rental and return. Incidental activities, or less cru-
cial activities, may have been overlooked or not
refined. Pseudo-code is completed now and struc-
tured for use in program specifications.

Decision tables and trees might be uscd to docu-
ment complex decisions. While a discussion of them
is beyond this text, an example of cach is shown in
Figure 8-31,

As we design the program packages, we logically
lest the user views developed with the DBA to
reevaluate their usefulness, The questions to ask are:
Is all the needed data available? Is security ade-
quate? Is extra data present? If any of these answers
indicatc a problem, discuss it with the DBA and
determine his or her reasons for the design. If the
design should change, the DBA is the person to do it.

Design each module to have one entry and one
exit. Multiple entrances and exits to program mod-
ules imply problems because of selection and goto
logic required to implement multiple exits and
entrances. If each module is kept simple with one of
each, there are fewer testing, debugging, and main-
tenance problems,

[deally, each module should have its internal data
contents the same before and after a given execution.
That is, the state and contents of the module should
be unchanged from enc cxecation to the next. This
does not mean that no changes take placc during
an execution, only thal all traces of changes are

Process Design Activities 315

removed when the execution is complete. When a
module must maintain a “memory’ of its last actions,
coeupling is not minimized.

Design and doecument messages for called mod-
ules. Messages should conlain, at most, calling/
called module names, data needed for execution,
control couples, and variable names for results of
execution,

You might draw a diagram of the module and all
other modules with which it interacts to facilitate
visual understanding of the module and its role in the
application.

ABC Video Example Program
Package Design

Working with the final structure chart in Figure 8-30,
our biggesi decision is whether or not to package all
of rentalfreturn processing together, and how, De
we writc one program with performed modules, one
with called modules, or a combination of the two?

ABC is going to be in a SQL-compatible database
cnvironment, on a LAN, and requires access by PCs,
The choice of language 15 not limited with these
requircments, but packaging without knowing the
language is not recommended. For this exercise, we
will assume that Focus,* the 4GL, will be used.

Focus’ application generator, called the “Dia-
logue Manager,” allows both in-line and called mod-
ules to be wsed. Calling modules of nonFocus
languages are allowed but can be tricky. The lan-
guage has its own DBMS that is SQL-compatible,
but it is not fully relational. It falls in the category
of DBMSs called *born again relational,” that is, the
DBMS is hierarchic, networked, or relational at the
DBA’s discretion. Relationality is allowed but not re-
quired in Focus. Focus does not support the integrity
rules. We will not redesign the database here since
the SQI. code abave could be recoded without de-
sign changes in the Focus DBMS language.

At this point, we need to step back and decide
how to package the entire application. What kind
of *glue’ will hold customer maintenance, video

4 Focus is & trademark of [nfurmation Builders Inc., Mew York.
Focus is representative of PC-based application generators,
including Rbase, Dbase IV, Informix, etc.

316 CHAPTER8 Process-Orienfed Design

Decision Table Format:

] Conditlons—Possible occurrences Rulas—Specific ocourrances

r Actions—Possible outcomes Entries—Specific outcories for rule combinations.

Decision Takle Example:

Conditions
Custormer Old Old Oid QOid Old Old Old Old Mew New
Cpen Rentals Y A A Y N N N N — —
Returns Y \i M N ¥ Y N N — —
New Rentals Y N ki N Y N Y N Y N
Actlons
Create Customer N N N N N M N N Y Y
Chack Late Fees Y Y ¥ Y Y Y N N Y N
Process Raturn Y Y N N Y Y N N N N
Process New Rental Y N ¥ N Y N Y N Y N
Process Fees and Money Y Y Y Y Y Y Y N Y N
Update Open Rental Y b hd Y Y ¥ N N N N
Create Open Rental Y N Y N Y N Y N ¥ N
Print Receipt ¥ ¥ ¥ h Y Y Y N Y N
Decision Tree Format: Tree structure showing conditions
and actions.
Decision Tree Example:

Condition 1

FIGURE 8-31 Decision Table and Decision Tree

maintenance, end-of-day, and rental/return process-
ing together. We do not discuss screen design here
because it is not in the methodology (it is in Chap-
ter 14), but we would finalize screens while these de-
cisions are being made. We need all of the above
functions to do this application, so all of the func-
tions must be available in a unified environment.
This means that all funclions must be available for
execution within the same run environment. Screens
are the ‘glue’ that users see that unify application
processing. The code behind the screens may or may
not be unified depending on the design techaiques
and language. With Focus, unification is done
through the Dizlogue Manager.

4GL and PC-DBMS languages are deceptively
simple. To perform trivial tasks is easy, but to build
application requires expertise. Focus is no different.
The complexities with Focus relate to when, where,
and how often the dalabases are opened and pro-
cessed, how the databases are relaled, and how many
concurrent users are allowed. The concurrent envi-
ronment increases DBA complexity but changes the
answers to the questions about databases; it does not
change the application code. So, we will assume one
user at a lime for processing.

Skeleton Focus code for the application is shown
in Figure 8-32, Each DFD Level 0 process is ac-
counted for at this level; we even have a query func-
tion that is new. Most applications require interactive
file query and we have nol talked about it at all as
part of the rental return application. The trend in
business today is for users to develop their own
reports and queries using some 4GL. When the lan-
guage has a buill-in query lacility, you can add it to
the processing without any analysis or design work,
as shown here with Focus, User developed queries
allow users to ‘stay in louch’ with their data and
remove a major design burden from IS personnel,

Now that the application is accommodated within
one execute environmenl, we return to the problem
of how to package rent/return processing, The ideal
is to code and unit test each lowest level box on a
structure chart as an independent module. Then,
using the “call” feature of the languagc, build a con-
trol structure, based on the design of the control and
ceordination boxes on the structure chart that calls
modules as nceded for execution. We will use this

Process Design Activities 317

approach here as Figure 8-32 shows for the applica-
tion, and Figure 8-33 shows for rertal and refurn
processing.

The alternative to called modules is in-line code
that is ‘performed’ or executed as a pseudo-called
module. This choice is selecled with 3GL languages
such as Cobol, Fortran, or PL/1 because it can be
easier 1o code, test, and maintain.

Specify Programs
Rules for Specifying Programs

The specificalion documents all known information
about programs. Program specifications document
the program’s purpose, process requirements, the
logical and physical data definitions, input and out-
put formats, scrcen layouts, constraints, and speciat
processing considerations that might complicate the
program. Keep in mind thal the term program might
also mean 4 module within a program or an exter-
nally called function, or even a code fragment {e.g..
DB cally. A program specification should include the
items shown in Table 8-7. As with program packag-
ing, there are no ‘rules.” Rather there are items that
should be included if they telate to the item being
specified.

There arc (wo parts to a program specification:
one identifics interprogram relationships and com-
munication, the other documents intraprogram pro-
cessing that tukes place within the individual
program. [nterfaces to other programs generally doc-
ument who, what, when, where, and how communi-
cation takes place. Who identifics who initiates the
communication and who, in the real world, is
responsible for the interface. What idenlilies the
message(s) content that is used for communication,
Whern identifics the frequency and timing of the
interface, Where locates the application and system
in a hardware environment; where becomes compli-
cated and is crucial to processing of distributed
applications, How describes the nature of the inler-
face—internal message, external diskelle, and
so forth.

Internal program processing information includes
the data, processes, formats, controls, security,
and constraints that define a particular program.

318 CHAPTER 8 Process-Oriented Design

Focus Code ’ Explanation

-Set &dGlobalvariables Set variables needed for intermodule communication.
-Include Security Check password in a security module.

-Run Check password before any other processing.

- Comment indicatar

-Mainline A label identitying the main routine.

-Include Mainmenu The call statement in Fogus is ‘INCLUDE." Mainmsnu is a
moduls name.

-Run Perform Mainmenu before any other procassing.

-If &&Choice eq ‘R’ goto RentRet else Interrogate the cheiges from Mainmenu to decide what to do

-If &&Choice &g V' goto Vidmain else next.

-If &&Cheice eq ‘D' goto EndOfDay else

-If &&Choice eq “Q’" goto Query else

-If &&Choice eq 'S’ goto StopSystem alse If in ermeor, go back 1o the Mainmenu screen,

-Gote Mainmenu;

*

-RentRst
-inciude RentRet

-Run
-Goto Mainline

-

-Vidmain
-{include Vidmain
-Run

-Goto Mainline

-Custmain
-Includg Custmain
-Run

-Golo Mainline

Query
-Include Tabktalk

-Run
-Goto Mainline

*

-EndOfDay
-Includle Endofday
-Aun

RentReturn Label
Call Rent/Return processing.

When Rent/Het is complete, retum to the Mainmenu.

Video Maintenance Label and Processing

Customear Maintenance Label and Processing

Query Label and Processing

End-gf-Day Label and Processing

-Goto Mainline
-BtopSystem Stop System Label
-End End Processing

FIGURE 8-32 ABC Video Processing Focus Mainline

Autormated Support for Process-Oriented Design

RentRet Focus Mainline Code

-3et &8GIobalvanables
-“Rertal and Return Processing

-Crtform Line 1
- ABC Video Rental Processing System <d.&date”
- Rentals and Relurng’

amt

Scan or enter a card or videg: <&&Entry”
-If &&entry like 't&%° goto Rsturn else

-If &&antry like 'c&’ goto Renial else

-Include Entryerr;

-Aun

-Return

-Include ValidgCus
-include Openfent
-Include Validvid
-Goto exit

-Run

-Rental

-Inciude FirstRat

-Inciude OpenRent

-Criform Line 15

Do yout want to do rentals? <&&Rentresp/1”
-If &&Rentrasp ne 'y’ goto exit alse
-Include ValidVid

-Goto axit

-Run

-Exit

-End

FIGURE 8-32 ABC Rent/Return Focus
Mainline

Frequently, program specifications also include a
flowchart of the program logic, a system flowchart
showing the system names of the files, and a detailed
specification of timing and other constraints.

ABC Video Example Program
Specification

The program specification for one program to per-
form Get Valid Customer is shown as an example
(see Table 8-8). Since this is a compilation of already
known information there is no discussion.

319

TABLE 8-7 Program Specification
Contents

[dentificalion

Purpose

Characteristics

Reference to Applicable Documents

DFD and Structure Chart {possibly also System Flow-
chart and Program Flowchart)

Narrative of procedures in Structurcd English, Decision
Tables, Decision Trees

Automated Interface Definition
Screen Interface

Screen Design, Dizlog Design, Errot
Messages

Application Interface

Communications Messages, Ermror Procedures
Frequency, Format, Type, Responsible person

Input, Output, and System Files
Logical data design

User views, internal name, graphic of physical
data structure

List of physical data structures

Tabics and Internal Data
Internal name, graphic of physical data structure
List of physical data structures

Reports

Frequency, Format, Recipicnts, Special processing

AUTOMATED
SUPPORT FOR
PROCESS-ORIENTED
DESIGN

Automated support in the form of CASE tools is also
available, although fewer products support struc-
tured design than support structured analysis. Sev-
eral entries provide Lower CASE support that begins

320 CHAPTER8 Process-Orientaed Design

TABLE 8-8 ABC Example Get Valid Customer Program Specification

Identification: Get Valid Customer, (ValidCus)
Purpose: Retrieve Customer Record and verify credit worthiness

Characteristics: Focus Included module

References: See System Specification, Pscudo-code for CustMain
DFD: Attached as Appendix 1
Structure Chart: Attached as Appendix 2
Narrative:
Accept CPhone

Read Customer Using CPhone
If 1ead is successful
If CCredit lc *17
continug
clse
Display “Customer has a credit probleny; rating = <C'Credit”
Display "Override or cancel? : <& Custcredit”
If &Custcredit eq *C’
include Cancell
Return
else
If &Custeredil eq *O’
continge
clse
include crediterr
return
else
Include CreatCus.
Set &£&ValidCus to ‘Yes.’
Set global customer data to values for all fields.
Return.

Sereen Interface

Screen Plesign: None

Dialag Dresign: None

Error Messages:
“Customer has a credil problem; rating = <CusCredit”
“Override or cancel? : <& Custeredit™

Application Interface None
Input: Custorner File
User views Customer

Internal data names: Customer Contents in Data Dictionary
Tables and Inlernal Data

Globat fields correspond to all Customer File fields.
Set all fields to customer record values upon successtul processing.

Reports: Nong

Automated Support for Process-Oriented Design a

TABLE 8-8 ABC Example Gert Valid Customer Program Specification (Continued)

Appendix 1: Data Flow Diagram
CPhone Valid
or CustiD Cust alid Cust
(Clast, (10 0 20 Record 4.0 3 Retum
Cfiret
Y Accept #| Read Check »| Sei Data [
Input Customer Credit Values
S —— _/ N
b
Customer L
Appendix 2: Structure Chart
Get Valid
Cuslomer
Cust) .
g Record CCredlti) Cust 3)
Racord
Get Check SetData
Customner Credit Values
Cust
¥
$ $ Cust
| Cust_ Y Becord
D
Accept Read
CPhone. .. Customer
CreateCus
Appendix 3: User View with Data Names
Table Customer State Char(2) Not null,
(Cphone Char(1() Not null, Zip Char(10) Not null,
Clast VarChar(50} Not null, CCtype Char(1) Not null,
Cfirst VarChar(25) Not null, Cene Char{17) Not null,
Clinel VarChar(50) Not null, Ceexp Date Not null,

Cline2 VarChar(50} Not null, CCredit Char(1),
City VarChar(530) Not null, Frimary key {Cphone));

322 CHAPTER 8 Process-Oriented Design

TABLE 8-9 CASE Tools for Structurcd Design

Product

Company

Technique

Analyst/Designer Toolkit

Yourdon, Inc.
New York, NY

Structure Chart

Structure Charts
Structured English

Structure Chant

Anatool, Advanced Logical SW

Blue/&D, Beverly Hills, CA

MacDesigner

The Developer ASYST Technology, Inc
Napierville, IL.

Excelerator Index Tech.

Cambridge. MA

TEW, ADW (P'S/2 Version) Knowledgeware
Atlanta, GA
Maestro SoftLab

San Francisco, CA

MacAnalyst, Excel Soltware
MacDesigner Marshalllown, IA
Multi-Cam AGS Mymt Systems

King of Prussia, PA

Operations Process Diagram
Systems Flowchart

Structure Chart
Flowchart

Structure Chart

Nassi-Schneiderman

Hierarchic input-process-output
charts (HIPO}

User Defined Functions

Decision Table

Structured English

Structure Chart

Structure Chart

with program specification or code generation (sec
Table 8-9).

STRENGTHS AND

WEAKNESSES OF

PROCESS ANALYSIS
AND DESIGN

METHODOLOGIES

The objectives of structured analysis and design are
reasonably clear; the manner of obtaining the objec-
tives is much less clear. Structured methods rely on
the individual SE’s expertise to design the technical

details of the application. For implementation spe-
cific details, that makes sense, but the heuristics for
evaluation cannot be applied in every situation, Con-
sequently, the SE must know what situations apply
and don’t apply. More than the other methods dis-
cusscd in this book, you must know when to adhere
to, bend, and break the rules of structured methods.

The methodology’s ability 1o result in minimal
coupling and maximal cohesion is low because of its
reliance on the SE’s ability. If coupling and cohesion
are not optimal, maintenance will cost more than it
should, and the application will be difficult to test. In
1972, D. Parnas wrote about maximal cohesion and
minimal coupling as desirable characieristics of pro-
grams. In 1968, Dijkstra wrote about the problems
with ‘go to’ statements in programs and proposed
goto-less programming, In 1966, Bohm and Jacopini

Strengths and Weaknesses of Process Analysis and Design Methodologies

323

TABLE 8-9 (CASE Tools for Structured Design (Continued)

Product Company

Technique

PacBase CGI Systems, Inc.

Pearl River, NY

ProKit Workbench

St Louis, MO
ProMod Promod, Inc.
: Lake Forest, CA
SW Thru Pictures Interactive Dev. Env.

San Francisco, CA
System Architect
NY, NY

Teamwork
Providence, RI

Visible Analyst
Newton, MA

Telon, and other products Intersolv

Cambridge, MA

vs Designer
Santa Clara, CA

McDonnell Douglas

Popkin Software and Systems, Inc.

Cadre Technologies, Inc.

Visible Systems Corp.

Visual Software, Inc.

Process Decomposition
Struciure Chart
Flowchart

Struciure Chart

Module Networks
Function Networks
Structure Chart

Control Flow
Structure Chart

Flowchari
Structure Chart

Control Flow
Decision Tuble
Structure Chart

Structare Chart

Code Generation for Cobol-
SOL, C and others

Structure Chart
Warnier-Orr

proposed structured programming’s minimalist con-
tents as sequence, ileration (e.g., if . . . then . .. else)
and selection (e.g., do while and do until). By the
time structured analysis and design were docu-
mented in books, the noliens of coupling and cohe-
sion were understood fairly well; but how te obtain
them was not.

General statemenls about keeping the pieces
small and related to one part ol the problem domain
rely on the analyst to know what to do and when to
start and stop doing it. Unfortunately, only experi-
ence can guide such vague suggestions. While
novices can learn to rely on the methodology to
guide their actions, they have no basis for evaluat-
ing the correctness or incorrectness of their work.
Thus, the apprenticeship approach, with a junior per-
son working with a more senior one to learn how to

evaluate designs, is required. The more complcx the
application, the more important having experienced
senior analysts becomes.

Another problem is that structured design does
not encompass enough of the activities to make it a
compleic methodology. We must have screen de-
signs in order to develop a program specification.
We must know the details of interfaces to other
applications and messages to/from them to be able to
develop program specifications, Structured methods
do not pay any attention 1o either of these issues. To
develop an application, the SE needs to analyze
requircments and design for control, input, output,
security, and recoverability. Nonc of these are en-
compassed in the process—oriented methods, To sum-
marize, process methods are useful in analyzing and
designing applications that are proccdural in nature;

324 CHAPTER 8 Process-Criented Design

but the methods omit a great many required analy-
sis and design activities.

SUMMARY

In this chapter, structured design which follows
structured analysis in development, was discusscd.
The results of structurcd analysis—a set of leveled
data flow diagrams, data dictionary, and procedural
requirements—are the inputs to the design process.
The major results of structured design are program
specifications which detail the mapping of functional
requirements into the production hardware and soft-
Wware environment,

First, using either transaction or transform analy-
sis, the DFD is partitioned into afferent, efferent, and
central transform processes. The streams of process-
ing are factored to develop a structure chart. The
processes are further decomposed into system-like
subprocesses until further decompesition would
change the nature of the process. Data requirements
are documented in data couples; control is docu-
mented in control couples. The charl is evaluated
for fan-out, fan-in, skew, cohesion, coupling, scope
of effect, and scope of control. The structure chart
is revised and reevaluated as required.

The physical databasc is designed. Data needs for
each data flow in the application are listed by
process. Data similarities are matched and used Lo
define user views. The access method and physical
mapping are then decided. Physical database design
walk-throughs may be held to validate the design.
Test and production databases are created.

Program packages are decided based on the
application concept and timing. The packages de-
fine which modules will communicate and how.
Pscudo-code [or processes is finalized and uses only
structured programming constructs—iteration, se-
quence, and selection. Decision tables and trees are
used, as necessary, to document complex decisions.

Finally, program specilications are written to doc-
ument all known information about each module,
function, or program. Specifications include data,
process, interface, constraint, and production infor-
mation nccded for a programmer to code and unit
fest the work.

REFERENCES . _____

Alexander, Christopher, Notes on the Synthesis of Form.
Cambridge. MA: Harvard Universily Press, 1971,
Bohm, Corrado, and Guiseppe Tacopini, “Flow diagrams,
Turing machines, and languages with only two forma-

lion rules,” Communications of the ACM, Vol. 9, #5,
May 1966, pp. 366-371.

Couger, 1. D., M. A. Colter, and R. W. Knapp, Advanced
Systemn Development/Feasibiliey Technigues. NY: John
Wiley & 5Sons, 1982,

Curtis, B., M. 1. Kellner, and J. Over, “Process model-
ing,” Communications of the ACM, Vol. 35, #0, Sep-
tember 1962, pp. 75-90.

DeMarco, T., Structured Analysis and System Specifica-
tion. NY: Yourdon, Inc., 1978,

Dijkstra, Edsgar W., “Go to statement considered harm-
ful,” Communications of the ACM, Vol. 11, #3, March
1968, pp. 147-148.

Flaatten, P. 0., D. J. McCubbrey, P. D. O’Riordan, and
K. Burpess, Foundations of Business Systems, 2nd ed.
NY: The Dryden Press, 1992,

Frances, B., “A window into CASE,” Datamation, March
1, 14992, pp. 43-44.

Krasner, I, I. Terrel, A. Lindhan, P. Arnold, and W. H.
Litt, “Lessons learned from a software process modet-
ing system,” Communications of the ACM, Vol. 35,
#9, September 1992, pp. 91-100.

Lindholm, E., “A world of CASE tools,” Datamation,
March 1, 1992, pp. 75-81.

McClure, C., The Three R's of Softiware Automation:
Re-Engineering, Repository and Reusability. Fngle-
wood Cliffs, NJ: Prentice-Hall, 1992,

McMenamin, S. M., and 1. E Palmer, Essential Systems
Analysis. NY: Yourdon, Inc., 1984,

Olle, T. W.,, J. Hagelstein, I. G. MacDonald, C. Rolland,
I1. G. Sol, E. J. M. Van Assche, and A. A. Verrijn-
Stuart, Information Systems Methodology: A Frame-
work for Understanding. Workingham, FEngland:
Addison-Wesley, 19488,

Page-Jones, M., The Practical Guide to Struciured Sys-
temn Desigir, 2nd ed. Englewood Cliffs, NI: Prentice-
Hall. 1988.

Parnas, David L., “Une of the criteria to be used in
decomposing systems into medules,” Communica-
tions of the ACM, Vol. 15, #12, December 1972,
pp- 1053-1058.

Swartout, W, and R. Balzer, “On the inevitable inter-
twining of specification and implementation,” Coum-
munications of the ACM, Vol. 25, #7, Iuly 1982,
pp- 438—440.

Yourdon, E., and L. L. Constantine, Structured Design:
Fundamentals of a Discipline of Computer Program
and Systems Design. Englewood Clifts, NI: Prentice-
Hall, 1979,

Yourdon, E., Medern Structured Analysis. Englewood
Cliffs, NJ: Prentice-Hall, 1989,

BIBLIOGRAPHY

- "

Bohl, M., futroduction to IBM Direct Access Storage
Devices. Chicago, [L: SRA, 1981.

This booklet gives the clearest explanation of VSAM
and the differences between dala sequenced and entry
sequenced storage options thai [have seen.

Claybrook, B., Fife Managemeni Technigues. NY: John
Wiley & Sons, 1983,

This book provides a good gengral discussion of
indexed, direct, and inverted list files.

Codd, E. ¥., The Relarional Model for Database Manage-
ment, Version 2. Reading, MA: Addison-Wesley Pub-
lishing Co., Inc., 1990,

Cadd, the father of relationship database theory,
argues the merits of an almost direct translation of the
logical database to the physical database.

Fabbri, A. J. and A. R. Schwab, Practical Databuse Man-

agement. Bosion, MA: PWS-Kent Publishing Co., 1992,

This book discusses physical mapping for relational

morphology
Nassi-Schneiderman
diagrams
output-bound
partitioning
physical database design
procedural cohesion
precess-bound
program package
program specification
program unit
scope of effccr

EXERCISES

Study Questions 325

sequential cohesion
skew

span of control
stamp coupling
structure chart
structured design
temporal cohesion
transaction analysis
transaction-centered
transform analysis
Warnier Diagram
width of hierarchy

1. Complete the design [or the ancillary processes
of ABC rental: customer maintenance, video
maintenance, and end-of-day processing.
Develop structure charts, inchuding all of the
required data and control couples. Evaluate the
diagrams and revisc as required. Refine the
pseudo-code for these functions from Chapter 7.
Develop program specifications and identify
how the modules will be packaged. Make sure
that you slate your assumptions about the pro-

databases ang has some discussion of the issues
involved for hierarchic and network databases,

KEY TERMS

afferent
affercnt flows
atoric process
central transform
cohesion
coincidental cohesion
common coupling
communicational
cohesion
content coupling
control coupling
coupling
data coupling
depth of hierarchy
efferent
efferent flows
executable unit

external coupling
factoring

fan-in

fan-out

function

functional cohesion
functional decomposition
HIPO

I/O-bound

indirect coupling
information hiding
in-line code
input-bound
interface

logical cohesion
modularity

module

duction environment clearly as part of the expla-
nation of your decisions.

. What is the linkage between structured analysis

and structurcd design? How do you use the
information and documentation from analysis to
develop an application design? Do you think
analysts and designers should be separate peo-
ple? Why, or why not?

STUDY QUESTIONS
1. Define the following terms:

cohesion morphology
coupling partitioning
decomposition program package
factor program unit
function transaction analysis
input-bound transform analysis
module

. How docs systems theory relate to structured
design?

CHAPTER 8 Process-Oriented Design

3. How do you know the difference between a

transformn ceatered application and a trans-
action-centered application?

. What is the role cohcsion plays in the parlition-
ing process? in the decomposition process? in
physical dutabase design? in deciding program
packages? in program specification?

. What is the role coupling plays in the partition-
ing process? in the decomposition process? in
physical database design? in deciding program
packages? in program specification?

. What are the major diagrams in the design
phase? How are they derived? How do they
relate to the work done in structured analysis?

. What is the reasoning process for packaging
program elements?

8.

9.

10.

11.

What is the purpose of Structured English?
What are alternatives? For what are Structured
English and its alternatives used? Why?

List the contenls of a program

specification.

Who usvally does physical database design?
Why would a specialist perform this task? Can
SEs do physical databasc design as well? Why
or why not?

Partition the following DFD and draw a struc-
tare chart. Identify potential afferent and effer-
ent flows. (There are several alternatives for
atferents.) Label the flows you decide best
describe the processes you see. List other infor-
mation you need tc decide what the best parti-
tioning should be.

Extra-Cradit Question 3z7

12. Evaluate the following structure chart. * EXTRA-CREDIT QUESTION
Describe the morphology. Is this diagram final
or does it have problems? If so, what are the 1. Perform transform analysis on a case in Appen-
problems and how would vou fix them? dix A. Design the processing for the central

transform from the high-level DFD. Develop
lower level DFDs as required fo assist your
Appl. thinking, Factor and develop a first-cut structure
Structure chart. Develop pscudo-code for the processes
you define. Refine the pseudo-code and finalize
| | the structure chart, giving reasons for your

Getg Make i Prot;ess design decisions. Develop program specifica-
tions and identify how the modules will be
1 packaged. Make sure that you state your
assumptions about the production environment
|Pf°‘:88 Process clearly as part of the explanation of your
7 decisions.

Process | |Process

Get
d 4 5

Process| |Process| |Process
1 2 3

_ DATA-
_ ORIENTED
_ ANALYSIS

INTRODUCTION

Unlike process orientation, dala-oriented analysis is
not the result of the vision of a small sct of people.
Rathet, it 1s the collective wisdom of many sources:
computer vendors, MIS researchers, and consul-
tants, The philosophy that underlies the data-
oriented approach is that data are stable and morc
unchanging than processes. Processes can be revised
with every reorganization. Data entities, on the other
hand, rarely change in the lifetime of a business.
Attributes of entities also rarely change. Even
though the values of data do change constantly, the
structure of the data docs not, If data are stable, then
they should be examined closely and first.

Data-oriented methodologies leach that dara
redundancy is to be minimized to best manage it in
an organization. Database management sollware is
assumed, but not required, in this approach. Data
administration, that is, the conscions manage-
ment of data as a resource of the business, is also
assumed.

Information engineering (IE) is the methodology
we usc to discuss data-oriented analysis. IE teaches
that to know which data should be the focus, we
need architectures of data, business functions, and
even organizational technology to guide the process.
Architectures are conceptual descriptions of the
items they define. Architectures are developed at the

328

enterprise level (see Chapter 5). Data and functional
architectures are defined further during business area
analysis, then are divided into applicalicn areas and
prioritized. Therefore, multiple application areas can
result from one or more business areas.

IE methodology defines activities from the strale-
gic organizational level through to implementation
of individual applications. The major phases of in-
formation engineering are;

1. Enterprise Analysis

2. Business Area Analysis
3. Busincss Systcm Design
4. Construction

5. Maintenance

In this chapter we discuss the Business Area Analy-
sis (BAA) component of information engineering,
which contains the activities that are most similar to
analysis in other methodologies. IE analysis is called
Business Area Analysis (BAA), rather than just
aralysis, becanse the focus is on business data and
functions required to do the work. A departure from
process-oriented analysis is that information engi-
neering specifically ignores the current business or-
ganization, applications, and procedures. [E focuses
on how the business shauld work, rather than on how
it does work. Reengineering of the organization znd
1is applications are commen adjunct activities to
information engineering (see Chapter 5). In the next

section, we describe the conceptual foundations
of data-oriented analysis. Then, the terminology of
husiness area analysis is defined. This is followed
by the rules and examples of how to conduct
each activity.

CONCEPTUAL

FOUNDATIONS

Data-oriented anaiysis is based mainly on theories
about data. Process activities are based on the same
systems theory which was the basis for the process
development paradigm of Chapters 7 and 8.

The data-related theories are semantic informa-
tion theory and relational database theory. Semantic
information theory seeks to understand the meaning
behind the data in applications and is most obvious
in the depiction of meaning underlying entity rela-
tionship diagrams. By understanding the entities, or
things, in the application, we know more about their
domains—the allowable sets of values they may
take. Eventually, rules about domain matching and
entity imtegrity are applied to include domain pro-
cessing along with data processing of the individual
attributes of entities. Relationships between entities
are as important as entities and domains. By know-
ing allowable business relationships, we can con-
strain processing naturally, by applying business
rules, without regard to organizational design. Rela-
tionship cardinality, or fumber, is important to
knowing how many of each related item should be
evalnated. Cardinality prescribes either individual
entity instances or sets of instanhces for processing.
By knowing maore about the meaning underlying the
data in an application, constraints can be automated
and made more general, thus, simplifying the appli-
cation development process.

Relational database theory is based on mathe-
matical set theory (or relational calculus) which
describes allowable operations on sets of data items.
Relational theory was developed to support provably
correct processing of data items, something that can-
not be guaranteced by cither hicrarchic or network
database architectures. Set theory is the basis for re-
lational theory which replaces the notion of ‘record’

Definition of Business Area Andlysis Terms 329

processing with ‘set’ processing. Record processing
constrains languages and applications to one-at-a-
time record read-manipulate-write processing
actions even though most records receive identical
treatment in programs. By specifying the rules for
processing once and applying those rules to the set of
data records, or fuples as they are called in relational
theory, the individual program no longer does any
read-write processing—it is performed by the
DBMS. Applying set theory, the result of any oper-
ation is always a set. Thus, using mathematically
based rules, the results of database processing can be
known in advance and are provable.

Process activities performed are attributed to con-
sulting practices that work and build on the systems
theory underlying the process development para-
digm. Some problems with DFDs are:

» DFDs do not accommodale time.

s DFDs have no implied sequence to
processing.

= DFDs assign media to data early in analysis
without any real deliberation.

These problems are eliminated in process data
Hlow diagrams (PDFDs) that are built during IE
analysis. Process methods of decomposition rely on
analyst experience in process orientation. Data meth-
ods, such as information engineering (IE), provide a
business-oriented approach to defining processes.
Structured process constructs—selection, iteration,
and sequence—are not consciously considered in
process methods until structured design. Structured
constructs are used in IE analysis to describe process
relationships,

DEFINITION OF
BUSINESS AREA
ANALYSIS TERMS

The tasks performed during business arca analysis
(BAA} are:

1. Data medeling

2. Dala analysis

3. Functional decompaosition (i.e., process
modeling)

330 CHAPTER ¢ Data-Oriented Analysis

=

Process dependency analysis

Process data flow diagramming

6. Process/data interaction mapping and
analysis

L

Throughout the analysis, a data dictionary or repos-
itory is assumed to be used for documentation. The
final step of BAA is completion of the repository
for all information found during analysis.

For data modeling, the two major activities are
the creation and refinement of an enlity-telationship
diagram (ERD) and entity structure analysis, along
with an accompanying repository. When complete,
the ERD describes the normalized data ervironment
and data scope of the application. Each part of an
ERD requires definition. An entity type (shortencd
to entéty in this discussion) is some person, object,

1 Technically, a customer is an entity who is uniquely described
by a set of atrributes. The sct of all customers describes an
entity type which is described by having the same attri-
butes. A specific entity. e.g., customer " Wells,” is an entity
instarice. In this text we use entity W be synonymous with
entily tvpe.

concept, application, or event from the real world
about which we want to maintain data {see Figure
9-1}. There are three kinds of entities: fundamental,
altributive, and associative. A fundamental entity,
for instance, an order, is independent of all other
entities and can be defined without thinking about
other entities. An attributive entity is an entity
whose existence depends on the prescnce of a fun-
damental entity. If order is the fundamental eatity,
then arder item would be an attributive entity related
to order (sce Figure 9-2). Technically, you wouldn’t
have an order without any items, but you cannoi
have an order item without an order. Atiributive
cntities contain repcating information relating to a
fundamental entity. An associative entity is used to
simplify and dcfine complex relationships between
entitics. All cntitics arc drawn on the entity relation-
ship diagram (ERD) as rectangles.,”

2 One method of diagramming is to show relationships with a
diamond bisecting the line connecting entitics. An associative
entity, promoting 4 many -to-many relationship, is drawn ax a
rectangle with the diamond inside,

EXAMPLES
Entity Type Insurance ABC Video Manufacturing
Person Policyholder Customer Customer
Object Palicy Video Bill of Lading
Concept Policyholder Services Accounting Department Order
Event Purchase of Policy Rental of Videa Shipment of Goods
Organization State Bureau of Insurance Vendor IRS, OSHA
FIGURE 9-1 Entity Type Examples
Entity ABC Video Human Resources Manufacturing
Fundamental Customer Employee Work Qrder
Attributive Customer Rental History Employee Work History Work Order Detail Items
Assaciative Yendor-Video Employes-lob Histary Work Order tem-Finished Part

FIGURE 9-2 Entity Examples

Definition of Business Area Analysis Terms 331
Number Education Examples Manufacturing Examples
One-te-One 11 Student to Transcript Work Order Detail temn to
Machine/Day/Time Operator
Course Section to
Reom/DayiTime
One-to-Many 1M Caourse to Section Work Order to Work Order
Datail ltem
Transcript to Course
Course to Room/Day/Time Customer Order to Work Order
Students to Major Salesman to Customer
Advisor to Student
Many-to-Marry N:M Sludent to Course Part to Work Order Detail item
Professor to Course Vendor to inventery Part
Professor to Section

FIGURE 9-3 Relationship Cardinality Examples

A relationship is a mutual association between
two or more entities. It is shown as a tinc conncet-
ing the entities. A relationship has cardinality, or
the number of the relationship. Cardinalities may be
one-10-one, one-to-many, or many-to-many (see Fig-
ure 9-3). Cardinality is shown on a diagram by
crows’ feel (o indicatc a ‘many” relationship and a
single line to indicate a singular relalionship.

Refinement of the ERD has two aclivilies: attri-
butes are defined, and the ERD is normalized.
Attributes are named propcrties or characteristics of
an enlity which take on valies, We use the terms
attribute, ficld, or data item, as synonyms. An in-
stance is one occurrence of an atiribute or relation.
For example, an instance of the attribule customer-
ID is the number 2922951,

Normalization is the refinement of data relation-
ships to remove repeating information, partiai key
dependencies, and nonkey dependencics. Normal-
ization can be directly applied to the ERD or can
use 4 tabular method of data analysis. The direct
method proceeds by cxamination of the relation-
ship cardinalities and the attributcs of entities, For
1:x relationships, and for entities with repetitive
information in the entity, we create (or validate)

attributive entitics. For an m:x rclationship, the rela-
tionship is promotcd to crcatc an associative entity.
A synonym for associative entity is relationship
entity. The cardinalities of #1:x are reversed to create
two 1:#7 relationships (see Figure 9-4).

The tabular method is recommended when data
and rclationships are not clearly specified. The tab-
ular method forces explicit definition of all attributes
and their relationships. When these dependencies are
removed, each relation’s data are fully, functionaily
dependent on the primary keys. An example is
shown in Figure 9-5. By removing repeating infor-
mation {first normal form), we create attributive
entities (for 1:z relationships) and associalive enti-
tics (for m:n rebationships). In Figure 9-5, we create
the items from a purchase order as an attributive
entity. By removing partial key (second normal
form), and nonkey (third normal form) dependen-
cies, we create new fundamcntal entities. In the
example, the new fundamental entities relate to
items and vendors.

Upon completion of data modeling, entity stroc-
ture analysis is performed to detcrminc whether
a class structure applies. This analysis evaluates
each entity to determine if the same processcs and

332 CHAPTER 9 Data-Oriented Analysis

Bafore:
Fundamental Entity Fundamental Entity
A \ / B
L Nelelclclo
After:
Assaciative Entily
Created by promoting
Fundamental Entity he A/B relationship Fundamental Entity
A < nB > B
Afiributive Entity / \
Crealed to
accommodate 85 B/C
repealing
information

FIGURE 9-4 Direct Normalization of ERD

attributes apply to all entities of a given type. If con-
tingent data usage applies, then classes are defined
and a data hierarchy depicting the structure is
developed.

Next, business functions are identified as a pre-
lude to process modeling. A business function is a
group of activities that accomplish some complete
job that is within the mission of the enterprise. Busi-
ness functions are ongoing and are not related to
organization structure. Functions describe what
is done in the organization from a high level of
abstraction. Business function analysis is usually
performed at the enterprise level, but can be the first
activity of process modeling, if required. Represen-
tative or generic functions that may be present in a
business are listed below. Some of the functions are
specializations, for instance, public protection is usu-
ally a government function. Specialized functions

included are for banking, retail, governments,
schools, and manufacturing. Other {unctions are
general, like Finance, which cvery organization has.

Accounting Funds Management

Alumni Affairs Funds Transfer

Audit Health and Hospitals

Community Programs Services

Control and Human Resources
Measurement Administration

Customer Relations
Data Administration

Informalion Systems
Judicial Management

Distribution Legal Services
Engineering Support Management
Facilities, Equipment, Manufacturing
and Supplies Marketing
Administration Material Acquisition
Finance (Purchasing)

Definition of Business Area Analysis Terms 333

Unnormalized

Firgt Normal Form

Second Normal Form

Third Normal Ferm Relation Name*

Purchase QOrder
(PO} Number

PO Date

PG Vendor 1D

PO Vendor Mame
PC Vendor Address
PO Ship Terns

PO Paymen Terms
“PO flem Nummber
POl Description
PO Guantity
PO Price
POl Extendad
Price

Purchase Order

PO Wumnber PO Number
PO Date PO Date
FO Vendor ID FO vendor 1D
PO Vendor Narg
PO Vendor Address r———
PO Ship Terms PO Vendor
PO Vendor ID
PO Payment Terms PO Vendor Name:
PO Vendor Address
PO Number PO Ship Terms
FQO Number PO ftern Number PO Payment Terms
PO itern Number POI Quantity
PO Description POI Price
PO Quantity POl Exiended Price
PQI Price PO Item
PO Number
PQI Extended Price PO Itemn Number
POl Guantity
ftem Number POl Price
Crescriplian POI| Extended Price X
Price

ffem Number
Description
Price

Inventory ltem

*X indicates deleted items or relalions. Relations are deleted if they are duplicates, are consolidated if they have identicat
keys or are proper subssets, ar are namead. Attributes are deleted if they are derived by the application. POl Extended

Price is derived by mulliplying PCI Quantity by POI Price.

FIGURE 9-5 Tabular Normalization Example

Operations Public Service
Planning Rescarch and
Product Management Development
Product/Customer Research
Service Sales
Public Aid Scheduling
Public Facilities Service Offering,
Munagenient e.g., Insiruction in
Public Protection a school
Management Student Management

Public Relations

Sample business functions fer ABC Video are
shown in Figure 9-6.

When the functions applicable to application
deveiopment are identified, functional decomposi-
tion is performed. Functional decomposition starts
at the business function level to identify the major
activities of the function, and progresses to identify
the processes and subprocesses for each function
(see Figure 9-6). An activity is some procedure
within a busincss function that can be identified by
its input data and output data, which differ. The

CHAPTER @

Data-Oriented Analysis

ABC Video
Company

i Purchasing
Business

Function

[Rental/Return

Business

Analyze
Business

(

Create Purchase
Orders

Area

Activities

Moritor PC
Receipt

FIGURE 9-¢ ABC Video Business Functions and Activities

activity level must fufly define the function. That is,
the activity level is complete when all possible pro-
cedures performed within the scope of the function
are present in the diagram. Fult definition is required
to ensure complete data, process, impact, and orga-
nization design analysis.

Activity names are nsually of the form verb-
object, where the verb identifies the major transfor-
mation and the object identifies what is transformed.
Exceptions 1o this rule are accepted when a name
is conventionally called by a different form, for
instance, Cash Managemen! is more common usage
than Manage Cash.

Activities are decomposed into their processes.
A business process identifics the details of an
activity, fully defining the steps taken to accomplish
the activity. Again, full definition is required to
ensure completeness of the ensuing analysis. Proce-
dural steps named by processes are repeated and
have definable beginnings and endings. Decompo-
sition continues until the elementary, or atomic, level
of each process is identified. An elementary process
is a procedure that cannot be decomposed further
without making the procedure lose its identity. Thus,

an eicmentary process is the smallest unit of work
users identity.

Figure 9-7 is a sample decomposition showing
processes that define the two purchasing activities
within ABC Video. Don’t forgct that the business
activities and processes in a decomposition fully
define the scope of the parent business function.

Decomposition results are used to develop a
process dependency diagram. A process depen-
dency diagram, like an ERD for data, identifies the
sequence and types of relationships between pro-
cesses. Process relationships describe logical con-
nections that include cardinality, sequence, iteration,
and selection components (see Figure 9-8). Thus, the
process dependency diagram shows the logic of
sequence, iteration, and selection for each process.
The process dependency diagram is then expanded
to include entities and data stores to emulate a data
fiow diagram from process analysis. The result is a
process data flow diagram (PRFD).

Connections between procedural steps in a PDFD
are due to data passing from one step to the next and
causing it to activate. This type of connection is
called a process data trigger. A trigger identifies the

Cefinttion of Business Area Analysis Terms

‘ Purchasing l
Pirchase
Videos

Place
Order
Igentify ltems
& Vendors

Call Vendor to
Werify Availability
and Price

Create and
Mail Crder

File Creer
Copy by Vendar

Maonitor
Order Receipt

{dentify
Late or Problem
Crders

Call Vendor
and Inquire
or Reconcile

Varify Receipis
Against Orders

Send Invoices
o Acgountant

FIGURE 9-7 ABC Video Partial Functional Decomposition of Purchasing

arrival of some data that causes a business process (o
execute. Process data triggers (or just data trig-
gers) identify data that flow from one process to
another to start execution of the receiving process. In
a PDFD, the directed lines between processes signify
a data trigger. In addition, external events can cause
a process to activate. An event trigger significs data
from some business transaction that causes process-
ing 1o fake place. Event triggers arc drawn on the
PDFD by large arrows with words inside the icons to

name the events. For instance, the arrival of a new
video releases list (see Figure 9-9) is an event that
triggers the purchasing process.

Because the components of the process depen-
dency diagram are different from those of a DFD,
the PDFD that results from process dependency
analysis is also different. Several key differences
are important. First, there is a sequence to the pro-
cess data flow, The directed arrows on Figure
9-9 indi