
C HAP T E R 10
__ DATA-

------------------------------~--------.. ----____ ORIENTED ------------------------__________ r----

____ DESIGN~~~~~~~~~~~-

INTRODUCTION ____ _

Data-oriented design uses data as the basis for clus­
tering processes, building databases, and identify­
ing potential distribution of the application. In this
chapter, we continue the discussion of Informa­
tion Engineering as the example of data-oriented
methodology. Since IE has several 'incarnations'
that differ slightly, it is important to note that IE in
this chapter is consistent with the Martin [1992],
Texas Instruments [1988], and Knowledgeware™l
versions.

CONCEPTUAL ________ _
FOUNDATIONS ____ _

Information Engineering is the closest to a complete
methodology of the methods in common use. It bor­
rows from research and practice to build a complete
view of the application and its environment. Struc­
tured programming tenets describe the importance of
limiting program structure, as much as possible, to
selection, iteration, and instruction sequence compo­
nents. 'Go to' statements should be minimized.
Modules should have one entry and one exit. In IE

1 Knowledgeware™ is a product of Knowledgeware, Inc.,
Atlanta, Ga.

design, these tenets are practiced in structuring the
application as well as the' program modules.

Subject area database design is based on theories
of relational database and practice of data design.
Data should be clustered with processes which cre­
ate the data. Those processes determine 'subject
areas' of data. Subject databases are stored in the
same database environment and their processes are
in integrated applications. These topics were dis­
cussed in Chapter 5 and are not repeated here. Dur­
ing analysis, the data entities are normalized and
relations are identified (Chapter 9). Normalized data
is the starting point for physical database design.
Physical database design may automate the normal­
ized relations directly or may denormalize for per­
formance purposes. Also, in organizations with
many using locations and potential for distribution
of data and processes, a strategy for distribution is
defined. These two activities, potential denormaliza­
tion and distribution, are based on practical guide­
lines rather than theory.

From practice, we know that there is more to
implementing an application than designing program
specifications and a database. We need to design
screens, a screen dialogue, provide for unauthorized
and unwanted damage to the data, provide for con­
version from the old to the new method of data stor­
age, design and plan application implementation,
install hardware, design and plan application tests,

391

392 CHAPTER 10 Data-Oriented Design

and develop training programs for users. While all of
these tasks are discussed in some books on IE, these
activities are done regardless of methodology, and to
discuss them as pertaining only to IE would be mis­
leading. For this reason, the topics in this chapter
include screen dialogue design, hardware planning,
and providing for data security, recovery, and audit
controls, in addition to procedure and database
design. Human interface design, conversion, and
training are discussed in Chapter 14; testing is the
subject of Chapter 17.

DEFINITION OF _____ _
INFORMATION _____ _

ENGINEERING _____ _
DESIGN TERMS ____ _

A full list of the activities in IE design is given here;
included are references to chapters in which some
topics are discussed.

1. Design security, recoverability, and audit
controls

2. Design human interface structure

• Develop menu structure
• Define screen dialogue flow

3. Data analysis

• Reconfirm subject area database
definition

• Denormalize to create physical database
design

• Conduct distribution analysis and recom­
mend production data distribution strategy

4. Develop an action diagram and conduct
reusability analysis

5. Plan hardware and software installation and
testing

6. Design conversion from the old to the new
method of data storage (Chapter 14)

7. Design and plan application tests (Chap­
ter 17)

8. Design and plan implementation (Chap­
ter 14)

9. Develop, schedule, and conduct training pro­
grams for users (Chapter 14)

The topics in this chapter are design of data usage,
action diagrams (which are program specs), screen
dialogues, security, recovery, audit controls, and
installation planning. They are discussed in this sec­
tion in the order above, by the amount of work
involved, and their importance to the application.

The first activity in IE design is to confirm design
of the database and determine the optimal data loca­
tion. Invariably, when the details of processing are
mapped to specifications, data usage changes from
that originally envisioned. To confirm database
design, the data is mapped to application processes
in an entity/process (CRUD) matrix and the matrix is
reanalyzed. (See Chapter 9 for a more complete dis­
cussion of entity/process matrices.) The entity/
process matrix (see Figure 10-1) clusters data
together based on processes with data creation
authority. The subject area databases defined by the
clusters are stored in the same database environment.

The second step of database design is to deter­
mine a need to denormalize the data. Recall that nor­
malization is the process of removing anomalies
that would cause unwanted data corruption. Denor­
malizing is the process of designing storage items of
data to achieve performance efficiency (see Figure
10-2). Having normalized the data, you know where
the anomalies are and can design measures to pre­
vent the problems.

The next activity in data analysis is to determine
the location of data when choices are present. A
series of objective matrices are developed and ana­
lyzed. The matrices identify process by location and
data by location and transaction volume. These are
used to develop potential designs for distribution of
data. The application processes and data are both
mapped to locations. Cells of the process/location
matrix contain responsibility information, identify­
ing locations with major and minor involvement (see
Figure 10-3). This information is used to determine
which software would also be required to be distrib­
uted, if distribution is selected.

Two data/location matrices are developed. The
first data/location matrix identifies data function as
either update (i.e., add, change, or delete) or retrieval

Definition of Information Engineering Design Terms 393

Entities = Purchase PO Item
Order

Processes

Create & Mail Order CRUD CRUD

Call Vendor &
Inquire on Order RU RU

Verify Receipts
against Order RU RU

Send Invoices
to Accountant RD RD

File Order Copy
by Vendor R R

Identify Late &
Problem Orders R R

Identify Items
& Vendors

Call Vendor to
Verify Avail/Price

FIGURE 10-1 Example of EntitylProcess Matrix

by location (see Figure 10-4a). The second defines
options for data in each location (Figure 10-4b).
Together these matrices identify options for distrib­
uting data. The options for distributed data are repli­
cation, partitioning, subset partitioning, or federation
(see Figure 10-5). Replication is the copying of the
entire database in two or rriore locations. Vertical
partitioning is the storage of all data for a subset of
the tuples (or records) of a database. Subset parti­
tioning is the storage of a partial set of attributes for
the entire database. Federation is the storage of dif­
ferent types of data in each location, some of which
might be accessible to network users. The selection
of distribution type is determined by the usage of
data at each location.

Then, a transaction volume matrix is developed
to identify volume of transaction traffic by location.
Cells of this matrix contain average number of trans­
actions for each data relation/process per day (see
Figure 10-6). In an active application, hourly or peak
activity period estimates of volume might be pro­
vided. During matrix analysis, the data and pro-

Vendor- Inventory Vendor

Item Item

CRU R R

RU R R

RU R

R R RU

R R CRU

RU RU

cesses are clustered to minimize transmission traffic.
Then formulae are applied to the irtformation to
determine whether the traffic warrants further con­
sideration of distribution.

Finally, subjective reasons for centralizing or for
distributing the application are developed. The sub­
jective arguments ensure that political, organiza­
tional, and nonobjective issues are identified and
considered. Examples of subjective motivations for
centralization/distribution relating to Figures 10-4,
10-5, and 10-6 are in Table 10-1. Recommendations
on what, how, and why to distribute (or centralize)
data are then developed from the matrices and sub­
jective analysis. The recommendations and reason­
ing are presented to user and IS managers to accept
or modify.

After data are designed, the design of the human
interface can begin with a definition of interface
requirements. The hierarchy diagram is used to
determine the structure of selections needed by the
application. A menu structure is a structured dia­
gram translating process alternatives into a hierarchy

394 CHAPTER 10 Data-Oriented Design

Unnormalized First Normal Form Second Normal Form Third Normal Form DeRelation

Order Number Order Number Qrder Number Order

Order Date Order Date Order Date

Order Ship Terms Order Ship Terms Order Ship Terms

Order Payment Order Payment Order Payment

Terms Terms Terms

Customer Number Customer Number .. Customer Number

Customer Name Customer Name .-

Customer Address Customer Address Customer

Customer Number

*Item Number Customer Name

Item Description Customer Address

Item Quantity Order Number Qrder Number Order Item

Item Price Item Number Item Number

Item Extended Price Item Description Item Description ..
Item Quantity Item Quantity

Item Price Item Extended Price X

Item Extended Price

Item Number .. Inv. Item

Description

Price

Denormalized Design for Order

ORDER Order Number
Order Date
Order Ship Terms
Order Payment Terms
Customer Number
Customer Name
Customer Address

Order Item Order Number
Item Number
Customer Number
Customer Name
Item Description
Item Quantity
Item Price
Item Extended Price

FIGURE 10-2 Example of Denormalized Data for an Order

Definition of Information Engineering Design Terms 395

Function

Purchasing

Marketing

Customer Service

Sales

Product Development

Research & Dev.

Manufacturing

Legend:

X-Major Involvement

\-Minor Involvement

Location A

x

X

X

Location B

x
X

X

X

X

Location C

X

Location D Location E

X

X

FIGURE 10-3 Example of Process/Location Matrix

of options for the automated application (see Figure
10-7). In general, we plan one menu entry for each
process hierarchy diagram entry between the top and
bottom levels. One level of menus corresponds to
one level in the process hierarchy diagram. At the

Data Usage by Location Matrix

Subject Data Location A Location B

Prospects AII-UR AII-UR

Customer AII-UR AII-UR

Customer Orders AII-UR Subset-Own
Products-UR

Customer Order AII-R AII-R
History

Manufactu ring Subset- Subset-

lowest level of the process hierarchy, a process cor­
responds to either a program or module. Screens at
the lowest level are determined by estimating exe­
cute units. These functional screens may not be
final in menu structure definition because execute

Location C Location D Location E

AII-R AII-R

AII-R AII-R

Subset- AII-UR
Plans own products-R own products-R own site-UR

Manufacturing Subset- Subset- Subset- AII-UR
Goods in Process own products-R own products-R own site-UR

Manufacturing Subset- Subset- AII-R Subset- AII-UR
Inventory own products-R own products-R own site-UR

U = Update, R = Retrieve

FIGURE 10-40 Example of Data Matrices by Location

396 CHAPTER 10 Data-Oriented Design

Distribution Alternatives by Location

Subject Data Location A Location B Location C Location D Location E

Prospects Replicate- Replicate
Central Copy

Customer Replicate- Replicate
Central Copy

Customer Orders Central Copy- Vertical Access Access
A data Partition by central copy central copy

Product with delay with delay

Customer Order Replicate Replicate Access
History Central Copy or access central copy

central copy with delay

with delay

Manufacturing Replicate Replicate Subset- Subset-
Plans or access or access own site own site

central copies central copies with delayed
with delay with delay access to D

Manufacturing Access D Access D Subset- Subset-
Goods in Process and E and E own site own site

Databases Databases with delayed
accesstoD

Manufacturing Access D Access D Subset- Subset-
Inventory and E and E own site own site

Databases Databases with delayed
access to D

FIGURE lO-4b Example of Data Matrices by Location

unit design is usually a later activity. Once the menu
structure is defined, it is given to the human inter­
face designer(s) for use during screen design (Chap­
ter 14).

The structure is then analyzed further to deter­
mine the allowable movement between the options
on the menu structure. The dialogue flow diagram
documents allowable movement between entries on
the menu structure diagram (see Figure 10-8). On the
diagram, rows correspond to screens and columns
correspond to allowable movements. For instance, in
the menu structure example (Figure 10-7), Customer
Maintenance has four subprocesses. A dialogue flow
diagram shows how Customer Maintenance is C\.cti­
vated from the main menu (or elsewhere) and the

options for movement from that level. From the Cus­
tomer Maintenance menu, the options are to move to
the main menu or to one of the four subprocesses.
The dialogue flow diagram is used by the designers
in developing program specifications, by the human
interface designer(s) in defining screens, and by
testers in developing interactive test dialogues.

Next, procedure design begins with analysis of
the process hierarchy and process data flow dia­
grams developed during IE analysis (Chapter 9).
Remember, in analysis, we developed one process
data flow diagram (PDFD) for each activity. Now
each PDFD is converted into an action diagram. An
action diagram shows procedural structure and pro­
cessing details suitable for automated code genera-

Definition of Information Engineering Design Terms 397

Replication of Data-Data are copied in more than one location.

Location A

~
~

Location B

~
L:J

Vertical Data Partitioning-Complete 'records' or tuples of data are stored with different
data in more than one location.

Location A

~
~

Location B

~
~

Horizontal (or Subset) Data Partitioning-Partial 'records' or tuples of data are stored
in more than one location.

Location A

A1,A3,
A6, B1,
C2,C4,
G,H,I

Location B

A2,A4,
A5, B2,
83, C1,
D,E,F

Data Federation-Different data are completely stored in more than one location.
Some data may be accessed by remote sites.

Location A

A,C,D,F
B - local only,
E - local only

FIGURE 10-5 Data Distribution Alternatives

tion. An action diagram is drawn with different types
of bracket structures to show the hierarchy, rela­
tionships, and structured code components of all
processes.

The first-cut action diagram translates the PDFD
into gross procedural structures (see Figure 10-9).
Then, using detailed knowledge obtained during the
information gathering process, the details of each
procedure are added to the diagram to develop pro­
gram specifications (see Figure 10-10). These pro-

Location 8

Q,R,S,T
U - local only,
V - local only

gram specifications may then be packaged into mod­
ules that perform one function. Data entities are
added to the diagram at the level they are accessed
(see Figure 10-11). Progressively more detail about
data usage is provided about data attributes. Arrows
are attached to show reading and writing of data (see
Figure 10-12).

When the details are completely specified, the
action diagram is mapped to procedural templates
to determine the extent to which reusable modules

398 CHAPTER 10 Data-Oriented Design

Subject Database

Location/Function

A

Customer Service

Sales

Marketing

B

Customer Service

Sales

Marketing

D

Manufacturing

E

Manufacturing

Prospect

50 R
20 U

15 R

25 R
20 U

20 R

Customer

100 R
20 U

50 R
30 U

5R

250 R
50 U

25 R
5U

10 R

Customer
Order

250 R
400 U

150 R
50 U

10 R

250 R
400 U

10 R
100 U

10 R

Legend: U = Create, Update or Delete; R = Retrieve

Customer
History

5R

50 R

50 R

50 R

70 R

50 R

Mftg.
Plan

2R

2R

2R

250 R

2R

50 R
5U

100 R
15 U

Mftg.
WIP

2R

2R

250 R

2R

2R

50 R
250 U

200 R
2,500 U

Mftg.
Inven.

15 R

1 R

250 R

15 R

5R

500 R
2,000 U

500 R
25,000 U

FIGURE 10-6 Example of Transaction Volume Matrix

can be used in the application, and the changes to the
action diagrams required to define modules for
reuse. A procedural template is a general, fill-in­
the-blanks guide for completing a frequently per­
formed process. For instance, error processing and
screen processing can be defined as reusable tem­
plates (see Figure 10-13). A data template is a partial
definition of an ERD or database that is consistent
within a user community. For example, the insurance
industry has common data requirements for policy
holders, third party insurance carriers, and policy
information; most companies have similar account­
ing data needs, and so on. To be a candidate for
template definition, a process must do exactly the
same actions whenever it is invoked, and data must
be consistent across users.

Mter reusability analysis, the action diagram set
is finalized and used to generate code. If the appli-

cation is specified manually, the action diagrams are
given as program specifications to programmers who
begin coding. If the application uses a CASE tool,
automatic code generation is possible. A code gen­
erator is a program that reads specifications and cre­
ates code in some target language, such as Cobol or
C. If the application uses a code generator, the action
diagram contains the symbols and procedural detail
specific to the code generation software. If the appli­
cation uses a 4GL, the action diagram might con­
tain actual code. If manual programming uses a 3GL
or lower, the action diagram contains pseudo-code
consisting of structured programming constructs.

The next activity in IE design is to develop
security plans, recovery procedures, and audit con­
trols for the application. Each of these designs re­
strict the application to performing its activities in
prescribed ways. The goal of security plans is to

Definition of Information Engineering Design Terms 399

TABLE 10-1 Example of Subjective Reasons for Centralization and Distribution

General
Measure-Argument

D

D

d

Geographic distribution by function by product makes centralization difficult

Centralized mainframe in a sixth location is not close to distributed sites, nor interested in serving their
needs

Little product overlap between sites A and B

Location A
Measure-Argument

d

d

C

General Manager in Location A-smallest needs

GM wants 'what is best' for division

Little technical expertise in the location; would increase travel expense required to support hardware/
software

Location B
Measure-Argument

C

C

C

Customer service needs fast response to fulfill corporate objectives (90% of requests serviced within one
phone call, less than three minutes)

Most application expertise in division is located here

IS manager, located here, wants the applications and data under his control

Location C
Measure-Argument

d

d

Actions mostly independent of other sites

Delays in retrieval of information could be tolerated

Location D
Measure-Argument

d

d

Historically, location controls its own hardware/software

Hardware/software not currently compatible with A, B, or C

Location E
Measure-Argument

d

d

Legend:

Historically, location controls its own hardware/software

Historically, software has been successfully developed/bought as joint activity with IS group in Site B

D/e = Strong argument for Distribution/Centralization
d/e = Weak argument for distribution!centralization

400 CHAPTER lODato-Oriented Design

1. Order Fulfillment
1. Order Entry
2. Order Change
3. Order Delete
4. Order Inquiry

[
2. Inventory Allocation

Customer

1. Create Allocation
2. Change Allocation
3. Inquire on Allocation [

Service -1----
3. Customer Maintenance

[

1. Customer Create
2. Customer Change
3. Customer Delete
4. Customer Inquiry

4. Management Reports

§
1. Customer Reports
2. Inventory Reports
3. Orders by Customer
4. Volume by Customer
5. Multifile Inquiry
6. Sal Inquiry

FIGURE 10-7 Menu Structure Example

protect corporate IT assets against corruption, illegal
or unwanted access, damage, or theft. Security plans
can address physical plant, data, or application
assets, all by restricting access in some way. Physi­
cal security deals with access to computers, LAN
servers, pes, disk drives, cables, and other compo-

- Purchasing Application

- Analyze Business

- Create Purchase Order

- Monitor Purchase Order

- End Purchasing

FIGURE 10-9 Action Diagram Example

nents of the network tying computer devices to­
gether. Data security restricts access to and func­
tions against data (e.g., read, write, or read/write).
Application security restricts program code from
access and modification by unauthorized users.
Examples of the results of security precautions are
locking of equipment, requirement of user pass­
words, or assignment of a software librarian for pro­
gram changes.

Recovery procedures define the method of
restoring prior versions of a database or application
software after a problem has destroyed some or all of

~:~:o::::e:iC~ ~ = f ~ -= - = f- = -
:::::9 -----------_1 -- ---- -f---------------------~
Create Order -

Change Order _]] j
Delete Order - - - - - - - = = - - - - -]] - -= -:
Order Inquiry ___________ ,_ _ _ _ _] _ ~

FIGURE 10-8 Dialogue Flow Diagram Example

,...-- Purchasing

I-- Analyze Business

I-- Create Purchase Order

(

Do Until All Items Are Identified

Identify Item and Vendor

EndDo
Sort by Vendor, Item

~ Do While There Are Items to Be Processed

r- I F First-Record

Set Last-Vendor = Vendor

I- ELSE IF Vendor = Last-Vendor

Get Price

I- ELSE

Create Order

Mail Order

File by Vendor

'- ENDIF

t. ENDDO

_ End Purchasing
Monitor Purchase Order

-

FIGURE 10-10 Action Diagram with Create
Purchase Order Process Detail

it. Recovery is from a copy of the item. Backup is
the process of making extra copies of data to ensure
recoverability.· Disasters considered in the plan in­
clude user error, hacker change, software failure,
DBMS failure, hardware failure, and location fail­
ure. Recovery is the process of restoring a previous
version of data (or software) from a backup copy to
active use following some damage to, or loss of, the
previously active coPy. The backup/recovery strat­
egy should be designed to provide for the six types
of errors above. Several backup options add require-

Information Engineering Design 401

ments to program design that need to be accom­
modated.

Next, audit controls are designed to prove trans­
action processing in compliance with legal, fidu­
ciary, or stakeholder responsibilities. Audit controls
usually entail the recording of day, time, person, and
function for all access and modification to data in the
application. In addition, special totals, transaction
traces, or other special requirements might be
applied to provide process audit controls.

Last, hardware installation is planned and imple­
mented, if required for the application. Again, there
is no theory or research about hardware installation,
but long practice has given us guidelines on the
activities and their timing.

INFORMATION _____ _
ENGINEERING _____ _
DESIGN _______ _

In this section, we discuss each activity in IE design
in detail, and relate them to the ABC Video rental
application. IE design topics in this section, in order
of their occurrence in the application development
process, include development of the following:

• data use and distribution analysis
• security, recovery, and audit controls
• action diagrams
• menu structure and dialogue flow
• hardware and software installation and testing

plans

Analyze Data Use and
Distribution
Guidelines for Data Use and Distribution
Analysis

The two activities in this section precede physical
database design which is assumed to be performed
by a DBA. First, data usage analysis is per­
formed to confirm the logical database design. Then
the potential for distributing data throughout
the organization is analyzed. The result is a strategy

402 CHAPTER 10 Data-Oriented Design

....--- Purchasing

f-- Analyze Business

r-- Create Purchase Order

[

Do Until All Items Are Identified -

Identify Item and Vendor

EndDo __________ ---..J

New Releases
Vendor
Purchase Order

Sort by Vendor, Item

~ Do While There Are Items to Be Processed -----......,

r- IF First-Record

Set Last-Vendor = Vendor

r- ELSE IF Vendor= Last-Vendor

Get Price

- ELSE

Create Order

Mail Order

File by Vendor

-ENDIF

L ENDDO

I-- (Monitor Purchase Order

L...--- End Purchasing

FIGURE 10-11 Action Diagram with Entities

for data and software location that best fits user
needs.

The entity/process (CRUD) matrix from IE
analysis is reanalyzed and mapped to the completed
action diagram. Each process is identified on the
action diagram with its associated data items and
the related entity. Recall that the clustering of entities
and processes on the matrix is primarily based on
which processes have create responsibility for the
data. The entities and processes are arranged into a

new entity/process matrix which is compared to
the one developed during analysis. If the definition
of subject area databases does not change, the distri­
bution analysis can begin. If the definition of sub­
ject area databases does change, the logical definition
of the databases is redone as discussed in Chapter 9.

The second step to data analysis is to determine
the potential for data distribution. Distribution analy­
sis uses three matrices as the objective basis for
determining whether data should be distributed.

Purchasing

Analyze Business

Information Engineering Design 403

New Releases
Vendor Name
Video Name

Create Purchase Order ____________ =-_ New Releases

[

Do Until All items Are Identified

Identify Item and Vendor

EndDo

Sort by Vendor, Item
Vendor ID
ItemlD

Vendor
Purchase Order

Do While There Are Items to Be Processed
./ Vendo, riD

IF First-Record ~

Set Last-Vendor = Vendor (
Vendor ID

ELSE IF Vendor = Last-Vendor Item ID
__ ItemPrice

Get Price

ELSE

Create Order------1

Mail Order

Vendor ID
Vendor Name
Vendor Address
Order Terms
Item ID
Item Qty
Item Description

File by Vendor Item Price

~purchase Order ENDIF

ENDDO

Monitor Purchase Order

End Purchasing

FIGURE 10-12 Action Diagram with Data Detail

First, a location/process matrix is developed to iden­
tify major and minor performance of processes in the
application (see Figure 10-14). This location/process
matrix determines which software is needed at each
location to support the functions. The informa­
tion needed to complete the matrix is provided by
the users.

Next, a data distribution by location matrix is
developed to show creation and retrieval needs by
location (see Figure 10-15). This datal1ocation ma-

trix is used to determine the potential age of data
required by each location. For instance, retrieval data
might be down-loaded from a centralized location
each day at the close of business, rather than main­
tained at the remote sites. Created data must be
available for creation, and therefore, up-to-date at
the creating sites. The information needed to com­
plete the matrix is provided partly from the entity/
process matrix from the first data analysis, and partly
by the users.

404 CHAPTER 10 Data-Oriented Design

Call ErrMsg ErrorFieldlD

Using ErrorFieldlD from Sender,
Locate ErrorMessageActions using

ErrorFieldl D.
If Highlight, Highlight ErrorField.
If Blink, Blink ErrorField.
If ColorChange,

Get NewColor
Change ErrorField to NewColor.

Display ErrorMessage in line 24.
Get User ErrorResponse.
Reset ErrorField to NormalColor,

Lowlntensity, and NonBlink.
Return ErrorResponse to Sender.

Return ErrorResponse

FIGURE 10-13 Procedure Template for Error Message Processing

The next matrix shows data usage by location
(see Figure 10-16). Recall from above that data can
be centralized, vertically or horizontally partitioned,
or federated. For instance, a bank branch might
create data about customers, but it only accesses
information about its own customers on a regular

basis. So, for most processing, a vertical partition
of the customer database, the branch's customers,
could be accessible locally in the branch to speed
processing.

Function

Purchasing

Marketing

Customer Service

Sales

Product Development

Research & Dev.

Manufacturing

Legend:

X-Major Involvement

\-Minor Involvement

Location A

x

X

X

Location B

x
X

X

X

X

The last objective matrix summarizes transaction
volume by process by location (from the process/

Location C Location D Location E

X X

X

FIGURE 10-14 Process by Location Matrix Example

Information Engineering Design 405

Subject Data Location A Location B Location C Location D Location E

Prospects AII-UR AII-UR

Customer AII-UR AII-UR

Customer Orders AII-UR Subset-Own AII-R AII-R
Products-UR

Customer Order AII-R AII-R AII-R AII-R
History

Manufacturing Subset- Subset- Subset- AII-UR
Plans own products-R own products-R own site-UR

Manufacturing Subset- Subset- Subset- AII-UR
Goods in Process own products-R own products-R own site-UR

Manufacturing Subset- Subset- AII-R Subset- AII-UR
Inventory own products-R own products-R own site-UR

U = Update, R = Retrieve

FIGURE 10-15 Data Usage by Location Matrix Example

location table) against each subject database from
the data analysis. Two daily transaction volume
estimates for each process and location are devel­
oped (see Figure 10-17). The first estimate is for
transactions that create or update the database. The
second estimate is for read-only retrieval processing.
Also notice that if no database access is performed
by a process, no entry is made. This increases the
readability of each matrix.

The analysis of this data is to first identify the
location with the highest total transaction count for
each database. The example shows a thick box
around each such location (see Figure 10-18). If the
application were distributed, with centralization of
subject databases in one location, the boxes would
identify the most likely location for each database.
All other transactions, outside the boxes, represent
transmission traffic. When the transmission traffic is
a high percentage of the total traffic, say over 40%,
different types of replication, federation, and parti­
tioning are tried. To analyze the data, first box the
transaction numbers for the site(s) representing 50%
or more of the total processing. If there is one site
boxed in a column, that identifies a centralized data­
base at the location corresponding to the box. We
have two of these in the example (Figure 10-18)-

the Work in Process and Inventory databases at loca­
tion E. The initial recommendation would be to
centralize this data at E. Even though D's volume
is significantly less than E's, the data usage table
shows that each site accesses only its own data, so
the option to vertically partition data and provide
'home ownership' could be used to support the busi­
ness needs.

The other databases all have access competition
from two sites (Figure 10-18). Two locations, A and
B, have fairly even usage of the Prospect and Cus­
tomer, Customer Order, and Customer History data.
The options from the Data Usage table show that
Replication would be the distributed recommenda­
tion since the sites both access all data. Customer
History processing differs from the other databases
in that it is all read-only and it has a much lower vol­
ume than the others. Therefore, it could be central­
ized at either site with an access delay at the other
site for retrievals. This option might be chosen if
there are hardware configuration differences that
favor centralization.

Locations Band E compete for the Manufactur­
ing Plan data (Figure 10-18). Location B only
retrieves the data, while the location E volume
of updates is low. The database could either be

406 CHAPTER lODato-Oriented Design

Subject Data Location A Location B Location C Location D Location E

Prospects Replicate or Replicate
Central Copy

Customer Replicate or Replicate
Central Copy

Customer Orders Replicate or Horizontal Access Access
Central Copy Partition by central copy central copy

Product with delay with delay

Customer Order Replicate or Replicate Access
History Central Copy or access central copy

central copy with delay
with delay

Manufacturing Replicate Replicate Subset- Central Copy
Plans or access or access own site or Subset-

central copies central copies own site
with delay with delay with delayed

access to D

Manufacturing Access D Access D Subset- Subset-
Goods in Process and E and E own site own site

Databases Databases with delayed
access to D

Manufacturing Access D Access D Subset- Subset-
Inventory and E and E own site own site

Databases Databases with delayed
access to D

FIGURE 10-16 Data Distribution by Location Matrix

centralized at B to provide fast query access, with
delayed access by E, or, if politics are involved, the
data could be centralized at site E, the owner, with
delayed retrieval by B.

The second part of the analysis is to compute the
ratio of data retrieval transactions (DR) to data
update transactions (Du). If the ratio is greater than
one less than the number of locations (L) (or nodes
in the network), distribution should be considered
(see Table 10-2). In the example, the ratio clearly
favors centralization of data (Table 10-2). Keep in
mind that centralization here means that each data­
base is stored at one location. It does not mean that
the databases are all at the same location.

If a delay can be introduced for retrieval process­
ing, then the ratio changes. It becomes much easier

to argue for distribution. Distribution should be con­
sidered when retrieval volume is less than the ratio
of locations to the delay (D). The delay is for update
transactions which are now transmitted in bulk once
per period to each other location. In the example,
with even a 15-minute delay, the numbers over­
whelmingly favor distribution. The rationale for
these ratios is given in Table 10-3.

This discussion about distribution is important
because it highlights an ethical problem in software
engineering. The numbers can be made to argue for
distribution regardless of transaction activity. If the
transaction ratio of retrievals to updates is large, then
the no-delay argument is more likely to favor distri­
bution. If the retrieval to update ratio is less than one,
the delay argument is likely to favor centralization.

As an ethical person, you are bound to tell the client
about all computations and how the formulae can
make either argument.

Last, a subjective list of reasons for and against
centralization and distribution is developed for
the organization. The exact topic headings for
this list are tailored to the company and application
environment.

Critical data should be managed centrally
Data is/is not critical to corporation/business

unit
Most data can/cannot be stored locally/

centrally

Information Engineering Design 407

Needs/does not need specific DBMS
Requires/does not require larger machine than

local sites have
Data ownership is/is not an issue
Data replication needed in one/many locations
Unique data/application in one location
Data affects/does not affect central corporate

management
Fast response time important/not important
High availability important/not important
Local staff skilled/unskilled with computers
Application/data security is/is not vital to

organization/business unit
Centralized operations is/is not at capacity

Subject Database

Customer Customer Mftg. Mftg. Mftg.
Location/Function Prospect Customer Order History Plan WIP Inven.

A

Customer Service 100 R 250 R 5R 2R 2R
20 U 400 U

Sales 50 R 50 R 150 R 50 R 2R 2R 15 R
20 U 30 U 50 U

Marketing 15 R 5R 10 R 50 R 2R 1 R

B

Customer Service 250 R 250 R 50 R 250 R 250 R 250 R
50 U 400 U

Sales 25 R 25 R 10 R 70 R 2R 2R 15 R
20 U 5U 100 U

Marketing 20 R 10 R 10 R 50 R 2R 5R

D

Manufacturing 50R 50 R 500 R
5U 250 U 2,000 U

E

Manufacturing 100 R 200 R 500 R
15 U 2,500 U 25,000 U

Legend:

U = Create, Update or Delete

R = Retrieve

FIGURE 10-17 Summary Transaction Volume Matrix

408 CHAPTER 10 Data-Oriented Design

Subject Database

Location/Fu nction Prospect

A

Customer Service

Sales 50 R
20 U

Marketing 15 R

B

Customer Service

Sales 25 R
20 U

Marketing 20 R

D

Manufacturing

E

Manufacturing

Legend:

U = Create, Update, or Delete

R = Retrieve

Customer

100 R
20 U

50 R
30 U

5R

250 R
50 U

25 R

5U

10 R

Customer
Order

250 R
400 U

150 R
50 U

10 R

250 R
400 U

10 R
100 U

10 R

Customer
History

5R

50 R

50 R

50 R

70 R

50 R

Mftg.
Plan

2R

2R

2R

250 R

2R

50 R
5U

100 R
15 U

Mftg.
WIP

2R

2R

250 R

2R

2R

50 R
250 U

200 R
2,500 U

Mftg.
Inven.

15 R

1 R

250 R

15 R

5R

500 R
2,000 U

500 R
25,000 U

FIGURE 10-18 Analysis of Summary Transaction Volume Matrix

Down-loading of yesterday's data would/would
not work in local sites

Updates with delay would/would not work in
this application environment

Partitioning of data would/would not work in
supporting this application

Replication of data would/would not work in
supporting this application

Data integrity is/is not paramount to the
application

Disaster recovery protection is/is not vital to the
application

Operators are/are not at remote sites

Each reason is rated as weak or strong justification of
its position. The purpose of list creation is to sur­
face and attempt to objectify objections and argu­
ments from each stakeholder viewpoint regarding
distribution of data in the application. An easy analy­
sis is to count the capital and small letters of each
type, and compare them. A more elaborate analysis
might entail giving a weight to each item and devel­
oping a weighted ranking of the central/distributed
positions. If the results of this analysis support the
objective measures and results, a compelling justifi­
cation for the result can be developed and presented
to user management for approval. If the subjective

TABLE 10-2 Distribution Ratio Fonnulae

The breakeven point for distribution occurs when

DR/Du > N -1.

If the transaction ratio is greater than N - 1, distribute
data.

An alternative is to allow a time delay for update transac­
tions with all data replicated at all locations in a network.
Then only updates generate network traffic. The break­
even point for distribution occurs with this scenario when

Du < N/TimeDelay or Du * TimeDelay < N

If the number of changes is less than the number of nodes
divided by the time delay, distribution is favored.

Legend:

DR = Number of data retrieval transactions

Du = Number of data update transactions

N = Number of network nodes

D = Total number of data transactions (DR + Du)

Adapted from Martin (1990), p. 360.

analysis contradicts the objective measures, the user
manager/champion might have to do some political
maneuvering to obtain the desired result. Of course,
if the champion is against the recommendation,
the numbers in the traffic table still are useful in
determining the size and speed of the machine and
telecommunications lines required to service the
application's data needs.

ABC Video Example Data Use
Distribution and Analysis

ABC's one location simplifies the choices for this
analysis. Centralization of data and processes is the
only possible choice. For the record, a table of trans­
action volumes is presented in Figure 10-19.

A secondary issue, if not already decided, is hard­
ware selection. ABC could use a multiuser mini­
computer or a LAN. This analysis, too, is simple
because ABC is a small company without a high vol­
ume of processing. A LAN is cheaper, more easily

Information Engineering Design 409

maintained, more easily staffed, and less costly {or
incremental upgrades. Therefore, a LAN is the
choice. Most multiuser mini-computers allow eight
units without major expenditures for an additional
I/O controller board. Mini-computers tend to have
proprietary operating systems and use packages
that tie the user to a given vendor. The strength of

TABLE 10-3 Rationale for Distribution
Ratios

If T is the number of traffic units per hour (i.e., transac­
tions), and if all data is centralized at one location (not
necessarily the same), then the total traffic units per hours
is

Tcentralized = (DR + Du) * (N - l)/N

Then, if all data is decentralized (i.e., fully replicated at
all user locations), only update transactions generate net­
work traffic, and

T distributed = Du * (N - 1)

Fully replicated, decentralized data generates less traffic
than centralization if

T centralized > T distributed, or

(DR + Du) * (N -1)/N > DU * (N -1)

This reduces to DR I Du > N -1. This formula means that
when the ratio of retrievals to changes (DR I Du = N - 1)
is greater than N - 1, favor distribution. When the ratio is
equal to N - 1, either choice is acceptable from a network
point of view. When the ratio is less than N - 1, favor
centralization.

If changes can be applied with a delay, the equations
change. Then the breakeven point occurs when

DR < N/TimeDelay

The greater the delay, the more desirable a distributed
strategy can be made to appear.

Legend:

DR = Number of data retrieval transactions

Du = Number of data update transactions

N = Number of network nodes

D = Total number of data transactions (DR + Du)

Adapted from Martin (1990), pp. 360-361.

410 CHAPTER lODato-Oriented Design

Subject Database

Customer Video
Location/Function Customer Video Item History History EOD Archive

Dunwoody Village
Rent/Return 500 R 500 R 250 R 500 R 500 R

15 U 5U 400 U 500 U 500 U

Video 20 R 150 R
Maintenance 5U 50 U

Customer 5R
Maintenance 5U

Other 15,000 U/ 1,000 U 15,000 U/
Once/Mo Once/Mo

FIGURE 10-19 ABC Transaction Volume Matrix

multiuser minis is in their added horsepower that
allows them to support applications with a high vol­
ume of transactions (in the millions per day). A
multiuser mini is not recommended here because, for
the money, it would be analogous to buying a new
Porsche 911 Targa when a used Hyundai would do
just fine. To discuss configuration of the LAN, we
move to the next section on hardware and software
installation.

Define Security, Recovery, and
Audit Controls
Guidelines for Security, Recovery, and
Audit Control Planning

The three issues in this section-security, recovery,
and controls-all are increasingly important in soft­
ware engineering. The threat of data compromise
from casual, illegal acts, such as viruses, are real and
growing. These topics each address a different per­
spective of data integrity to provide a total solution
for a given application. Security is preventive,
recovery is curative, and controls prove the other
two. Having one set of plans, say for security, with­
out the other two is not sufficient to guard against

compromise of data or programs. Trusting individu­
als' ethical senses to guide them in not hurting your
company's applications simply ignores the reality
of today's world. Morally, not having planned for
attempts to compromise data and programs, you, the
SE, are guilty of ethical passivity that implicitly war­
rants the compromiser's actions. Therefore, design
of security, recovery, and controls should become
an integral activity of the design of any application.

The major argument against security, recovery,
and audit controls is cost, which factors in all deci­
sions about these issues. The constant trade-off is
between the probability of an event and the cost of
minimizing its probability. With unlimited funds,
most computer systems, wherever they are located,
can be made reasonably secure. However, most com­
panies do not have, nor do they want to spend,
unlimited money on probabilities. The trade-off
becomes one of proactive security and prevention
versus reactive recovery and audit controls. Audit
controls, if developed as part of analysis and design,
have a minimal cost. Recoverability has on-going
costs of making copies and of off-site storage. Each
type of security has a cost associated with it. Keep
the cost issues in mind during this discussion, and try
to weigh how you might balance the three methods
of providing for ABC's application integrity.

Information Engineering Design 411

Security plans define guidelines for who should does not use chemicals near computer
have access to what data and for what purpose. equipment.
Access can be restricted to hardware, software, and 4. Determine the capability of the facility to
data. There are few specific guidelines for limiting withstand natural hazards such as earth-
access since each application and its context are dif- quakes, high winds, and storms. Evaluate
ferent. Those guidelines are listed here: the facility's water damage protection

and the facility's bomb threat reaction
1. Determine the vulnerability of the physical procedures.

facility to fire. Review combustibility of con- Design the facility without external win-
struction. Determine adjacent, overhead, and dows and with construction to withstand
underfloor fire hazards. Determine the status most threats. To minimize bomb and terrorist
of current fire detection devices, alarms, sup- threats, remove identifying signs, place
pression equipment, emergency power equipment in rooms without windows, and
switches, extinguishers, sprinklers, and do not share facilities. To minimize possible
smoke detectors. Determine the extent of storm damage, do not place the facility in a
fire-related training. If the facility is shared, flood zone or on a fault line.
evaluate the risk of fire from other tenants. 5. Evaluate external perimeter access controls

Plan·for fire prevention and minimize fire in terms of varied requirements for different
threats by using overhead sprinklers, C02, or times of day, week, and year. Determine
halon. Develop fire drills and fire contin- controls over incoming and outgoing materi-
gency plans. If no emergency fire plans exist, also Evaluate access authorization rules,
develop one, reviewing it with the local fire identification criteria, and physical access
department, and practicing the procedures. controls.

2. Consider electrical/power facilities. Review Plan the security system to include
electrical routing and distribution of power. perimeter lights, authorization cards, physical
Review the means of measuring voltage and security access, etc. as required to minimize
frequency on a steady-state or transient basis. the potential from these threats. Establish
Determine whether operators know how to procedures for accepting, shipping, and dis-
measure electrical power and can determine posing of goods and materials. For instance,
both normal and abnormal states. Define shred confidential reports before disposal.
electrical and power requirements for the Only accept goods for which a purchase
new application hardware and software. order is available.
Determine power sufficiency for the comput- 6. Evaluate the reliability and potential damage
ing environment envisioned. from everyday use of terminals and remote

Correct any deficiencies before any equip- equipment from unauthorized employees.
ment is delivered. For instance, install a Plan physical locking of equipment,
universal po~er supply (UPS) if warranted backup copies of data, reports, etc. to mini-
by frequent power fluctuations or other mize potential threats. Design remote equip-
vulnerabilities. ment to minimize the threat of down-loaded

3. Review air-conditioning systems and deter- data from the central database except by
mine environmental monitoring and control authorized users. Usually this is done by hav-
mechanisms. Evaluate the 'housekeeping' ing PCs without any disk drives as terminal
functions of the maintenance staff. devices.

Correct any deficiencies before any equip- 7. Evaluate the potential damage from unautho-
ment is delivered. For instance, make sure rized access to data and programs.
the maintenance staff cleans stairwells and Protect programs and data against unau-
closets, uses fireproof waste containers, and thorized alteration and access.

412 CHAPTER 10 Data-Oriented Design

8. Evaluate the potential damage to the data­
base from unwitting errors of authorized
employees.

Design the application to minimize acci­
dental errors and to be fault tolerant (i.e.,
recovers from any casual errors).

In general, we consider internal and external physi­
cal environment, plus adequacy of data and program
access controls. Security evaluation is a common
enough event in many organizations that check­
lists of items for security review are available.3

An example of general topics in such checklists
follows:

Physical Environment
Fire fighting procedures
Housekeeping and construction
Emergency exits
Portable fire extinguisher location and

accessibility
Smoke detectors located above, under, and in

middle of floor areas
Automatic fire suppression system

Electrical Power
Power adequacy and monitoring
Inspection, maintenance, safety
Redundancy and backup
Uninterruptible power supply
Personnel training

Environment
Air-conditioning and humidity control

systems
Lighting
Monitoring and control
Housekeeping

Computer Facility Protection
Building construction and location
Water damage exposure
Protection from damage or tampering with

building support facilities
Building aperture protection
Bomb threat and civil disorder

3 Two IBM-user organizations, GUIDE and SHARE, both have
active disaster recovery and security control groups that issue
guidelines, checklists, and tutorials on the topic.

Physical Access
Asset vulnerability
Controls addressing accessibility

Perimeter
Building
Sensitive offices
Media storage
Computer area
Computer terminal equipment
Computer and telecommunications

cable

An example of a detailed checklist for building
access is provided next.

Facility type: Mainframe, LAN, PC, RJE,
Remote, Communications
1. Are entrances controlled by
__ locking devices
__ guard force
__ automated card-key system

anti-intrusion devices
__ sign-in/out logs
__ photo badge system

closed circuit TV
other ___________ _

2. Are controls in effect 24 hours per day? If
not, why?

3. Are unguarded doors
__ kept locked (Good)
__ key-controlled (Better with above)
__ alarmed (Best with both of above)

4. If guard force, is it
__ trained (Good)
__ exercised (Better)

armed
5. Are visitors required to

__ sign in and out
be escorted

__ wear distinctive badges
__ undergo package inspection

6. If building is shared, has security been
__ discussed (Good)
__ coordinated (Better)
__ formalized (Best)

7. Sensitive office areas, media storage, and
computer areas

__ Does access authority for each area
require management review?

Is access controlled by
__ locking devices
__ guard force
__ automated card-key system

anti-intrusion devices
__ sign-in/out logs
__ photo badge system

closed circuit TV
other ___________ _

__ Are unique badges required?
__ Do employees challenge unidentified

strangers?
8. Control Mechanisms

__ Do signs designate control/restricted
areas?

If locks are used
__ is key issuance controlled?
__ are keys changed periodically?

9. Administration
__ Does management insist on strict

adherence to access procedures?
Are individuals designated responsibility
for

access control at various control
points

__ authorizing visitor entry
__ establishing and maintaining policy,

procedures, and authorization lists
__ compliance auditing
__ follow-up on violations

The probability of total hardware and software
loss is low in a normal environment. In fact, the
probability of occurrence of a destructive event is
inversely related to the magnitude of the event. That
is, the threat from terrorist attack might be miniscule,
but the damage from one might be total. Each type of
threat should be considered and assigned a current
probability of occurrence. High probability threats
are used to define a plan to minimize the probabil­
ity. If the company business is vulnerable to bomb
threats, for instance, buildings without external glass
and without company signs are more anonymous
and less vulnerable. Having all facilities locked at all
times, with a specific security system for authorizing

Information Engineering Design 413

employees and screening visitors, reduces vulnera­
bility even further.

The major vulnerability is not related to the phys­
ical plant in most cases; it is from connections to
computer networks. The only guaranteed security
against telecommunications invasion is to have all
computers as stand-alone or as a closed network
with no outside access capability. As soon as any
computer, or network, allows external access, it is
vulnerable to invasion. There are no exceptions, con­
trary to what the local press might have you believe.
Data and program access security protection reduce
the risk of a casual break-in to an application. Mon­
itoring all accesses by date, time, and person further
reduces the risk because it enables detection of
intruders. Encrypting password files, data files, and
program code files further reduces the risks; it also
makes authorized user access more complex and
takes valuable CPU cycles.

The most common security in an application is
to protect against unwanted data and program
access. Data access can be limited to an entire phys­
ical file, logical records, or even individual data
items. Possible functions against data are read only,
read/write, or write only. Users and IS developers
consider each function and the data being manipu­
lated to define classes of users and their allowable
actions. Allowable actions are to create, update,
delete, and retrieve data. A hierarchy of access rights
is built to identify, by data item, which actions are al­
lowed by which class of users. A scheme for imple­
menting the access restrictions is designed for the
application.

Backup and recovery go hand-in-hand to provide
correction of errors because of security inadequa­
cies. A backup is an extra copy of some or all of the
data and software, made specifically to provide
recovery in event of some disaster. Recovery is the
process of restoring a previous version of data or
application software to active use following some
damage or loss of the previously active copy.

Research by IBM and others has shown that com­
panies go out of business within six months of a dis­
aster when no backup copies of computer data and
programs are kept. In providing for major disasters,
such as tornados, off-site storage, the storing of
backup copies at a distant site, is an integral part of

414 CHAPTER 10 Data-Oriented Design

guaranteeing recoverability. Off-site storage is usu­
ally 200+ miles away from the computer site, far
enough to minimize the possibility of the off-site
facility also being damaged. Old salt mines and other
clean, underground, environmentally stable facilities
are frequently used for off-site storage.

The disasters of concern in recovery design are
user error, unauthorized change of data, software
bugs, DBMS failure, hardware failure, or loss of
facility. All these problems compromise the integrity
of the data. The most difficult aspect of recovery
from the first three errors is error detection. If a data
change is wrong but contains legal characters, such
as $10,000 instead of $1,000 as a deposit, the only
detection will come from audit controls. If a data
change is wrong because it contains illegal charac­
ters, the application must be programmed to detect
the error and allow the user to fix it. Some types of
errors, such as alteration of a deposit to a bank ac­
count or alteration of a payment to a customer,
should also have some special printout or supervi­
sory approval required as part of the application
design to assist the user in detecting problems and
in monitoring the correction process. DBMS soft­
ware frequently allows transaction logging, logging
of before and after images of database changes and
assisted recovery from the logs for detected errors.

DBMS failure should be detected by the DBMS
and the bad transaction should automatically be
'rolled-back' to the original state. If a DBMS does
not have a 'commit/roll-back' capability, it should
not be used for any critical applications or applica-
tions that provide legal, fiduciary, or financial pro­
cessing compliance. Commit management software
monitors the execution of all database actions relat­
ing to a user transaction. If the database actions are
all successful, the transaction is 'committed' and
considered complete. If the database actions are not
all successful, the commit manager issues a roll­
back request which restores the database to its previ­
ous state before the transaction began, and the
transaction is aborted. Without commit and roll-back

the entire database or software library. An incre­
mental backup is a copy of only changed portions
of the database or library. A week's worth of back­
ups are maintained and rotated into reuse after, for
example, the fifth day. To minimize the time and
money allocated to backup, incremental procedures
are most common. A full backup is taken once each
week with incremental backups taken daily. An
active database would be completely backed-up
daily with one copy on-site for immediate use in
event of a problem. Regardless of backup strategy,
an extra copy of the database is created at least once
a week for off-site storage.

The extensiveness of backup (and recoverabil­
ity) is determined by assessing the risk of not hav­
ing the data or software for different periods (see
Table 10-4). The less the tolerance for loss of access,
the more money and more elaborate the design of the
backup procedures should be. The severity of lost
access time varies, depending on the availability of
human experts to do work manually and the criti­
cality of the application. In general, the longer a
work area has been automated, the less likely manual
procedures can be used to replace an application, and
the less time the application can be lost without

TABLE 10-4 Backup Design Guidelines
for Different Periods of Loss

Length of Loss

1 Week or longer

1 Day

1 Hour

Type of
Backup

Weekly Full with
Off-site storage

Above + Daily
Incremental/Full

Above + 1 or more
types of DBMS
Logging

capabilities, partial transactions might compromise 15 Minutes or less Above + All DBMS
Logging Capabilities: database integrity.

Other data and software backup procedures are
either full or incremental. A full backup is a copy of

Transaction, Pre-Update
and Post-Update Logs

severe consequences. The less important an appli­
cation is to the continuance of an organization as an
on-going business, the less critical the application is
for recovery design. An application for ordering
food for a cafeteria, for instance, is not critical if the
company is an oil company but is critical if the com­
pany is a restaurant.

To define backup requirements, then, you first
define the criticality of the application to the organi­
zation, and the length of time before lost access
becomes intolerable. Based on those estimates, a
backup strategy is selected. If the delay until recov­
ery can be a week or more, only weekly full back­
ups with off-site storage are required. If the delay
until recovery can be one day or less, then, in addi­
tion to weekly backups, daily backups should be
done. If the recovery delay can be only an hour,
the two previous methods should be supplemented
with one or more types of DBMS logging scheme.
Finally, if a I5-minute recovery delay is desired, all
types of DBMS logging, plus daily and weekly back­
ups should be done.

Last, we consider audit controls which provide a
record of access and modification, and prove trans­
action processing for legal, fiduciary responsibility,
or stakeholder responsibility reasons. Audit controls
allow detection and correction of error conditions for
data or processing. As new technologies, greater
dependence on ITs, and interrelated systems that are
vulnerable to telecommunications attacks all in­
crease, business emphasis on controls also increases.
In manual systems of work, control points are eas­
ily identified; procedures are observable, errors can
be reconstructed, and controls applied by humans. In
automated applications, the application is the solu­
tion, nothing is directly observable, and complexity
of functions makes identification of control points
increasingly complex.

A control point is a location (logical or physi­
cal) in a procedure (automated or manual) where the
possibility of errors exists. Errors might be lack of
proper authorization, misrecording of a transaction,
illegal access to assets, or differences between actual
and recorded data. Control points are identified dur­
ing design because the entire application's require­
ments should be known in order to define the most

Information Engineering DeSign 415

appropriate control points. Controls are specified by
designers in the form of requirements for program
validation. For instance, controls for the validity of
expense checks might be as follows:

1. Only valid, preauthorized checks can be
written.

2. Check amounts may not exceed authorized
dollar amounts.

3. Checks may not exceed the expense report
total amount.

Application audit controls address the complete­
ness of data, accuracy of data, authorization of data,
and adequacy of the audit trail. Detection of pro­
cessing errors is either through edit and validation
checks in programs, or through processing of redun­
dant data. Examples of controlled redundancy of
data include double entry bookkeeping, cross footing
totals and numbers, dual departmental custody of
replicated critical data, transaction numbering, and
primary key verification. Edit and validation rules
are designed to identify all logical inconsistencies
as early in the process as possible, before they are
entered into the database.

ABC Video Example Security, Backup/
Recovery, and Audit Plans

To design ABC's security, we first review the physi­
cal plant and recommend changes to the planned
computer site to provide security. The six threats are
considered, but the byword from Vic in discussing
the possibility of changes is "be reasonable." So, if
there is a 'reasonable' chance that a problem will
occur, we will recommend a reasonable, and low
cost, solution to the problem.

Moving from most to least serious, we consider
the six types of threats to application security: loca­
tion failure, hardware failure, DBMS failure, soft­
ware failure, hacker change, and user error. For each
threat, we consider the potential of occurrence for
ABC, then devise a plan to minimize the potential
damage. All threats and responses are summarized in
Figure 10-21.

416 CHAPTER 10 Data-Oriented Design

I
80'

Fire
Exit II Drama

000
Sci Fi

Musical

Cheap's
Drugs Music

I Check-out Desk

Front Door

FIGURE 10-20 ABC Current Physical Plant

First, we review the physical plant and relate it
to location and hardware failures. ABC Video is
located in suburban Atlanta, Georgia, 300 miles
from the ocean and 25 miles from the nearest large
lake. The company is located in a mall, the Dun­
woody Village, a clustering of small shops and
offices in open-square buildings containing a plaza
in the middle of the square. The company occupies
3200 square feet of 80' x 40' space in the southeast
corner of Building A. The adjoining spaces are oc­
cupied by Cheap's Drugs and Ra-Dan Hair Salon.
A schematic of the space is shown in Figure 10-20.

Ra-Dan >
Horror Files

~ ~
(')
0-
m
m-

e---

OJ

,,~~ ~
~

Sci Fi :::r
~

Musical 40' N

Comedy

0
Action 0::

<ii"
rn

Current Releases

~ WindowWall

The northeast corner of the area (abutting Ra-Dan's)
contains a 12' x 16' office which contains two desks,
one supply closet, and a bathroom. The office has
no windows and can be locked, although it is fre­
quently empty and unlocked. The supply closet has
double doors which do not currently have a lock.

The clerk's checkout counter is near the customer
doors on the south side of the building in the western
corner. The counter is an 'L' shape with the entry on
the short side. A fire door, equipped with an alarm
bar, is located in the northwest corner of the area and
opens on a short alley behind the building.

Location failure usually results from violent
weather, terrorist attacks, or government takeover.
The chance of violent weather is the only potential
major problem in the area. Tornadoes occur in the
area regularly. The expectation is that there is a 20%
chance of tornado damage some time in the next
10 years (see Figure 10-21). Tornadoes also imply
strong thunderstorms which are common to the area.
The chance of damage from a storm is about 30%
within five years to the windows, and about 65%
within two years for lightning to cause electrical
spikes.

The response to location threats is to provide off­
site backup of all information, with the site far
enough away that it is unlikely to be affected by the
same storm (see Figure 10-21). Vic should investi­
gate the possibility of closing in the window wall in
the southeast side of the building to minimize storm
damage. He can also install lightning rods on the
roof of the building to dissipate lightning when
it hits.

The next category of problems relate to the hard­
ware selected for the rental/return application.
Vendor-cited reliability is 99 years mean time be­
tween failure (MTBF) for individual components.
When the components are considered as a whole, the
probability of component failure is once in two years
(see Figure 10-21). The current plan is to have an
extra PC in the office that could be moved to the
front desk if needed. A hardware service contract
with a local company to provide response within
24 hours is recommended.

The planned server location is near the bathroom
in the northeast corner of the area. The toilet has a
history of overflows during wet spring months. Be­
cause of the way the office was constructed, the
water is confined to a small area but almost always
runs into the supply closet and has been as high as
one foot. The probability of component failure to file
server and/or disks from water due to toilet over­
flow is 50% in two years. The answer to this problem
is simple, but expensive: Build a new area, specifi­
cally for the computer, away from the toilet area to
reduce this probability to near zero. Ideally, if the
windows are closed in, the office could be moved to
the front of the building and the old office removed.
A new enclosure for the toilet facilities could be

Information Engineering Design 417

added or the toilet could also be rebuilt in the new
location with whatever precautions are needed to
preclude the spring overruns.

There is another problem with the planned server
location. The planned location-the supply closet­
has no ventilation. If the closet doors are open, ven­
tilation for the office is sufficient for the planned
equipment, but, ideally, the server closet doors
should be locked. If the doors were locked, the prob­
ability of server failure due to lack of ventilation is
50% in two years. The solutions possible are to build
a new area for the server equipment, or to add ven­
tilation to the planned area to reduce this probabil­
ity to near zero. Both solutions should be presented
to Vic for his decision.

Less serious problems stem from the building
location. Glass windows that run along 60' of exter­
nal front wall and the drop ceiling are accessible
from neighboring companies. Theft and break-ins
are somewhat common in the area, but the probabil­
ity of a break-in is 50% in 10 years. Most burglars
are looking for money, but some might maliciously
tamper with the computer equipment. Therefore, the
probability of computer damage during a break-in
is 60% according to police estimates.

The recommendations to minimize theft have to
address the easy access to the company through win­
dows and ceiling. If the office remains in its current
location, a security system with movement sensors
in the ceiling and glass-breakage sensors on all win­
dows should be added (whether or not the computer
is installed). Long-term, Vic should investigate the
possibility of closing-in some or all windows to
improve security of the company.

Next, because of the location of the checkout
desk at the front of the building, the ability of clerks
to monitor approaches to the office is low due to lim­
ited visibility. Further, theft of tapes is possible
because clerks cannot see down all aisles without
moving away from the desk area. For application
security, we are concerned with office access; but, as
professionals, we can make recommendations that
will improve Vic's ability to reduce general theft as
well. An easy, but somewhat expensive solution is to
move the checkout desk to the center of the floor and
assign surveillance duties to clerks. Even if the desk
is not moved, mirrors installed in the corners of the

418 CHAPTER 10 Data-Oriented Design

Finding

Location failure-Probability of tornadoes 10% in
10 years. Probability of strong storms causing damage
to windows is about 15% within two years. Probability
of lightning causing electrical spikes is 15% within
two years.

Hardware failure-Vendor-cited reliability is 99 years
MTBF for each component. The probability of com­
ponent failure is once in two years for some network
component.

Hardware failure from external reasons-Planned
server location is near bathroom with history of
periodic overflows. Probability of component failure to
file server and/or disk is 50% in two years.

Hardware failure from external reasons-Planned
server location is a closet in the office area without
any ventilation. Probability of server failure is 50% in
two years.

Hardware failure from external reasons-Current
location has glass windows along 60' of external
front wall and a drop ceiling accessible from
neighboring companies. Probability of break-in is
30% in 10 years; probability of computer damage
during a break-in is 60%.

Physical location vulnerabilities-Ability of clerks to
monitor approaches to the office is low because of
desk location and limited visibility.

DBMS failure-Vendor-stated reliability is two years
MTBF. This is one of the best on the market, but each
new release is unstable for at least six months.

DBMS failure-Other reasons (e.g., electrical spike).
Probability is 100% that electrical surges will occur,
since they are common in the summer months.

Probability of brownouts with reduced power are
30% in two years.

Recommendation

Select off-site storage facility no closer than 200 miles.

Investigate closing in the front windows, at least the contigu­
ous 40 feet of windows on the southeast corner.

Install lightning rods on the roof.

Move the extra PC in the office to the front desk if needed. A
hardware service contract with a local company to provide
response within 24 hours is recommended.

Build a new area to reduce this probability to near zero.

Build a new area or add ventilation to the planned area to
reduce this probability to near zero.

If the office remains in its current location, add security
system with movement sensors in the ceiling and glass­
breakage sensors on all windows.

Long-term, investigate the possibility of closing-in some or
all windows, moving the office to the front of the building
(away from plumbing).

Move the clerks' desk to the center of the floor and assign
surveillance duties to clerks.

Install mirrors in corners of room to allow monitoring of
customers' actions.

Do not install latest releases until thoroughly tested using
regression test package.

Negotiate with vendor for data access software in event of
DBMS failure. Include this software access in the vendor
contract.

Install a surge protector on the entire ABC electrical
system to accommodate spikes (cost is about $100).

Install surge protectors on each individual outlet used by
computer equipment to further protect the equipment since
whole system protectors do not guarantee integrated chip
safety in any devices.

Install a limited, inexpenSive, UPS to provide emergency
power in event of electrical failure and for limited use during
brownouts (cost about $1,000).

FIGURE 10-21 Security Review Findings and Recommendations

Finding

Software failure-Application failure due to software
defects should be less than once in 15 years after the
first three months. During the first three months of
operation, the probability of application failure is about
75%; no more than one is expected.

Hacker change-Outside user access to the system
should be zero since no telecommunications capabilities
are planned. However, the untended server and occa­
sional lack of clerks at the desk area may provide a local
hacker enough time to access and modify the system.

User error-The use of computer novices as clerks
guarantees user error. Probability is 100% within one
week of system operation.

Information Engineering Design 419

Recommendation

The application is designed for 15-minute recovery of all
data and programs. Loss of transactions in process will al­
ways occur with any failure; they will have to be reentered.

Program problems will be fixed within one business day.
Any lost transactions will be reentered free of charge by
Software Engineers Unlimited.

Install security precautions listed above: security mirrors,
move desk, assign clerks monitoring responsibility.

Always lock office door; always lock file server door.

Restrict data and process access to those required to per­
form each job.

Design application to withstand any casual error-hitting
any key on keyboard, scanning any bar code type, etc. A
report of such errors can be created and printed on demand
by Vic to allow retraining (or other action) for repeated
errors by one user.

Application design also includes validation of all fields such
that only valid data can be in the database. On-demand
reports of new customer and video entries will allow Vic to
monitor the typing skills of employees.

New-hire orientation and new-hire mentors should be used
to stress the importance of data accuracy.

FIGURE 10-21 Security Review Findings and Recommendations (Continued)

room would allow clerks to monitor customers'
actions. Both recommendations are made with the
understanding that the mirrors should be installed
whether or not the desk is moved.

After physical issues are evaluated, we next look
at software security and reliability. Vendor-stated
reliability for the planned DBMS is two years
MTBF. This SQL software is one of the best on the
market, but each new release is unstable for at least
six months, and those instability figures are not in
the MTBF estimates. The company routinely dis­
claims any responsibility for new release errors and
loss of data or processing to using companies. The
DBMS does stabilize and is usually reliable after a
six-month trial period for each new release. The

simple solution to this problem is that unless a fea­
ture of a new release is needed, no change from the
current stable version should be made. In addition,
no software, whether vendor package or customer
designed, should be allowed into production use
until it is thoroughly tested using the application
regression test package that will accompany the
system.

A secondary problem with DBMS errors is that, if
the DBMS fails, there is no other way to access the
data. Part of the contract negotiation should include
discussion of such software for the vendor to provide
in event of DBMS failure. Other companies have
successfully received such commitments from this
vendor, although it is not volunteered. Such data

420 CHAPTER lODato-Oriented Design

access software should be included in the vendor
contract.

Additional problems that might cause DBMS
failure are electrical surges and brownouts due to
uneven service in the area. Surges generally occur
during the summer months when equipment comes
on-line to service air-conditioning in the area. The
probability of surges is 100% based on local electri­
cal company history. The probability of brownouts
with reduced power is 30% within two years, also
using electrical history as the basis for the estimate.
Problems from both causes can be minimized by a
surge protector on the entire ABC electrical system
which shuts down power if a particularly large surge
is experienced. In addition, one surge protector for
each outlet should be installed to further protect the
equipment since whole system protectors do not
guarantee integrated chip safety. Finally, a limited,
inexpensive, uninterrupted power supply (UPS)
should be installed to provide emergency power in
the event of electrical failure and for limited use dur­
ing brownouts to supplement reduced electricity
from the local provider.

We consider application software failures next.
Failure due to software defects should be less than
once in 15 years after the first three months of oper­
ational use. During the first three months of opera­
tion, the probability of application failure is about
75%; no more than one is expected. The application
is designed for IS-minute recovery of all data and
programs. Loss of partial transactions will always
occur with any failure; they will have to be reen­
tered. Program problems will be fixed within one
business day. Any lost transactions will be reentered
free of charge by Software Engineers Unlimited
(Mary's company).

Outside user access to the system should be
zero since no telecommunications capabilities are
planned. However, the untended server and occa­
sionallack of clerks at the desk area may provide a
local hacker enough time to access and modify the
system. If the physical security precautions recom­
mended above are provided, such hacker break-ins
would be nearly impossible. Therefore, at a mini­
mum the precautions for security mirrors, assigning
clerks monitoring responsibility, and locking the of-

fice and file server doors should be implemented (see
Figure 10-21).

Finally, the use of computer novices as clerks
guarantees user errors. The probability of user
errors is 100% within one week of system opera­
tion. To prevent any application or DBMS damage
from user errors (inadvertent or otherwise), the first
line of defense is to restrict what users may do and
the data they may access as a way to prevent errors.
Each job should be defined and a security access
scheme developed to allow access to all processes
and data required for the job, and nothing more.

Second, the application should withstand any
casual error-hitting any key on keyboard, scanning
any bar code type, and so on. If required, a report of
such errors can be created and printed on demand
by Vic to allow retraining (or other action) for
repeated errors by one user. Application design also
includes validation of all fields such that only valid
data can be in the database. Such checks are not pos­
sible for alphanumeric data, however, so on-demand
reports of new customer and video entries will
allow Vic to monitor the typing skills of employees.

Application training will use computer-based
training (CBT) in entering application data. The
CBT will use simulated transactions and should min­
imize the user errors if taken seriously by clerks. \
New-hire orientation should include discussion of
the importance of accuracy of work, especially with
the computer. Further, new hires should be assigned
a more senior 'mentor' for learning the application
after training.

After disaster recovery is planned, application
security must be developed. From the recovery plan,
we know that each job should be evaluated to deter­
mine the data and processing requirements of the
position. ABC jobs evaluated include clerks, owner,
and accountant. The owner should be allowed to do
any functions on the application and system that he
desires. However, many owners do not want to
become the chief user of the computer. When asked,
Vic's reaction is, "Does this mean I can never take a
vacation? Do I have to be here in the morning and
at night? If so, define a new position that can do most
of my functions, just not delete data!" So the posi­
tion of chief clerk is also considered.

Clerk and accountant each have
different subsets of chief clerk
rights.

Owner

Chief
clerk

Clerk

Information Engineering Design 421

Chief clerk has a sub set of
owner rights.

I
Accountant

FIGURE 10-22 ABC Data Security Hierarchy of Access Rights

The owner should be the lead person and still be
allowed to perform all functions, access all data, and
provide security password changes, and so on (see
Figure 10-22). The chief clerk, according to Vic's
wishes, has all of those functions except deleting
information (see Table 10-5). If there were sensitive
data in the system, more discussion of the chief
clerk's duties and access rights might take place. The
clerks have access rights to rent and return videos,
and to create and update customers and videos.
Finally, the accountant has limited read-only access
to several files.

Backup and recovery are considered next. First
we decide the maximum tolerable time loss for a
computer outage, then select the backup scheme that
best fits the time loss maximum. The rental/return
application is critical to ABC's ability to conduct
business. Vic knows that when he moves all produc­
tion work to the computer that the clerks will quickly
forget the manual way of conducting business. Also,
we know that if the databases are not kept up to date,
the system is next to useless because the clerks won't
know whether to look at manual or automated files
for returns, fees, and so on. Therefore, the maximum
outage should be less than 15 minutes with recov­
ery of all fully complete transactions. Even at

15 minutes, if an outage were to occur during a peak
time, as many as four transactions could need to be
reentered and as many as 15-20 transactions would
be queued for entry upon system return to produc­
tion. Ideally, the system should be functional during
all business hours.

The recovery requirements imply the most
backup protection possible. From Table 10-4, a
15-minute recovery requirement means the use of
weekly full backups with off-site storage, daily
backups, and logging for transactions, preupdate
data items and postupdate data items. Therefore,
these are the backup and recovery requirements.

Requirements: Application and system availabil­
ity during all store open hours, with no more
than 15 minutes of down-time from failures
of any type.

Backups: Transaction, preupdate, and post­
update logs

Transaction logs maintained one week until
weekly backups are verified. Pre- and
postupdate logs maintained for 72 hours.

Daily complete database backups with on­
site copy plus off-site storage at owner's
home.

422 CHAPTER 10 Data-Oriented Design

TABLE 9-5 ABC User Classes and Access Rights

FilelFunction Owner Chief Clerk Clerk Accountant

Customer
Create X X
Retrieve X X
Update X X
Delete X

Video
Create X X
Retrieve X X
Update X X
Delete X X

Open Rentals
Create X X
Retrieve X X
Update X X
Delete X

Video History
Create
Retrieve X X
Update X

Customer History
Create
Retrieve X X
Update X X

Startup X X

Shutdown X X

End Of Day
Create X X
Retrieve X X
Delete X X

Initiate End of
Month Process X X

Paper copy of transactions maintained for one
calendar year in accountant's office.

Weekly complete disk backups with on-site copy
plus off-site storage at owner's home and a
third copy at

Disaster Prevention Storage
321 Maple Ave.
Somewhere, OK
(618) 123-1234

X
X X
X

X
X X
X

X
X X
X

X X

X X

X

If ABC's application processed millions of trans­
actions each day, we would do further analysis of
the cost of backup and recovery, but here that is
not necessary.

Finally, we need to decide about audit controls
as summarized here:

Data accuracy and completeness-All edit
checks possible will be used as data are
entered to prevent errors from entering the

system. Sight verification by clerks and cus­
tomers will be used to verify alphanumeric
information.

Rental transaction accuracy can be veri­
fied by customers' signing for all monetary
transactions. In case of discrepancy, transac­
tion logs and historical paper copies of trans­
actions can be consulted.

Data authorization-Security controls will pro­
vide sufficient authorization for data process­
ing. Only the owner is authorized to perform
any delete functions on customer, video, and
open rental data. No delete functions for his­
tory records are provided.

User ID, date, and time of user to last
change data will be maintained in Customer,
Video, and Open Rental databases.

Audit trail-A paper trail of receipts should be
maintained by the accountant for each
calendar year. This is a sufficient trail
since ABC is a cash business without any
accruals.

These paragraphs would be part of the user procedures:

Customer Maintenance

Information Engineering Design 423

Nonmonetary transactions (e.g., return
of on-time tapes), have no paper audit trail.
If a question about a tape return arises,
the database can be checked to verify the
information.

All edit checks possible should be used as data are
entered to prevent errors from entering the system.
To ensure complete editing, we review the data dic­
tionary to check that all nonalphanumeric fields have
edit and validation criteria.

On names, addresses, and other alphanumeric
fields, little verification can be performed automati­
cally. What cannot be done automatically should be
done manually. Procedures for operators should be
developed to document clerical 'sight verification'
and customer verification standards. An example of
such a procedure that would be part of the user man­
ual is shown as Figure 10-23. Sight verification
means that the person entering information into the
computer reads the monitor to verify the accuracy
of the information he or she entered. The user, then,

When customers are being added to the system, the clerk should read back all information as shown on the screen to
verify its accuracy, as the computer cannot verify mixed alphabetic and numeric information.

Video Maintenance

When videos are being added to the system, the clerk should compare all information shown on the screen with the origi­
nal printed information to verify its accuracy, as the computer cannot verify mixed alphabetic and numeric information.

Rent/Return Processing

Users should be encouraged to check the information on the printed rental before they sign it to verify that it is correct.

FIGURE 10-23 User Sight Verification Procedure

424 CHAPTER 10 Data-Oriented Design

is responsible for data integrity of items that cannot
be computer verified.

Rental transaction accuracy will be verified by
customers' signing for all monetary transactions. In
case of discrepancy, transaction logs and historical
paper copies of transactions can be consulted. If
many discrepancies persist (more than one per
week), a special history file of transactions can be
added to the application to speed the transaction
look-up process.

Security controls can be designed to provide suf­
ficient authorization for data processing. The secu­
rity scheme should be developed to serve two goals:
to provide data access and to provide function access
to those who need it. To require several layers of
security checking for a simple application does not
make sense and wastes clerical time. So, once again
the KISS (Keep It Simple, Stupid) method of one
security access scheme is best. User ID, date, and
time of user to last change data will be maintained
in Customer, Video, and Open Rental databases.
These attributes are added to affected database
relations.

To minimize the extent to which damage can be
done to data, only ABC's owner should be autho­
rized to perform any delete functions on customer,
video, and open rental data. No automated delete
functions for history records are provided without
circumventing the application completely. Changes
to files will always be somewhat traceable because
the historical record will reflect activity. If unautho­
rized file changes are thought to be a problem, Vic
can always request a browsing capability for any of
the transaction logs to check on problems.

A manual audit trail should be used for ABC
to conserve computer resources. All monetary trans­
actions can be reconstructed through a paper trail
of receipts maintained by the accountant. The receipt
form is a two-ply preprinted form on which all
monetary transactions are printed. For rentals,
customers sign the form as proof of rental responsi­
bility. Paper records should be maintained for one
calendar year in the accountant's office; this is suffi­
cient since ABC is a cash business without any
accruals. If a tape audit trail were to be necessary
at some time in the future, it can be added to the sys­
tem easily.

Nonmonetary transactions (e.g., return of on-time
tapes), have no paper audit trail. If a question about a
tape return arises, the user ID, date, and time of the
return will be on the database and can be checked to
verify the information.

Develop Action Diagram
Guidelines for Developing an Action
Diagram

An action diagram is a diagram that shows proce­
dural structure and processing details for an appli­
cation. It is built from the process hierarchy and
process data flow diagram developed during IE
analysis (see Figure 9-45 for ABC's PDFD). The
diagram uses only structured programming con­
structs to convert the PDFD into a hierarchy of
processes that can be divided into programs and
modules. First we discuss the components of the
diagram, then we discuss how to build an action
diagram from the process hierarchy and PDFD.

Action diagrams use different bracket structures
to depict the code elements in an application. Basic
structured programming tenets-iteration, selection,
and sequence-are all accommodated with several
variations provided. As Figure 10-24 shows, a
sequence bracket is a simple bracket. It is option­
ally identified with a process name and ended with
the term ENDPROC to represent a program module
consisting of a sequence of instructions.

When a module is designed and detailed in
another document or diagram, a rounded rectangle
containing the module name is drawn between the
brackets (see Figure 10-25). When the module is not
yet defined in detail, a rounded rectangle with ques­
tion marks down the right side is shown. Reusable

.....-- PROC Process Name

The sequence of
instructions is entered
within the sequential
brackets.

I...-- ENDPROC

FIGURE 10-24 Simple Sequence Bracket
Format

~
Module Name

Sequential
instructions.

~bedded, defined lJ:: module name.

Module Name

Q
Module Name

Embedded, undefined
module name.

__ Module Name

I~eused Module

~ Name

Adapted from Martin (1990), p. 543.

FIGURE 10-25 Module Designation Fonnat

modules are drawn with a vertical bar to repre­
sent reuse.

Selection of modules from the PDFD is shown by
a selection bracket (also called a condition
bracket) which begins with an IF condition and
ends with the termENDIF (see Figure 10-26a). If the
conditional statement has multiple conditions, two
other options are allowed. The condition can be
stated as an IF statement with one or more ELSE
conditions (see Figure 10-26b), or a condition can be
stated as a mutually exclusive selection list as in Fig­
ure 10-26c; this selection list is eventually translated
into an IF statement.

Repetition is shown with a double bracketed fig­
ure. The repetition bracket name begins with either
DO or DO WHILE + condition (see Figure 10-27).
The bracket ends with either an UNTIL + condition

Information Engineering Design 425

(Figure 10-27a), or ENDDO (Figure 10-27b). DO
WHILE implies that the condition is checked before
the conditional statements are executed. Do while
processing may occur zero times. Conversely, DO
UNTIL implies that the condition is checked after
the lower statements are executed. Do until pro­
cesses occur at least once.

Miscellaneous items include goto, exit, and con­
currency identification. A goto is shown by an arrow
leaving one level and pointing to the line for the des­
tination level with a goto statement and destination
at the right of the arrow (Figure 28a).

An exit is shown as an arrow leaving one level
and pointing to the line for the destination level with
the word exit at the right of the arrow (Figure 28b).
Unless an exit destination is named with the exit,
exit always means that the calling module is the exit
destination. For example, if Rent/Return calls Cus­
tomerAdd, the exit from CustomerAdd returns to
Rent/Return. Further, if CustomerMaint calls Cus­
tomerAdd, the exit from CustomerAdd returns to
CustomerMaint. That is, the calling module, regard­
less of what it is, is the return module.

Processes can be sequential or concurrent. Con­
current processes execute at the same time. There
are two types of concurrent processes: independent
and dependent. Independent concurrent processes
are those which execute at the same time but do not
synchronize their process completion. For example,
when Process Payment and Compute Change is
complete in ABC's application, printing and file
updates of several types could all be concurrent. If
there is no checking on the success of their comple­
tions with subsequent action for any failures, these
processes are independent. Independent concurrency
is shown on the diagram by an arc which connects
the module brackets (Figure 10-28). Dependent
concurrent processes are those which must be syn­
chronized to coordinate further application actions.
Dependent concurrency is shown on the diagram by
an asterisk (or some other special character) on the
arc connecting the modules (Figure 10-28d). Depen­
dent concurrent processes require the development
of a synchronization module, if not already in the
application, to ensure complete, accurate processing.

Now that you know the bracket symbols used to
define action diagrams, we move to discuss the steps

426 CHAPTER lODato-Oriented Design

a. Simple IF Condition

~
IF condition

action
sequence of
instructions

ENDIF

b. Multiple IF Conditions

~
IF condition

... else IF condillon

else IF condition

... ENDIF

c. Multiple IF Conditions using case logic

~
.. IF condition 1

condition 2
... condition 3

condition n

... ENDIF

;-- IFA=1

~ A=3

~ A=4

t-- A=5

--=- ENDIF

FIGURE 10-26 Conditional Bracket Design Fonnats

to developing one. The steps to define an action dia­
gram are to translate processes into levels of action
using structured constructs, design modules, perfonn
reusability analysis, decide module timing, add data
to the diagram, and optionally, add screens to the
diagram.

The first step is to translate processes into levels
of action. The first-level diagram is developed from
the process hierarchy diagram to identify the major
activities being perfonned by the application. The
activities themselves are added to the diagram as
they are written on the hierarchy diagram. The struc­
tured constructs should identify sequence and any
selection or conditional processing relating to the
activities. Most often, when the diagram is begun at

the activity level, the alternative processes are mu­
tually exclusive. When the diagram starts at the
process level (Figure 10-29), any construct might
apply. The example shows a mutually exclusive
selection from among the three alternatives.

Now we shift to the process data flow diagram
(Figure 10-30) to add process details to the action
diagram. Remember that the processes on the PDFD
must match exactly the processes on the hierarchic
decomposition diagram. We use the PDFD to trans­
late the structural relationships between the pro­
cesses correctly. The structural relationships are
on the PDFD and not on the decomposition; they
refer to the sequential, conditional, and repetitive
relationships between processes.

a. Perform actions zero to n times based on condition.

[

DO WHILE condition

ENDDO

b. Perform actions one to n times based on condition.

[

DOUNTIL

condition
ENDDO

FIGURE 10-27 Repetition Bracket Design
Formats

In developing the second-level action diagram,
we first add the processes, in sequence, from the
PDFD. Then the brackets are drawn to reflect the
sequential, conditional, and repetitive structural rela­
tionships. In the example (Figure 10-31), the main
processes are Identify Item and Vendor, Sort by Ven­
dor and Item, Get Price, Create Order, and Mail
Order. Between these processes, there are two repet­
itive blocks: one based on New Releases, and the
other based on Vendors (see Figure 10-32). We iden­
tify the repetitive blocks by looking at the circular
loops and the conditions for repeating the pro­
cess(es}. Notice that the Sort is not included in
either loop.

Next, evaluate each process grouping. Identify
Item is alone within its loop. Sort is also alone. The
last three processes are together and are analyzed.
The processes are sequential but according to the
PDFD, they are not all processed in sequence. If the
vendor has not changed from the previous item, we
Get Price and Create Order. When the Vendor
changes, we File and Mail the order. These state­
ments from the PDFD translate into the IF condi-

Information Engineering Design 427

The diagram is correct in interpreting the PDFD,
but it is incomplete as a program specification. First
we need to deal with the First Vendor. The First Ven­
dor will not equal Last Vendor, and to file an order
for a nonexistent vendor is wrong. Second, think
about what an order looks like (Figure 10-34). There
are one-time Vendor information and variable lines
of Item information. Where the PDFD says Create
Order, it really means Add Item to Order. When the
Vendor changes and an order is complete, we want to
format Vendor information for the new order. Fig­
ure 10-35 reflects these details and is ready for the
next step. The purpose of this example is to show

a. GOTO bracket format

tTO Main Menu

b. Exit bracket format

[;xit to Error Routine

Exit to CALling Module

~H
c. Concurrent processes bracket format

tional statement in the action diagram as shown in FIGURE 10-28 Miscellaneous Bracket
Figure 10-33. Design Formats

428 CHAPTER 10 Data-Oriented Design

Process Hierarchy

Analyze Business Create Purchase Order Monitor Purchase Order

Identify Item & Vendor

Sort by Vendor, Item

Get Price

Create Order

Mail Order

First Level Action Diagram File Order by Vendor

Purchasing Application

Analyze Business

Create Purchase Order

Monitor Purchase Order

END Purchasing Procedure

FIGURE 10-29 Process Hierarchy and First-Level Action Diagram

how a correct PDFD may need elaboration to trans­
late into program specifications.

U sing the action diagram, modules are defined.
There are few guidelines on this aspect of Informa­
tion Engineering. In general, you should try to define
modules that perform one well-defined process and
nothing else. The guidelines presented in Chapter 8
for module definition can be applied here. For the
example in Figure 10-35, the IF ... ELSE IF ...
ELSE processing is the module's control flow.

Within the control flow we have stand-alone pro­
cesses that conveniently define modules. Figure
10-36 shows the module names, each enclosed in its
own rounded rectangular box to indicate that there
are more details for each module. The submodules
are each further diagrammed or, if fully documented
in a data dictionary, refer to the dictionary entry in
the module box.

For Create Purchase Order processing, then, we
have a main module and submodules for Create Ven-

dar Info, Get Price, Create Order Item, File Order,
and Mail Order. Notice that Create Vendor Info is
used twice.

Next, the action diagram modules are compared
to templates already in use to determine whether
reuse of existing modules is possible. As reusable
modules are identified, the process details are
removed from the action diagram and replaced with
a call statement. The called module name should
indicate whether the reused module is customized
for this application or not. The conventional way to
identify customized reused modules is by a prefix
or suffix on the name. For example~ a date compare

Information Engineering Design 429

routine might be used to determine lateness. If not
modified, the name of the routine might be Date­
Compare. If customized, the name of the routine
might be RentDateCompare or LateReturnDate­
Compare. In the example in Figure 10-36, Sort uses
a utility program, a special class of reusable mod­
ule. The Sort statement is removed from the diagram
and replaced with a call statement (Figure 10-37).
No other modules in this example are general
enough for reuse.

When reusability analysis is complete, the action
diagram should show the mainline logic of the
application with modules for the processes and

Vendor

More = No

Vendor = Last-Vendor

Vendor *- Last-Vendor

Mail Order

Open Orders

FIGURE 10-30 Sample Process Data Flow Diagram

430 CHAPTER 10 Data-Oriented Design

FIGURE 10-31
Diagram

Purchasing

Analyze Business

Create Purchase Order

Identify Item and Vendor

Sort by Vendor, Item

Get Price

Create Order

Mail Order

File by Vendor

Monitor Purchase Order

END Purchasing Procedure

Second-Level Action

subprocesses. At this point, timing of processes is
decided and added to the diagram. Recall that pro­
cesses can be sequential or concurrent, and that con­
current processes can be either independent or
dependent. Frequently, user requirements will iden­
tify required concurrency. If no user requirements
identify concurrent operations, a design decision to
offer or not offer concurrency is made by the SEs.
Concurrency is expensive and adds a level of main­
tenancecomplexity to the application that the user
might not want.

Optional concurrency is determined by evaluat­
ing module interrelationships again. Only groups of

sequential modules are evaluated at first. Then the
groups themselves are evaluated for possible con­
currency. In Figure 10-36, two groups of two or
more modules are present. The first is Get Price with
Create Order Item. The second group is File Order,
Mail Order, and Create Vendor Information on
Order. Working backward, we ask if the modules are
dependent on each other. Could we create an order
item without knowing the price? In this case, the
answer is no, we must know the price. Therefore, the
modules are dependent and cannot be concurrent. In
the second group, we might perform File and Mail

Purchasing

Analyze Business

Create Purchase Order

(

Do Until all items are identified

Identify Item and Vendor

EndDo
Sort by Vendor, Item

Do While there are Items to be processed

IGet Price

Create Order

Mail Order

File by Vendor

ENDDO

Monitor Purchase Order

END Purchasing Procedure

FIGURE 10-32 Repetitive Blocks on Second­
Level Action Diagram

- Purchasing

-(Analyze Business

-- Create Purchase Order

[

Do Until all items are identified

Identify Item and Vendor

EndDo
Sort by Vendor, Item

;:: Do While there are Items to be processed

r- IF Vendor= Last-Vendor

Get Price

Create Order

~ ELSE

Mail Order

File by Vendor

Set Last-Vendor = Vendor

'-ENDIF

t ENDDO

H Monitor Purchase Order

~ END Purchasing Procedure

FIGURE 10-33 Conditional Statements on
Second-Level Action Diagram

Order at the same time, IF success of the file opera­
tion is not an issue. Create Vendor cannot be done
until the last order is fully processed. To decide on
concurrency, we need to know the details of error
handling. In this case, we find that errors are checked
and handled in the module in which they can occur.
If a fatal error occurs, the application does no other
processing on this order. This process definition
implies sequence to the processes. If the processes
were concurrent and a fatal error occurred, some
undesired processing would occur. Therefore, in this
example, concurrency is not an option.

Information Engineering Design 431

ABC Video, Inc.
123 Dunwoody Village
Dunwoody, GA 30392

Purchase Order

TO: Paramount Video Entertainment
1947 Ave. of Americas
New York, NY 10021

Terms: Net 30 Days

Item Qty Description

019421 50 Aladdin
019427 10 A Few Good Men
019497 1 Mon Amour C'est Soir

FIGURE 10-34 Order Example

1/11/94

Price

14.95
14.95

5.95

Next, the entities and data elements used by the
processes are added to the diagram(s). By the time
this action is complete, every attribute of every
relation must, at least, have been identified for cre­
ation and deletion (Figure 10-37). Any attributes not
included in the processing should be reconsidered
for elimination from the application. These process
definitions should include attributes added to the
relations as a result of design activities.

If the action diagrams are developed manually,
screen identifiers can be added to the diagram with
entities and attributes linked to screens (see Figure
10-38). The diagram'then links data sources and des­
tinations to both processes and screens. This type of
diagram does manually what linkages in a CASE
tool automate.

ABC Video Example Action Diagram

The steps to developing the action diagram are to de­
velop the levels of action using structured constructs,
perform reusability analysis, design modules, decide
module timing, add data to the diagram, and option­
ally, add screens to the diagram (refer to p. 434).
Only the first-level action diagram includes all of the
processes. The lower-level diagrams consider Rent/
Return processing and Video Maintenance only. The
other processes are left as an exercise.

432 CHAPTER 10 Data-Oriented Design

Purchasing

Analyze Business

Create Purchase Order

[

Do Until all items are identified

Identify Item and Vendor

EndDo

Sort by Vendor, Item

Do While there are Items to be processed

IF First-Record

Set Last-Vendor = Vendor

ELSE IF Vendor = Last-Vendor

Get Price

Create Order

ELSE

Mail Order

File by Vendor

Set Last-Vendor = Vendor

ENDIF

ENDDO

Monitor Purchase Order

END Purchasing Procedure

FIGURE 10-35 Order Fonnat Details on
Action Diagram

The first-level action diagram is based on the
process hierarchy (Figure 10-39). First we draw the
general bracket and add the module names, indicat­
ing the structural relationships between the modules
by the bracket type (Figure 10-40). In the ABC dia­
gram, the processes are all mutually exclusive.

Then, using the PDFD as reference (Figure
10-41), we develop the next level of procedural
detail. The subprocess names are added to the dia­
gram as shown in the PDFD (and process hierarchy).
For each subprocess, the structural brackets indicat­
ing modular control are added.

The subprocesses for Video Maintenance are for
create, retrieval, update, and delete processing.
These processes are all mutually exclusive, so the di­
agram is simple (Figure 10-42). At the lowest level,
we identify modules that refer to the dictionary for
process details.

Rent/Return has all of the complexity in the
application. Each cluster of modules is discussed
separately. First, Get Request is always executed
whenever Rent/Return is invoked (Figure 10-43).

Purchasing

Analyze Business

Create Purchase Order

[

Do Until all items are identified

Identify Item and Vendor
'--"

EndDo

(Sort by Vendor, Item)

Do While there are Items to be processed

IF First-Record

Set Last-Vendor = Vendor

(create Vendor Info)

ELSE IF Vendor = Last-Vendor

(Get price)

(Create Order)

ELSE

(Mail order)

(File Order)

Set Last-Vendor = Vendor

(create Vendor InfO)

ENDIF

ENDDO

Monitor Purchase Order

END Purchasing Procedure

FIGURE 10-36 Module Boxes on Action
Diagram

Information Engineering Design 433

Create Purchase Order
New Releases

----------------------~~-VendorName

(

Do Until all items are identified

(Identify Item and vendor)

EndDo

(Sort by Vendor, Item)

Vendor ID
ItemlD

Do While there are Items to be processed (~:~~~~ ~ame
IF First-Record ____ Vendor

~ Address

Set Last-Vendor = Vendor Ord:~J~rr~s

(Create Vendor Info) QI!:~ ~y
ELSE IF Vend - L t-~ d If ./ Item Description

or - as en a/" Item Price

(Get price)

Create Order

ELSE

(Mail Order)

Vendor ID
Vendor Name
Vendor Address
Order Terms

Video Name

C~ ___ F_i_le_o_rd_e_r ______ ~
Purchase Order

Set Last-Vendor = Vendor

(Create Vendor Info)

ENDIF
ENDDO

END Create Purchase Order Procedure

FIGURE 10-37 Data Addition to High-Level Action Diagram

Then the conditional statement for determining the
type of request is added (Figure 10-43). The two
options are If Customer and If Video ID, and each
has its own processes.

Next, Open Rentals are read and displayed until
all Open Rentals for this customer are in memory
(Figure 10-44). The Open Rental loop is a simple Do
While process.

Then video returns are processed using a repeti­
tion with a conditional structure (Figure 10-45). Late
fees are checked in a repetitive loop for all Open
Rentals (Figure 10-46). New rental Video IDs are
entered for all new rentals (Figure 10-47). Pro­
cess Payment and Make Change is a stand-alone
module. Then, for all open and new rentals, the Open
Rentals file is updated; for all oftoday's returns, his­
tory is updated; and if payment is made or a user

requests, a receipt is printed (Figure 10-48). The
consolidated action diagram is shown in Figure
10-49.

Next, evaluate the diagram to identify program
modules. As in the example above, we have natu­
rally identified modules as part of process definition.
For instance, Get Valid Customer is a small, self­
contained module that does one thing only. The
module uses a Customer ID to access the Customer
relation. If the entry is present, the credit is checked.
The name, address, and credit status are returned.
The remaining modules, that we originally defined
as business processes doing one thing, should each
be reviewed to ensure that they are, in fact, single
purpose. This is left as a class activity.

In addition, we can now resolve the issue held
over from analysis about whether to keep separate or

434 CHAPTER lODato-Oriented Design

Do Until all items are identified

Identify Item and Vendor

EndDo Vendor ID

(Sort by Vendor, Item)
Item ID -----+t~

. (vendor ID Do While there are Items to be processed Vendor Name

. Vendor
IF Flfst-Record ~ Address

Order Terms
Set Last-Vendor = Vendor Gendor ID

C) Item ID
Create Vendor Info Item Qty

ELSE IF" cJ, - L t-" d'or ./ Item Description
ven or - as ven /" Item Price

(Get price) Gendor ID

(Create Order ~ Vendor Name
Vendor Address

ELSE Order Terms

(Mail Order)

(~ ___ F_i_le_o_~_e_r ____ ~~

Set Last-Vendor = Vendor

(Create Vendor Info)

ENDIF
ENDDO

END Create Purchase Order Procedure

Purchase Order

FIGURE 10-38 Optional Screen Processing on Action Diagram

New Releases
Vendor Name
Video Name

Scrldltem

ScrCreOrder

consolidate Get Open Rentals, Add Return Date and
Check for Late Fees. Individually, each of these
processes is singular (i.e., does one thing). If they are
consolidated, they would remain singular but be
placed within the same repetition loop. The issue
here, then, is which method is easier to program and
implement in the intended language, and which pro­
vides the better user interface. We need to visual­
ize the user interface and memory processing for
each alternative.

prompted for new videos or for returns. If we prompt
for returns every time, many wasted entries to deny
return processing will be made. If we prompt for
either new or return Video IDs, we need a method
of knowing which is entered. Assuming we figure
that out, we then get all returns and enter today's
date for returned videos. Then all entries on the
screen are scanned to determine new late fees.

If the modules are kept separate, all Open Rentals
are read first and displayed. Then the clerk can be

If the modules are consolidated, as each Open
Rental is read, Late Fees are computed for tapes with
return dates and no late fees (see Figure 10-50).
There are two options for this process. Either we

Get Customer 10

Get Valid Customer

Get Valid Video

Get Return 10

Add Return Date

Get Open Rentals

Check Late Fees

Process Payment
& Make Change

Create Open Rental

Update Open Rental

Update/Create History

Print Receipt

Information Engineering Design 435

FIGURE 10-39 ABC Video Process Hierarchy Diagram

assume there are no more returns or the clerk must
respond to each Open Rental. With the first option,
the clerk would have a selectable option for more
return processing. When chosen, each return Video
ID is entered and Late Fees are computed for that
video.

Notice that both alternatives have problems. The
separation alternative has a problem in dealing with
returns, and there will be a slight delay for Late Fee
processing. The consolidation option actually modi­
fies the processes from the PDFD somewhat for Late
Fee processing.

Data storage for a rental in memory is the same
for both alternatives. We need a location for cus­
tomer information, a table for open rentals, a table
for new rentals, and locations for payment informa­
tion. We will have three iterations through the table
for Open Rentals in the separate alternative, and one,
or two if returns are present, iteration(s) in the con­
solidated alternative.

The alternatives are approximately the same in
implementation complexity, although three iterations
are more likely to contain bugs than one. The
human interface design is the same for both alterna-

436 CHAPTER 10 Data-Oriented Design

r--- Rent/Return

- Customer Maintenance

I-- Video Maintenance

'--- Periodic Processing

FIGURE 10-40 ABC First-Level Action
Diagram

tives. The difference in the human interfaces is the
speed and timing for data to appear on the Open
Rentals lines. In this case the consolidated alterna­
tive is slightly faster. The difference in memory pro­
cessing is the number of iterations through Open
Rental data. Again, the consolidated alternative is
preferred somewhat because it is less likely to con­
tain bugs. With no overwhelming evidence for or
against either alternative, this amounts to a judgment
call. We will choose the consolidated alternative to
minimize the probability of errors and the number of
iterations through the data. The action diagram,
reflecting consolidated open rental processing, is in
Figure 10-50.

The next activity is reusability analysis. ABC
has no library of reusable modules to consider
since it currently has no computer processing. The
types of modules the consultants are likely to have
might be relevant to error processing or to screen
interactions. For our purposes, we assume no
reusable modules.

To assess module timing, we analyze the module
clusters. The only modules that could be concur­
rent are those in the last cluster to update files and
print a receipt. Before deciding concurrency, we
must decide the details of history processing that
were deferred from analysis. We have two types of
history files: Customer and Video. Customer His-

tory is a separate file that contains the Customer ID
and all Video IDs rented by that customer. No counts,
dates, or copy information are anticipated. This de­
scription complies with the case requirements in
Chapter 2.

Video History contains Video ID, Copy ID, Year,
Month, Number of Rentals, and Days of Rental for
each entry. This data description also complies with
the case requirements in Chapter 2. The issue to be
decided is whether or not Video History is main­
tained during on-line processing, or if the current
month's activity is kept with Copy information. If
the second alternative is chosen, we need a monthly
process to update the Video History and reinitialize
the counts in the Copy relation. If the first alternative
is chosen, we have two more alternatives. First, we
might need update and create processing because,
for anyone copy, we would not know in advance
whether it has a historical entry or not. This alter­
native requires bug-prone processing that is more
complex than keeping counts in the current Copy
relation. Second, we could create an empty entry for
every tape at the beginning of every month. This
alternative is not attractive because it generates
many empty records on history. Both of these alter­
natives would require history to be on-line. Keeping
current counts with Copy relations does not require
history to be on-line. The final argument for keep­
ing the counts in Copy information is that, to main­
tain status of a given tape, Copy information must be
updated upon video return anyway. As long as the
tuple is being read, updating it with count informa­
tion requires adding lines of code rather than a new
module. From this discussion, it should be clear that
keeping current counts in the Copy relation is the
preferred alternative. We document this and the
other changes in the Data Dictionary.

Now we can discuss module timing for the last
group of modules. In this group we create and/or up­
date Open Rentals, update Copy, and Print Receipt.
Recall from analysis that Vic does not want file
update success to be known to the customers. The
receipt should be printed regardless of updating suc­
cess. This implies that printing could be concurrent
with the file processes. The file updates cannot be
concurrent because they will all be on the same
device. Since there is already contention for the file

Until No
More Open
Rentals

Information Engineering Design 437

Until No
More
Returns

r;:.:::-;~:;V:::k~:4----':'''::':'':=~--f Video, Copy

Copy

FIGURE 10-41 ABC Video Process Dependency Diagram

among the users, it is unlikely that we would want
to increase contention by having the updates concur­
rent. If printing is the only concurrent process, it is
not worth the cost to provide concurrency. There­
fore, the processes will be made sequential for pro­
duction operation. Figure 1 0-50 is not changed at
this point.

The entities and data attributes are added to
the diagram next to show input and output process­
ing. Two entities, EOD and Rental Archive, are

still undefined, having been deferred in analy­
sis. These are left as an exercise. The entities refer­
enced in Rental/Return processing, Customer, Open
Rental, Video, Copy, Customer History, and EOD
are all shown in Figure 10-51. When an action dia­
gram arrow is from an entity to a process, it means
that the entire tuple is accessed. The final action is to
add screens to the action diagram, but they are not
yet defined, so this activity will be left as a future
exercise.

438 CHAPTER 10 Data-Oriented Design

r-- Rent/Return

t-- Customer Maintenance

- Video Maintenance

Create Video

Update Video

Delete Video

Query Video

----- Periodic Processing

FIGURE 10-42 ABC Video Maintenance
Second-Level Action Diagram

Define Menu Structure and
Dialogue Flow
Guidelines for Defining the Menu
Structure and Dialogue Flow

The interface structure includes design of a menu
structure and design of dialogue flow within the
menu structure. Both designs are based on the PDFD
and process hierarchy diagram developed during IE
analysis.

First, the menu structure is developed. Recall that
the menu structure is a structured diagram translat­
ing process alternatives into a hierarchy of options
for the automated application. The task hierarchy is
analyzed to define the individual processing screens
required to perform whole activities, and to identify
the other processes and activities in the hierarchy
which must be selected to get to the processing
screens.

Let's walk through the development of the sam­
ple menu structure shown in Figure 10-7. The related
process hierarchy diagram is shown as Figure 10-52
with the individual processing screens, selection
alternatives, and hierarchy levels identified. For each
level in the hierarchy, we identify a level of menu

processing. Using simple bracket structures to trans­
late from the top to the bottom of the hierarchy, we
first define the options for the first level menu (see
Figure 10-53). Next, the menu options for the first
process level of the hierarchy are shown in Figure
10-54. Finally, the remaining detailed processes are
added to the diagram (see Figure 10-55).

If, for any reason, the hierarchy or lower-level
processes are in doubt, review the proposed menu
structure with the users before proceeding. If the

r- Rent/Return Procedure

Get Request

r-- IF Customer Phone

Get Valid Customer

r--- ELSE IF Video 10

Set 10, 10Type to Video

... GOTO Open Rentals

'-- ENOIF

~ END Rent/Return Procedure

FIGURE 10-43 Request Processing Action
Diagram Constructs

- Rent/Return Procedure

Do While More Open Rentals for this Customer

Get Open Rentals (using ID, IDType)

[

IF First

Set ID, IDType to Customer

Get Valid Customer

ENDIF

ENDDO

'--- END Rent/Return Procedure

FIGURE 10-44 Open Rental Action Diagram
Constructs

process hierarchy diagram is accepted as correctly
mirroring the desired functions in the application,
proceed to the next step, defining the movements
between menu items.

Traditionally, applications were constrained to
moving top-to-bottom-to-top with no deviation.
Anyone who uses such an interface for long knows it
is irritating to wait for some menu that is unwanted
and to enter choices purely for system design rea­
sons. The decisions should relate to application
requirements as much as possible. For instance,
security access control requirements can be partially

Information Engineering Design 439

_ Rent/Return Procedure

r-- IF Returns

[

DO Until no more returns

Get Return ID

Add Return Date

ENDDO

'-- ENDIF

'---- END Rent/Return Procedure

FIGURE 10-45 Video Returns Action
Diagram Constructs

met by restricting movement to functions as part of
dialogue flow. The decisions about legal movement
should be made by the users based on recommenda­
tions by the designers; although frequently, dialogue
flow decisions are made by the SEs. In general, if the
users are functional experts, an open design that
allows free movement should be used. If users are
novices or not computer literate, a more restrictive
design should be used to minimize the amount of
their potential confusion.

Figure 10-56 shows types of arrows used to de­
pict movement between levels of a menu structure.

440 CHAPTER 10 Data-Oriented Design

RenVReturn Procedure

[

DO Until No more Open Rentals

Check for Late Fees

ENDDO

END Rent/Return Procedure

FIGURE 10-46 Late Fee Action Diagram
Constructs

In a small diagram, with less than ten screens, only
single-headed arrows are used, and at least two
arrows are drawn for each entry: one entering and
one leaving (Figure lO-56a). In a large diagram, with
over ten screens, the triple-headed arrows can be
added to the diagrams to depict call-return process­
ing (Figures lO-56b and lO-56c).

An example of restricted screen movement that
might be designed for novice users is shown in Fig­
ure lO-57a. In the diagram, all movement is to or
from a menu. The diagram in Figure lO-57b shows
that any level of upper menu might be reached from

Rent/Return Procedure

[

DO Until no more new video rentals

Get Valid Video

ENDDO

END Rent/Return Procedure

FIGURE 10-47 New Rentals Action Diagram
Constructs

the lower levels. This speeds processing through
menus and is preferred to the design shown in Figure
lO-57a which only allows a process to return to the
menu level from which it was activated. Restrictive
dialogue flow (Figure lO-57a) is the type of design
that is most likely to waste user time and become
annoying.

Experts and frequent users usually are provided
more alternatives for interscreen movement because
they become proficient with the application. Unre­
stricted screen movement is desirable for these users.
An example of unrestricted movement in screen

r--- Rent/Return Procedure

Process Payment and Make Change

:: DO Until all Rentals in memory are processed

r- IF Return Date = Today's Date

Update History

I- ELSE IF Return-Date NOT = spaces

Update Open Rental

f-- ELSE IF Return-Date = spaces

Create Open Rental

'-- ENDIF

L ENDDO

[

IF Payment> zero or Receipt Requested

Print Receipt

ENDIF

- END Rent/Return Procedure

FIGURE 10-48 Payments, File Update and
Printing Action Diagram Constructs

design is shown in Figure lO-57c. In the example,
the user begins at the main menu and may move
down the hierarchy in the same manner as a novice,
or may move directly to a process screen, at the
user's option. Unrestricted movement requires the
design and implementation of a command language
or sophisticated menu selection structure that is con­
sistent with the basic novice menu selections, but
adds the expert mode.

Unrestricted movement can be costly and error­
prone, which are the main reasons why it is not
prevalent. The added cost is due to increased access

Information Engineering Design 441

control structure that must accompany an open
movement design. The added errors are from a need
to provide a specific location on the screen for
entry of the expert's direct screen requests. Each
request must be checked for access control and
legality, plus the current context (i.e., screen and
memory information) might need to be saved for
return processing.

,--- Rent/Return Procedure
Get Request
r- IF Customer Phone

Get Valid Customer
I- ELSE IF Video ID

Set ID, IDType to Video
foIiI"'I--+---GOTO Open Rentals

'-- ENDIF

[

DO Until NO More Open Rentals for this Customer
Get Open Rentals (using ID, IDType)

[

IF First
Set ID, IDType to Customer
Get Valid Customer

ENDIF
ENDDO

~
IF Returns

~
DO Until no, more returns

Get Return ID
Add Return Date

ENDDO

ENDIF

~
DO Until No more Open Rentals

Check for Late Fees
ENDDO

b
DO Until no more new video rentals

Get Valid Video
ENDDO

Process Payment and Make Change

~ DO Until all Rentals in memory are processed

~
IF Return Date = Today's Date

Update History
ELSE IF Return-Date NOT = spaces

Update Open Rental
ELSE IF Return-Date = spaces

Create Open Rental
ENDIF

t= ENDDO

[

IF Payment> zero or Receipt Requested
Print Receipt

ENDIF

- END Rent/Return Procedure

FIGURE 10-49 ABC Consolidated Action
Diagram

442 CHAPTER 10 Data-Oriented Design

,---- Rent/Return Procedure
Get Request

- IF Customer ID
Get Valid Customer

- ELSE IF Video ID
Set ID, IDType to Video

"","t--+---G8,OTO Open Rentals
- ENDIF

= DO Until NO More Open Rentals for this Customer

Get Open Rentals (using ID, IDType)

[

IF First
Set ID, IDType to Customer
Get Valid Customer

ENDIF

[

IF Returned
Get Return ID
Add Return Date

ENDIF
Check for Late Fees

t:: ENDDO

C
DO Until no more new video rentals

Get Valid Video

ENDDO

Process Payment and Make Change

~ DO Until all Rentals in memory are processed

~
IF Return Date = Today's Date

Update History
ELSE IF Return-Date NOT = spaces

Update Open Rental
ELSE IF Return-Date = spaces

Create Open Rental
ENDIF

~ ENDDO

[

IF Payment> zero or Receipt Requested
Print Receipt

ENDIF

'---- END Rent/Return Procedure

FIGURE 10-50 ABC Action Diagram with
Consolidated Open Rental Processing

Upon completion, the menu structure and dia­
logue flow diagrams are given to the human inter­
face designers to use in developing the screen
interface (see Chapter 14). The dialogue flow dia­
gram is also used by designers in developing pro­
gram specifications. Before we move on, note that
even though the menu structure is identified, the
human interface may or may not be structured
exactly as defined in the menu structure diagram.
The human interface designers use the menu struc-

ture information to understand the dependencies and
relationships between business functions, entities,
and processes; they may alter the structure to fit the
actual human interface technique used. If a tradi­
tional menu interface is designed, it could follow
the menu structure diagram.

ABC Video Example Menu Structure and
Dialogue Flow

The menu structure is derived from the process
hierarchy diagram in Figure 10-58 (reprint of Figure
9-26). First, the activities from the decomposition
form the main menu options (see Figure 10-59). The
processes are used to develop submenu options.
Then, the lowest level of processing completes the
simple structure (Figure 10-60).

Notice that all Rent/Return processing is ex­
pressed in the first menu option even though we have
many subprocesses in the hierarchy. Rental/return
has many subprocesses performed as part of the
hierarchy diagram. Unlike the other subprocesses,
rental/return does not have individual menus and
screens for each subprocess. Rather, rental/return
requires a complex, multifunction screen with data
from several relations and processing that varies by
portion of the screen. The subprocesses for rental/
return, then, describe actions on portions of the
screen. You cannot tell from the decomposition dia­
gram that rental/return has this requirement; rather,
you know from application requirements (and expe­
rience) what type of screen(s) are needed. An incor­
rect rendering of the menu structure, such as the one
in Figure 10-61, would look weird and should make
you feel uncomfortable about its correctness.

Second, notice that we do not indicate access
rights for any of the processing options on the dia­
gram. The security access definition is superimposed
on the menu structure by the interface designers to
double-check the design thinking of the process
designers. If there is an inconsistency, the two
groups reconcile the problems.

Next we develop a dialogue flow diagram from
the menu structure diagram. The rows of the dia­
logue flow diagram correspond to the entries in the
menu structure (Figure 10-62). Rows are entered by
level of the hierarchy by convention.

FIGURE 10-51

Information Engineering Design 443

Rent/Return Procedure

Get Request

------------------~

(Get Valid Customer ~ ust Phone
Name j;

F Customer Phone

SeIIO, 10Type 10 Video ~redil Stalus
ELSE IF Video 10 Address

GOTO Open Rentals
ENOIF

Customer

DO Until NO More Open Rentals for this Customer Open Rentals
Open Video

(Get Open Rentals (using ID, IDType)~ Rental Copy

[

IF First
Set 10 IDT e to cust9mer ust ID
Get Valid Customer Name

ENDIF Address
Credit Status

[

IF Returned
(Get Return ID)

(Add Return Date)
ENDIF

(Check for Late Fees)

ENDDO ----------------------~

Customer

DO Until no more new video~r;.e~nt:al:s,.;;====~:r Video
(Get Valid Vide~'" Copy

Process Payment and Make Change }-------.... EOD

DO Until all Rentals in memory are rocessed
Number Days

~
IF Return D~te = Today's Date Number Rents
(Update History) Cust History

ELSE IF Return-Date NO - es
(update Open Renta~copy

ELSE IF Return-Date = spaces Status

E~~~ate Open Rental~open
ENODO Rental

[~

Cust History
Open Rental
Copy

END Rent/Return Procedure ____________ ----J

ABC Action Diagram with Data Entities and Attributes

We need to decide how much flexibility to give
users, keeping in mind the security access require­
ments and the users' computer and functional skills.
Users are mostly novices with little computer expe­
rience. The average job tenure is less than six
months. Data and function access for clerks are
unrestricted for customer, video, and open rentals
add, change, and retrieve functions. Other options
are more restricted in terms of which user class can
perform each function.

First we define the options. We could define flex­
ible movement between those options only, and
restrict movement to other options through the hier­
archy. Top-down hierarchic access is possible. We
could allow hierarchic access combined with flexible
'expert' mode movement throughout the hierarchy,
constrained by access restrictions.

For each option, ask the following ques­
tions. Does Vic have a preference? Which best
fits the user profile? Which is the cleanest

444 CHAPTER lODato-Oriented Design

Special Products Div.

Ereonord~

Prospect Maintenance

Change Allocation

Delete Allocation

Inquire on Allocation

Change Customer

Delete Customer

Inquire on Customer

FIGURE 10-52 Example of Process Hierarchy Diagram

implementation, least likely to cause testing and user
problems?

Vic, in this case, has no preference. Having never
used computers, he has no background that allows
him to make a decision. He says, "Do whatever is
best for us. I let that up to you. But I would like to
see whatever you decide before it is final." This
statement implies interface prototyping, which
should always be done to allow users to see the
screens while they are easily changed.

Most of Vic's employees work there for 1 Y2 years
and have little or no computer experience. There­
fore, screen processing that is least confusing to new
users should be preferred. Usually, novices prefer
hierarchic menus, providing the number of levels
do not become a source of confusion. Also, the sim­
plest implementation is always preferred; that is, the
hierarchic menu option.

Based on the answers to the questions, we should
design a restrictive, hierarchic flow. As Figure 10-63

Main
Menu

1. Customer Service

2. Sales

3. Marketing

FIGURE 10-53 First-Level Menu Structure

shows, this design is simple and easy to understand.
The dialogue flow and screens should be prototyped
and reviewed with Vic at the earliest possible time
to check that he does not want an expert mode of
operation.

You might question whether the movement from
rent/return to cm:tomer add and video add should be
on the dialogue flow diagram. This is a reasonable
concern since the process of rent/return does allow
adding of both customers and videos within its
process. The issue is resolved by local custom. In
general, given the option, such flexibility should be
shown on the diagram for clarity and completeness.
Sometimes, local convention or a specific CASE tool
requirement do not allow such completeness.

Information Engineering Design 445

Plan Hardware and Software
Installation and Testing
Guidelines for Hardware/Software
Installation Plan

The guidelines for hardware and software installa­
tion planning are developed from practice and iden­
tify what work is required, environmental planning
issues, responsibility for the work, timing of materi­
als and labor, and scheduling of tasks.

Installation requirements should always be de­
fined as far in advance of the needs as possible and
documented in a hardware installation plan. In­
stallation planning tasks are:

1. Define required work
Define hardware/software/network

configuration
Assess physical environment needs
Identify all items to be obtained
Order all equipment, software, and services
Define installation and testing tasks

2. Assign responsibility for each task
3. Create a schedule of work

If the SE team has no experience with configuring
installations, their work definition should always be
checked by someone who has experience. In general,

1. Customer Service

Main
Menu

[

1. Order Fulfillment
2. Inventory Allocation
3. Customer Maintenance

2. Sales

[
1. Order Fulfillment
2. Inventory Inquiry
3. Customer Maintenance
4. Prospect Maintenance

3. Marketing

[
1. Query Order
2. Query Manufacturing Plans
3. Query Goods in Process
4. Query Inventory
5. Query Customers

FIGURE 10-54 Second-Level Menu Structure

446 CHAPTER lODato-Oriented Design

Main _
Menu

r-- 1. Customer Service

r-- 1. Order Fulfillment

[

1. Create Order
2. Change Order
3. Delete Order
4. Order Inquiry

2. Inventory Allocation

[

1. Create Allocation
2. Change Allocation
3. Delete Allocation
4. Allocation Inquiry

3. Customer Maintenance

[

1. Create Customer
2. Change Customer
3. Delete Customer

'-- 4. Customer Inquiry

r-- 2. Sales

.------ 1. Order Fulfillment

[

1. Order Create
2. Order Change
3. Order Delete
4. Order Inquiry

C 2. Inventory Inquiry

3. Customer Maintenance

[
1. Create Customer
2. Change Customer
3. Delete Customer
4. Customer Inquiry

4. Prospect Maintenance

[

1. Create Prospect
2. Change Prospect
3. Delete Prospect

~ 4. Prospect Inquiry

-- 3. Marketing

[

1. Query Order
2. Query Manufacturing Plans
3. Query Goods in Process
4. Query Customers
5. Query Prospects

FIGURE 10-55 Final Menu Structure

you define the complete hardware, software, and net­
work configuration needed, match the application
configuration requirements to the current installa­
tion, get approval for all incremental expenditures,
order all equipment and software, and install and test
all equipment and software. In a mainframe environ­
ment, this task is simplified because the first step,
configuration definition, can be abbreviated and
done with help from an operations support group.

The operations support group also would install and
test hardware and install software.

When the configuration is defined, it is matched
to the current installation to determine what items
need to be purchased. In new installations, the phys­
ical installation environment is as important as the
equipment. Building, cooling, heating, humidity
control, ventilation, electrical cable, and communi­
cations cable needs should all be assessed. If you
have no experience performing these analyses, hire
someone who does. Do not guess. You only do the
client a disservice, and chances of making a costly
mistake are high.

Once needed items are identified, they should be
ordered with delivery dates requested on the orders .
The delivery dates should conform to the expected
installation schedule which is discussed below. The
goal is to have all equipment and parts when they are
needed and not before. For capital expenditures, this
delays the expense until it is needed. Planning for
large capital expenditures should be done with the
client and accountant to stagger charges that might
be a financial burden.

As items to be installed are identified and or­
dered, responsibility for installation and testing
should be identified. The alternatives for who should
do hardware and software installation are varied.
Choices include consultants, unions, contractors,
subcontractors, or current personnel. In many cases,
there are three types of installations being made:
software, hardware, and the network, and each has
its own installation responsibility.

Software should be installed by system program­
mers in an operations support group in a mainframe
installation, and by the software builders for a PC
installation. Contracts, whether formal or informal,
should state what work is to be done, timing of work,
penalties for failure to meet the time requirements,
and price. Other items such as number of hours and
dates of access to the site might also be included.

Hardware, in a mainframe environment, is man­
aged, ordered, and installed through an operations
department. You, as an SE needing equipment, must
know what you need, but must trust the operations
department to obtain, install, and test the equipment.
Most PC computer equipment is simplified enough
that special assistance is not usually required. If

Information Engineering Design 447

Row = Screen
Column = Movement

or

I
I

a. Screen movement to directed arrow screen.

b. Screen movement to one of several possible screens.

c. Movement is down the arrow with return to calling screen.

d. Movement is down the arrow with further selection
at called screen, no necessary return.

FIGURE 10-56 Dialogue Flow Movement Alternatives

~:::::~: =~= J =fj= = = ~ =
Order Fulfillment j
Create Order _

Change Order _ _ _ _ _ _ _ __ _ __ _ _ _ _ _ _ _

Delete Order

Order Inquiry

FIGURE 10-57 a Example of Restrictive Screen Movement

448 CHAPTER lODato-Oriented Design

:::::~e:i~ ~ = f ~ ~ = = = = = - - =_ =_ =_ =_ =_ =_ =_ =_ =_ =_ =

:::~:::::r~ ~ ~ ~ ~ ~ ~ ~ ! j~ _ ~ ~ J ~ f f -~ ~ ~ :- -
Order Inquiry _ _ _ _ _ _ _ _ _ _ _' _ _ __ j __ 1 _ _ _ _

FIGURE lO-57b Example of Less Restrictive Screen Movement

desired, you can usually negotiate with a hardware
vendor to burn-in equipment and set it up for a small
fee. Burn-in means to configure the hardware and
run it for some period of time, usually 24-72 hours.
If there are faulty chips in the machine, 90% of the
time they fail during the bum-in period.

At least two terminals or pes should be config­
ured during installation of network cable for testing
the cable. For LAN installation, hire a consultant if
you've never done this before. The consultant helps
you

Main Menu _

• define what is to be done
• define required equipment (e.g., cabling; con­

nectors, etc.)
• get permits from the government and building

owners
• obtain zoning variances
• identify and hire subcontractors
• supervise and guarantee the work.

As the user's representative, you can prepare the
installation for the work to be done. Mark walls

-,,-jr- -

-----.. -.--------------
Customer Service ~ ~ =
Sales_ - - - i- -
Marketing - - - r - ~, - - - - - - - - - - - - - -

OrderFulfillmenL ; ~ -, -, - - - - - - - -r-{ A

Create Order - - - - -, - - - - r- - - 1-,
:::~:::::~-----:-·~tj- --~-, ----------- --- -:

, -_, -j-_, --r-----------"l
Order Inquiry _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

FIGURE lO-57c Example of Less Restrictive Screen Movement

Get Valid Customer

Get Valid Video

Get Return ID

Add Return Date

Get Open Rentals

Check Late Fees

Create Open Rental

Update Open Rental

Update/Create History

Print Receipt

FIGURE 10-58 ABC Process Hierarchy

Main Menu {

1. Rental/Return

2. Customer Maintenance

3. Video Maintenance

4. Other

FIGURE 10-59 ABC First-Level Menu
Hierarchy

Information Engineering Design 449

where all wires should be, using colored dots. For
instance, you can use blue dots for phone lines, red
dots for LAN cable, and green dots for electrical
outlets. Number all outlets for identification of wires
at the server end. Colored tape shows where cable
runs should be placed in false ceilings and walls.
Configure one PC, with the network operating sys­
tem installed, in the location of the file server. As
cabling is complete, move the second PC to each
wired location, start-up the network, and send mes­
sages. Make sure the location is as expected and that

450 CHAPTER 10 Data-Oriented Design

r-- 1. Rent/Return Processing

~ 2. Customer Maintenance

[

1. Create Customer
2. Change Customer
3. Delete Customer
4. Customer Inquiry

r--- 3. Video Maintenance

[

1. Create Video
2. Change Video
3. Delete Video
4. Video Inquiry

~ 4. Other

[

1. End of Day
2. Startup
3. Shutdown
4. End of Month

[
1. Update Customer History
2. Update Video History

5. Query

FIGURE 10-60 ABC Menu Structure

the wiring works. Test all wires because they will be
wrong. Make sure all wiring is correct before the
electrical contractor is paid and leaves.

The important issue is to make a choice of who
will do what work long before the work is needed,
and plan for what is to be done. Use a lawyer to write
all contracts using information provided by you, as
the client's representative, and the client.

Timing of installations can be crucial to imple­
mentation success. When different types of work are
needed, such as air-conditioning and electrical
cabling, the work should be sequenced so the con­
tractors are not in each other's way, and in order of
need. For instance, a typical sequence might be
building frame, building shell, false floor/ceiling
framing, electrical wiring, plumbing, air-condition­
ing, communications cabling, false floor/ceiling fin­
ishing, finishing walls, painting, and decorating. Any
sequences of work should be checked with the peo­
ple actually performing the work to guarantee that
they agree to the work and schedule.

In general, you want to end testing of all equip­
ment to be available for the beginning of design at
the latest. This implies that all previous analysis
work is manual. If CASE is to be used, the latest pos-

sible date for equipment and software availability is
the beginning of project work.

Cabling is needed before equipment. Equipment
is needed before software. Software is needed before
application use. Some minimal slack time should be
left as a cushion between dates in case there is a
problem with the installation or the item being
installed. Leave as big a cushion between installation
and usage as possible, with the major constraint
being payment strains on a small company.

ABC Video Example Hardware/Software
Installation Plan

For ABC, a local area network is to be used. A
file server with one laser printer, three impact print­
ers, and five PCs are planned. The LAN will be a

Main
Menu

1. Rental/Return

1. Get Request
2. Get Valid Customer
3. Get Open Rental
4. Get Return ID
5. Add Return Date
6. Check Late Fees
7. Get Valid Video
8. Process Payment and Make

Change
9. Create Open Rental

10. Update Open Rental
11. Create/Update Customer History
12. Update Item
13. Print Receipt

2. Customer Maintenance

[

1. Create Customer
2. Retrieve Customer
3. Update Customer
4. Delete Customer

3. Video Maintenance

[

1. Create Video
2. Retrieve Video
3. Update Video
4. Delete Video

4. Other

[

1. End of Day
2. Startup
3. Shutdown
4. End of Month
5. Query

FIGURE 10-61 Incorrect Rental/Retum Menu
Structure

Rent/Return Processing
Customer Maintenance

Create Customer
Change Customer
Delete Customer
Customer Inquiry

Video Maintenance
Create Video
Change Video
Delete Video
Video Inquiry

Other
End of Day
Startup
Shutdown
End of Month

Update Customer History
Update Video History

Query

Information Engineering Design 451

FIGURE 10-62 ABC Dialogue Flow Diagram Menu Structure Entries

Main Menu-ABC RlR
Rent/Return Processing
Customer Maintenance

Create Customer
Change Customer
Delete Customer
Customer Inquiry

Video Maintenance
Create Video
Change Video
Delete Video
Video Inquiry

Other

., ,

,

r ~ •••

, " ~~ , '" ~

, .. ~
, '" ~

~~~;~~ 111'11' Update Customer HistOry _____________________ r-+_-_t-±.L...----
Update Video History 

Query 

Unrestricted access within a function (subject to access rights) except for 
'other' processes. All 'other' processes are invoked from and returned to 
the menu. 

FIGURE 10-63 ABC Dialogue Flow Diagram 

r 



452 CHAPTER 10 Data-Oriented Design 

Novell ethernet with SOL-compatible DBMS soft­
ware, Carbon Copy, Word Perfect, Lotus, Norton 
Utilities, Fastback, and Symantek Virus software. 
The goal is for all hardware to last at least five years 
if no other business functions are added to the sys­
tem. The configuration details are shown in Figures 
10-64 and 10-65. There should be adequate capac­
ity to add accounting and order processing software 
if needed. The current average daily rentals of 600 
is expected to double in five years. The current num­
ber of customers is 450, and is expected to be 1,000 
in five years. 

To develop a plan, assume that the current date is 
January 1, and that the application installation is 
scheduled for August 1. Design has just begun. The 
PCs and laser printer were installed five months ago 
for availability during planning, feasibility, and . 
analysis. The currently installed software includes a 
CASE tool on two machines, Word Perfect, Norton 
Utilities, Fastback, the SOL DBMS, and SAM Virus 
software. The remainder of the software and hard-

0 
PC -

BarCode m 
Reader :T 

0 
CD 
3 
~ 
OJ 
c en 

o 
PC-

FIGURE 10-64 ABC Configuration Schematic 

ware must be ordered, installed, and tested as part 
of this plan. 

First we determine what we need. A compari­
son of currently installed items to the list of re­
quired items shows the following items need to 
be planned: 

Network cable and connecters 
File Server 
Novell Software 
Network Interface Cards (NICs, i.e., ethernet 

boards) 
Impact printers 
Bar Code Reader and Imprinter 
Carbon Copy (network version) 
Word Perfect (network version) 
Norton Utilities (network version) 
Fastback 
SOL DBMS (network version) 
SAM (network version) 
Lotus (network version) 

BarCode 
Reader 

0 
BarCode 
Reader 

0 

File Server 
Modem 

Tape Backup 



Automated Tool Support for Data-Oriented Design 453 

Hardware Characteristics: 

File server 12 Mb Memory 
800 Mb Disk 
Super 486, SCSI Channel 
Color monitor 

1 Laser printer 8 Page/Minute 

3 Impact printers for two-part forms (or 4 cheap lasers 
with tear-apart forms) 

5 PCs 2 Mb Memory 
1.4 Mb Floppy disk for startup 
No hard disk 
Local printer (see above) 

1 2400 Baud Modem for long distance troubleshooting 

1 Streaming tape backup 100 Mb/Minute 

FIGURE 10-65 ABC Hardware and Software 
Details 

Everything should be ordered as soon as possi­
ble to ensure availability. Equipment and software 
ordering is the first item on the plan. 

The group has installed network software before 
but not the cable, so they obtain approval from Vi~ 
to engage another consultant, Max Levine, from 
their company to perform that work. Max has been 
installing mainframe and PC networks for over 
20 years and knows everything about their installa­
tions and problems. He immediately takes over the 
network planning tasks. He first obtains a rough idea 
of the planned locations for equipment, computes 
cable requirements, and orders cable and connectors. 
Then, for the plan, he adds tasks for mapping spe­
cific cable locations for the installers, for installing 
and testing the file server, and for installing and test­
ing the cable (see Table 10-6). 

At the same time, Mary and Sam work at plan­
ning the remaining tasks. Each software package 
must be installed and tested. These tasks are planned 
for Sam and one junior person. The tests for all but 
the SQL package are to use the tool and verify that 
it works. For the SQL package, Sam and a DBA will 
install a small, multiuser application to test that the 
single and multiuser functions are working as 
expected. Of all the software being used, it is the 

one with which they are least familiar, so they 
use the installation test as a means of gaining more 
experience. 

All tasks relating to new equipment and software 
are scheduled to take place during a six-week 
period in January and February. This allows several 
months of cushion for any problems to be resolved; 
it also allows disruptive installations (e.g., cable) to 
be scheduled around peek hours and days. The 
schedule does not show elapsed time, but other work 
is taking place beside the installations. For instance, 
design work is progressing at the same time. As the 
application is implemented and the users have need 
for the equipment, the PCs and printers are moved to 
their permanent locations. This occurs in late spring 
for data conversion. The last stand-alone PCs are 
scheduled to be added to the network in late July, 
long before the application implementation date of 
August 15. 

AUTOMATED TOOL -------

SUPPORT FOR DATA-------

ORIENTED DESIGN -------

Many CASE tools support aspects of data oriented 
design (see Table 10-7). Two specifically support IE 
as discussed in this chapter. The IE CASE tools are 
Information Engineering Workbench4 (lEW) by 
Knowledgeware, Inc., an4 Information Engineering 
Facility (lEF) by Texas Instruments, Inc. Both prod­
ucts receive high marks of approval and satisfaction 
from the user communities. Because of their cost, 
both products are used by mostly large companies. 
The products offer enterprise analysis in addition to 
application analysis, design, and construction (i.e., 
coding). Both IEF and lEW work on PCs, networks, 
an:d mainframes. 

A typical IEF installation could include a main­
frame version with the centralized repository. Users 
check out portions of a repository to work with on a 
PC. Then, when the work is complete and checked 
on the PC, it is merged with the mainframe reposi-

4 lEW for a OS/2 environment is called the Advanced Develop­
ment Workbench (ADW). 



454 CHAPTER 10 Data-Oriented Design 

TABLE 10-6 Installation Plan Items 

Due Date Responsible 

1/10 Mary/Sam 

1/10 Mary/Sam 

1/15 ML 

2/1 ML 

2/1 Sam, Jr. Pgmr. 

2/1 Sam, Jr. Pgmr. 

2/5 Sam, Jr. Pgmr. 

2/5 Sam, Jr. Pgmr. 

2/5 Sam, Jr. Pgmr. 

2/5 Sam, Jr. Pgmr. 

2/5 Sam, Jr. Pgmr. 

2/5 Sam, Jr. Pgmr. 

2/5 DBA, Sam 

2/10 ML, Union Contractor 

2/15 DBA,Sam 

5/15 Sam, Vic's LAN 
Administrator 

7/30 LAN Administrator 

8/30 Mary, Sam 

tory for official storage. When the merge takes place, 
the checked-out items are revalidated for consis­
tency with all mainframe repository definitions. Both 
products offer automatic SQL schema generation for 
data. IEF offers automatic code generation for Cobol 
with imbedded SQL, and can interface to generators 
for other languages. 

lEW and IEF differ in important ways. lEW is 
more flexible in that it does not require the com­
pletion of any matrices or diagrams. However, to 
take advantage of the interdiagram evaluation 
software that assesses completeness and syn­
tactic consistency, all matrices and diagrams are 
required during a given phase. This means that 
you might not have the diagrams or analyses from 

Item 

Order equipment and software 

Order cable and connectors 

Plan cable, printer, PC, server locations 

Install and test file server and one PC 

Install and test impact printers 

Install and test bar code reader and printer 

Install and test Carbon Copy (network version) 

Install and test Word Perfect (network version?) 

Install and test Norton Utilities (network version) 

Install and test Fastback 

Install and test Lotus (network version) 

Install and test SAM (network version) 

Install and test SQL DBMS (network version) 

Install and test cable 

Install test application and verify SQL DBMS 

Move 2 PCs, bar code reader, and 3 printers to permanent 
locations and test 

Move remaining three PCs to permanent locations and test 

Remove CASE tools from PCs, remove single user soft­
ware from PCs and file server 

planning, but you still can create levels of ERDs 
within the analysis tool. Similarly, you might not 
have the analysis tool, so action diagrams can be cre­
ated directly within the design tool. IEF's strength 
is that its rigorous adherence to Information Engi­
neering has led to substantive intelligence checking 
within the software. Both tools easily manage and 
sort large matrices that result from several of the 
analyses. 

The weakness of the tools differs for each tool. 
lEW is primarily a PC-based product that can be 
unstable when used for large projects. lEW also pro­
vides DFDs, not PDFDs, and is not a pure data 
methodology tool. A strength of lEW is that Knowl­
edgeware was an IBM partner in its repository defi-



Automated Tool Support for Data-Oriented Design 455 

nition; as a result, lEW is compatible with AD-cy­
cle software from IBM. 

CASE products, but the requirement to complete 
every table, and so on does not make sense for all 
projects. TI has recognized the severity of this short­
coming and is increasing the flexibility of the prod­
uct without compromising its capabilities. The 
mainframe version of IEF uses DB/2 for repository 
management and can generate C, Cobol, DB/2, SQL, 
and other languages' codes. 

IEF's strength is also its biggest weakness. IEF 
requires completion of every table, matrix, and dia­
gram at this time. 5 The level of intelligent checking 
that can be performed is higher than with most other 

5 1993 

TABLE 10-7 Automated Tool Support for Data-Oriented Methodologies 

Product 

Analyst/Designer Toolkit 

Bachman 

CorVision 

Deft 

Design/1 

ER-Designer 

IEF 

Company 

Yourdon, Inc. 
New York, NY 

Bachman Info Systems 
Cambridge, MA 

Cortex Corp. 
Waltham, MA 

Deft 
Ontario, Canada 

Arthur Anderson, Inc. 
Chicago,IL 

Chen & Assoc. 
Baton Rouge, LA 

Texas Instruments 
Dallas, TX 

Technique 

Entity-Relationship Diagram 
(ERD) 

BachmanERD 
Bachman IDMS Schema 
Bachman DB2 Relational 

Schema and Physical 
Diagram 

Action Diagram 
Dataview 
ERD 
Menu Designer 

ERD 
Form/Report Painters 
Jackson Structured Design 

(JSD)-Initial Model 

ERD 

ERD 
Normalization 
Schema generation 

Action Diagram 
Code Generation 
Data Structure Diagram 
Dialog Flow Diagram 
Entity Hierarchy 
ERD 
Process Data Flow Diagram 
Process Hierarchy 
Screen Painter 

(Continued on next page) 



456 CHAPTER lODato-Oriented Design 

TABLE 10-7 Automated Tool Support for Data-Oriented Methodologies (Continued) 

Product 

lEW, ADW (PS/2 Version) 

System Engineer 

Teamwork 

vs Designer 

Company 

Knowledgeware 
Atlanta, GA 

LBMS 
Houston, TX 

CADRE Tech. Inc. 
Providence, RI 

Visual Software Inc. 
Santa Clara, CA 

SUMMARY ________ ~ __ _ 
Data-oriented methods assume that, since data are 
stable and processes are not, data should be the main 
focus of activities. First, design focuses on the 
usage of data to develop a strategy for distributing or 
centralizing applications. Several matrices summa­
rize process responsibility, data usage, type of data 
used, transaction volumes, and subjective reasons 
for centralizing or distributing data. 

Next, processes from a process hierarchy diagram 
are restructured into action diagrams in design. The 
details of process interrelationships are identified 
from the PDFD and placed on the action diagram. 
Each process is fully defined either in a diagram or in 
the data dictionary. Process details are grouped into 
modules and compared to existing modules to 
determine module reusability. Modules are analyzed 
from a different perspective to reflect concurrency 

Technique 

Action diagram 
Code generation 
Database diagram 
ERD 
Normalization 
Schema Generation 
Screen layout 

ERD 
DFD 
Menu Dialog 
Transaction Dialog 
Entity Life History 
Module Sequence 
DB2, ADABAS, IDMS, Oracle 
Table Diagram 

Control Flow 
Code Generation 
ERD 
Process Activation table 
Program Design Tools 
Testing Software 

Process flow diagram 
Action Diagram 

opportunities or requirements on the action diagram. 
Entities are added to the diagram and related to 
processes. Lines connect individual processes to 
attributes to complete the action diagram specifica­
tion of each application module. For manually drawn 
diagrams, an optional activity is to identify screens 
and link them to attributes and processes, to give 
a complete pictorial representation of the on-line 
portion of the application. 

Data-oriented design focuses on the needs for se­
curity, recovery, and audit controls, relating each 
topic to the data and processes in the application. 

The menu structure and dialogue flow for the 
application are defined next. The menu structure is 
constructed from the process hierarchy diagram to 
link activities, processes, and subprocesses for menu 
design. The structure can be used to facilitate inter­
face designers' application understanding. The 
dialogue flow documents the flexibility or restric-



tiveness of the interface by defining the allowable 
movements from each menu level (from the menu 
structure) to other levels of menus and processing. 

Finally, installation plans for all hardware and 
software are developed. A list of tasks is defined, 
responsibilities are assigned, and due dates are allo­
cated to the tasks. 

There are two fully functional CASE tools that 
support data-oriented methodology as discussed in 
this chapter, lEW and IEF. They are popular in com­
panies that use data-oriented methods. 

REFERENCES ----,---
Date, C. J., An Introduction to Database Systems, Vol. 1, 

5th edition. Reading, MA: Addison-Wesley, 1990. 
Finkelstein, Clive, An Introduction to Information Engi­

neering: From Strategic Planning to Information 
Systems. Reading, MA: Addison-Wesley, 1989. 

Knowledgeware, Inc., Information Engineering Work­
bench™IAnalysis Workstation, ESP Release 4.0. 
Atlanta, GA: Knowledgeware, Inc., 1987. 

Loucopoulos, Pericles, and Roberto Zicari, Conceptual 
Modeling, Databases and CASE: An Integrated View 
of IS Development. NY: John Wiley & Sons, 1992. 

Martin, James, Information Engineering, Vol. 3: Design 
and Construction. Englewood Cliffs, NJ: Prentice­
Hall, Inc., 1990. 

Martin, James, and Carma McClure, Diagramming Tech­
niques for Analysts and Programmers. Englewood 
Cliffs, NJ: Prentice-Hall, Inc., 1985. 

Texas Instruments, A Guide to Information Engineering 
Using the IEF. Dallas, TX: Texas Instruments, 1988. 

KEY TERMS 
action diagram 
application security 
audit control 
backup 
bum-in 
candidate for template 
code generator 
computer verification 
concurrent processes 
condition bracket 
control point 
controlled redundancy 

-----:-----:-:---:-:--:-----­
data distribution by 

location matrix 
data security 
data usage by location 

matrix 
denormalization 
dependent concurrent 

processes 
dialogue flow diagram 
DRlDc>N -1 
DR <NID 
federation 

full backup 
hardware installation plan 
horizontal data partitioning 
incremental backup 
independent concurrent 

processes 
menu structure 
normalization 
off-site storage 
physical security 
procedural template 
process/location matrix 

Study Questions 457 

recovery 
recovery procedures 
repetition bracket 
replication 
security plan 
selection bracket 
sequence bracket 
sight verification 
subset partitioning 
structural relationships 
transaction volume matrix 
vertical partitioning 

EXERCISES _______ _ 

1. Analyze Figures 10-8 to 10-11 and Table 10-1. 
Develop and present a recommendation for cen­
tralization or distribution. Define all recom­
mended data and software locations. Explain 
your reasoning for each choice. 

2. Complete the action diagram for miscellaneous 
processing. Define the contents of the EOD File. 

3. Go visit a local small business such as a video 
store, restaurant, or supermarket. Assess their 
security and physical layout. Develop a list of 
recommendations you would make if installing 
a computer system for this company. Present 
your findings to the class and the reasons for 
your recommendations. 

STUDY QUESTIONS ____ _ 

1. Define the following terms: 
action diagram repetition bracket 
code generator replication 
control point security 
controlled transaction volume 

redundancy matrix 
recovery vertical data partitioning 

2. What are structured programming tenets and 
why are they important in IE design? 

3. What is the purpose of an action diagram? 
4. Discuss this assertion: "Normalization to the 

third normal form and higher is always desir­
able for a physical database." 



458 CHAPTER 10 Data-Oriented Design 

5. Define the four types of database distribution. 
6. Describe how security, recovery, and audit con­

trols complement each other. 
7. There are six types of disasters considered in 

recovery planning. What are they and what 
data/application problems do they cause? 

8. What are common methods of securing data 
against unwanted access? 

9. What is the purpose of off-site storage? How 
off-site should off-site storage be? 

10. What are the trade-offs in security and recov­
ery design? Why not build a fortress to secure 
everything? 

11. Discuss the differences between full and incre­
mental backup. 

12. What features of computers make audit con­
trols difficult? 

13. How is a menu structure diagram constructed? 
What is its purpose? 

14. How can dialogue flow diagrams be used to 
partially provide for access control? 

15. What are the structural relationships on an 
action diagram? Where do they come from? 

16. List the steps in developing an action diagram. 
17. For what types of applications does concur­

rency analysis become important? 
18. What is reusability analysis? Why is it 

important? 

19. Why, when developing an action diagram, 
must the processes sometimes change from 
what is on the PDFD? 

20. Describe the matrices and formulae used to 
determine centralization or distribution of data. 
In the absence of subjective reasoning, would 
the matrices and formulae lead to a rational 
decision? Why or why not? 

21. Why is an installation plan important? How 
can installation be used as a teaching exercise 
for junior people? 

22. What aspects of physical environment should 
be considered in an installation plan for new 
equipment? 

23. Describe the diagram interrelationships for 
data and processes from enterprise analysis to 
analysis to design. 

EXTRA-CREDIT QUESTION 

1. Analyze the Advanced Office System (AOS) 
case in the Appendix. Develop all of the distri­
bution matrices and subjective reasoning 
for/against distribution. Develop recommenda­
tions and explain your reasoning for each 
choice. 



C HAP T E R 11 
____ OBJECT­
__ ORIENTED ---------------------------, .......... r-----

__ ANALYSIS ----------------------------,. .......... -----
INTRODUCTION ____ _ 

In this chapter, we reanalyze the requirements for the 
ABC Video's rental processing application using an 
object-oriented approach. This approach requires the 
definition of many new terms and a fundamentally 
different way of thinking about applications and 
their components. Keep in mind that object orienta­
tion is very much an immature methodology class 
that is still evolving. 

Several distinct schools of thought have emerged 
on how best to represent object thinking. Since they 
discuss the same topics, the schools have consider­
able conceptual overlap. The first school is object 
orientation that uses many graphical forms parallel­
ing those of other methodologies. Authors using this 
approach are Coad and Yourdon and Rumbaugh 
et al. (see References at the end of the chapter). The 
second school of object orientation is tabular, using 
mainly tables to list and define objects and their 
parts. This approach is used by Booch and Berrard. 
The graphical methodologies lack the reasoning 
processes of Booch's approach, while the tabular 
method is not easily communicated because of the 
extensive detail generated. Therefore, the Booch and 
Coad and Yourdon approaches are both modified and 
integrated throughout this discussion. Since few 
people dispute the need for analytical rigor and 
graphical richness, this type of object methodology 

is preferable to either one or the other approach 
used singly. 

CONCEPTUAL _____ _ 

FOUNDATIONS OF ___ _ 
OBJECT-ORIENTED _______ _ 
ANALYSIS ______ _ 

Two key concepts define object orientation: encap­
sulation and inheritance. Encapsulation is a prop­
erty of programs that describes the complete 
integration of data with legal processes relating to 
the data. In addition, encapsulated objects have pub­
lic and private selves (see Figure 11-1). The public 
part of an object defines what data are available in 
the object and the allowable actions of the object. 
The private part of an object defines local, object­
only data and the specific procedures each action 
takes. 

The second major property of object orientation 
is inheritance. Inheritance is a property that allows 
the generic description of objects which are then 
reused by related objects. Objects are grouped into 
classes that are defined as like objects that have 
exactly the same properties, attributes, and pro­
cesses. Object classes are arranged in hierarchies 
of relationships. Within a hierarchy, objects at lower 

459 



460 CHAPTER 11 Object-Oriented Analysis 

Class/Object: 
Customer 

CustomerPhone 
CustomerName 

Processes: 
Add 
Update 
Delete 

Public Parts 

~ 
Object Name 

Attributes 

Processes 

Public Parts Private Parts 

FIGURE 11-1 Encapsulated Object: Public 
and Private Parts 

levels inherit the data and processes of the superior 
classes. Hierarchies can also be linked to form 
lattice-like networks of hierarchies of objects. 

An example of an object class is employees (see 
Figure 11-2). Each employee has a name, address, 
social security number, and so forth. Some employ­
ees are also managers. Managers are a subclass of 
the employee class. By subclass, we mean that man­
agers have the same properties as employees (be­
cause they are employees), and that, in addition, they 
have additional properties that only managers have. 
Managers might have an additional subclass of man­
agers who are on a management committee. The 

management committee subclass is said to have 
multiple inheritance because it inherits the proper­
ties, attributes, and processes of employees and 
managers as well as having its own. 

Object orientation is an approach to thinking 
about problems that, when properly applied, repre­
sents a substantive improvement in the resulting 
analysis, design, and code modules. For 30 years, we 
have known that the key goal of software engineer­
ing is to manage the complexity of the problems we 
automate. We have also known that the best way to 
manage complexity is to decompose the larger prob­
lems into intellectually manageable, small tasks, that 
hide their internal workings from other modules, and 
that are coupled only by communicating messages. 1 

These are the goals of analysis and design that lead 
to well-structured and well-formulated programs and 
modules. Object orientation, when properly applied, 
appears to come closer to automatically resulting 
in these desirable outcomes than other ways of 
thinking. 

Thinking in objects requires a paradigm shift. A 
paradigm is a generally agreed upon way of thinking 
about a situation. In the process methods we concen­
trate on functional thinking, or the steps taken to 
perform some procedure. In data methods, we con­
centrate on entity thinking, or the data objects and 
their interrelationships that dictate much process­
ing. Entity thinking is a difference in degree rather 
than a difference in kind-a foreground/background 
shift. We move from processes that change data to 
emphasizing data that require processing (see Fig.., 
ure 11-3). 

1 See the works of CAR Hoare, David Parnas, Nicklaus Wirth, 
and Edsger Dijkstra. In particular, the discussions are summa­
rized in the following references: Hoare, C. A. R., "The 
Emperor's Old Clothes," Dijkstra, Edsger, "The Humble Pro­
grammer," both in AMC Turing Lecture Awards, NY: ACM 
Press and Addison-Wesley, 1987, and Parnas, David, "A 
Technique for Software Module Specification with Exam­
ples," Communications of the ACM, Vol. 15, #5, May, 1972, 
pp. 330-336; Parnas, David, "On the Criteria to be Used in 
Decomposing Systems into Modules," Communications of the 
ACM, Vol. 15, #12, December 1972, pp. 1053-1058; and 
Wirth, Nicklaus, "Program Development by Stepwise Refine­
ment," Communications of the ACM, Vol. 14, #4, April 1971, 
pp.221-227. 



Employee 

• l 1 

Manager 
Intramural 

Baseball Team 

Management 
Committee 

" 

FIGURE 11-2 Example Object Class 
Hierarchy 

Process 
Methodologies 

Function = 
Group of Activities 
Describing Business 
Processes 

Definition of Object-Oriented Terms 461 

In object thinking, we can identify data and pro­
cesses somewhat independently, but they are mar­
ried early on and must be thought of together, 
forever after, to reason properly about their behav­
ior and contents. The paradigm shift to object think­
ing is from thinking of data and processes as separate 
to thinking of data and processes as one. 

Several times in this discussion, we have men­
tioned the term "if properly applied." Object orien­
tation is no different than any other methodology in 
that it requires consistency and correct reasoning to 
result in the desirable properties described. When 
improperly applied, object orientation results in a 
badly designed application that might actually be 
less efficient than the same application designed 
poorly using some other methodology. 

DEFINITION OF ____ _ 
OBJECT-ORIENTED ___ _ 
TERMS ______________ _ 

Object orientation is based on the notion of objects 
which encapsulate both data and processes on that 

Data 
Methodologies 

Entity = 
Class of Business 
Thing which the 
Application tracks 

c::::J-tO-----­

Entity­
Relationship 

Diagram 

Entity = Bus. Entity 
Relationship = Bus. 

Constraint 

FIGURE 11-3 Process and Data Methodologies as Flip Sides of the Same Paradigm 



462 CHAPTER 11 Object-Oriented Analysis 

data. An object is an entity from the real world 
whose processes and attributes (that is, the data) are 
modeled in a computerized application. 

Processes are variously called functions, actions, 
services, programs, methods, properties, or modules; 
these terms mayor may not have the same meaning 
to the people using them. For that reason, we stick 
to the term process to mean the transformational pro­
gram language code that acts on its object data. 

An abstract data type (ADT) is the name used 
in some languages (e.g., C) for the new, user-defined 
data type that encapsulates definitions of object data 
plus legal processes for that data. In this text, we use 
the terms encapsulated object, object, and abstract 
data type interchangeably. 

The major analysis activities focus on defining 
objects, classes, and processes. Class/objects are the 
lowest level of logical design entity. Class/objects 
define a set of items which share the same attributes 
and processes, and manage the instances of the col­
lection. The class defines the attributes and pro­
cesses; the objects are the instances of the class 
definition. 

There are different types of class-object relation­
ships. First, classes can occur without having any 
real data associated with them. Classes whose 
instances are other classes are called meta-classes. 
For instance, we might define a class Customer with 
subclasses for CashCustomer and CreditCustomer. 
The class is a meta-class; the subclasses are class/ 
objects which manage the data of Customer. 

Classes can be composed of class/objects to 
describe a composition relationship of whole and 
part. A whole class defines the composed object 
type. The part class defines all the components of 
the whole class. For instance, a car, as a whole class, 
contains parts that include motor, wheels, doors, 
seats, and so on. 

Classes can also be defined to allow specialized 
versions of an item. The meta-class is called a gen­
eralization class, or gen class for short. The sub­
classes are called specialization, or spec, classes. A 
generalization class defines a group of similar 
objects. For instance, vehicle is a generalization on 
car. The specialization class is a subclass that 
reflects an is-a relationship, defining a more detailed 

description of the gen class. For instance, a car, 
truck, or tank are all specializations of the general 
class vehicle. These could be further specialized 
themselves. For instance, car could have specializa­
tions by type car: full-size, mid-size, or economy. 

Each type of class and its subclasses form a hier­
archic, lattice-like arrangement of relationships. 
Through the relationships, the lower-level classes 
inherit the data and processes of the related higher­
level classes. Thus, if we were to refer to an econo­
myCar object, we would have information and 
processing for vehicles, cars, and economy cars 
all available. 

Messages are the only legal means of communi­
cations between encapsulated objects. Messages are 
clear in their intention but not clear in their imple­
mentation, which is completely determined by the 
language (see message types in Figure 11-4). For 
instance, at the moment Ada does not imple­
ment message communication. In this text, a mes­
sage is the unit of communication between two ob­
jects. Messages contain an addressee (that is, the 
object providing the process, also called a service 
object), and some identification of the requested 
process. 

A major difference between object orientation 
and other methodologies is the shifting of responsi­
bility for defining the data type of legal processes 
from supplier (or called) objects to client (or calling) 
objects. This shift, along with the notions of inheri­
tance and dynamic binding, support the use of poly­
morphism, which is the ability to have the same 
process take different forms when associated with 
different objects. Dynamic binding is a language 
property that selects actual modules to execute dur­
ing application operation. The concept is completely 
described in Chapter 12. 

A supplier object is one that performs a re­
quested process. A client object is one that requests 
a process from a supplier. For instance, I might need 
to have a date translated from month-day-year 
format to year-month-day format. As a client object, 
I request the translation of the supplier object and 
pass it the date to translate. If the language supports 
polymorphism, I also pass the data type of the date to 
be translated. 



Object-Oriented Analysis Activities 463 

Unary Message: Addressee Service Identifier 

Customer : Create 

Binary Message: Addressee Service Identifier Arguments 

ComputeTotal PastDueFees, CurrentFees 

Keyword Message: Addressee Service Identifier Keyword Expression(s) 

FIGURE 11-4 Example of Message Types 

An example of polymorphism is, for instance, a 
process to perform comparison of two items to iden­
tify the 'larger' of the two. One object might be 
alphabetic, requiring a logical comparison; another 
object might be decimal numeric, requiring a nu­
merical comparison; a third object might be an array, 
requiring numerical array comparisons. This poly­
morphic object has three implementations of 
its process to compare and determine the larger of 
two items. The client object requests a specific 
comparison process, here either alpha, numeric, or 
array. 

To summarize the terms, objects are encapsula­
tions of data and processes that have both public and 
private parts. Objects can communicate via mes­
sages which differ by language. Objects are arranged 
into classes of similar objects, and can belong to 
more than one class. By the property of inheritance, 
an object exhibits the attributes and provides the ser­
vices of the classes of which it is a part. Polymor­
phism is a desirable property of objects but requires 
a client-server view of objects along with dynamic 
binding capabilities. 

Field=Dateln, DataType=lnteger 

OBJECT-ORIENTED ___ _ 
ANALYSIS ______ _ 
ACTIVITIES ______ _ 

The documentation for object-oriented analysis2 

includes a series of tables and graphics (Figure 
11-5). The tables are lists that document individual 
components of the analysis--objects, processes (and 
their assignment to objects), attributes, and classes. 
The graphics show relationships between objects 
and object classes, state transitions of intraobject 
changes in the application, and time-ordering 
interobject-event processing. Each documentation 
representation is elaborated by tracing the object­
oriented analysis of ABC Video's rental processing 
system. 

2 The analysis documentation builds primarily on the work of 
Booch [1983, 1991] and Berrard [1985]. The Class diagrams, 
subject summary, gen-spec and whole-part diagrams are all 
from Coad and Yourdon, 2nd ed. [1990]. 



464 CHAPTER 11 Object-Oriented Analysis 

Summary Paragraph 

TableslLists 

Object List 

Process List 

Object-Attribute List 

Process-Attribute List 

Diagrams 

Object Relationship Diagram 

Class Hierarchy Diagram 

Generalization/Specialization 
Structure Diagrams 

Whole/Part Structure Diagrams 

Subject Summary Diagram 

State Transition Diagram 

Provides a brief summary of all major functions to be performed. 

Contains potential objects (nouns) from the paragraph. Each entry is evalu­
ated to determine that it is an object, to classify it as solution space or problem 
space related, and to assign it a unique, formal name. 

Contains potential processes (verbs) from the paragraph. Each is evaluated 
to determine that it is a process, to classify it as solution space or problem 
space related, and to assign it a unique, formal name. All solution space class/ 
objects are tentatively related to processes and the relationships are 
evaluated. 

Contains field name attributes with each object they describe. Each class/ 
object's entries are normalized and other class/objects are created as needed. 

Contains formulae, constraints on processing, and state/status changes for 
each process as required; some processes have no attributes. 

Identifies objects with connecting lines showing different types of interobject 
relationships. 

Shows objects arranged in one or more lattice hierarchies to link shared 
data/processes and to depict inheritance of those data/processes. 

Depicts objects which express is-a relationships. This diagram is optional. 

Depicts objects which are compositions for which the whole class is composed 
of one or more of the part subclasses. This diagram is optional. 

The highest level of independent classes or class/objects in each leg of a hier­
archy are promoted to subjects for inclusion in this diagram which provides a 
summary of the classes in the application. This diagram is optional. 

Contains system states (i.e., statuses) and the events (process outcomes) that 
cause those states to exist. 

FIGURE 11-5 Summary of Object-Oriented Analysis Documentation 

Develop Summary Paragraph 
Rules for Summary Paragraph 

The first, and most important, step of object-oriented 
analysis is to develop a single summary paragraph 
describing the problem. The purpose of the para­
graph is to focus your attention on the most concrete, 
yet high-level description of the problem. Hidden 
within a good summary are the main class/objects 
and the main processes to be provided by the appli­
cation. In a large application, development will be 
iterative with a series of more detailed summary 

paragraphs developed to elaborate the individual 
sentences from a summary. In a smaller problem, 
like ABC Video's, we only need one level of 
summary. 

The guidelines for writing the paragraph are as 
follows: 

1. Write only declarative sentences of the form: 
Noun-Verb 
Noun-Verb-Object 
Verb-Object 

2. For ease of quality assurance, write each sen­
tence on its own line. 



3. Review the paragraph carefully to ensure: 

• All desired functions are represented. 
• All major information and processes are 

identified. 
• All sentences are at the same level of 

abstraction, detail, and importance. 

These are guidelines because the development of the 
paragraph is an individual activity performed by the 
SE with the user, and specific to each application. It 
is one result of interviews and other data collections 
that take place before and during analysis. Object 
orientation assumes that you have the requirements 
for the application in hand and understand what the 
application is supposed to do.3 There are no graphi­
cal representations for paragraph information. 

ABC Video Example Paragraph 

Refer back to Chapter 2 for the description of ABC 
Video's rental processing requirements. The initial 
paragraph reads: 

Customers select one to n videos for rental. Customer 
phone number is entered to retrieve customer data and 
create an order. Bar code IDs for each tape are entered 
and video information from inventory is displayed. 
The video inventory file is updated (decrease the 
count of available copies by one). When all tape IDs 
are entered, the system computes the total. Money is 
collected and the amount is entered into the system. 
Change is computed and displayed. The rental is cre­
ated, printed, and stored. The customer signs the 
rental form, takes the tape( s), and leaves. To return a 
tape, the video Bar Code ID is entered into the sys­
tem. The rental is displayed and the tape is marked 
with the date of return. If past-due amounts are owed, 
they can be paid at this time; or the clerk can select 
an option which updates the rental with the return 
date and calculates past-due fees. Any outstanding 
video rentals are displayed with the amount due on 
each tape and a total amount due. The past-due 
amount must be reduced to zero when new tapes are 
taken out. 

3 Lorenz [1993] recommends the development of 'use cases' 
which track all variations of each transaction through its pro­
cessing. This is, in essence, what you do in interviews with 
users during a normal data collection activity. 

Object-Oriented Analysis Activities 465 

1. Customers select one to n videos for rental. 
2. Customer phone number is entered to retrieve 

customer data and create an order. 
3. Bar code IDs for each tape are entered and video 

information from inventory is displayed. 
4. The video inventory file is updated (decrease the 

count of available copies by one). 
5. When all tape IDs are entered, the system com­

putes the total. 
6. Money is collected and the amount is entered into 

the system. 
7. Change is computed and displayed. 
8. The rental is created, printed, and stored. 
9. The customer signs the order form, takes the 

tape(s), and leaves. 
10. To return a tape, the video Bar Code 10 is entered 

into the system. 
11. The rental is displayed and the tape is marked with 

the date of return. 
12. If past-due amounts are owed, they can be paid at 

this time; or the clerk can select an option which 
updates the rental with the return date and calcu­
lates past-due fees. 

13. Any outstanding video rentals are displayed with 
the amount due on each tape and a total amount 
due. 

14. The past-due amount must be reduced to zero 
when new tapes are taken out. 

15. For new customers, the customer information 
is entered into the system and added to the 
customers. 

16. For new videos, the video information is entered 
into the system and added to inventory. 

FIGURE 11-6 Initial Paragraph in Numbered 
Sentence Format 

For new customers, the customer information is 
entered into the system and added to the customers. 
For new videos, the video information is entered into 
the system and added to inventory. 

The paragraph is reformatted as a numbered list 
of sentences (see Figure 11-6). This numbered sen­
tence format is recommended because it simplifies 
discussion, quality assurance, and reviews. 

Once the paragraph is drafted, you examine each 
sentence carefully to make sure all the pertinent 
information is present and clearly stated. In this 
paragraph, there is confusion about a 'new order' in 
sentence 2 and an 'outstanding video rental' in 



466 CHAPTER 11 Object-Oriented Analysis 

sentence 13. You ask yourself, What do we mean by 
an 'order'? If you do not know, you may need to ask 
the client what he means by an order. 

Vic wants an order to have information that is 
linked to video information whenever customers 
have any videos out on rent, that is, they are an 
'active' customer. An order should contain informa­
tion about all current rentals, dates returned, and late 
fees. Any other fees owed, for instance, penalties 
assessed for late payment, should also be present 
until they are paid. In other words, Vic uses the word 
order to describe what we have termed a rental. This 
confusion is cleared up immediately because differ­
ent words for the same items always cause confu­
sion. Vic does not mind changing the term order to 
rental. He uses the term order because he thinks his 
business is similar to order-entry processing which 
he managed in an old job. The major differences 
between these two activities is that Vic has a cash 
business and order-entry applications are usually 
used in accrual accounting businesses that link to 
accounts receivable accounting. Vic is correct; there 
is similarity between rentals and order processing, 
but the term rental fits this particular business and 
will be used. 

To be consistent in the use of terms, we modify 
sentence 2 to read: 

2. Customer phone number is entered to retrieve cus­
tomer data either to create a rental or to retrieve 
active rentals. 

This change also implies a status for rentals of 
'active' or 'inactive' which we will need to further 
clarify. 

The term video information from inventory in 
sentence 3 should be more specific. Knowing the 
actual fields to be displayed will be helpful in the 
class analysis and in attribute definition. Upon fur­
ther conversation with Vic, you change the informa­
tion to read: 

3. Bar code IDs for each tape are entered. 
3a. Video name and rental price from inventory are 

displayed. 

The next unclear issue is: When is money col­
lected for new rentals? Can a customer rent a video, 
pay past-due fees, and pay for the current video 

rental upon its return? Again, we go back to Vic, the 
client, and ask him what he wants. 

Vic says, "I would like as little bureaucracy as pos­
sible in this system. Since 80% of videos are 
returned on time, I want new rentals paid in 
advance-when they are rented. About 90% of 
my customers return their videos through a slot 
in the door during nonworking hours. Any 
videos that have late fees are checked in, and a 
note of past-due fees must be made. 

"For legal reasons, I must be able to prove 
how past-due fees are derived. To meet this 
obligation, the past-due fee amount, rental date 
and return date must all be maintained. 

"Also, I do not want to encourage 'dead­
beats' who do not pay for their rentals, so I 
insist that any outstanding fees be paid before 
any new rentals." 

With the above information supplied by Vic, we 
evaluate the sentences dealing with payments. Al­
though they remain somewhat ambiguous, they 
would be sufficient if we chose not to change them. 
The information is clearer if sentences 13 and 14 are 
moved between sentences 2 and 3 and are renum­
bered 2a and 2b for the present. 

One remaining ambiguity might be computations 
for the 'total' and 'change.' If the computations are 
understood, they are not required in the paragraph. 
We do not need the computations for the paragraph, 
but we do need it soon. So, if the computations are 
not understood, you again go back to Vic and ask 
how the computations are performed. 

Vic: "There are two basic totals: one for set­
tling past-due fees and one for the current 
rental. They may be computed together as the 
rental total equal to the sum of all past-
due items, fees, taxes, and current rentals. 
Change is computed as the rental-total less 
amount paid." 

Vic's definition of the rental-total raises a new 
question about the paying of late fees and sentence 
2b. If past-due fees must be settled before any cur­
rent rentals are allowed, how can you add the infor­
mation together to create the rental-total? 



Old# New # 

2. 2. 

2a. 3. 

2b Note 

3. 4. 

3a. 5. 

5. 6. 

6. 7. 

7. 8. 

9. 

10. 

11. 

4. 12. 

8. 13. 

Object-Oriented Analysis Activities 467 

Sentence 

Customer phone number is entered to retrieve customer data either to create a rental or 
to retrieve an active rental. 

Any outstanding video rentals are displayed with the amount due on each tape and a to­
tal amount due. 

The past-due amount must be reduced to zero when new rentals are made. 

Bar code IDs for each tape are entered. 

Video name and rental price from inventory are displayed. 

When all tape IDs are entered, the system computes the total (= L past-due fees + L 
other fees + L current video rental fees). 

Money is collected and the amount is entered into the system. 

Change is computed (= amount entered-order-total) and displayed. 

If the change amount is negative, that is, the customer did not pay for all fees, the clerk 
asks for more money. 

If the customer gives the clerk more money, return to step 7, else, when the clerk presses 
an order complete key, the system 'pays-off' the fees on a first-in-first-paid order until the 
amount entered is used up. The rental is redisplayed. Past-due items 'paid-off' are 
marked paid and the status of the current video rentals are either paid or due. 

If the amount entered paid for one or more current rentals, they are updated as paid and 
the videos are given to the customer; else when the clerk presses the rental complete 
key again, the current rentals not paid for are removed and placed back in stock. 

When the clerk presses a rental complete key (to be defined by the system), this order is 
complete and the video inventory file is updated (decrease the count of available copies 
by one). 

The rental is stored and printed. 

FIGURE 11-7 Partially Renumbered Paragraph 

"Oh," says Vic, "I meant that the clerk should not 
give the customer the video tapes until all of the 
past-due fees plus current rental fees are paid. 
They can still process the current rentals on the 
computer at the same time. Remember, my 
motto is no bureaucracy." 

This new information does change at least the order 
of sentences 2 through 8 (see Figure 11-7). At the 
end of the paragraph, add the following so the in­
formation is not lost. 

2b. NOTE: The amount paid less change must be 
equal to the rental-total or the clerk should 
politely refuse to give the customer the current 
tapes. 

The new sentences 9, 10, and 11 add needed 
information to our understanding of the problem, but 
now they are at a different level of detail from the 
other sentences. They constitute processing that 
accompanies change. So, to keep the level of ab­
straction consistent, they should be removed from 
this paragraph and kept for use during the next iter­
ation of change processing. To indicate that other 
steps are needed to process change, modify sentence 
8 to read: 

8. Change is computed (= amount-entered-rental­
total), displayed, and further processed by the clerk 
as required. 

At the moment, the final paragraph for ABC 
Video's rental processing system should read like the 



468 CHAPTER 11 Object-Oriented Analysis 

one in Figure 11-8. All major functions, data entities, 
information sources, and destinations are identified. 
All sentences are at the same level of abstraction, 
detail, and importance. 

Identify Objects of Interest 
Rules for Identifying Class/Objects 

The next step is to identify and analyze all of the 
class/objects of interest. The items are called class/ 
objects because they identify a collection (class) of 
like instances (objects). The rules are summarized 
here: 

1. Underline all nouns in the summary 
paragraph. 

2. List the underlined verbs on a separate sheet 
of paper, using the exact same sequence and 
spelling as in the paragraph. 

3. Evaluate each noun to make sure it is an 
object. (Common errors are to include attrib­
utes objects, that are not of interest to the 
solution of this problem, or physical objects 
we do not keep information about). 

4. Determine whether the object is in the solu­
tion space (must be present both to describe 
the problem and to develop a solution) or the 
problem space (must be present to describe 
the problem). 

5. Name each unique object in the solution 
space. Ignore the processes in the problem 
space. Use the convention '=name' to iden­
tify duplicates of already named objects and 
to show that you know it is a duplicate. 

The mechanics of the identification are to underline 
the nouns in the paragraph. Once the underlining is 
done, make a list of the nouns on a separate sheet of 
paper. When making the list, keep the nouns in 
exactly the same sequence as they occurred in the 
paragraph and use exactly the same spelling as 
occurred in the paragraph! 

Next, evaluate each noun to make sure it is an 
object. Evaluate similar criteria for identifying enti­
ties in the data methodology: people, places, events, 
applications, organizations, or other abstractions 
about which the application must keep information 

To rent tapes, 

1. Customers select one to n videos for rental. 

2. Customer phone number is entered to retrieve 
customer data either to create a rental or to 

retrieve an active rental. 

3. Any outstanding video rentals are displayed with 
the amount due on each tape and a total amount 

due. 
4. Bar code IDs for each tape are entered. 

5. Video name and rental price from inventory are 

displayed. 
6. When all tape IDs are entered, the system com­

putes the total (= L past-due fees + L other fees 
+ L current video rental fees). 

7. Money is collected and the amount is entered into 

the system. 

8. Change is computed (= amount entered - order­
total), displayed, and further processed by the 
clerk as required. 

9. When the clerk presses an 'order-complete' option 

key (to be defined by the system), this rental is 
complete and the video inventory file is updated 

(decrease the count of available copies by one). 
10. The rental is stored and printed. 
11. The customer signs the order form, takes the tape, 

and leaves. 

To return a tape, 

12. The video bar code 10 is entered into the system. 
13. The rental is displayed and the tape is marked 

with the date of return. 
14. If past-due amounts are owed, they can be paid 

at this time; or the clerk can select the 'order­
complete' option which updates the rental with the 

return date and calculates past-due fees. 

To add a customer: 

15. Enter customer information. 

16. Create customer. 

To add a new video: 

17. Enter video information. 

18. Create video inventory. 

NOTE: The entire amount owed must be paid before 
any rentals are allowed. That is, the amount paid less 

change must be equal to the rental total or the clerk 
should politely refuse to give the customer the current 

tapes. 

FIGURE 11-8 Final Paragraph for ABC 
Order Processing 



Object Name ... -

Attributes ... 

Processes ... 

FIGURE 11-9 Class/Object Diagram Format 

or for which processing is required. If the items in 
the list fit any of these criteria and pass the other 
tests, keep them on the list. 

There are no hard and fast rules for this process, 
only heuristics or rules of thumb. Ask yourself the 
following sets of questions. Does the noun identify 
something from the real world you want to store in­
formation about? If so, keep going. If not, it is not an 
object in this system, so cross it off. 

Does the noun identify something that takes on 
values itself, for instance, a social security number, 
balance, or rental total? If so, these are attributes (or 
fields) describing an object. Cross them off this list 
and put them on a list of attributes somewhere. If 
not, then keep going. 

Does this name uniquely identify a set of things 
with the same attributes? If so, keep going. If not, if 
it identifies one unique thing, it may still be an object 
but you should look for commonalities and combine 
with some other class/object. 

Once you have crossed off all nonobjects in this 
application, you are ready for the next analysis on 
objects: Determine if it is in the problem space or in 
the solution space. The problem space includes 
objects that are required to describe the problem but 
are not required to describe the solution. For in­
stance, you might need to know something about 
IRS reporting requirements to properly define the 
length of time you need to keep an accounting file 
of transactions. But the IRS does not factor into the 
solution, nor do you keep any information about the 

Object-Oriented Analysis Activities 469 

Class/Object: 
- ~ Customer 

CustomerPhone 
CustomerName 

- CustomerAddress 
CustomerCreditRating 

Processes: 
- Add Query 

Update CheckCredit 
Delete 

IRS in the application. In this example, the IRS 
would be a problem space object. 

The solution space includes objects that are 
required both to describe the problem and to de­
velop a solution. In ABC Video, 'customer' is nec­
essary to both the problem definition and to the 
automated application solution. So, it is in the solu­
tion space. 

When you are done evaluating all entries in the 
list, the solution space objects are given a class/ 
object name by which they are known for the life of 
the application. During this step, we eliminate dupli­
cates of each object. By convention, the name in the 
list is entered as either ObjectName or =Object­
Name. The format ObjectName identifies a unique 
class/object. The format =ObjectName identifies 
a synonym of a class/object. The =ObjectName 
ensures quality assurance reviewers that you have 
accounted for all objects and have considered every 
entry on the list. 

Finally, a class/object diagram is begun. A class/ 
object is a collection of like things in a class; the 
objects are the individual instances of the things in 
the class. Class/objects are drawn as a rounded verti­
cal rectangle with a shadow rectangle. The class/ 
object is divided into three parts to depict the name, 
attributes, and processes (see Figure 11-9). The three 
areas identify public information relating to the 
class/object. Eventually other details are added for 
private information during design. Now, let us return 
to ABC's application to develop the object list. 



470 CHAPTER 11 Object-Oriented Analysis 

ABC Video Example Object List 

First, we underline the nouns from the paragraph 
(see Figure 11-10). Objects represent people, organi­
zations, events, applications, or other abstractions 
from the real world about which we need to keep 
information. These are all identified by nouns. The 
underlined nouns represent all of the potential 
objects from the paragraph. If the paragraph is com­
plete, this action should result in the identification of 
all major objects relating to the application. 

Next, list the objects exactly as they are spelled 
and ordered in the paragraph. The first-cut object list 
is shown in Figure 11-11. The dispositions for each 
object are discussed here. 

The first analysis is to eliminate attributes from 
the list. In the first-cut object list, attributes are 
crossed out and their respective objects are listed. 
Attributes change value for each related object 
instance. To identify an attribute, we ask, Can this 
name take on a value? If the answer is yes, it is an 
attribute. Attributes are set aside for use in a future 
step. 

Figure 11-11 shows Rental attributes includ­
ing AmountDue, TotalAmountDue, RentalTotal, 
Amount, and Change. Attributes of Videos on 
Rentals include RentalPrice, ReturnDate, and Past­
DueFees. Video attributes include BarCodeld and 
VideoName. Finally, PhoneNumber is an attribute 
of Customer. 

Next, we evaluate remaining nouns to determine 
if they are objects. The nouns that are clearly 
objects are the following: 

customers 
videos 
rental (4 times) 
tape (4 times) 
money 
clerk (3 times) 
video inventory file 
rental form 
system 

The objects in the above list do not take on values 
of their own. They are material and distinct, and they 
are of interest to the application. Therefore, they 
are objects. 

To rent tapes, 

1. Customers select one to n ~ for rental. 
2. Customer phone number is entered to retrieve 

customer data either to create a mn.tal or to 
retrieve an active rental. 

3. Any outstanding video rentals are displayed with 
the amount due on each :tape. and a total amount 

~. 

4. Bar code IDs for each:tape. are entered. 
5. Video name and rental price from inventory are 

displayed. 
6. When all ~ are entered, the ~ com­

putes the rental total (= L past-due fees + L other 
fees + L current video rental fees). 

7. ~ is collected and the ammmt is entered into 

the~. 

8. ~ is computed (= amount entered - order­
total), displayed, and further processed by the 
~ as required. 

9. When the ~ presses a 'rental-complete' option 
~ (to be defined by the system), this mn.tal is 
complete and the video inventory file is updated 
(decrease the count of available copies by one). 

10. The mn.tal is stored and printed. 

11. The customer signs the rental form, takes the 
:tape., and leaves. 

To return a tape, 

12. The video bar code 10 is entered into the ~. 
13. The mn.tal is displayed and the :tape. is marked 

with the date of return. 
14. If past-due amounts are owed, m can be paid 

at this time, or the ~ can select the 'rental: 
complete' option which updates the mn.tal with the 
return date and calculates past-due fees. 

For new customers, 

15. Enter customer information. 
16. Create customer. 

For new videos, 

17. Enter video information. 
18. Create Yi.d.e.Q. 

FIGURE 11-10 Underlined Nouns 

At this point we are not concerned that there are 
duplicates on this list, or that we will not keep auto­
mated information about all entries on this list. The 
less obvious, remaining entries we need to eval­
uate are: 



Object-Oriented Analysis Activities 471 

Noun from Paragraph Disposition Noun from Paragraph Disposition 

Customers Object rental Object 
videos Object customer Object 
b~stSFRSF I3l:isRs R~FRBSF Attribute of Customer, rental form Object 

Rental tape Object 
customer data Object isss QeF bSSS IQ Attribute of Video, VOR 
rental Object ~ What we are creating 
active rental Object rental Object 
outstanding video rentals Object tape Object 
tape Object sets sf FSt~FR Attribute of Video on 
tstel eFRS~Rt s~s Attribute of Rental Rental 
QeF ssss IQs Attribute of Video, 13est el~s eFRS~Rts Attribute of Rental, 

VideoOnRental (VOR) VOR 
tape Object tI:Ie;' (meaning Attribute of Rental 
"ielss ReFRS Attribute of Video past due amount) 
FSRtel 13FiSS Attribute of Video, VOR clerk Object 

~ Attribute of Video, VOR 'FsRtel 8sFR13lets' Event trigger 
system Object ~ 
FeRtel tstel Attribute of Rental rental Object 
Money Object FSt~FR elets Attribute of Video on 
~ Attribute of Rental Rental 

~ What we are creating 13est el~s fsss. Attribute of Video on 

~ Attribute of Rental Rental 
clerk Object 8~stSFRSF iRfsFFRetisR All attributes of 
clerk Object customer 
'FsRtel 8sFR13lsts' Event trigger customer Object 

s13tisR I(s~ isss iRfsFFRetisR All attributes of video 
rental Object Video Object 
video inventory file Object 

FIGURE 11-11 Initial Object List for ABC Rental Processing 

active rental 
outstanding video rentals 
'rental complete' option key (2 times) 
customer information 
video information 

'Active' is an adjective describing a state of a 
rental. As soon as we say describing we know this 
is an attribute of some sort. The allowable states 
most probably are 'active' and 'inactive,' in which 
case this is the status of a rental, an attribute. 
We may want to reevaluate what an active/ 
inactive rental is to make sure this is correct. 
Active, in the sense used here, appears to mean open 
rental with rentals, based on the paragraph. Then 
inactive would imply no rentals outstanding. If this 

status were to remain in the application, it would be 
appropriate to change the wording to be more pre­
cise to open/closed rental. At some point, the analy­
sis should be reviewed with Vic. So, for the active 
rental issue, for instance, we might ask Vic the 
following: 

We have talked about active rentals. Does active 
really mean an open rental? If not, what other kinds of 
rentals are there? If yes, do we need to keep that sta­
tus separate or is it implicit? For instance, is an open 
rental any for which a rental is not returned or is 
returned with late fees owed? 

The next action on active rentals is based on the 
answers to these questions. Vic decides that active 
does mean open rentals and that a specific status is 



472 CHAPTER 11 Object-Oriented Analysis 

not required as long as he has access to open rental 
infonnation. 

Outstanding video rentals is also an adjectival 
description of videos on a rental that appears to be a 
status. Other statuses of videos on rentals that we 
might identify so far are combinations of: 

outstanding/returned 
on-time/late 
paid/not paid. 

We note these for the attribute list and eliminate 
them from further discussion here. 

Last is the rental complete option key. This is a 
noun phrase describing an implementation detail­
a key on the keyboard to be pressed to indicate the 
end of rental processing. It is not an object because it 
has no attributes, and we do not keep data about 
it in the application. It is an event trigger that will 
initiate some processing, but it does not enter into 
this level of analysis so it is eliminated from the 
object list. 

Last are customer information and video infor­
mation. These two items are similar in that they both 
reference a collection of attributes describing two 
entities. As such we could either list their attributes 
(then omit them from the list because they are 

attributes) or call them objects. We opt for calling 
them 'collections of attributes' and eliminating them 
from the object list. 

Now we return to the objects we did find to 
decide if they are in the problem space or the solu­
tion space. Problem space objects are required to 
describe the task domain but not to develop an auto­
mated solution. Solution space objects are required 
to describe both the task domain and the automated 
solution. Once problem space objects are identified, 
they drop out of the remaining analysis. We de­
cide which space each object describes (see Fig­
ure 11-12). 

The last stages are to name each object with a 
unique name by which it will be known in the sys­
tem and to eliminate duplicate names for the same 
object. When we find a duplicate, we indicate the 
name by an equal sign ('=' ) appended to the front 
of the name to signify that the name already ap­
peared once. 

During this exercise, we have two options for 
dealing with repeating infonnation and relationship 
objects which describe one-to-many relationships. 
We can define them for later nonnalization or we can 
define them as fully as possible now. We opt for 
more completeness now because it usually means 

Object Space Justification 

Customers 

Video 

Rental 

Tape 

Money 

Clerk 

Video Inventory File 

Rental Form 

System 

S 

S 

S 

3 S, 1P 

P 

P 

S 

P 

P 

Need automated customer information 

Need automated video information 

Need automated rental information 

Three references are tape information to be maintained in the 
system. One reference is to the tape taken home by customers; this 
reference is in the problem domain. 

Real money is outside of the system. We are concerned with the 
amount which is data entered into the system and related to rental. 

We do not keep statistics or other information on clerks in the system. 

Need automated video information. 

Just a different media than 'rental' ... not relevant by itself to the 
solution. 

This is irrelevant because 'system' is what we are building. 

FIGURE 11-12 Object Space Justification 



Noun from 
Paragraph 

Customers 

videos 

rental 

active rental 

outstanding 
video rentals 

tape 

tape 

rental 

video inventory 
file 

rental 

rental 

tape 

rental 

customer 

video 

Solution or 
Problem 
Space 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

ObjecCName 

Customer 

Videolnventory 

Rental 

=Rental 

VideoOn Rental 

= VideoOn Rental 

= VideoOnRental 

=Rental 

= Videolnventory 

=Rental 

=Rental 

= VideoOn Rental 

=Rental 

=Customer 

= Videolnventory 

FIGURE 11-13 Object List for ABC Rental 
Processing 

less reworking later. For example, a rental has one or 
more related videos. We could define both of these 
as 'rental,' or we could define Rental and VideoOn­
Rental separately. We opt for the normalized form 
because it results in a more complete analysis. This 
results in four class/objects: Customer, Rental, 
VideoOnRental, and Videolnventory. 

Figure 11-13 shows the class/objects from this 
analysis in their final form (for this step). Notice the 
objects are still in order by their sequence in the 
paragraph, all have a space designation, and all solu­
tion space objects are named. 

Finally, we depict class/objects from this list. We 
switch from the term object to the term class/object 
to acknowledge both the shared attributes and pro­
cesses and the instantiation of them. ABC has four 
class/objects corresponding to Customer, VideoOn-

Object-Oriented Analysis Activities 473 

Rental, Rental, and Videolnventory. The four class/ 
objects are depicted in Figure 11-14 for further elab­
oration in future steps. Information that we know at 
this point is also in the diagram. 

Identify Processes 
Rules for Identifying Processes 

The next step is to identify processes. The rules for 
identifying processes are summarized as follows: 

l. 
2. 

3. 

4. 

5. 

Circle all verbs in the summary paragraph. 
List the circled verbs on a separate sheet of 
paper, using the exact same sequence and 
spelling as in the paragraph. 
Evaluate each verb to make sure it is a 
process. (Common errors are to include sta­
tus, physical actions, or comments.) 
Determine whether the process is in the solu­
tion space or the problem space. 
Name each unique process in the solution 
space. Ignore those processes in the·problem 
space. Use the convention '=name' to iden­
tify duplicates of already named processess 
and show that you know it is a duplicate. 

6. Assign objects to verbs if the object is trans­
formed by the process or if the object data is 
read by the process. 

7. Evaluate the object assignments: 

If there is only one object assigned to a 
process, continue. 

If all objects are read-only, continue. 

For processes with more than one object 
transformation, evaluate the transformation 
process: 

If all processes are exactly the same, and all 
data types acted on are exactly the same, then 
mark the process for creation of a reusable 
module. 

If all processes are exactly the same, but all 
data types are not the same, mark the process 
for polymorphic module creation. 

If all processes are not exactly the same, 
redevelop the paragraph to more specifically 
define the processing. 



474 CHAPTER 11 Object-Oriented Analysis 

Customer 

CustomerPhone 

VideoOnRental 

CustomerPhone 
BarCodeld 
ReturnDate 
LateFeesDue 

FIGURE 11-14 ABC Class/Objects 

Processes are actions described by verbs. We iden­
tify the verbs in the summary paragraph, circling 
them to distinguish them from the nouns. Once the 
circling is done, make a list on a separate sheet of 
paper of the verbs. When making the list, keep the 
verbs in exactly the same sequence and use exactly 
the same spelling as occurred in the paragraph! 

Then, evaluate each verb to make sure it is a 
process. Ask yourself if the verb is a process that 
the application must provide. If yes, keep going; if 
not, cross the verb off. For instance, if the paragraph 
said "The clerk enters the customer's phone number 
into the system," the clerk has been removed as a 
problem space object. But, the verb enters as applied 
to the customer's phone number is required data 
entry to begin the rental entry process. So, enters 
remains in the system. If we had included the terms 
To rent a tape or To return a tape in the list, these 
are summary descriptions of entire procedures 

Video Inventory 

VideoName 
RentalPrice 
VideoCountOfCopies 
BarCodeld 

Rental 

CustomerPhone 
BarCodeld 
ReturnDate 
LateFeedDue 
TotalAmtDue 
TotalAmtPaid 
Change 

and the verbs rent and return would be excluded as 
nonprocesses. 

After the first evaluation, review each verb again 
to determine if it is in the solution space or the prob­
lem space. The meanings of solution and problem 
space are the same as for class/objects. Problem 
space means the process is required to define the 
problem but not the automated solution. Solution 
space processes are required both to define the prob­
lem and to define the solution. 

Next, review each verb carefully and give it a 
meaningful name. Try to define meaningful process 
names that indicate both the process and the class/ 
object on which it acts. So, for enter a customer 
phone number, the process name might be enter­
CustPhone. 

For any processes that use the same verb descrip­
tor, or that you think are exactly the same, mark with 
an asterisk for further evaluation in the design phase. 



Include an asterisk on processes that work on objects 
with different data types. Name them the same verb 
appending a unique identifier for each instance. 
These unique names make recognizing these pro­
cesses in the next step easier. One possible naming 
convention4 is to describe the situation, such as 
enterTapeIdRental, enterTapeIdReturn, and enter­
TapeIdRenew. The idea is to assign names that you 
can live with for the entire life of the object and 
its processes. In design, if these processes are all 
defined as the same, we simply truncate the names to 
enterTapeId. 

The last step in identifying processes is to assign 
class/objects to operations. List each object with all 
processes that use or transform it. When this identi­
fication is done, reevaluate all processes with more 
than one object assignment. 

The three questions you ask in this evaluation are 
summarized in Figure 11-15. First, ask if only one 
object is actually transformed by this process. If the 
answer is yes, go to the next process to be evalu­
ated. If the answer is no, then continue with the 
evaluation. 

Next, for the processes being transformed, does 
the exact same processing occur to each object? That 
is, are the data types and the process steps identi­
cal? If the answers to these questions are all yes, no 
further analysis is required. You have identified a 
candidate for development as a reusable module. If 
the answer is no, then you must identify the specific 
differences with the next set of questions. 

Third, are the data types different or identical? 
Are the processes different or identical? If the data 
types are different and the process is the same, these 
process-object combinations are candidates for poly­
morphic module creation and sQolllp be noted with 
an asterisk. If the processes are· different, then you 
must refine your paragraph to define the specific 
processes for each object, and redo this part of the 
analysis from the beginning. 

When you have evaluated all of the multi object 
processes and resolved any inconsistencies, you are 
ready to perform the next step. Next, we identify the 
processes for ABC Video's rental application. 

4 A convention is a locally agreed upon way to do some 
activity. 

Object-Oriented Analysis Activities 475 

1. Is only one object actually transformed by this 
process? 

If yes, this process is complete. 

If no, continue. 

2. Does the exact same processing occur for each 
object? This means the same steps and the same 
transformations. 

If no, go to step 3. 

If yes, are all object data types the same? 

If yes, this process is complete; create one 
reusable module for this process. 

If no, mark for polymorphic module creation. 

3. Redefine the sentence(s) to identify the specific 
processing of each object. Then, reevaluate 
the processes beginning at step 1. 

FIGURE 11-15 Multiobject Process 
Evaluation 

ABC Video Example Process List 

The steps we follow here are to circle the verbs, 
evaluate them as processes of interest, define solu­
tion and problem space processes, assign class/ 
objects to processes and evaluate those object 
assignments (refer to the summary list on p. 473). 

The first step is to return to the paragraph and cir­
cle the verbs. Analyze each verb to ensure that it is 
a process. For instance, if you include in your list the 
terms 'To rent tapes' and 'To return a tape,' the verbs 
'to rent' and 'to return' are omitted from the list 
because they are identifying the entire process, but 
are not processes in the system. All verbs in the para­
graph are processes. Figure 11-16 shows the verbs 
circled in the final paragraph. 

Next, list verbs and identify their space. Remem­
ber, problem space identifies processes needed to 
describe the problem but not the solution; solution 
space processes are needed to describe both the 
problem and the solution. Figure 11-17 identifies the 
space of each process listing a reason for exclusion 
of problem space items. The problem space pro­
cesses all refer to physical actions which are not 
tracked by the application. The verb is complete is 
the only nonprocess in the list. Is complete refers to 



476 CHAPTER 11 Object-Oriented Analysis 

1. Customer~one to n videos for rental. 

4. Bar code IDs for each ~ € enter~ 
5. Video name and rental price from inventory 
~display® 

6. When all tape IDs re entere the system 
~he rental to a = L past-due fees 
+ L other fees + L current video rental fees). 

9. When the clerk~ 'rental-complete' 
option key (to efined by the system), 
this rental com Ie and the video inventory 
file~pdat~decrease the count of avail­
able copies by one). 

10. The rental~n~i~~ 

==.:,;.:.:=~:.:;::o the rental form,~he 

To return a tape, 

12. The video bar code 10 ~n~r~nto the 
system. 

13. The rental~nd the ~ 
<i[mark@:>.vith the date of return. 

To add a customer: 

15.Bustomer information. 

16.@ustomer. 

To add a new video: 

17@ideo information. 

18. Svideo inventory. 

FIGURE 11-16 Paragraph with Verbs Circled for ABC Rental Processing 

a rental status in the procedure which signals differ­
ent processing. This status is an attribute of the pro­
cess that we will deal with in the next step. 

Next we name solution space processes, eliminat­
ing duplicates. Figure 11-18 shows the list of solu­
tion processes with names. The duplicate actions are 
EnterBarCode, DisplayRental, DisplayVideoOn­
Rental, RetrieveRental, RetrieveVideoOnRental, and 
WriteRental. 

Several actions deserve further comment. Sen­
tence 5 for tape rental says, 'Video name and rental 
price from inventory are displayed.' This sentence 
implies that name and prices are retrieved from 
inventory, so the sentence should be modified to 
reflect this action. Sentence 13 for tape return is sim-

ilar in saying 'The rental is displayed .... ' The rental 
cannot be displayed until it is retrieved. The word 
'tape' in the same sentence is ambiguous. Does this 
refer to the VideoOnRental or to VideoInventory? In 
fact, both are affected by this action. The VideoOn­
Rental is updated with the return date and the Video­
Inventory is updated to add one to a count of 
available tapes (the opposite of the action in sentence 
9). The sentence should be rewritten to reflect these 
differences. The new sentence now reads: 

13. The rental, related video(s) on the rental, and 
video(s) in inventory are retrieved and displayed. 
The return date is added to tpe video( s) on the 
rental. One is added to the count of available 
tapes in inventory. Inventory is updated. 



Verb from 
Paragraph Disposition 

select P-Customer physical 
action-delete 

is entered P-process (could be more mean-
ingful if called, e.g., read-
from-terminal) 

to retrieve S-process 
to create S-process 
to retrieve S-process 
are displayed S-process 
are entered S-process 
are displayed S-process 
are entered status-attribute 
computes S-process 
is collected P-Clerk physical action-delete 
is entered S-process 
is computed S-process 
displayed S-process 
processed P-Clerk physical action-delete 
presses P-Clerk physical action-delete 
is complete status-attribute 
is updated S-process 
is stored S-process 

Object-Oriented Analysis Activities 477 

Verb from 
Paragraph 

printed 

signs 

takes 

leaves 

is entered 
is displayed 
is marked 
are owed 
can be paid 

can select 

updates 
calculates 
enter 
create 
enter 
create 

Disposition 

S-process 

P-Customer physical action­
delete 

P-Customer physical action­
delete 

P-Customer physical action-
delete 

S-process 
S-process 
S-process 

Rental status-attribute 
P-optional physical action­

delete 
P-Clerk physical action-

delete 
S-process 
S-process 
S-process 
S-process 
S-process 
S-process 

FIGURE 11-17 Process Dispositions for ABC Rental Processing 

A similar ambiguity is present in sentence 14 
which states that' amounts ... owed ... can be paid. ' 
This process, can be paid, refers to sentences 6-8 in 
the tape rental process. Because these processes are 
present, we do not need to change the paragraph, but 
we must reference those sentences so the actions are 
clear. Sentence 14 now reads: 

14. If past-due amounts can be paid at this time 
(repeat sentences 6-8 above); else the past-due 
fees are calculated and the rental is updated. 

This new sentence omits the extraneous informa­
tion previously present. Both the object list and the 
process list are reevaluated to reflect these changes. 
The verbs in sentences 6-8 are also reviewed to 
ensure identical processing and are added in the 
proper sequence to the process list. The old verbs are 
replaced with 'are calculated' and 'is updated.' We 
review that the nouns from sentences 6-8 and 14 
are accounted for in the object list. 

The last step is to review the sentences once 
more, using the object list as reference to assign 
objects to processes. Figure 11-19 shows the result 
of this activity. The rule for performing this activity 
is that any object that is read or acted on by this 
process is identified. 

All processes relating to multiple objects are 
reanalyzed to determine if they are the same pro­
cesses. RetrieveRentalVOR is identified in the fig­
ure as requiring two actions which we discuss here. 
The processes dealing with Rental and VOR take 
information that is separate and process it as if it 
were integrated. The Rental information identifies 
the customer and the VOR describes a video. There 
is one Rental per transaction and one VOR per video. 
The question then becomes one of definition: Is it 
necessary to maintain this Rental, or can it be added 
to each VOR and eliminated? 

As in the other methodologies, the Rental infor­
mation and the Customer information are essentially 



478 CHAPTER 11 Object-Oriented Analysis 

Verb from Paragraph Space Process Name Object Assignment 

is entered S EnterCustPhone 

to retrieve S ReadCust 

to create S Create Rental 

to retrieve S RetrieveRentalVOR 

are displayed S DisplayRentalVOR 

are entered S EnterBarCode 

are retrieve S Retrievelnventory 

are displayed S Displaylnventory 

computes S ComputeRentalTotal 

is entered S EnterPayAmt 

is computed S ComputeChange 

displayed S DisplayChange 

is updated S Updatelnventory 

is stored S WriteRental 

printed S PrintRental 

FIGURE 11-18 Named Process List for ABC Video 

duplicates. If the company operates on a cash 
basis and simply needs to know videos outstand­
ing for a customer, then we do not need Rental. If 
the company operates on an accrual basis and 
needs to be able to exactly reconstruct individ­
ual transactions, then we need Rental. Video rental 
is a cash basis business; therefore, we do not need 
Rental but we do need to carry its information 
in VOR. 

Next, we consider Vic's potential need to differ­
entiate between rentals for a customer or to main­
tain information beyond the rental's life. Once again, 
the software engineers return to Vic to find the 
answer. 

Vic: "I have customers sign a copy of a rental and 
I keep those. I use them to resolve disputes, to 
find errors, and to provide accounting records. 
I don't care how you identify rentals because 
I don't have a need, at the moment, for any 

analysis. I would like to add trend analysis in 
the future." 

From this discussion, we know there is no busi­
ness requirement to separate the two objects. A side 
issue to the decision is whether separation or join­
ing of the objects impacts processing time. For ABC, 
there is no process time impact. If there were an 
impact, we would probably opt for the faster solu­
tion. We could choose consolidation of VOR and 
Rental to simplify processing. In this case, Rental 
would be removed from the list and declared in the 
object list as =VOR. Another option is to leave it as it 
is. A third option is to think about Rental as Trans­
action since attributes, such as TotalAmountDue, 
apply to a specific grouping of videos for a customer 
at a point in time. There is no 'right' answer to this 
question, and we do not have enough information to 
make a final decision although transaction sounds 
like an idea we will need in design. For now, we will 



Verb from Paragraph Space 

is entered S 

is retrieved S 

is displayed S 

is added S 

is added S 

is updated S 

can be paid S 

are calculated S 

is updated S 

enter S 

create S 

enter S 

create S 

Object-Oriented Analysis Activities 479 

Process Name 

EnterBarCode 

RetrieveRentalVOR 

DisplayRental VOR 

AddRetDateVOR 

Add1toVInv 

Updatelnventory 

=ComputeRentalTotal 
=EnterPayAmt 
=ComputeChange 
=DisplayChange 

ComputeLateFees 

WriteRentalVOR 

EnterCustomer 

CreateCustomer 

EnterVideolnventory 

Create Video Inventory 

Object Assignment 

FIGURE 11-18 Named Process List for ABC Video (Continued) 

change the name of Rental to TempTrans to reflex 
this thinking and will revisit the need for this class/ 
object again during design. There are no other 
multiobject processes. The final process list is Fig­
ure 11-20. 

Define Attributes of Objects 
Rules for Defining Object Attributes 

An attribute is a named field or property that 
describes a class/object or a process. Each object is a 
collection of attributes which take on values. A set of 
specific attribute values describes an object or 
instance. Each object is identified by a primary key 
which is a unique set of values comprised of one or 
more attributes. A primary key in object-orientation 
may not actually be used to identify stored objects; 
physical addresses are most often used. 

To define the attributes of an object, we identify 
all of the information about objects. First, attributes 
that were set aside during object definition are 
now assigned to a class/object. All items from the 
original object list that we deleted because they were 
attributes are now listed with the class/objects 
they describe. 

The original description of the project is 
rechecked to identify any adjectives or adjectival 
phrases describing nouns that are now objects in the 
solution space. In our case, we reread Chapter 2's 
description of the case and rewrite any attributes 
identified there that are missing from the object list. 
These attributes are added to the list. 

Next, evaluate the rewritten paragraph to find any 
data requirements underlying what is stated in the 
paragraph but not already known. For instance, a sta­
tus is implied in the statement 'Retrieve all open 
rentals.' The adjective 'open' implies a status of 
open/closed. Any qualified class/objects should be 



480 CHAPTER 11 Object-Oriented Analysis 

Verb from Paragraph Space Process Name Object Assignment-Action 

Actions are (R)ead, (W)rite, Data 
Entry (DE), (D)isplay (P)rocess in 
memory, (PR)int 

is entered EnterCustPhone Customer (DE) 

to retrieve ReadCust Customer 

to create 

s 
s 
s 
s 

Create Rental Rental (R) 

to retrieve Retrieve RentalVOR Rental (R), VideoOnRental (VOR, 
R), (NOTE: This requires two dif­
ferent actions because the primary 
keys and read processes are dif­
ferent. We are keeping these to­
gether for now for simplicity. All 
processes marked ... Rental VOR 
fit this requirement.) 

are displayed Rental, VOR (D) 

FIGURE 11-19 Class/Object Assignments to Processes for ABC Video Processing 

evaluated to determine if the qualification is identi­
fying an attribute. When evaluating the paragraph, 
ask what information is needed to perform, docu­
ment, or track each action taken. When you identify 
new information, create attributes for each piece 
of information. 

Next, normalize each set of attributes to third nor­
mal form (3NF).5 For any newly normalized sets of 
objects, any process-object encapsulations should be 

5 Recall that nonnalization includes the following: 
INF-Removal of repeating groups of infonnation 
2NF-Removal of partial key dependencies 
3NF-Removal of nonkey dependencies. 
If you have problems with this activity, refer to Chapter 9 to 
refresh yourself on this activity. 

reexamined to determine that they encompass both 
the original object and new objects resulting from 
the normalization process. 

When all attributes are listed with an object, iden­
tify a primary key identifier. A primary key provides 
a unique identification for the object and is com­
posed of one or more attributes. Compare objects to 
determine if any have identical primary keys. If the 
answer is yes, consolidate the objects, or change the 
object with the incorrect primary key. Now, let us 
walk through attribute identification for ABC. 

ABC Video Example Object Attribute List 

All items from the original object list that we deleted 
because they were attributes are first listed with the 



Object-Oriented Analysis Activities 481 

Verb from Paragraph Space Process Name Object Assignment-Action 

is updated S Updatelnventory Videolnventory (P) 

is stored S WriteRental Rental, VOR (W) 

printed S PrintRental Rental, VOR (PR) 

is entered S EnterBarCode VOR (DE) 

is retrieved S RetrieveRentalVOR Rental (R), VOR (R) 

is displayed S DisplayRental VOR Rental (D), VOR (D) 

is added S AddRetDateVOR VOR(P) 

is added S Add1toVlnv Videolnventory (P) 

is updated S Updatelnventory Video Inventory (W) 

can be paid S =ComputeRentalTotal 
=EnterPayAmt 
=ComputeChange 
=DisplayChange 

are calculated S ComputeLateFees Rental (P), VOR (P) 

is updated S WriteRentalVOR Rental (W), VOR (W) 

enter S EnterCustomer Customer (DE) 

create S CreateCustomer Customer (W) 

enter S EnterVideolnventory Videolnventory (DE) 

create S CreateVideolnventory Videolnventory (W) 

FIGURE 11-19 Class/Object Assignments to Processes for ABC Video Processing (Continued) 

class/objects they describe. We refer to Figure 
11-14 to find those items. A partial list of the attri­
butes from our paragraph is shown in Figure 11-21. 

Next, we review the Chapter 2 description of the 
case and rewrite any attributes identified there that 
are missing from the object list. These attributes are 
added to the list as shown in Figure 11-22. 

Next, we reconsider our paragraph to find any 
hidden attributes that are implied by other informa­
tion such as statuses. We have open and closed 
rentals, but we might not require a specific attribute 
for the status. We know a rental is open when it has a 
RentalDate without a ReturnDate, or when it has late 
fees owing. We can check those attributes in lieu of 
carrying a specific RentalStatus attribute. Keeping 
this attribute requires a judgment call. If junior peo-

pIe are doing the programming, a RentalStatus 
attribute is simpler. If senior people are doing the 
programming, either method is acceptable. As a mat­
ter of choice, we will carry the RentalStatus to make 
sure that future maintenance programmers can also 
easily understand the processing. 

Figure 11-23 shows the initial attribute list for 
each object. We evaluate each, in tum, to determine 
its completeness and primary key. 

Customer6 appears complete in its information 
required to perform rental processing. VideoOn­
Rental is considered next. We know we need a 

6 Note that if Rental had been retained, it would have had the 
same primary key as Order and would have been eliminated 
in this step rather than the earlier one. 



482 CHAPTER 11 Object-Oriented Analysis 

Verb from Paragraph Space Process Name Object Assignment-Action 

Actions are (R)ead, (W)rite, Data 
Entry (DE), (D)isplay (P)rocess in 
memory, (PR)int 

is entered S EnterCustPhone Customer, Data entry (DE) 

to retrieve S ReadCust Customer 

to create S Create Rental TempTrans (R) 

to retrieve S RetrieveRentalVOR TempTrans(R), VideoOnRental 
(VOR,R) 

are displayed S DisplayRentalVOR TempTrans (D) 

are entered S EnterBarCode TempTrans (DE) 

are retrieved S Retrievelnventory Videolnventory (R) 

are displayed S Displayl nventory Videolnventory (D) 

computes S ComputeTempTransTotal TempTrans (Process) 

is entered S EnterPayAmt TempTrans (DE) 

is computed S ComputeChange TempTrans (P) 

displayed S DisplayChange TempTrans (D) 

is updated S Updatelnventory Videolnventory (P) 

is stored S WriteVOR 

FIGURE 11-20 ABC Final Process List 

Customer Phone to tie rentals to customers and a 
Video ID to tie rentals to inventory. From Chapter 2, 
we also need rental and return dates. The question 
is how much fee information we need. Vic supplies 
the information that he needs to know that regular 
fees, late fees, or other fees have been paid and the 
amount of the fee. Therefore, we add those attributes 
to the list and it also appears to be complete. 

The Videolnventory is not normalized. While we 
are normalizing, we can also evaluate the impact of 
Vic's nebulous desire for promotions on inventory 
objects. Refer to Figure 11-23 's list of the fields and 
definitions relating to videos in inventory. Repeating 
information is indented. Primary keys of each part of 
the information are underlined. The 3NF result of 
normalization is four relations (see Figure 11-24): 
Videolnventory, BarCodeVideo, VideoPromo, and 
Promo Video. 

VOR(W) 

The distinct definition of VideoPromo means we 
can omit it after this analysis because promotions are 
a future requirement. The separation of BarCode­
Video from Videolnventory means we need to reeval­
uate the object and process lists to define related 
changes. Since Videolnventory and BarCodeVideo 
are always accessed together, we can just add Bar­
CodeVideo to the lists anytime Videolnventory is 
present. We may w(lnt to consolidate the two objects 
later in the design, for convenience of processing, if 
we can accommodate repeating information. 

The final object attribute list is shown in Figure 
11-25 and omits the VideoPromo Promo Type 
objects as discqssed ~bove. The attribute list shows 
the class/objects with their attributes. The process­
object figure is £orrected to reflect the new Bar­
CodeVideo class/object. The objects are a1l3NF and 
appear complete for ABC rental processing. 



Object-Oriented Analysis Activities 483 

Verb from Paragraph Space Process Name Object Assignment-Action 

printed S PrintTempTrans TempTrans (PR) 

is entered S EnterBarCode TempTrans (DE) 

is retrieved S RetrieveVOR TempTrans, VOR (R) 
Videolnventory (R) 

is displayed S DisplayTempTrans TempTrans (D) 

is added S AddRetDate Temp Trans VOR TempTrans (P), VOR (P) 

is added S Add1toVlnv Videolnventory (P) 

is updated S Updatelnventory Videolnventory (W) 

can be paid S =ComputeTempTransTotal 
=EnterPayAmt 
=ComputeChange 
=DisplayChange 

are calculated S ComputeLateFees TempTrans (P), VOR (P) 

is updated S WriteVOR TempTrans, VOR (W) 

enter S EnterCustomer Customer (DE) 

create S CreateCustomer Customer (W) 

enter S EnterVideolnventory Video Inventory (DE) 

create S Create Video Inventory Video Inventory (W) 

FIGURE 11-20 ABC Final Process List (Continued) 

Define Attributes of Processes inference limitations; for example, a prerequi­
site of video rental is that all late fees must 

Rules for Defining Process Attributes 

Attributes of processes define formulae, constraints, 
or status processing performed by or on processes 
in the application being developed. In particular, 
process attributes define: 

• how the process is performed in the system 
(that is, formulae performed by the process, 
for example, the formula computing change 
for a video rental) 

• status changes resulting from the process exe­
cution (for example, a customer changes from 
an overdue status to a current status when late 
fees are paid) 

• cOI1straints on the process (that is, prerequi­
site, postrequisite, time, structure, control, and 

be paid). 

The steps to define process attributes are similar 
to those for object attributes. 

1. Assign attributes which were set aside dur­
ing object or process definition to a class/ 
object. 

2. Review the original problem description and 
any notes from data collection to find 
attributes. 

3. Review the summary paragraph to find 
implied attributes, such as statuses a process 
can take. 

We use the original description of the problem and 
the paragraph to determine process attributes. 



484 CHAPTER 11 Object-Oriented Analysis 

Object Name 

Customer 

TempTrans 

VideoOn Rental 

Videolnventory 

Attribute Name 

Customer Phone 

CustomerPhone 
BarCodeld 
Retu rn Date 
LateFeesDue 
TotalAmtDue 
TotalAmtPaid 
Change 

CustomerPhone 
BarCodeld 
ReturnDate 
LateFeesDue 

VideoName 
RentalPrice 
VideoCountOfCopies 
BarCodelD 

FIGURE 11-21 A Partial List of Attributes 
from the Paragraph 

Status attributes identify state changes due to a 
process's successful completion. The status attri­
butes will, during design, be assigned to a class/ 
object. The purpose of identifying them with pro­
cesses is that they are more obvious and less likely to 
get lost. 

The constraints are identified to ensure that the 
procedural code generated during design includes 
the constraints. The formulae are included as process 
attributes because they provide some of the logic 
detail that is also included in the process design. 

One inadvertent consequence of process attribute 
identification can be the definition of artificial con­
straints on processes. For instance, in the ABC 
Video rental process, we know that customers must 
return and pay for prior rentals before taking out new 
rentals. But consider this situation: 

A customer has several tapes on loan. The customer 
returns all but one video and wants to rent two others. 
The customer could pay for all past rentals, the new 
rentals, and late fees up tb the current date for the tape 
still on loan. 

Or the customer could pay for all past rentals and 
the new rentals. The remaining tape, because it is not 
returned, is left unchanged. 

Both of these solutions might be acceptable, but 
the first places the prerequisite that' all rental fees be 
up-to-date' on the customers. This requirement is 
slightly different than 'all late fees must be paid 
before new rentals.' The difference is in how late 
fees are defined; that is, do customers incur late fees 
when the due date is past the current date or when a 
video is returned and it has been kept out past the 
expected return date? In keeping with Vic's edict of 
the least bureaucracy placed on the customer, the 
latter definition would be preferred, and he verifies 
this preference. With this discussion, let us turn to 
defining the attributes for ABC Video. 

Object Name 

Customer 

Attribute Name 

CustomerPhone 
CustomerLastName 
CustomerFirstName 
Customer Address 
CustomerCity 
CustomerState 
CustomerZip 
CustomerCreditCardType 
CustomerCCNumber 
CustomerCCExpDate 
CreditRating 
CustEnroliDate 

TempTrans CustomerPhone 
BarCodeld 
Return Date 
LateFeesDue 
TotalAmtDue 
TotalAmtPaid 
Change 

VideoOnRental CustomerPhone 
BarCodeld 
Return Date 
LateFeesDue 

Videolnventory VideoName 
RentalPrice 
VideoCountOfCopies 
BarCodeld 
TypeVideo 
Vendor 
DateReceived 

FIGURE 11-22 Additional Attributes from 
Chapter 2 



Object Name 

Customer 

TempTrans 

Attribute Name 
(Primary key is underlined, 
Repeating information is 
indented.) 

CustomerPhone 

CustomerLastName 
CustomerFirstName 
Customer Address 
CustomerCity 
CustomerState 
CustomerZip 
CustomerCreditCardType 
CustomerCCNumber 
CustomerCCExpDate 
CreditRating 
CustEnroll Date 

CustomerPhone 
TotalAmtDue 
TotalAmtPaid 
Change 

BarCodeld 
Rental Date 
FeesPaid 
Return Date 
LateFeesDue 
LateFeesPaid 
FeesDue 
FeesPaid 

Object-Oriented Analysis Activities 485 

Object Name 
VideoOn Rental 

Videolnventory 

Attribute Name 
Customer Phone 
BarCodeld 
Rental Date 
FeesPaid 

Return Date 
LateFeesDue 
LateFeesPaid 
FeesDue 
FeesPaid 

VideoName 
RentalPrice 
VideoReleaseDate 
VideoCountOfCopies 
TypeVideo 
Vendor 
DateReceived 

Promotion T lipe 
PromoOnDate 
PromoOffDate 
Promo Price 

BarCodeld 
BarCodeRentalCount 
BarCodeRental Days 

FIGURE 11-23 Initial Object Attribute List for ABC Rental Processing 

ABC Video Example Process Attribute 
List 

First, we list all processes down the left margin of a 
page (see Figure 11-26). Then, we examine each 
process to determine whether it is constrained in any 
way. To identify constraints we return to the origi­
nal description of the problem and the final para­
graph to determine processing formulae, constraints, 
and statuses. 

The obvious process attributes are the formulae 
used to compute rental total and to compute change. 
Each of these are entered in the table (see Figure 
11-26). To ensure proper payment processing, a 
postrequisite that Change be greater or equal to zero 
is defined. If this postrequisite is not met, payment 
processing is performed again. 

The first entry in the table for RetrieveRental­
VOR is a prerequisite that the Customer informa­
tion must be retrieved and a Rental able to be devel­
oped. If this process is not successful, it is due to a 
new customer and the EnterCustomer process is 
initiated. 

Several status attributes which were set aside 
during process identification are defined here. Two 
statuses were identified for knowing when all 
video data entry is complete and when all transac­
tion processing is complete. Both of these prerequi­
site statuses are listed with related processes in 
Figure 11-26. Notice that for the constrained pro­
cesses, we listed the type of constraint and the 
details of processing relating to the constraint. 
Also, notice that many processes have no specific 
attributes. 



486 CHAPTER 11 Object-Oriented Analysis 

Unnormalized Form 

VideoName 
RentalPrice 
VideoReleaseDate 
VideoCountOfCopies 
TypeVideo 
Vendor 
Date Received 

Promotion Type 
PromoOnDate 
PromoOffDate 
PromoPrice 

BarCodeld 
BarCodeRentalCount 
BarCodeRental Days 

1NF 

VideoName 
Rental Price 
VideoReleaseDate 
VideoCountOfCopies 
TypeVideo 
Vendor 
Date Received 

VideoName 
PromotionType 
PromoOnDate 
PromoOffDate 
Promo Price 

VideoName 
BarCodeld 
BarCodeRentalCount 
BarCodeRentalDays 

2NF 

YideoName 
PromotionType 
PromoOnDate 

PromotionType 
promoOnDate 
PromoOffDate 
Promo Price 

3NF Disposition 

Videolnventory 

VideoPromo 

PromoType 

BarCodeVideo 

FIGURE 11-24 Normalization of ABC Inventory Information 

Perform Class Analysis 

Rules for Analyzing Classes 

This step is conceptually one of the more difficult 
steps in object-oriented analysis. It is also crucial to 
defining the class relationships properly. You have 
already learned to define entities, relationships, 
and class hierarchies in Information Engineering, 
so many of the ideas are not new. What is new is 
the notion that not just data is inherited: Both data 
and processes are inherited and considered in 
this analysis. 

The goal is to define classes of class/objects 
and their relationships. A class defines the attri­
butes and processes that are shared by one or more 
class/objects. All objects are members of at least one 
class. When multiple objects share attributes, or 
share processes, we extract the attributes and pro­
cesses in common, and create a superset class. The 
important issue is to ensure that the class does, in 
fact, relate in exactly the same way to all of the mul-

tiple class/objects. The class has no objects of 
its own; it is simply identifying shared data and 
processes. 

Classes are similarly evaluated for commonly 
shared attributes and processes to create layers of 
classes. The notation for such a relationship is simi-
1ar to that of an entity-relationship diagram with 
directed arrows indicating the direction of the rela­
tionship and small numbers indicating the cardinal­
ity (i.e., number) of the relationship (see Figure 
11-27). Recall that cardinality can be one-to-one 
(1:1), one-to-many (1:m), or many-to-many (m:n). 

To instantiate means to define the values of a 
specific occurrence of an object. (Keep in mind that 
processes are the same for all instances.) For exam­
ple, the class/object Customer has one instance 
object for each customer. At the analysis level, an 
instance is analogous to a tuple in a relation or a 
record in a file. In an order entry example, illustrated 
in Figure 11-28, Customer class has no specific data; 
it is an abstract class. The Cust class/object instanti­
ates, that is, defines the data values for the customer 



class. The Order class/object inherits the data and 
processes in the Customer class. 

Inheritance relationships identify shared data and 
processes. The object at the arrow-headed end shares 
or inherits from the other object. Inheritance 
relationships identify hierarchical networks of 
relationships. 

Booch [1991] also recommends the design of 
classes for class/objects whose data or processes are 
used by another class/object. For instance, an order 
uses information about inventory items. Therefore, 
another class would be created shared inventory 
information (see Figure 11-29). This notation is the 
same as for general classes. 

A fifth type of class, a meta-class, can also be 
defined, but is usually developed during design. The 

Object Name 

Customer 

TempTrans 

TempTransDetail 

Attribute Name 
(Primary key is underlined, 
Repeating information is 
indented.) 

CustomerPhone 
CustomerLastName 
CustomerFirstName 
CustomerAddress 
CustomerCity 
CustomerState 
CustomerZip 
CustomerCreditCardType 
CustomerCCNumber 
CustomerCCExpDate 
CreditRating 
CustEnroll Date 

CustomerPhone 
TotalAmtDue 
TotalAmtPaid 
Change 

CustomerPhone 
BarCodeld 
RentalDate 
FeesPaid 
Return Date 
LateFeesDue 
LateFeesPaid 
FeesDue 
FeesPaid 

Object-Oriented Analysis Activities 487 

meta-class relationship defines a class whose in­
stances are themselves classes. For instance, cus­
tomers contain CustomerName which defines a 
subclass 'character string,' which defines a subclass 
'character.' Customer is a meta-class representing its 
character string contents. In general, all classes and 
class/objects from analysis are meta-classes that are 
elaborated during design. 

Coad andYourdon [1990] recommend looking 
for classes by evaluating each class/object for special 
cases and creating generalization classes for spe­
cialization class/objects. For example, cash and 
credit customers might be specialized class/objects 
of the general class customer (see Figure 11-30). 
Coad and Yourdon customize their notation for 
generalization-specialization relationships, although 

Object Name 
VideoOn Rental 

Videolnventory 

BarCode Video 

Attribute Name 
CustomerPhone 
BarCodeld 
RentalDate 
FeesPaid 
Return Date 
LateFeesDue 
LateFeesPaid 
FeesDue 
FeesPaid 

VideoName 
RentalPrice 
VideoReleaseDate 
VideoCountOfCopies 
TypeVideo 
Vendor 
Date Received 

VideoName 
BarCodeld 
BarCodeRentalCount 
BarCodeRentalDays 

FIGURE 11-25 Final Object Attribute List for ABC Rental Processing 



488 CHAPTER 11 Object-Oriented Analysis 

Process 

EnterCustPhone 

CreateTempTrans 

RetrieveRentalVOR 

DisplayTempTransVOR 

EnterBarCode 

Retrievelnventory 

Displaylnventory 

Compute RentalTotal 

EnterPayAmt 

ComputeChange 

DisplayChange 

Updatelnventory 

WriteRental 

PrintTempTrans 

EnterBarCode 

Retrieve RentalVO R 

DisplayTremTransVOR 

Add DateToVO R 

Update Inventory 
=ComputeTempTransTotal 
=EnterPayAmt 
=ComputeChange 
=DisplayChange 

Write Rental 

ComputerLateFees 

EnterCustomer 

CreateCustomer 

EnterVideol nventory 

CreateVideolnventory 

Attribute 

Prerequisite: CreateTempTrans process must be successful to continue rental process­
ing. If not successful, goto EnterCustomer process. 

Status: Bar code entry finished. 

Postrequisite: All rentals are entered. 

Formula = ILateFeesDue + IVideoPrice by CustomerPhone 

Formula = TotalAmountDue - Total Amt Pd by CustomerPhone 

Postrequisite: Change must be;?: zero to successfully complete this process. If change 
< zero repeat payment process. 

Prerequisite: TotaIAmountDue=zero, and processing is complete. 

Prerequisite: TotaIAmountDue=zero, and processing is complete. 

Prerequisite: TotaIAmountDue=zero, and processing is complete. 

Status: Bar code entry finished. 

Formula = I LateFees by CustomerPhone 

FIGURE 11-26 Process Attribute List for ABC Rental Processing 



Object-Oriented Andlysis Activities 489 

Line Type Relationship 

() Uses 

-------. Instantiates-Same data type 

~------. Instantiates-Different data type 

Inherits-Same data type 

Inherits-Different data type 

" 7 
Meta-Class 

Cardinality Necessary Relationship 

Required 

01 Optional 

Om Optional 

1m Required 

FIGURE 11-27 Relationship Types and Cardinality for Object Class Diagram 

it is not necessary to do so unless using their CASE 
tool. Figure 11-30 shows two alternative general­
ization-specialization notations. 

Coad and Yourdon also recommend that classes 
be created to express whole-part relationships. For 
example, in manufacturing, finished goods are 
assemblies of other goods; the whole class might be 
for the finished product, while the part class/objects 
define each component (see Figure 11-31). Again, 
Figure 11-31 shows two notations, a customized ver­
sion of whole-part as expressed by Coad and Your­
don, and the more general notation used in manual 
drawings and other CASE tools. 

To summarize, we have five types of relationships 
that we evaluate for specifically. First, we look for 
shared attributes and processes across class/objects 
to define inheritance classes. Then we evaluate the 
class/objects for specialization and for component 
part relationships. Next, class/objects which use the 

attributes or processes of another class/object are 
identified to create a class for the common class/ 
object items. Finally, we define meta-classes as 
abstract classes whose instances are themselves 
classeS. 

To create less cluttered diagrams, elevate the 
highest independent class or class/object on each 
diagram to define subjects. A subject is the most 
abstract class represented in an application. The pur­
pose of subjects is to provide a summary identifier 
that represents the cluster of subordinate relation­
ships which inherit from the class (see Figure 11-32). 

Finally, we reevaluate and, as necessary, redefine 
both process-object assignments, class, and class/ 
object definitions again. We reevaluate to ensure 
that all definitions accurately reflect the applica­
tion requirements, and are 'clean,' that is, all 
processes relate to all data with which they should be 
encapsulated. 



490 CHAPTER 11 Object-Oriented Analysis 

Customer Class 

./ 

1 I 1 

I 
I 

I 
/ 

/ 

Om 
I 

I 

Cust Order 

Class/Object Class/Object 

FIGURE 11-28 Order Entry Example of Customer Class 

ABC Video Example Class Analysis 

The class diagram for ABC rental processing is 
fairly simple (see Figure 11-33). First we draw the 
object classes: Customer, VideoOnRental, Video­
Inventory, BarCodeVideo, and TempTrans. 

Next, we evaluate the relationships between 
them. Referring back to the attribute list, we see that 
VideoOnRental (VOR) contains information from 
Customer, BarCodedVideo, and VideoInventory. The 
question is, Is this an inheritance relationship or a 
using relationship? In other words, are the data and 
processes also shared by VOR or does it simply use 
the data? The answer is found in the process 
descriptions. For all three class/objects, if the object 

does not exist while rental processing is going on, 
the rental class/object is supposed to be able to add 
new customers and new videos. Therefore, the pro­
cesses for adding and reading the information from 
all three class/objects are shared and should be 
inherited. If VOR simply used the data, the using 
relationship would have been more appropriate. 
BarCodeVideo, Video-Inventory, and Customer are 
drawn as classes because they will not actually store 
data. They manage the shared processes. 

Next, we consider the relationship of VideoOn­
Rental (VOR) to TempTrans. There is considerable 
overlap since VOR gets all new objects from Temp­
Trans, and TempTrans gets all information about 
open rentals from VOR. In this example, neither can 



Customer Class 

1 I 
I 

Customer C/O 

FIGURE 11-29 Example of Using Class 

inherit the processes of the other. Since they both use 
each other's data, they have reciprocal using rela­
tionships which are expressed in the diagram (see 
Figure 11-33). 

Then, we create new class/objects for attributes 
and processes not shared or inherited by VOR (see 
Figure 11-34). 

Next, we consider the relationship between Bar­
CodedVideo and VideoInventory. VideoInventory 
defines the characteristics of a group of inventory 
items. For instance, there will be one object with the 
value Terminator 2 in the Video Name, but there 
might be many BarCodedVideo objects which refer 
to that name. That is, there are many copies of the 
movie, each with its own bar code. Therefore, the 

Object-Oriented Analysis Activities 491 

Inventory 

Order 

characteristics of VideoInventory appear to be in­
herited by BarCodedVideo. 

Next, we ask if the processes of VideoInventory 
also apply to BarCodeVideo. For instance, when we 
add a BarCodeVideo, do we need to know or do pro­
cessing for VideoInventory? One attribute of Video­
Inventory, a count of the number of videos in stock, 
is created and updated every time VOR is created or 
used during rental processing. Therefore, a class for 
VideoInventory that includes the attribute(s) and 
processes that are shared is required. Now we have 
two classes dealing with VideoInventory and one 
class/object that will contain the data. The diagram 
reflecting these final data and processing require­
ments is shown in Figure 11-34. 



492 CHAPTER 11 Object-Oriented Analysis 

Generalization 

Customer 

I 
Specialization 

Credit Customer 

Adapted from Coad and Yourdon (1990). 

Traditional Notation 

Credit Customer 

I .................. 

Specialization 

Cash Customer 

Cash Customer 

FIGURE 11-30 Example of Generalization-Specialization Classes 

Draw State-Transition 
Diagram 

Rules for Drawing a State-Transition 
Diagram 

A state-transition diagram defines allowable 
changes for data objects. Specifically, for each 
change of data content for an object, we identify the 
initial state, the event that causes the change, the 
process by which the change occurs, and the result­
ing state. A state is a set of values an object can have 

while a transition is an event causing a change to 
the set of values. 

There are two subtly different types of state­
transition diagrams known as the Mealy model and 
the Moore model. The Mealy model defines all state 
changes and associates each with an action; it is used 
in this text. The Moore model defines all actions and 
associates each with a state. Theoretically, both mod­
els lead to the same definitions, they take different 
perspectives. For novices, the Mealy model is sim­
pler because it is easier to identify and verify state 
changes than it is to identify and verify that all 
actions are present. 



The icons used in drawing a state transition dia­
gram are shown in Figure 11-35 as a circle and 
directed line. The rules for developing a state­
transition diagram are as follows: 

1. Draw one diagram for each object/class and 
each class. 

2. Identify the possible states the class/object 
can take. 

3. Draw circles on a diagram labeling each with 
a state. 

Whole 
Toaster 

r:J] 
Adapted from Coad and Yourdon (1990). 

Traditional Notation 

Object-Oriented Analysis Activities 493 

4. Connect the states to show transition from 
one state to another. Use directed arrow lines 
to show the direction of state change (i.e., 
from ... to ... ). Each state should lead to 
one or a small number of other states. 

5. Label the transition lines to identify the 
events that initiate the change. Write the 
event names above the lines. 

6. Label the lines with the processes that man­
age the event. Write the process names under 
the lines. 

Part: Elevator Part: Chassis 

01 c:JIILJ 
FIGURE 11-31 Example of Whole-Part Class 



494 CHAPTER 11 Object-Oriented Analysis 

Product 
Composition EJ 

FIGURE 11-32 Example of Subject Diagram 

7. Examine the diagram. If there are any recur­
sive state changes, reanalyze that part of the 
diagram in more detail to remove the recur­
sion or to specifically label the state and its 
processes as recursive. 

8. Walk through the diagram with other team 
members until it is complete and accurate. 

The circle identifies the states of the object. Directed 
lines signify transitions and lead to the resulting 
state. The event causing the transition is written on 
top of the directed line. The process that changes 

Customer 

Add,Read 

Video I nventory 

Add,Read 

BarCodeVideo 

Add, Read 

the state is written under the directed line. The 
names of states should be unique, but the names of 
events and actions need not be unique if they, in fact, 
relate to more than one state. Events can spawn more 
than one process. Conversely, object states can 
require more than one event to be changed. If many 
events are required to initiate a state change, they are 
shown with separate lines leading to the state. If 
any of several events can initiate a state change, the 
lines converge into one line entering the state. Each 
class and class/object in an application has a state­
transition diagram developed for it. 

y 
TempTrans 

./ 
j 

., 
VideoOn Rental 

./ 

FIGURE 11-33 Class Diagram for VideoOnRental 



Customer 

Add,Read 

Videol nventory 

Add,Read 

,~ 
Vlnv 

Change, Delete 

BarCodeVideo 

Add,Read 

FIGURE 11-34 Class Diagram for ABC 

State-transition diagrams are optional represen­
tations in object orientation. They are useful for 
diagramming the behavior of systems with 

• multiple message types 
• complex processes 
• synchronization requirements. 

Different diagrams, such asfence diagrams,? are 
often substituted for state transition diagrams when 
there are less than 20 states. 

Object-Oriented Analysis Activities 495 

Cust 

Change, Delete 

TempTrans 

, 

--.;; 
VideoOnRental 

BCVideo 

.. 
Change, Delete .J. 

o Circles are used for class/object states 

t Directed arrows are used for transitions 

7 See Martin and McClure, 1985, for a further discussion of dif- FIGURE 11-35 Icons Used in State 
ferent substitute representations. Transition Diagrams 



496 CHAPTER 11 Object-Oriented Analysis 

ABC Video Example of State-Transition 
Diagram 

The steps to developing a state-transition diagram 
are to draw circles for each state that an object can 
take. Then connect the circles with lines showing 
which states lead to which next-states. Label the 
lines with the event triggering the change on top and 
the associated process from the application under the 
line. Rental VOR objects are the most complex in 
the ABC Video rental processing task, so they are 
discussed here. Development of state transition 
diagrams for the other objects is left as a student 
exercise. 

In its most simple form, a rental is either open or 
closed (that is, no rental). So, the first iteration of the 
state transition diagram will begin with those two 
states. The high level diagram is in Figure 11-36. For 
each path between these two states, we ask ourselves 
the question, What causes the change? First, what 
causes the change from no rental to an open rental? 
Open rentals are created when a customer requests 
a rental; this is the event for the line from no rental 
to open rental. The process accompanying this event 
is to create an open rental. 

Second, what causes the change from open rental 
to no rental? Return of the video(s) and payment of 
late fees can cause an open rental to be closed. There 
are two events in this statement, so now we ask our­
selves about the events' timing. Are all returns and 

Pay Late Fees 

Close Order 

payments performed at the same time? If not, what is 
different about them? From the description of the 
rental process, we know that returns can be made 
without any payment taking place. So, we separate 
these events. 

Consider returns first. When a video return takes 
place, what process is performed? The answer is that 
we update the rental with the return date. The rental 
does not change from open to closed when a return is 
performed, however; so, we draw a recursive line 
from open rental to open rental and mark it with the 
event and process. This recursive line identifies a 
need for another level of detail on rental states 
because each state should have its own circle for 
clarity of expression. 

Finally, we evaluate the other event, payment of 
rental fees. This event causes a rental to become 
closed. The directed line connects open rental to 
no/closed rental, the event is pay late fees, and the 
process is close rental. 

We already know we have to create another level 
of detail to this diagram to be more specific about 
return date processing, but we also want to evaluate 
this diagram to see what else is required. Does this 
diagram account for all rental states? The answer 
is no. It does not account for situations when late 
fees are owed (in other words, if there is already 
an open rental), and it does not account for updates 
for fees paid. So, we redraw the diagram to include 
these states. 

Customer 
Request 

R 
e 
t 
u 
r 
n 

FIGURE 11-36 High-Level State-Transition Diagram for ABC Rental Processing 



Summary 497 

FIGURE 11-37 State-Transition Diagram for ABC Rental Processing 

In the revised diagram (see Figure 11-37), we 
continue the thought process we used to draw the 
first diagram while accounting for the details we 
omitted from the first diagram. Now, we try to iden­
tify the states through which a rental proceeds from 
its opening to its closing. The states are: 

• open 
• temporary, new rental in memory, until fees 

paid 
• unpaid, returned VOR may have late 

fees 
• paid, returned VOR 
• closed rental with return date and all fees 

paid 

Next we draw the lines showing how each of 
these states comes to exist. Notice that a customer 
request triggers a search of open rental and will 
result in either the temporary rental status or the 
add-on rental status, depending on whether or not a 
rental for this client exists. The remaining events 
are return-Rental and all fees paid. 

AUTOMATED __________ __ 
SUPPORT TOOLS FOR __ _ 
OBJECT-ORIENTED ___ _ 
ANALySIS ______ _ 
Object orientation is less than five years old in its use 
in business. Yet the number and variety of support 
tools and environments available attests to its grow­
ing popularity and legitimacy. The tools presented 
here represent both partial and complete support for 
one or another method of developing object views of 
the world (see Table 11-1). Many tools include code 
generation capabilities which automatically generate 
C++ or other object-oriented code objects from 
the logical definitions provided in object analysis 
and design. 

SUMMARy ____________ __ 

Object orientation is a methodology that alternates 
evaluation between objects and processes to develop 



498 CHAPTER 11 Object-Oriented Analysis 

TABLE 11-1 Automated Support Tools for Object-Oriented Analysis 

Product 

DSEE, HP /Softbench 

Excelerator 

Object View 

Object Vision 

OOA Tool 

ProMod 

Software Backplane 
Cohesion 

SW Thru Pictures 

Teamwork 

Telon 

Visible Analyst 

vs Designer 

Company 

Apollo/Hewlett-Packard 

Index Tech. 
Cambridge, MA 

Knowledge Ware 
Atlanta, GA 

Borland International 

Object International, Inc. 
Austin, TX 

Promod, Inc. 
Lake Forest, CA 

Atherton Technology / 
Digital Equipment Corporation 
Maynard, MA 

Interactive Dev. Env. 
San Francisco, CA 

CADRE Tech. Inc. 
Providence, RI 

Pansophic Systems, Inc. 
Lisle,IL 

Visible Systems Corp. 
Newton, MA 

Visual Software Inc 
Santa Clara, CA 

Technique 

Integrated CASE Product 
Supporting 00 Analysis 

State-Transition Diagram 
Matrix Graph (RTS) 

Application Proto typing 
Software Using 4GL 
or SQL Code 

Visual Application 
Development System 

Coad's Tool Supporting 
Object Analysis Using 
Coas & Yourdon Graphics 

Control Flow Diagram 
State-Transition Diagram 
Module Networks 
Function Networks 

Integrated CASE Product 
Supporting 00 Analysis 

Control Flow 
State-Transition Diagram 

DFD 
Control Flow 
State-Transition Diagram 
Process Activation Table 

State-Transition Diagram 

State-Transition Diagram 

Booch Diagram 
Visual RD Diagram 
Ward-Mellor Diagram 

a complete view of an application. Objects are enti­
ties to be automated. They are encapsulated with 
processes which operate on them or which read 
them. 

Encapsulated class/objects may be identified for 
creation of reusable, normal, or polymorphic mod­
ules. Reusable modules perform the same action on 

the same data type class/objects, but are called by 
more than one class/object. Normal modules per­
form one action on data from one object. Polymor­
phic modules perform one action on data from many 
objects of differing data types. Object-process 
capsules are evaluated to determine their interrela­
tionships. The interrelationships usually describe a 



hierarchic network of relationships for which the 
lower-level capsules inherit both the data and pro­
cesses of the higher capsules. Encapsulated class/ 
objects with multiple relationships have multiple 
inheritance from related higher capsules. 

The declarative steps performed to develop an 
object analysis include identification of class/ 
objects, identification of processes, class and hierar­
chy definition, definition of attributes of operations, 
definition of interobject messages, and class/object 
state-transition definition. The procedural evalua­
tions within each step consist of questions to be 
answered and actions to be taken based on the 
answers to the questions. 

REFERENCES ______ _ 

Berrard, E. v., An Object Oriented Design Handbookfor 
Ada Software. Frederick, MD: EVB Software Engi­
neering, Inc., 1985. 

Booch, G., Object Oriented Design with Applications. 
Redwood City, CA: Benjamin/Cummings Publishing 
Company, Inc., 1991. 

Coad, P., and E. Yourdon, Object-Oriented Analysis. 
Englewood Cliffs, NJ: Prentice-Hall, 1990. 

Coad, P., and E. Yourdon, Object-Oriented Design. 
Englewood Cliffs, NJ: Prentice-Hall, 1991. 

Graham, Ian, Object-Oriented Methods. Reading, MA: 
Addison-Wesley, 1991. 

Taylor, David, Object Orientation and Information 
Systems: Planning and Implementation. NY: John 
Wiley & Sons, 1992. 

KEY TERMS ___ --. __ 
abstract data type (ADT) 
attribute 
class 
class hierarchy 
class/object 
client object 
encapsulation 
generalization class 
inheritance 
instance 
instantiate 
Mealy model 
message 

meta-class 
Moore model 
multiple inheritance 
object 
object-oriented analysis 
part class 
polymorphism 
primary key 
private part (of a class/object) 
problem space 
process attribute 
public part (of a 

class/object) 

solution space 
specialization class 
state 
state-transition diagram 
subject class 

Study Questions 499 

superset class 
supplier object 
transition 
user object 
whole class 

EXERCISES _______ _ 

1. Complete the state-transition diagrams of the 
ABC Video rental processing application. Walk 
through the diagrams in class and discuss the 
difficulties and alternatives you found in devel­
oping the state transition diagrams. 

2. Perform an object-oriented analysis on the Eagle 
Rock Golf League in the appendix. Develop all 
lists, tables, diagrams, and pictures required to 
document the requirements of the problem. 

3. Split the class into three teams. Have each team 
develop a second-level analysis of ABC Cus­
tomerOnVideo maintenance using object­
oriented analysis. Compare the resulting views 
of the application. 

4. Debate this assertion: Object orientation is more 
likely than process or data methodologies to 
lead to well-defined modules which automati­
cally deal with problem complexity by hiding 
information, being single-purpose, and having 
minimal coupling. 

STUDY QUESTIONS ___ _ 

1. Define the following terms: 
class meta-class 
class/object multiple inheritance 
encapsulation object 
inheritance 

2. Describe the sequence of events during 
analysis. 

3. Compare the differences between the major 
forms of documentation in structured analysis 
and object-oriented analysis. 

4. Compare the differences between the major 
forms of documentation in information engi­
neering and object-oriented analysis. 

5. Why is the summary paragraph in object­
oriented analysis so important? 



500 CHAPTER 11 Object-Oriented Analysis 

6. Compare and contrast the definitions of 
objects, processes, and encapsulated objects. 

7. List the documents and graphics created in 
object-oriented analysis and describe how they 
are related to each other. 

8. What are the decisions you must make in 
object-oriented definition of object hierarchies? 
Why are they important? 

9. What rules in object-oriented analysis simplify 
quality control and review? 

10. How do you determine that the allocation of 
objects to processes is correct? What are the 
questions asked, and why are they important? 

11. What is polymorphism? What is its importance 
in object orientation? 

12. What is the purpose of a state-transition 
diagram? 

13. Describe the development of a state-transition 
diagram. 

14. What is the relationship between a state­
transition diagram and objects, processes, or 
encapsulated objects? 

15. What is the purpose of a graphical class 
diagram? 

EXTRA-CREDIT QUESTIONS 

1. What are the rules for identifying objects? Can 
you think of others that might be useful? 

2. The steps that use nouns and verbs to identify 
objects and processes, respectively, have been 
criticized as too simplistic. Can you think of a 
different approach to identifying objects and 
processes, perhaps borrowing from another 
methodology, that improves on the process? 





502 CHAPTER 12 Object-Oriented Design 

Hardware 

Data .~~ Human 
~.- - ~ Interface 

'--------' ~ ~ ~ 

Software 

FIGURE 12-1 Object-Oriented Subdomains 

is the entire application as currently defined. As the 
prototype is examined, further details of operation 
are explicated for incorporation in the next iteration 
of the prototype. Following the format of previous 
chapters, we first define terms used in the OOD 
process, then move on to developing guidelines for 
each step and an example of the step and thinking 
processes for ABC Video's rental application. 

DEFINITION OF ____ _ 
OBJECT-ORIENTED ___ _ 
DESIGN TERMS ____ _ 

The seven steps to performing an object-oriented 
design are: 

1. Allocate objects to four subdomains, includ­
ing human, hardware, software, or data. 

2. Develop time-event diagrams for each set of 
cooperating processes a.'1d their objects. 

3. Determine service objects to be used. 
4. Develop Booch diagrams. 
5. Define message communications. 
6. Develop process diagram. 
7. Develop package (i.e., module) specifications 

and prototype the application. 

In this section, we define the terms used in these 
steps, again integrating and extending the work of 

Booch with that of Coad & Yourdon. Keep in mind 
that while the terms are fairly well-defined, the man­
ner and order of implementing the steps is not. The 
documentation created by these steps is summarized 
in Table 12-1. 

In the first step, problem domain objects are 
assigned to one of the human, hardware, software, or 
data subdomains. The human subdomain defines 
human-computer interaction in the form of dia­
logues, inputs, outputs, and screen formats. A dia­
logue is interactive communication that takes place 
between the user and the application, usually via a 
terminal, to accomplish some work. A dialogue 
defines actions of users and actions of the application 
and hardware. Inputs (i.e., data entry), outputs (e.g., 
reports), and screens are the three modes of com­
munication used for a dialogue. The task being per­
formed is usually a transaction relating to a business 
event (e.g., sale of goods), but could also relate to 
application-generated events, such as sensor read­
ings in process control or a data request in a query 
application. A screen design alone is a static defini­
tion of field formats while the dialogue is a series of 
interactions that takes place via a dialogue. 

The hardware subdomain defines object assign­
ment to physical processors or firmware.2 The hard-

2 Firmware refers to software that is permanently on a program­
mable chip and that processes significantly faster than 
memory-resident software program code. 



Definition of Object-Oriented Design Terms 503 

TABLE 12-1 Object-Oriented Design 
Documentation 

Tables 

Process Assignment 
to Object Table 

Subdomain Allocation 
Table 

Message Table 

Diagrams 

Contains all solution space 
objects and, for each, the 
processes that act on the object 

List of processes and 
subdomain assignments 

Contains, for each process, 
the calling object, the called 
object, the input message 
contents, the output message 
contents, and the object to 
which control is returned 

Subdomain Allocation Optional graphical depiction 
Diagram of process-subdomain 

assignments 

Time-Ordered Event 
Diagram 

Booch Package 
Diagram 

Process Diagram 

Depicts required sequencing 
of processes 

Depicts objects and message 
flow for the entire application. 
Lower-level Booch diagrams, 
one per processor, are created 
to show objects and processes 
with message flow. 

Shows hardware configuration 
and process assignment to 
processors 

ware interface is significant as we develop applica­
tions using more firmware, mainframes augmented 
by local intelligent devices, and distributed process­
ing. To support these types of processing, alloca­
tion of tasks to hardware must explicitly be part of 
the methodology. 

The software subdomain defines service con­
trol and problem-domain objects. Service control 
objects, also known as utility objects, manage 
application operations. Depending on the complex­
ity of the application, synchronizing, scheduling, or 

multitasking services to control object/process work 
might be required. Problem-domain objects are the 
class/objects and objects (hereafter, both are referred 
to as objects) defined during analysis and describ­
ing the application functions. 

The last subdomain relates to data, which are the 
actual instances of the objects in the solution set. 
During the data design, data are normalized and 
redesigned to accommodate operational efficiencies. 
Depending on the 'purity' of the object implemen­
tation, the physical data storage mayor may not 
implement encapsulated data and processes in the 
database. The most common variation of data stor­
age is a template definition that uses physical address 
pointers to reference the physical data store for data 
and processes. The template is analogous to the File 
and Working-Storage Sections of a COBOL pro­
gram, but includes a process template as well as a 
data template. 

The second step for all processes, regardless of 
their subdomain assignment, is to develop time­
event diagrams. Time events are the business, sys­
tem, or application occurrences that cause processes 
to be activated. Time-event diagrams show se­
quences, concurrency, and nesting of processes 
across objects. The time-event diagram, then, 
shows the relationships between processes that are 
triggered by related events or have constraints on 
processing time. Process relationships are either 
sequential or concurrent, determining the types of 
service objects required in the application. Processes 
that are not concurrent are sequential and related 
only by data or parameters passed between the pro­
cesses. Concurrent processes operate at the same 
time and can be dependent or independent. Depen­
dent concurrent processes require synchronization of 
some sort. 

Above, we defined service control objects as 
managers of application operations. The third OOD 
step is to determine which service objects are needed 
to control the application. There are three broad cat­
egories of service objects: synchronizing, schedul­
ing, and multitasking. 

Synchronizing is the coordination of simultane­
ous events. Synchronizing objects provide a ren­
dezvous for two or more processes to come together 
after concurrent operation (see Figure 12-2). 



504 CHAPTER 12 Object-Oriented Design 

.--___ ~I Concurrent L-
I Process 1 I 

- 1-------l1 Synchronizing I 
I Process 

r Concurrent 1 
L..-___ ~I Process 2 t--" 

FIGURE 12-2 Diagram of Synchronizing Object Functions 

Scheduling is the process of assigning execution 
times to a list of processes. Scheduling objects can 
be for sequential, concurrent-asynchronous (i.e., 
independent), or concurrent-synchronous (i.e., de­
pendent) processes. In the terminology of COBOL, 
scheduling objects are analogous to a mainline rou­
tine (see Figure 12-3), but the scheduler performs 
many functions beyond those of a COBOL mainline. 

Multitasking is the simultaneous execution of 
sets of processes (see Figure 12-4). Each set of con­
current processes is called a thread of control. 
These threads are initiated by the scheduling objects 
and controlled by multitasking objects. Multitask­
ing objects track and control the execution of mul­
tiple threads of control and can be in both the 
problem domain and the service control domain. 
These three types of service control objects provide 
the structure within which problem domain objects 
execute. 

Service object definition is based on time-event 
diagram analysis. If all objects are sequential and 
used one at a time, then only scheduling objects are 
required. If concurrent processing takes place, syn-

Get object 
Get memory location 
Store object 
Enqueue object 
Dequeue object 
Set time 
Check time 
Stop time 

FIGURE 12-3 Scheduling Object Functions 

chronizing and scheduling objects are used. If many 
users are supported concurrently, multitasking 
objects are added to the other types. 

After service objects are identified, the next step 
is to begin to develop a Booch diagram. A Booch 
diagram depicts all objects and their processes in 
the application, including both service and problem 
domain objects. First, a draft diagram is created. 
Then, several message passing schemes are evalu­
ated. After a message passing scheme is identified, 
message contents are defined. 

The basic graphical forms used are rectangles and 
ovals (see Figure 12-5). Vertical rectangles signify a 
whole package. A package in OOD is a set of mod­
ules relating to an object that might be modularized 
for execution. Service packages are single purpose 
and do not usually have subparts that are visible to 
the rest of the application. Service objects have no 
visible data, that is, no oval identifying a data part 
to the object. Problem-domain packages have data 
identifiers for objects and processes. The object in 
the oval and the process names are each in their own 
horizontal rectangle (see Figure 12-5). In Figure 
12-5, the lines connecting modules show allowable 
paths for messages. 

Next, messages are defined. A message is the 
only legal means of communications between en­
capsulated objects. Messages are clear in their 
intention, but not clear in their implementation 
which is completely determined by the language. For 
instance, at the moment, Ada does not implement 
message communication. In this text, a message is 
the unit of communication between two objects. 
Messages contain an addressee (that is, the object 
providing the process, also called a service object), 
and some identification of the requested process. 



Definition of Object-Oriented Design Terms 505 

Multitask Manager 

Scheduled 
Trans1 
Trans2 
Trans4 

Transn 

CPU-Active Task = Trans6 

Compute 
Execute 
Write ... 

Waiting 
Trans3 
Trans5 
Trans? 

Active 
Trans6 

FIGURE 12-4 Multitasking Management of Multiple Threads 

Messages may be unary, binary, or keyword (see 
Figure 12-6). Unary messages contain only an 
addressee and service identifier. Binary messages 
contain addressee, service identifier, and two argu-

Control Object 

ments (that is, variable object names or addresses 
upon which the service is performed). Keyword 
messages contain addressee, service identifier, and 
one or more keywords, each with an argument 

FIGURE 12-5 Sample Booch Diagram-Simple Inquiry Process 



506 CHAPTER 12 Object-Oriented Design 

Unary Message: Addressee Service Identifier 

I Customer Create 

Binary Message: Addressee Service Identifier Arguments 
.------.1-----------.1----------------------. 

ComputeTotal PastDueFees, CurrentFees 

Keywork Message: Addressee Service Identifier Keyword Expression(s) 

DateTranslate Field=Dateln, DataType=lnteger 

FIGURE 12-6 Example of Message Types 

to show optional process selection. Message defini­
tions probably will expand as languages capable of 
expressing and processing object-oriented designs 
develop. 

The next step is to develop a process diagram 
that defines the hardware environment and shows 
process assignments to hardware. The first activity is 
to draw a hardware configuration showing proces­
sors (sh,adowed boxes in Figure 12-7) and devices 
(plain boxes in Figure 12-8). Lines connecting 
processors identify allowable message paths. At this 
summary level, multiple messages may travel 
each path. 

When the process diagram is complete, the Booch 
diagram is divided and redrawn for each processor in 
the configuration. These subdiagrams show the 
extent of replication in the application and may iden­
tify new service object needs to control interproces­
sor communications. The message list is reexamined 
to ensure that all interprocessor messages are 
accommodated and complete. For multiprocessor 
applications, the timing of processes is reverified to 
ensure correct definition. 

U sing the information from the problem domain 
analysis and the OOD diagrams describing object 
interrelationships and timing, the next step is 
to develop package specifications and prototype 
the application. These are not the last steps in 

the design, only the last steps in an iteration of 
the design process which may have several itera­
tions. As a result of prototype development, other 
service objects might be recognized as needed. 
Iterating requires review of all design steps and 
redoing analysis as required to support develop­
ment of a complete application prototype for each 
iteration. 

Package specifications define the public inter­
face for both data and processes for each object, and 
define the private implementations and language to 
be used. The public interface is that part of the data 
and process definitions visible to all objects in the 
application. The private interface describes the 
physical data structure and actual functions (i.e., data 
manipUlations, calculations, or control processes) to 
be coded for the application. Multiple implementa­
tions of the same function that operate on different 
data types might be required. The function that has 
one name but multiple implementations is called 
polymorphic. Polymorphism, is the ability to have 
the same process, using one public name, take dif­
ferent forms when associated with different objects. 

One item in a package specification is a definition 
of the language to be used. Process timing (i.e., 
sequential or concurrent) and a need for poly­
morphism determine the type of implementation 
language required. Some languages are more con-



Definition of Object-Oriented Design Terms 507 

Printer 

PC001 -

Store Sales "";pmmmL, 

""" PC002 -
Manager 

PC006 -
Gateway 

PC005 -
File 

Server 

PC004 -
Gas Sales 

Gas Pump 
Sensors 

Query, 
Store Sales 

PC003 -
Gas Tank 
Monitoring 

\ 
Gas Tank 
Sensors 

FIGU RE 12-7 Process Diagram Example of Convenience Store/Gas Station Network 

straining than others. To understand these language 
differences, binding and client/server relationships 
should be understood. Binding is the process of 
integrating the code of communicating objects. 
Binding of objects to operations may be static (fixed 
at compile time), pseudo-dynamic (parameter 
driven and decided at the beginning of a session), or 
dynamic (decided for each object while the system 
is executing, that is, at run time). 

A major difference between object orientation 
and other methodologies is the shifting of responsi­
bility for defining the data type of legal processes 
from server (or called) objects to client (or calling) 
objects. A server object is one that performs a 
requested process. A client object is one that 
requests a process from a supplier. For instance, you 
might need to translate a date from month-day-year 
format to year-month-day format. As a client object, 

you request the translation of the supplier object and 
pass it the date to be translated. If the language sup­
ports dynamic binding, you also pass the data type of 
the date (for example, binary string or packed 
matrix). This shift, to client/server logic, plus the 
notions of inheritance and dynamic binding, support 
the use of polymorphism. 

Let's return to the idea of binding and work our 
way through these ideas and how they work together. 
In most business applications, we think of processes 
as always operating on the same type of data. For 
example, items on an order have an order quantity 
(for example, 2), quantity type (for example, each 
or dozen), and price (for example, $1.20) that is 
expected to match the quantity type. To compute the 
line item total, we multiply quantity times price for a 
given quantity type. But what if the type quantity is 
not known beforehand and the formula must change 



508 CHAPTER 12 Object-Oriented Design 

based on the type? Then, we have three choices. 
First, we could write many routines that are all resi­
dent in the compiled code as static binding requires. 
This is the most common COBOL solution. 

Second, we could write many routines that use 
information passed to the computation procedure to 
identify which routine to use for the session (for 
instance, only dozens will be processed in one ses­
sion). This is called pseudo-dynamic binding (e.g., 
in Ada at the moment). 

Third, we can write many routines and pass the 
quantity type to the computing object in the request 
message to dynamically bind and select the routine it 
needs to compute the total (as in Assembler, C++, 
or Smalltalk). Dynamic binding is done on-the-fly 
at run time. When the computation is complete, the 
quantity type code no longer is kept in the com­
puter's memory. 

Binding time is a function of the language used 
and the application's requirements. If the application 
is batch, single-thread, and sequential, there is no 
need for any but static binding. If the application is 
anything else (multithread, concurrent, real-time), 
dynamic binding is desirable, but many languages 
only support pseudo-binding. Then, the application 
requirements, in the form of business needs for 
response time or process time, should drive the lan­
guage selection decision. 

We no longer assume that a called object can do 
only one thing in only one way; instead, a called 
object can do only one thing but it can do it in many 
ways. This ability to do one thing many ways is 
polymorphism. Polymorphic processes take different 
forms when associated with different objects, but a 
process always takes the same form with a given 
object. Client-object message requests contain both 
the process and the form of the process. The poly­
morphic process then loads its correct process code 
to service the request via the dynamic binding mech­
anism of the implementation language. An example 
of pseudocode for polymorphic pairwise item com­
parison is shown in Figure 12-8. 

This discussion summarized the major terms, 
diagrams, and procedural steps in object-oriented 
design. Next, we discuss the steps of OOD in detail, 
including allocation of objects to the subdomains, 
developing time-event diagrams, determining ser-

Pairwise Compare­
Two Numbers 

If A = 8 
return-code = 1 

else 
return-code = O. 

Return return-code. 

Pairwise Compare- . 
Two Matrices 

Set sub = 1 
Set return-code = O. 
Perform compare 

varying sub by 1 
until sub = 1 st-entry. 

Return return-code. 

Compare. 
If A(sub) not = 8(sub) 

return-code =1. 
Compare-exit. Exit. 

FIGURE 12-8 An Example of Polymorphic 
Descriptions for a Comparison Process 

vice objects, developing Booch diagrams, devel­
oping process diagrams, and developing module 
specifications. Prototyping is beyond the scope of 
this text. 

OBJECT-ORIENTED ___ _ 
DESIGN ACTIVITIES ___ _ 

In ABC's rental application, we are using off-the­
shelf software in an off-the-shelf hardware environ­
ment. In the environment, the operating system, 
network, database, and form of human interface are 
all given. Because of our choices-PCs, MS-DOS, 
Novell Netware, and a SQL DBMS-the application 
does not easily lend itself to object-oriented design 
that assumes none of the services and functions pro­
vided in our target environment. Because of the dif­
ferences, we will discuss ABC at two levels: one for 
SQL DBMS which becomes unobject-like, and one 
for a Unix/C++ environment that stays object-like. 
First, we follow ABC through the process of design 
keeping in mind that the off-the-shelf software will 
be used. Think of this design as object-based, that 
is, based on object thinking, but decidedly not 
object-oriented in implementation. Object-based 
design is what is practiced by most novice object­
designers, and is what most CASE tools being retro­
fitted for object orientation will be. In the chapter 
appendix, we present a second design for a Unix/ 



c++ environment that is completely object-oriented. 
Without both discussions, the view of object orienta­
tion that you would get is not complete, and some 
of the discussions would be inaccurately stated for 
object-oriented design. 

Allocate Objects to 
Four Subdomains 
Heuristics for Allocating Objects to 
Human, Hardware, Software, and Data 
Subdomains 

The first step is to allocate the problem domain 
processes to one of the subdomains: hardware, soft­
ware, data, and human interface. Each process and 
the data it requires from its object3 are examined to 
determine whether they are best implemented as part 
of the human interface, hardware, software, or data 
subdomains. There is no particular order to the allo­
cation process. It is recommended to allocate the 
software domain last, because it is the default for all 
processes not allocated elsewhere. Since these 
implementation alternatives are usually not broken 
apart by other methodologies, and since hardware is 
usually completely ignored, the consideration of 
these subdomains and explicit allocation of objects 
to them provides useful detail that is explicitly docu­
mented for maintenance. Also, since hardware 
options are becoming more numerous and common 
(e.g., automated teller machines have local intelli­
gence and some of the application code for deposit 
and withdrawal processing), this mechanism accom­
modates hardware and firmware in design decisions. 

We will discuss data first, because current guide­
lines demonstrate some of the shortcomings of cur­
rent OOD writing. Booch suggests that standard 
database activities should be assumed to be under 
the control of the data domain, including create, 
retrieve, update, and delete processes (i.e., CRUD). 
All other data manipulations or computations are 
allocated 'somewhere else.' Coad & Yourdon, and 
most authors published after 1992, assume the use of 

3 Superset objects, class/objects, and objects are all assumed in 
the use of the tenn object. 

Object-Oriented Design Activities 509 

a DBMS and usually an object-oriented one that 
includes the properties of persistence, inheritance, 
and abstract object-oriented data definition. Some 
authors assume use of an SQL-compatible database 
with an equally unobject-like language, recommend­
ing that the data functions should be separated from 
the application which will maintain its object-like 
properties for all non-data operations. . 

Keep in mind that this is an inexact process that IS 

highly dependent on the implementation language 
and the implementation environment. For example, 
if we were using Smalltalk, in which everything is an 
object, separation of data access and manipulation 
is usually more efficient than keeping the functions 
all together. Conversely, if an OODBMS, such as 
Gemstone, were used, the DBMS object performs 
the physical CRUD actions and the applica~ion 
objects usually control the logical CRUD functIOns 
that are grouped by object. The key idea is that judg­
ment on allocation of functions is required and needs 
to be done with knowledge of the entire implemen­
tation environment. 

If the application needs to use a nonOODBMS, 
then evaluating whether data integrity, security, and 
access controls can be adequately maintained by not 
using the DBMS language is required. If the appli­
cation can both perform the functions faster, and pro­
vide for integrity and so forth, then there should be 
a real analysis of where the functions should be. The 
application requirements for execution and response 
time may force use of a programming language 
when constraints are tight, and default to use of the 
DBMS language when there are no constraints. 

Table 12-2 summarizes this discussion, showing 
that allocation of physical and logical read, write, 
and delete actions and the control over security, 
integrity, and access be tied to constraints and t~e 
type of database environment used. If no DBMS IS 

used, the alternatives are either to allocate DBMS 
functions to each object, or to design data control 
objects that perform DBMS functions, or to design 
a polymorphic reusable object that performs all 
DBMS functions. 

We said before that DBMSs illustrate the problem 
of all authors in object-oriented design. For the most 
part, 00 authors do not work in commercial busi­
ness and do not build commercial applications; they 



510 CHAPTER 12 Object-Oriented Design 

TABLE 12-2 Heuristics for Data Allocation Processes 

Type Database 00 
Functional or response Y 
time constraints 

Allocate CRUD to DBMS Phys. 

Allocate CRUD to Object Log. 
or generic 

Allocate security, integrity 
checking, access control 
to DBMS 

Allocate security, integrity *All 
checking, access control 
to Object or create generic objects 

Legend: 

Phys. 
Log. 

* 
All 
Y 
N 

Physical functions (read, write) 
Logical functions (edit) 
Requires analysis and judgment 
Physical and logical 
Yes 
No 

work in defense-related businesses and build real­
time, embedded applications which function as part 
of some larger system. For instance, defense appli­
cations might include building a guidance system for 
a missile, a monitoring system for airplane radar, or 
a reporting system on the Hubble microscope. These 
applications all have no persistent data; rather, they 
work on sensor data and pass on the informa­
tion they filter for processing or feedback by other 
systems. 

The problem with applying embedded-system 
thinking to persistent object problems is that there 
is little overlap in designing for temporary and 
persistent data. Persistent data and, in particular, 
DBMS-stored persistent data, have entirely differ­
ent thinking processes that the computer-scientist 
authors of most object -oriented methods do not rec­
ognize. Because of this lacking recognition, these 
heuristics on object allocation are more crude than 
those of, say, process methods which have been tried 
for the last 20 years. 

00 Non-OO Non-OO None 

N 

All 

All 

Y N 

*Phys. Phys. 
*Log. 

*Phys. *Log. All 
Log. 

*All 

All *All All 

A similar problem occurs in the hardware 
domain. Object-oriented authors most often are 
designing state-of-the-art hardware as part of their 
application design including customized operating 
systems and software. Most business applications 
use off-the-shelf hardware that is generalized in 
function and has many user features. The only cus­
tom development in most business applications is 
the application software itself. So, the design prob­
lem with hardware is opposite that of DBMSs. For 
hardware, the methodology authors do more detailed 
levels of development than is necessary in most 
business applications. You will see this problem 
again when we discuss service object definition. 

Now let's consider allocation of functions to the 
other subdomains. The human interface is exactly 
what you think it is, the interactions with people, 
usually through a terminal device, that provides the 
essential inputs and outputs of the application. The 
human interface is discussed poorly in the OOD 
books that do exist (including all of those in the ref-



erences of this chapter) because of the traditional 
lack of human users in object-oriented applications. 
Because of this lack, they are discussed in Chapter 
14 as one of the 'forgotten activities' of systems 
analysis and design. 

In general, the activities that provide human 
interface control, such as screen interactions, are rec­
ommended to be relegated to the human component 
of the application. Again, there are no compelling 
reasons for blindly making this decision, therefore 
it is subject to analysis. Activities that can be 
grouped across objects, such as line control, error 
message display, and screen reads and writes can all 
be abstracted out of the individual objects and placed 
in reusable, generic objects. The actual editing of 
data from screens should remain with the original 
object unless there are sufficient similarities across 
screens and data items to warrant abstracting them 
out as well, or unless the functions will be assigned 
to human interface hardware. To perform this ab­
straction requires listing all the detailed, primitive 
actions required of screen interactions for each ob­
ject, identifying which actions are performed auto­
matically by the DBMS or other application 
software and removing them from the list, and re­
evaluating the remaining items to determine whether 
or not there are commonalities across objects. 

This primitive level of detail may be deferred 
automatically when you relegate all screen interac­
tions to the human interface. This deferral allows 
you to build the interface during proto typing even 
though you may not know all of the primitives dur­
ing the first iterations. In other words, allocating 
screen interactions to the human interface is a means 
of deferring detailed design decisions until initial 
prototype development. 

The more distributed devices and processors, the 
more likely that processing might be allocated to 
firmware embedded in otherwise unintelligent 
devices. For instance, automatic teller machines 
include some intelligence for editing magnetic strip 
information from the cards used for withdrawal and 
deposit of funds from banks. They can, for instance, 
tell what type of card, such as Visa, is being used, 
and whether or not the personal ID number (PIN) is 
a valid combination of digits. They cannot tell 
whether or not the PIN matches the card number 

Object-Oriented Design Activities 511 

entered because that requires access to a database 
that is not stored locally. In addition, specific hard­
ware functions, such as accepting a deposit enve­
lope, are functions that would be allocated to 
hardware. 

Allocation of processes to hardware/firmware is 
determined by the need for fast response time, min­
imum communication delay, and minimum process­
ing time. Whenever any of these three constraints are 
present in an application's functional specification, 
hardware process allocation should be investigated. 
Some authors recommend that allocation to hard­
ware can include functions to be performed by the 
resident operating system. When there is access to 
these functions and they can be used as generics, this 
is a useful, time-saving idea. So, for instance, in 
systems such as Unix and Smalltalk, where the 
environment, operating system, and application are 
essentially inseparable, thinking of operating sys­
tems and hardware as one simplifies design thinking. 

Finally, we have allocation of processes to soft­
ware. This allocation assumes that all problem-do­
main processes not already allocated elsewhere will 
be implemented in software in the software domain. 
This allocation includes remaining service and prob­
lem domain objects after the other allocations are 
complete. Now, let us tum to ABC Video to see what 
allocation means in this application. 

ABC Video Example of Subdomain 
Allocation 

ABC's rental application will be an interactive, mul­
tithread set of processes which will service up to six 
threads of control, with growth to some higher num­
ber. Therefore, the concurrent processing require­
ments of the application should be considered when 
allocating processes to subdomains to ensure that 
timing requirements will be met. 

To refresh your memory, we had decided to use 
an SQL-compatible database to implement the 
application. We can interface the SQL language 
with other languages, but, as is typical of most 
DBMS software, all data accesses must go through 
the DBMS. This implies that the create, retrieval, 
update, and delete (CRUD) functions will all be 
allocated to the data subdomain as discussed above. 



512 CHAPTER 12 Object-Oriented Design 

By doing this allocation, we explicitly are decid­
ing what is and is not object-oriented. SQL is not 
object-oriented. Therefore, any functions performed 
in SQL are not object-oriented. The design can pro­
ceed in an object manner until the primitive level is 
reached, then the design is completed in SQL. 

If we look at the output from the analysis where 
we allocated objects to processes, we can identify all 
those processes relating to these functions. Each 
object has simple CRUD functions as well as a need 
for CRUD functions on a user-view of the database 
that incorporates Customer, Inventory, and VideoOn­
Rental. Eventually, for SQL implementation, we will 
collapse the superset objects back with the class/ 
objects and will control the use of add and read func­
tions by logic in the SQL DBMS application code. 
Any access control on superset objects is controlled 
by the DBMS. 

Figure 11-20 processes are listed in Table 12-3 
with their subdomain allocations. First, consider the 
data subdomain. From Table 12-2 we know that we 
can allocate the data functions based on application 
requirements. We are using a non-object DBMS and 
have no constraints on processing. Part of the attrac­
tion of the fourth generation database is its ease of 
use, therefore, anything that can be allocated to the 
DBMS should be. As Table 12-3 shows, all CRUD 
functions are allocated to the data function. Simi­
larly, printing, which interfaces with external 
devices, is allocated to hardware. Print control is 
allocated to hardware because in aLAN, spooling 
and printing are network operating system functions 
that are not under application control. 

All data entry functions are allocated to the 
human interface for design and control. Remaining 
processes are allocated to the software subdomain. 

Draw Time-Order Event 
Diagram 
Rules for Drawing a Time-Event Diagram 

A time-event diagram graphically depicts the tim­
ing constraints and events that trigger related 

objects. Time-ordered event diagrams show neither 
flow of control nor if-then-else logic. These dia­
grams are showing what can happen in time, includ­
ing required timing. The time-order event diagram 
becomes the basis for decisions about concurrent 
processes and is helpful in identifying service­
object needs of the application. 

The diagram is a two-dimensional graphic with 
objects listed down the left axis and time, broken 
into segments corresponding to events in the appli­
cation, along the horizontal axis. For processes that 
might run concurrently, mUltiple lists of the objects 
are shown. Synchronization of concurrent events is 
shown by the divergent lines returning to one event 
at some point (see Figure 12-9). 

Two formats for time-event diagrams are used. 
One shows deviations from an otherwise horizontal 
line with events and critical times demarcated by 
vertical bars (see Figure 12-10). The other format 
shows rising steps to mark events and critical time 
slots within the main object (see Figure 12-11). If 
one diagram per transaction is created, the rising step 
method is preferred because it is easy to see the 
points of change. If one diagram per application is 
drawn, the information can be presented more com­
pactly with the horizontal line method. 

Rewrite old VideoOnRental r--
Write new VideoOnRental ~ 

Print TempTrans r--
Rewrite BarCodeVideo 

v 
Potential concurrent processes 

objects, showing sequences of processing, concur- FIGURE 12-9 Potentially Concurrent 
rent processes, and nesting of processes across Processes 



Object -Oriented Design Activities 513 

TABLE 12-3 Process Subdomain Assignments 

Process Name Data 

EnterCustPhone 

ReadCust X 

CreateTempTrans 

Retrieve VOR X 

DisplayTempTrans 

EnterBarCode 

Retrievelnventory X 

ComputeTempTransTotal 

EnterPayAmt 

ComputeChange 

DisplayChange 

Updatelnventory X 

WriteVOR X 

PrintTempTrans 

EnterBarCode 

Retrieve VOR X 

DisplayTempTrans 

AddRetDateTempTrans VOR 

AddltoVlnv 

Updatelnventory X 

ComputeLateFees 

WriteVOR X 

EnterCustomer 

Create Customer X 

EnterVideolnventory 

Create Videolnventory X 

Diagram segments are defined as event-driven or 
clock-driven. For time-constrained segments of the 
diagram, the allowable maximum time is labeled 
along the horizontal axis (see Figure 12-12). For 

Subdomain 

Hardware Process Human 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

event-driven segments, the event is identified on the 
horizontal axis. Actual drawing requires knowledge 
of the problem domain requirements for processing. 

The steps to creating a time-event diagram are: 



514 CHAPTER 12 Object-Oriented Design 

Object 1 

U U Object 2 

Object 2 

Object 4 

I I I I I I I I I I 
I T I I I I I II I 

O------------------------------~~~ 

Time / Events 

FIGURE 12-10 Horizontal Time-Event Diagram 

1. Define all allowable transactions in the 
application. 

2. Define the processing steps for each trans­
action. 

3. For each transaction, design a time-event 
diagram reflecting the dependence or inde­
pendence of processing steps. 

E3 

Object 1 
15 ms 

Object 2 

Object 2 

Object 4 

ABC Video Example of a Time-Order 
Event Diagram 

For ABC, Table 12-4 shows the transactions allowed 
in the application. The transactions should have no 
surprises by this stage of design, and should be 
closely related to the processes defined for each 

E4 E5 

E10 E11 
10 ms 

O------________________________ ~~~ 

Time / Events 

En = Event identifier 

FIGURE 12-11 Rising Step Time-Event Diagram 



Object-Oriented Design Activities 515 

OBJECT Display 

Retrieve Cust -10 ms 

Cust -15 ms I 
Customer ~~~~e Mreate I---~Cust I 

I 
I 

Order 
History 

I Retrieve 
Order 

I History­
I 15 ms 

Display 
Order 
History 

I 
Get Purchase 
Items 

Purchase 

I 
Retrieve 
Inventory Inventory 

I I I I I I 
I 15ms I 15ms I I I I 

• Time-Constraint - ____ -' Time 

o ~ 

FIGURE 12-12 Diagram Segments Identified as Time-Driven or Event-Driven 

object. Some objects, such as TempTrans, have pro­
cesses that relate to more than one transaction, while 
other objects each have processes that reflect one 
transaction, such as for Customer. 

Of the transactions shown, we will discuss two 
that are representative of the others: video inven­
tory additions and rental processing. 

First, we describe what happens for a Video­
Inventory addition. This step requires detailed 
knowledge of the specific processing to be per­
formed. This knowledge comes from user inter­
views, study of current procedures, and so on. 
Subprocess details should be based on the process­
object assignment list (Figure 11-20). If there are 
discrepancies between the use of objects here and 
the list, the list should be revised to reflect this more 
detailed level of thought. The steps to adding inven­
tory are: 

1. Enter a new VideoId and remaining infonna­
tion for a particular film. 

2. When the NumberOfCopies is entered, add 
the new video infonnation to Videolnventory. 
Begin prompting for BarCodeld until the 
number of bar codes is equal to NumberOf­
Copies. 

3. As each BarCodeId is entered, add the 
new BarCodeVideo entry to the data­
base. 

4. When the number of BarCodelds entered is 
equal to NumberOfCopies, signal completion 
of the transaction to the clerk and end 
processing. 

Figure 12-13 shows the time-event diagram for 
the processing steps about video inventory creation. 
Notice that two objects are involved: Videolnventory 
and BarCodeVideo. Even though Videolnventory 
is begun first, its processing is completed before 
BarCodeVideo processing takes place. The processes 
are related in that the Videold is passed to the 
BarCodeVideo process, but they are otherwise 



516 CHAPTER 12 Object-Oriented Design 

TABLE 12-4 ABC Transaction List 

Object Transactions 

Customer Create 
Retrieve 
Update 
Delete 

Videolnventory Create 
Retrieve 
Update 
Delete 

BarCode Video Create 
Retrieve 
Update 
Delete 

VideoOnRental Rental without Returns 
Rental with Returns 
Returns without Rental 
Returns with Rental 

Video History Create 

Customer History 

EndOtDay 

Retrieve 

Create 
Retrieve 

Create 
Retrieve 
Delete 

independent. There is no necessary concurrency 
within the transaction. 

The rental transaction shows that several pro­
cesses might be concurrent. First the steps to com­
pletion of a rental process are: 

1. Get the entry and determine its type (either 
CustomerPhone or VideoId). 

2. If the entry is CustomerId, get all relevant 
customer information (e.g., name, address, 
and so on). 

3. If the entry is VideoId, get the corre­
sponding VideoOnRental and place it in 
memory. 

Use Customerld to get all relevant cus­
tomer information (e.g., name, address, and 
so on), 

4. Get all current outstanding rentals (i.e., 
either unpaid late fees or unreturned 
rentals). 

5. Compute LateFees on returned tapes. 
6. Compute TotalAmountDue. 
7. Display all information. 
8. Process returns and redo steps 5-7 until no 

more returns. 
9. Get VideoIds of new rentals until end of 

transaction is signaled. For each, get 
VideoInventory and BarCodeVideo informa­
tion; format and display the relevant 
information; recompute and display Total­
AmountDue. 

10. At transaction end, process payment and 
make change until TotalAmountDue equals 
zero. 

11. Write new VideoOnRental entries; update 
and rewrite old VideoOnRental entries; print 
TempTrans; update and rewrite BarCode­
Video as required; end transaction. 

The first event, data entry, results in one of two 
possible processes being invoked. These are shown 
with dotted lines on the diagram to show that only 
one is running at a time. If the VideoId is entered, 
then we have a choice to either nest getting the cus­
tomer or transfer control. If we transfer control, the 
video information must have been stored in mem­
ory for the first VideoOnRental to avoid passing 
unnecessary data. If we do not transfer control, and 
nest retrieval of customer information, then the cus­
tomer information is unnecessarily passed through 
the retrieval process for VideoOnRental. The best 
object-oriented decision would be transfer control 
to maximize information hiding here, but we can 
treat these accesses as one if the DBMS supports a 
user view that links the relevant information. SQL 
DBMS does provide user views and we select that 
option. (Make sure you read the appendix for true 
object-oriented design of this information. It is 
significantly different.) Once VideoOnRental is 
accessed, then, the related information from Video­
Inventory, BarCodeVideo, and Customer are all 
present automatically (see Figure 12-14). 

Eventually, we loop through getting all current 
outstanding rentals from VideoOnRental. This itera-



Object-Oriented Design Activities 517 

Objects Create Videolnv. 

Videolnventory 

BarCodeVideo 

Get 
Videolnfo I 

Get I 
BarCodeld 

Time 

Create 
BarCodelnv. 

FIGURE 12-13 Time-Event Diagram for Inventory Creation Transaction 

tion can be programmed to run until a return code in­
dicating no more videos on rental are present. This 
return code, then, becomes the event to trigger the 
next step of the process. 

Control is passed to compute Late Fees on re­
turned tapes that will require a count of the number 
of VideoOnRentals in memory to be maintained and 
passed to control this process. Having processed late 
fees until this count is reached triggers the next step 
to compute TotalAmountDue. This is a one-time 
event at this point, and its completion leads to dis­
play of all current customer and rental information 
on the user screen. 

At this point, if there are new rentals, the Bar­
Codelds are entered. This triggers obtaining Bar­
Codelnventory and Videolnventory information. To 
simplify memory processing, we have a choice sim­
ilar to that above for customer and VideoOnRental in 
step 3. In this case, the decision is between treating 
BarCodeVideo and Videolnventory as separate and 
independent or nested or the same. In order to treat 
them the same, we must be accessing a user view 

that contains the relevant information. Again, SQL 
allows user views, and we use the user view that col­
lapses this activity from two to one. As each video's 
information is displayed, the TotalAmountDue is 
recomputed and redisplayed. 

Upon receiving the trigger that the rentals, or 
returns, are complete, payment processing takes 
place and continues until TotalAmountDue equals 
zero. At that time, all of the VideoOnRentals, Bar­
CodeVideo locations, and video history counts (for 
returns) are updated. These are once again assumed 
to be in the same object as a result of having user 
view capabilities in SQL. 

Determine Service Objects 
Guidelines for Determining Service 
Objects 

Service objects perform background scheduling, 
synchronizing, and multitasking control for the ap­
plication. The activities performed by some service 



518 CHAPTER 12 Object-Oriented Design 

14 

OBJECT 10 

12 
11 .---"";"'::;""---i 

9 

TempTrans 3 

Customer 

VideoOnRental 4 

VINV 13 
12 

BCVideo 

o--------------________________________ ~. End 
Trans 

Time / Events 

Legend: 1 - Get Entry 
2 - ReadCust or Read VideoOnRental 
3 - Create TempTrans, ReadCust 
4 - Retrieve all related VOR, Read Videolnv. and Read BarCode Video 
5 - Compute Late Fees 
6 - Compute Total Amount Due 
7 - Display Temp Trans 
8 - Process Returns (includes return to steps 4, 6, 7) 
9 - Get new rentals, Read Videolnv. and Read Bar Code Video 

10 - Format and display new rentals, update Total Amt Due 
11 - Process Payment (includes EnterPayAmount, Compute Change, 

Display Change) 
12 - Print TempTrans, Rewrite old VORs Update BarCodeVideos 
13 - Write new VORs, Rewrite BarCodeVideos 
14 - End Trans 

FIGURE 12-14 Time-Event Diagram for ABC Video Rental Transaction 

objects are analogous to those of an operating sys­
tem in a mainframe environment which provides job 
management, task management, memory manage­
ment, I/O management, and data management. For 
that reason we will digress a minute to discuss these 
operating system functions, relating them to service 
objects.4 

4 This discussion is necessarily short. For further infonnation 
see Per Brinch Hansen, The Architecture of Concurrent Pro­
grams, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1977. 

Job management routines initiate processing for 
individual applications. In multitasking applications, 
that means that the first scheduling tasks are loaded 
and turned over to the task management routines for 
execution. In mainframes, there are multiple jobs, 
sometimes as many as 50, executing concurrently. 
The job management routines keep track of all jobs 
active in the system. 

The task manager monitors and tracks individual 
steps within a multistep set of sequential processes 
(i.e., a job). Task management is similar to monitor-



ing done for multiple threads of control for concur­
rent processes. The work of job and task manager 
routines are similar and include: 

• Load, schedule, execute 
• End, abort 
• Get/set process attributes 
• Create/terminate process 
• Wait for time 
• Wait/signal event 
• Get/set process attributes for jobs, files, or 

system data 

Multiple-thread management requires both job 
and task management. Think of individual transac­
tions as analogous to jobs to be managed, and of 
individual steps to completing a transaction as tasks, 
or processes in OOD terminology. The job manage­
ment, transaction routines manage whole transac­
tions, and task management routines manage atomic 
processes to perform the transaction. 

Monitoring of individual processes (or transac­
tions) and sequences of processes, one per thread, is 
accomplished either by stacks (sometimes called 
heaps) or queues, depending on the operating system 
software. The stack commands are push to add 
something to the stack and pop to take something off 
the stack. The queueing commands are enqueue and 
dequeue, to add and delete items, respectively. The 
stack (or que) items, in multithread control, include 
the name of the task, its current execution status (i.e., 
running, idle, or waiting), and the address of the next 
command to be executed. One set of stacks is man­
aged for each transaction, and one set is managed for 
each process. Stacks operate on a last-in, first-out 
principle while queues are first-in, first-out. 

Similarly, the I/O manager and data managers act 
together to perform physical inputting and out­
putting of information to central processing unit 
(CPU) memory. The I/O manager interacts with ter­
minals, printers, and other devices that are moving 
information physically into and out of the computer. 
The data manager interacts with secondary storage 
devices, such as disks. The activities performed by 
these managers include file manipulation and device 
management. The key activities include: 

Object-Oriented Design Activities 519 

File Manipulation: 

• Create/delete file 
• Open/close 
• Read, write, reposition 
• Get/set file attributes 

Device Management: 

• Request/release 
• Read, write, reposition 
• Get/set device attributes 

These tasks are usually provided in primitive 
form by the operating system and in a more abstract 
form by a DBMS. The more sophisticated the soft­
ware environment, like a DBMS, the more likely the 
services are provided by the environment. 

Finally, memory management keeps track of the 
location of each item, in random access memory 
(RAM). Recall that all data and programs must be 
memory-resident to be executed. In dynamic appli­
cations in which modules and data are being moved 
into and out of memory constantly, memory man­
agement is a crucial function. The main functions 
provided by the memory manager include: 

• Allocate/delete memory (can be dynamic or 
static) 

• Track used and free memory location by task 
• Track used and free memory within each 

task's allocation 
• Garbage collection (identify and erase or 

write-over unused objects) 

All operating system management is accom­
plished by cooperating processes that use event­
driven interrupts to provide services in the system. 
Interrupts at the operating system level are called 
supervisor calls (SVCs). The implementation of 
SVCs differs across operating systems.5 

5 For a more complete treatment of this information, see any 
operating systems text. Some good ones include A. J. van de 
Goor, Computer Architecture and Design, Reading, MA: 
Addison-Wesley Publishing Company, 1989; Anthony P. 
Sayers, Operating Systems Survey, NY: Auerbach, 1971; 
J. Peterson and A. Silbershatz, Operating System Concepts, 
Reading, MA: Addison-Wesley Publishing Company, 1983. 



520 CHAPTER 12 Object-Oriented Design 

Now, let's relate this operating system informa­
tion to applications. All of these functions are 
required for the three types of control provided 
by service objects. If you are working in a Unix 
or Smalltalk environment which already have 
been used for application development, many of 
these functions should already be available for reuse. 
If you have to write your own, you need to test and 
retest these functions very thoroughly to en­
sure proper application functioning. In any 
case, you need to decide which of the service object 
functions are needed and provide them for your 
application. 

The steps to identifying the service objects are: 

1. Examine the event diagram and identify each 
process as sequential or concurrent, and, if 
concurrent, as independent or cooperating. 

2. Define the service needs for loading the 
object, processing the object, synchronizing 
the process to others, and sending any mes­
sages the object might generate. 

3. Compare this list to one specific to the target 
operating environment that identifies reusable 
service objects that can be used by this 
application. 

4. Enter the name, language, and any other 
information needed to identify the reusable 
object. For all service objects, make sure that 
the class, object, event, and/or process using 
the service object are identified. 

5. When all reusable objects have been identi­
fied, the remaining service objects included 
in the remaining tasks are divided among the 
four subdomains as appropriate for module 
specification. 

In general, all applications need scheduling 
objects (see Table 12-5). The need for synchroniza­
tion and multitasking are determined by the time­
event diagram and whether or not the objects are 
concurrent and multiuser. Table 12-5 shows that con­
current, single-user processes need synchronization 
while concurrent and multiuser objects need syn­
chronizing and multitasking services. Multiuser, 
sequential processes, like ABC, require both sched­
uling and multitasking services. 

TABLE 12-5 Decision Table for Service 
Object Type Requirements 

Problem Domain 
Object Characteristics: 

Sequential 

Concurrent 

Multiuser 

Service Objects 
Required: 

Scheduling 

Synchronization 

Multitasking 

y 

N 

N 

x 

y 

N 

Y 

x 

X 

y 

N 

x 
X 

y 

y 

X 

X 

X 

ABC Video Example of Service Objects 

First, we examine the time-event diagram to iden­
tify each related process as sequential or concurrent, 
and independent or cooperating. 

There are three possible sets of concurrent pro­
cesses within one rental transaction shown on Figure 
12-15 as circled and numbered sets. The other pro­
cesses are sequential. Our decision on concurrency, 
then, is based on the implementation environment. 
Let's say that SQL supports multithread but not mul­
titasked processing, therefore, we need to decide se­
quential ordering of the processes and how the 
processes will be performed in SQL. 

Next, for each process, define the service needs 
for loading the object, processing the object, syn­
chronizing the process to others, and sending any 
messages the object might generate. SQL supports 
user views. By creating user views to link Video­
Inventory to BarCodeVideo, and VideoOnRental 
to Customer, VideoInventory, and BarCodeVideo, 
the opportunity for most concurrency disappears 
in one database access that retrieves all the related 
information. 6 

6 See Chapter 12 appendix discussion of ~BC in which the ser­
vice object discussion results in a different outcome. 



Object-Oriented Design Activities 521 

OBJECT 

TempTrans 3 

Customer 

VideoOnRental 

VINV 

BCVideo 

o----____________________ ~~ ________ ~ 

FIGURE 12-15 Potential Concurrent Sets of Processes 

Even though we have removed concurrent object 
processing from the diagram, we still have both 
transaction level and process level service object 
requirements. Transactions and processes all need 
scheduling, including processes that load, store in 
memory, initiate, terminate, monitor events, and 
possibly provide message communications between 
objects. 

This list is compared to our target operating 
environment: SQL on a PC LAN running Novell 
Netware.™ The services are all provided transpar­
ently by the operating environment and are not 
needed to be developed in primitive form for ABC's 
application. Even though the target environment is 
not object-oriented, the need for service objects dis­
appears because these are all services provided in the 
operational environment. 

The next step is to examine a current library of 
reusable objects for use as problem domain pro­
cesses. Since ABC's environment is new, there is no 

reusable library; therefore, any modules would need 
specification and development. 

Develop Booch Diagram 
Guidelines for Developing Booch Diagram 

Booch diagrams, also called module structure dia­
grams, provide a graphical summary of the class and 
object information in the entire application. The 
icons for drawing the diagram ate shown in Figure 
12-16 with service objects in vertical rectangles with 
no other detail beyond their name, and problem 
domain objects in vertical rectangles with smaller 
ovals to identify the object and horizontal rectan­
gles to identify the individual processes. One dia­
gram connecting the domains as required is drawn; 
then one Booch diagram for each subdomain (or for 
the whole project if it is small) is developed. 

The steps to drawing a Booch diagram are: 



522 CHAPTER 12 Object-Oriented Design 

Service Object Name 

FIGURE 12-16 Booch Diagram Icons 

1. Draw the Booch icons (see Figure 12-16) 
relating to service and problem domain 
objects. 

2. Evaluate and choose a scheme for connecting 
the objects via messages. 

3. Draw lines between objects to signify the 
legal message connections. 

4. Define message processing scheme. 

Service objects selected for controlling applica­
tion operations are arranged by personal preference, 
but can be grouped by function performed: schedul-

Package 

Service Object 

ing, synchronizing, and multitasking within subdo­
main. The service objects described in the previous 
section are shown with sub domain grouping in Fig­
ure 12-17. 

Problem-domain objects are obtained from the 
process-object assignment list developed during 
analysis. This table is now reversed with the infor­
mation arranged by object for this diagram. During 
the reversal process, a reevaluation of process-object 
assignment should be made to ensure that the pro­
cesses are associated correctly with their necessary 
objects. Subdomain groups may be maintained on 



Object-Oriented Design Activities 523 

Hardware / Operating System 

Data 

Define Device 
Execute I/Os 

Define Physical Data Stores 
Open/Close 
Provide Data Access- Get/Put 

Define Logical Data 
Access Control 
Application Presentation 

Multiuser Management 

Hardware Management 
Open/Close 
Start/Stop 
Get/Put 

Memory Management 
Define 
Get/Put 
Garbage Collection 

Security/Access Control 

Application 
Start/Stop 
Allocate Memory 

Session 
Start/Stop 
Allocate Memory 

Transaction 
Start/Stop 
Allocate Memory 
Manage Tasks 

Human 

Define Device 
Format Screens 
Get Data Entries 
Edit for Numeric/Alpha Entry 

Software (Problem Domain) 

Process Security/Access 
Management 

Load/Release/Monitor Processes 
Provide Message Communication 

between Objects 
Application Objects 

FIGURE 12-17 Service Objects by Subdomain 

the diagram which means that we may have new 
superset objects to define the split between objects 
for subdomain processing. 

Processes that are candidates for generic, reusable 
object development should be marked consistently 
in some way, for instance by bold or italic print to 
identify them visually. A quick glance at the diagram 
gives the viewer a sense of the extent to which 
reusable objects and processes are being leveraged 
in the application. 

After the icons are drawn, they are played with 
to evaluate different message passing schemes. 

There is no one right way to do message passing, but 
there are definitely some methods that are better than 
others. We will walk through a reasoning process for 
message passing definition in the ABC Video exam­
ple. In general, the goal of messages are 

1. To accomplish the application's tasks. 
2. Pass minimal information and pass only to 

objects requiring information. 
3. Minimize the potential for bottlenecks. 
4. Maximize the potential for application 

throughput. 



524 CHAPTER 12 Object-Oriented Design 

Distributed Message Control 

FIGURE 12-18 Sample Configurations of Object Message Passing 

The evaluation of alternatives is to determine the 
best throughput scheme of message passing without 
creating bottlenecks, wbile accomplishing the first 
two goals. Booch suggests a 3x5 approach to this 
evaluation in which, rather than drawing the diagram 
icons on paper, the information for each object is 
written on a 3" x 5" card. The cards are arranged spa­
tially in different configurations on a large piece of 
paper with lines drawn to signify the required inter­
object message communications. When a configu­
ration is identified that might be useful, it is 

annotated for further analysis. Figure 12-18 shows 
two different configurations for a simple application. 
You can see how, if you have 20 or 30 objects, the 
3" x 5" method simplifies evaluation of message 
passing schemes. 

All further alternative configurations are evalu­
ated to determine message traffic. Message traffic is 
the number and direction of messages in the system. 
Overall, the goal is to minimize the number of mes­
sages passed for any single transaction, while not 
overloading any single object with message traffic 



related work. 7 The minimum number of messages is 
n-l, where n is the number of packages needing 
to communicate in the application. That is, once 
initiated, each package must communicate with 
at least one other package. The centralized message 
control scheme shown in Figure 12-18 shows an 
example of n-l messages. The arrangement with 
the best message traffic configuration is selected 
for prototype development, and the design process 
continues. 

ABC Booch Diagram 

Before we can develop a Booch diagram, we need 
to digress and redefine some application needs to fit 
the SQL environment. 8 The drawing of packages 
normally assumes no consolidation of functions or 
data via user views, but we have collapsed our pro­
cessing to take advantage of SQL features. There­
fore, Table 12-6 shows the effects of user views on 
data domain processes: the 11 data processes are 
now eight consolidated processes. The remaining 
subdomains are not affected by the data changes. 

First, we will draw the packages based on what 
we now know to be the design of the application (see 
Table 12-6). There are four data packages: Cus­
tomer, Videolnventory, UserViewl which includes 
VideoOnRental, VideoInventory, BarCode Video and 
Customer, and U serView2 which includes Video­
Inventory and BarCodeVideo (see Figure 12-19). 
The related processes for those data objects are 
placed in horizontal rectangles in their respective 
packages. 

There is one scheduling service object (which we 
may not need because of the environment) that 
includes initiation and termination of the application, 
user sessions, and transactions. There is an inter­
face service object to provide all display and input 
from personal computers (see Figure 12-19). The 
hardware service object contains only one process 
for printing TempTrans. Finally, the TempTrans 

7 This would cause a bottleneck. 

8 Don't forget to read the Chapter 12 Appendix for a complete 
discussion of object-oriented design using an object-oriented 
development environment. 

Object-Oriented Design Activities 525 

object contains the data and problem domain pro­
cesses that are the core of rental processing. 

Next, we try different configurations of the 
objects to develop a message passing scheme that 
will provide necessary processing and information to 
called objects, while minimizing the communica­
tions overhead in the application. Figure 12-20 
shows one reasonable message passing scheme that 
follows the logic of processing. The scheduling 
object passes control to the interface object which 
has some choices. The interface object could pass, 
for instance, a CustomerPhone to either TempTrans 
or Customer to initiate rental processing. If the pass 
is to Customer, it could return and pass the customer 
information to Temp Trans , or Customer could con­
tinue and initiate TempTrans directly. You see how 
the options can build and get complex. We will opt 
for a fairly traditional scheme in which the Inteiface 
will pass any rental transaction data to TempTrans 
which will determine what to do with it. This deci­
sion is reflected by the line connecting Humanlnter­
face with TempTrans. 

TempTrans then initiates one of three data re­
trievals: Customer, UserViewl, or UserView2. The 
data is returned and TempTrans continues process­
ing. This method of passing provides the most 
information hiding between objects, but could 
result in a bottleneck within TempTrans which is 
controlling all of the interobject communication for 
the problem (e.g., software), hardware, and data sub­
domains. This is a potential problem that would be 
checked during prototype development. 

The Humanlnterface object also communicates 
directly with Customer and Videolnventory for 
create processing which does not require Temp­
Trans. All completed transactions, regardless of 
type, return to the Scheduling object to terminate 
the transaction. 

Define Message 
Communications 
Rules for Defining Messages 

The next step after the Booch diagram is to actually 
define message contents to provide interobject 
interfaces for the application. A table is created to 



526 CHAPTER 12 Object-Oriented Design 

TABLE 12-6 Consolidated Process Subdomain Assignments for Oracle 

Process Name Data 

EnterCustPhone 

ReadCust X 

CreateTempTrans 

RetrieveVOR X 
(includes VideoInventory, 
BarCodeVideo, and Customer) 

DisplayTempTrans 

EnterBarCode 

Retrieve BarCode Video X 
(includes VideoInventory) 

Display Inventory 

ComputeTempTransTotal 

EnterPay Amt 

ComputeChange 

DisplayChange 

WriteVOR X 

PrintTempTrans 

EnterBarCode 

DisplayTempTrans 

AddRetDateTempTrans VOR 

Add 1 toVInv 

Rewrite VOR data X 

ComputeLateFees 

Write VOR data X 

EnterCustomer 

CreateCustomer X 

EnterVideoInventory 

Create VideoInventory X 

document the specific requirements of each message 
(see Table 12-7). The objects that act as clients are 
listed in the Calling Object column, service objects 
are in the Called Object column. This information 

Subdomain 

Hardware Process Human 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

should come from the Booch diagram coupled with 
the Process table generated during analysis that iden­
tifies objects with the processes that act on them. The 
Input Message column describes the data that is sent 



Object-Oriented Design Activities 527 

Customer 
Videolnventory 

TempTrans 

User View 1 UserView2 

Schedule Object 

Human Interface 

I 
I Enter CustPhone I 

I 
I Enter BarCode I 

I 

Hardware Service I Enter PayAmount I 
I Enter Custlnfo I 
I Enter Video Inventory I 

I 
I Display TempTrans I 

I 
I Display Inventory I 

I 
I Display Change I 

FIGURE 12-19 ABC Rental Booch Diagram Objects 

as part of the calling object message to be processed. 
The output message is the result data that is sent on 
(or returned) by the called object after processing. 
The columns Action Type and Return Object are op­
tional. The action type describes the process to be 
performed in terms of CRUD or other processing. 
The return object provides continuity of processing 

logic when the called object does not return directly 
to the calFng object. 

For each process-object pair defined in the Pro­
cess Definition List, we will have one input message 
to initiate processing and, if needed, an output mes­
sage which reports the results of processing. The 
message list contains one column for each of the 



528 CHAPTER 12 Object-Oriented Design 

Customer 
Videol nventory 

TempTrans 

User View 1 

Schedule Object 

Human Interface 

FIGURE 12-20 ABC Booch Diagram Message Passing Scheme 

types of information shown in Table 12-7. The steps 
to creating the message list are: 

1. Make a table with headings as listed in 
Table 12-7. 

2. Refer to the list of all object-process 
combinations. The objects from that 
list are listed in the' Called object' 
column. The processes from the 

process list are placed in the 'Input message' 
column. 

3. Next, decide both the 'Calling object' and 
other 'Input message' entries. 

These two definitions seem to go together be­
cause as we define the input message, we know the 
information required to perform the process. Once 
we know the information to perform the process, we 



TABLE 12-7 Message List Contents 

Header Contents 

Calling object Identifies the client. 

Called object Identifies the server. 

Input message Identifies the process to be 
performed and any input 
parameter data needed to per­
form the process, for instance, 
the data type for polymorphic 
processes. 

Output message 

Action type 

Return to 

Defines the output to be 
passed, if any. 

Defines the process as Read, 
Read/Write, Write, Display, or 
Print. 

Identifies either the object to 
which the result is returned or 
a nested object for further pro­
cessing, if any. 

decide which object has that information to pass it 
on. This step determines much of the logical process 
flow from one encapsulated object-process to 
another. The logical process flow defines the se­
quence of processing in the application. 

4. Define the 'Output messages' by determining 
what type of information is required next 
from each process as it completes. For data 
entry type processes, frequently the output 
message is only an acknowledgement of pro­
cessing (ACK = successful, NACK = unsuc­
cessful). For some processes, no response 
is required. 

5. Complete the 'Action type' column. 

The action type summarizes the type of process­
ing for designers to determine possible implementa­
tion consolidation of activities, or to decide on 
further allocation of processing to hardware, soft­
ware, or firmware. 

6. Define the return object column. 

Object-Oriented Design Activities 529 

This column usually refers to the calling object 
which is ordinarily the object to which control 
returns, but some nested subprocess might take 
place. When subprocessing occurs, the return object 
column identifies the next object entered to help 
other software engineers understand the logic flow. 

Completeness and correctness review of the mes­
sage list is done to ensure that each process-object 
pair has an associated message in the table and that 
the calling/return objects are correct. 

ABC Video Example of Message List 

First, we make a table with the above headings. 
Then, referring to the process list that we used to 
draw the Booch diagram, we list all object process 
combinations. The objects from that list are listed 
in the 'Called object' column. Make sure that all 
process-object pairs have one entry in the table. 

Next, we decide both the 'Calling object' from 
the Booch diagram and the 'Input message' for each 
entry (Table 12-8 shows the completed list). Then 
the 'Output message' is completed for each entry. 
As the output message is complete, we complete 
each line with the 'Action' and 'Return Object' 
definitions. 

Table 12-8 shows the message list for ABC's 
application. It reflects the consolidated data objects, 
the messages decided during the development of the 
Booch diagram, and the details of information that 
must be provided for each object-process. Notice 
that many processes are called from within an 
object itself. This localizing of processing is desir­
able to simplify interobject communication and 
ensure information hiding, but it also can encourage 
development of nonobject-oriented designs. Make 
sure that each message contains all, and only, the 
information required to perform the process. Make 
sure that each message returns only the information 
required by the client object. 

Develop Process Diagram 
Guidelines for Developing the Process 
Diagram 

A process diagram depicts the hardware configura­
tion and the allocation of processes to processor 



530 CHAPTER 12 Object-Oriented Design 

TABLE 12-8 Message List for ABC Video Rental Processing 

Calling Called Input Output Action Return 
Object Object Message Message Type Object 

Human Customer Customer CustomerPhone Create Human 

Interface Information Interface 

Human Video Video VideoId, Create Human 
Interface Inventory Information # BarCode Interface 

Videos Created 

Schedule Schedule Application Id Queue Address Execute Schedule 
Init Appl 

Schedule Schedule UserId Memory Execute Schedule 
Address or Init Session 
Logoff 

Schedule Schedule Session Id, None or Quit Execute Human 
Menu Selection Session Init Session Interface 
for Rental 

Human Human No data Trans Request Enter TempTrans 
Interface Interface (Initiate Data Memory Request 

Request) Address 

Human TempTrans Trans Request Data access key Create UserViewl 
Interface data TempTrans or Customer 

TempTrans Customer Data access Customer Info Read TempTrans 
key 

TempTrans UserViewl Data access key Customer, Read TempTrans 
VideoOnRental, 
Video Inventory, 
BarCode Video 

Customer or TempTrans TempTrans Info TempTrans Format TempTrans 
UserViewl 

TempTrans TempTrans Memory Location, Ack Compute TempTrans 
VideoOnRental, Late Fees 
Rent/Return Date 

TempTrans TempTrans Memory location Ack Compute Total TempTrans 
(Amounts Due) Amount Due 
and End of 
rentals/returns 
when present 

TempTrans Human TempTrans Info Display Human 
Interface and End of Interface 

rentals/returns 
when present 



Object-Oriented Design Activities 531 

TABLE. 12-8 Message List for ABC Video Rental Processing (Continued) 

Calling Called Input Output Action Return 
Object Object Message Message Type Object 

Human Human No data Prompt Prompt TempTrans 
Interface Interface (Execute BarCode or 

Request) End of Rentals/ 
Returns 

Human TempTrans BarCode None Format UserView2 or 
Interface (Rental) or TempTrans 

End of rental 

Human TempTrans BarCode None Format TempTrans 
Interface (Return) or 

End of return 

Temp Trans User View2 Bar Code Video Read TempTrans 
(new rental) Inventory, 

BarCode Video 

UserView2 TempTrans TempTrans Info TempTrans Format Human 
Interface 
TempTrans 

Human Human End of Rentals/ Payment Data Entry TempTrans 
Interface Interface Returns Amount 

Human TempTrans Payment Change or Compute Human 
Interface Amount Payment Due Change Interface 

Temp Trans Human Change or End of Trans Display TempTrans 
Interface Payment Due 

Human Temp Trans End of Trans None Change User Viewl 
Interface BarCode Status 

Temp Trans User Viewl Video on Rental Ack Rewrite TempTrans 
Information 

Temp Trans User Viewl Video on Rental Ack Write TempTrans 
Information 

Temp Trans Hardware TempTrans None Print Schedule 
Services 

Hardware Schedule Trans Id Terminate Schedule 
Services Trans 

Schedule Schedule Session Id Terminate Schedule 
Session 

Schedule Schedule ApplId Terminate System 
Appl. 



532 CHAPTER 12 Object-Oriented Design 

platforms in a distributed environment. There are 
two types of icons used in the diagram: processor 
and device. A processor is any intelligent device 
that performs data, presentation (i.e., monitor dis­
play), or application work. A device is any dumb 
device that is part of the hardware configuration sup­
porting application work. Processors are shown on 
the diagram as a shadowed cube; devices are shown 
as transparent cubes (see Figure 12-21). This dia­
gram is a crude equivalent of a system flowchart 
used before process methods were developed. It is 
crude because devices and processors are all treated 
as the same, the only immediate visual knowledge 
the user gets is the configuration size and the extent 
to which intelligent processors are used. 

The methodology assumes that hardware config­
uration decisions are not part of the SE task and that 
the hardwflre decisions are known. Similarly, there 
are no guidelines for allocating processes to proces­
sors. This is an artifact of the development of 00 in 
a defense environment in which the applicatidn 
developers are working from specifications devel­
oped by government employees in another city. In 
the absence of guidelines from the methodology, we 
can borrow the distribution decision techniques from 
information engineering and apply them to this 
decision. In any case, the processes are listed in 
small print next to the processor in which they 
will operate. 

One shadow cube is drawn for each processor. 
Individual processes are allocated to each proces­
sor. Lines are drawn to show communications capa­
bilities between the processes, not between the 
processors (i.e., the processors are assumed to be 

Processor 1-----1 

t 
Communication 

Link 

Terminal 
Device 

FIGURE 12-21 Process Diagram Icons 

.. 
.~( 

File Impact 
Server Printer 

AIIP rocessing 

Personal 
Computer 

FIGURE 12-22 First-Cut ABC Process 
Diagram 

networked whether or not the application processes 
communicate). Only one line per set of processors 
is drawn, since the details of messages are docu­
mented elsewhere. The lines only have directional 
pointers to show one-way communication. 

Next, for each processor, draw the terminals, 
printers, disk drives, and other peripheral devices 
that are attached to it. If there are more than one disk 
drive in the configuration, a list of the classes, class/ 
objects, and objects is made near each drive that will 
contain data used by the application. 

Finally, the diagram is compared to the message 
list to ensure that all messages are accommodated 
in the diagram and accurately depict communica­
tions between processes. The Booch diagram or the 
message list can also be used to validate the accuracy 
and completeness of processes allocated to proces­
sors, and of the data allocated to storage devices. 

ABC Video Process Diagram 

The most simple form of ABC's process diagram 
shows the file server as the processor and the PCs 
and printers as terminal devices (see Figure 12-22). 
This allocation of work is a problem because it does 
not take advantage of PC intelligence and, therefore, 
is suboptimal in terms of benefits to be gained from 
using PCs. Having said this, the allocation is con­
strained by the software environment. If SQL sup-



ports multilocation processing, then the comment 
stands. If SQL does not support multilocation 
processing, then the figure is complete. As it is 
currently, SQL does not support multilocation pro­
cessing although it does support distribution of 
databases. 

An alternative process distribution is shown in 
Figure 12-23. Even with SQL, we could distribute 
editing, the hardware management functions, pay­
ment and change processing, and printing of the 
rental copy to the local pes. This is a more complex 
application because the multiple sites now require 
synchronization and intraprocessor scheduling in 
order to coordinate their work, but, if bottlenecks 
show up in a prototype of the first-cut process dis­
tribution, this is a likely candidate for the second 
iteration of design and prototyping. As it is, we 
select the simple design because it is significantly 
easier to implement and maintain, having no syn­
chronization overhead. If it works and is robust to 
additional users, the first prototype will be com­
pleted and placed into production. 

File 
Server 

All DBMS processing 
All transaction/thread 

management 
All rent/return processing 

except editing, payment, 
and printing 

Object-Oriented Design Activities 533 

Develop Package Specifications 
and Prototype 
Guidelines for Package Specifications and 
Prototyping 

At this point in the design, the functions to be per­
formed are translated into package specifications for 
translation into program code. A package is an 
encapsulated definition that contains both data and 
process specifications that define an execute unit. 
The data might be defined in the form of a class, 
class/object, or object, with specific attributes and 
identification. There may be one or more process in 
a package; they result in individual module specifi­
cations and are independently executed under the 
control of service objects. 

Packages have both public and private parts 
which are specified. The public package part iden­
tifies the data and processes to the application with­
out any indication of how they are physically 
implemented. The private package part defines the 

Personal 
Computer 

Impact 
Printer 

Printer hardware functions 
Edit all fields 
Process payment and make change 
Print rental copy 

FIGURE 12-23 Alternative ABC Process Diagram 



534 CHAPTER 12 Object-Oriented Design 

physical implementation. If there are polymorphic 
definitions of a function, each version of the function 
is defined separately, and the control mechanism for 
interpreting the message and activating the appropri­
ate function is defined. Service objects should 
be used for this interpretation and activation if at 
all possible. 

The steps to package specification are: 

1. Review the diagram/list set. 
2. Redraw a subset of Booch diagrams, one per 

processor in the process diagram, to depict 
objects and processes by processor. 

3. Document packages. 
4. Design physical database if not already 

designed. 
5. Develop pseudocode specifications for all 

processes and messaging handling routines. 

ABC Video package specifications are not cre­
ated for this step as it is beyond the scope of this text. 

WHAT WE KNow ___ _ 
AND DON'T KNow ___ _ 
FROM OOA _____ _ 
AND OOD _____ _ 
Object orientation, based on the contents of tables 
and diagrams, provides a detailed, reasonably com­
plete view of an application. Exceptions to this view 
are human interface design and specific attention to 
database, input, and output design. Object-oriented 
design is distinguished by three characteristics: 
detail, all potential environments are accommodated, 
and the need for an object-oriented implementation 
environment to obtain the payoff from the exercise. 

The extensive detail generated in object-oriented 
design leads directly to module specification which 
should be straightforward since the definition of 
process details, the class/object data, constraints, and 
message communications are all completely defined. 

Object orientation, as seen by the exercise in the 
chapter, can accommodate even nonobject-oriented 
environments. The benefit of OOD's ability to 
accommodate any application environment is that, 
for on-line, object application environments, the 

methodology does lead to information hiding, mini­
mal coupling, and maximal cohesion by virtue of the 
thinking processes. Object orientation requires good 
understanding of operating system concepts, object 
thinking, and interactions between services and 
applications. The design process, as the chapter 
appendix shows, requires iteration and proto typing 
to get required levels of detail and to ensure efficient 
processing of message traffic. Most important, object 
thinking IS NOT the same as entity thinking or 
as process and data methodology thinking. Object 
orientation requires a paradigm shift to be done 
correctly. 

Object orientation is not very object-oriented in 
an SQL implementation environment. The choice 
of SQL changes the entire design from what it would 
be in an object environment to be object-based. Like 
COBOL, the methodology can be made to do any­
thing. Is this the best use of OOD? Not in my opin­
ion. Unless an application is at least on-line and will 
be in an object-oriented environment, the work 
required for object-oriented design is not worth the 
effort. Especially with a fourth-generation DBMS, 
like SQL, the undesign that must be done wastes 
tremendous time and could result in a worse design 
than use of some other methodology. While this 
compromise is acceptable for a small, on-line appli­
cation such as ABC, it would not be acceptable for 
applications with real-time or more complex pro­
cessing requirements. Much of the effort to develop 
an object-oriented design is wasted when the imple­
mentation environment is not object-oriented. There­
fore, the choice of methodology should be driven 
by the expected implementation environment. 

AUTOMATED __________ __ 
SUPPORT TOOLS FOR __ _ 
OBJECT-ORIENTED ___ _ 
DESIGN ______________ _ 

There are a vast number of object-oriented CASE 
tools that have all come on the market in the last few 
years. Some are more complete in life cycle cover­
age than others. Some environments, such as 001 
Tool Suite, cover most of a development life cycle, 



Summary 535 

TABLE 12-9 Automated Support Tools for Object-Oriented Design 

Product 

001 Tool Suite 

Actor 

Company 

Hamilton Technologies, Inc. 

Symantec 
Cupertino, CA 

Technique 

Full life cycle multiuser 
OOA, OOD, and code 
generation tool for C or Ada 

OOD environment for 
client/server applications. 
Links to C and SQL databases. 

Aide-De-Camp Software Maintenance and 
Development Systems 
Concord, MA 

Configuration management 
software with support for 
00 languages. 

BOCS Berard Software Engineering, Inc. Berard object and class 
specification 

C/Spot/Run 

Design/1XO, 
Design/IDEF, 
Design/OA 

Procase, Corp. 
Santa Clara, CA 

Meta Software Corp. 

Interactive, GUI environment 
for C language development 
on Sun, HP, and Apollo 
hardware 

Data and behavior modeling 
expressed in 00 C-language 
tool 

DSEE, HP /Softbench Apollo/Hew lett -Packard 
Palo Alto, CA 

Integrated CASE Product 
Supporting 00 Analysis 

Excelerator 

IPSYS OONRD 
Tool Suite 

Object View 

Object Vision 

Index Tech. 
Cambridge, MA 

IPSYS Software 

Knowledge Ware 
Atlanta, GA 

Borland International 
Scotts Valley, CA 

in this case, from analysis through code generation. 
Some tools, such as ObjectView, are more object­
based than object-oriented. Some, like Software 
Through Pictures, try to shiel,d the user from code 
altogether by sophisticated graphics that generate 
objects for that environment. Their existence attests 
to the object revolution that is beginning to be felt 
in business organizations. 

State-transition diagram 
Matrix graph (RTS) 

Shlaer-Mellor OOA and 
Recursive Design 

Application prototyping 
software using 4GL 
or SQL code 

Visual application 
development system 

(Table continues on next page) 

SUMMARy ____________ _ 

Object-oriented design (OOD) requires detailed 
development of all required functionality in the 
operating system and how it interacts with an appli­
cation. In this chapter we developed the seven steps 
to object-oriented design, linking them to the tables 
developed during object-oriented analysis. First, the 



536 CHAPTER 12 Object-Oriented Design 

TABLE 12-9 Automated Support Tools for Object-Oriented Design (Continued) 

Product 

ObjectMaker 

Company 

Mark V Systems 

Technique 

Full life cycle structured 
analysis using Ward-Mellor 
extensions tool with code 
generation for Ada, C, and C++ 

OMTool, OMT/SQL GE Advanced Concepts Center OOA and OOD with schema 

ProMod 

SmalltalkN 

Promod, Inc. 
Lake Forest, CA 

Digitalk 
Los Angeles, CA 

compilation compatible with 
Oracle, Ingres, and Sybase 

Control flow diagram 
State-transition diagram 
Module networks 
Function networks 

32-bit Smalltalk for OS/2 
hardware 

Software Backplane 
Cohesion 

Atherton Technology!Digital 
Equipment Corporation 
Maynard, MA 

Integrated CASE Product 
Supporting 00 Analysis 

Software Thru Pictures 

Teamwork 

Interactive Dev. Env. 
San Francisco, CA 

CADRE Tech. Inc. 
Providence, RI 

Control flow 
State-transition diagram 

DFD 
Control flow 
State-transition diagram 
Process activation table 

Telon Pansophic Systems, Inc. 
Lisle, IL 

State-transition diagram 
Code generation 

Treed4C, Tree4Fortran, 
Tree4Pascal, TreeSoftl 

1 Software Engineering 
Camarillo, CA 

Program code reengineering 
products for Sun hardware 

Visible Analyst 

vs Designer 

Visible Systems Corp. 
Newton, MA 

Visual Software Inc. 
Santa Clara, CA 

objects are allocated to four subdomains: human, 
hardware, software, and data. The split of pro­
cessing into these four areas accommodates the use 
of, for instance, firmware, distributed comput­
ing, DBMSs, and intelligent interfaces in what 
would otherwise be a monolithic development of 
an application. 

The second step of OOD is the development of 
time-event diagrams for all processes and all objects. 

State-transition diagram 

Booch diagram 

The purpose of a time-event diagram is to allow the 
analysts to identify independent, sequential, concur­
rent, independent, and concurrent, dependent pro­
cesses. Usually, several alternative ways of looking 
at the timing of processes emerge from this analy­
sis, one of which is selected for development. 

Once the types of process are defined, their ser­
vice object needs are identified. Service objects 
closely parallel operations performed by an operat-



ing system (OS). ass have five main functions to 
manage: memory, job, task, I/O, and secondary stor­
age. The memory, 1/0, and secondary storage man­
agement functions are directly translatable into 
object thinking. Job management functions are anal­
ogous to those performed at the control level for an 
entire application andlor user. Job management is 
more appropriately called session, or -qser, manage­
ment in object terms. Similarly, tasks are individual 
steps of a job and are analogous tq transaction­
related modules when thinking in objects. Therefore, 
the term used here for task functions is transaction 
management. Each type of management function 
requires its own type of processing and the processes 
selected are particular to the application and imple­
mentation environment. 

The fourth step of OOD is to develop a Booch 
diagram to summarize the objects-both applica­
tion and service-and their interactions. Booch rec­
ommends a 3" x 5" approach for which each object 
and its processes are shown as a package on a 3" x 5" 
index card. The set of cards is moved into different 
configurations and message connections are drawn. 
The purpose of this exercise is to choose a message­
passing scheme that minimizes the pqtential for bot­
tlenecks and that provides information hiding and 
minimal coupling. The final configuration selected is 
documented for the application. 

The message connections decided during design 
of the Booch diagram are elaborated in the next step, 
which is to define message communications. Each 
called object and its calling object, input message, 
output message, action type, and return object are 
identified. 

At a higher level of abstraction, the next step is 
to develop a process diagram that shows the distri­
bution of functionality and equipment for the appli­
cation being developed. A process diagram depicts 
processors, for example, computers, and devices, 
that is, limited-intelligence equipment such as a disk 
drive. All equipment and their interconnections are 
identified. Multiprocessor interconnections show 
allowable message movement throughout a network, 
while the device connections show hardware con­
figuration. The functions performed at each proces­
sor in a multiprocessor configuration are also on 
the diagram. 

Key Terms 537 

The last step of 00 D is to develop package, or 
module, specifications for programming. The infor­
mation from the various tables and graphics is 
rearranged to show the relevant information for each 
particular module. Also, details of each module's 
logic, if not already documented in a dictionary, are 
defined in the package specifications. 

OOD CASE tools come in several varieties: 
object-oriented life-cycle development, object­
oriented design without code support, object­
oriented coding without design support, or 
object-based thinking through adaptation of exist­
ing methods. 

REFERENCES __________ __ 

Booch, Grady, Software Engineering with Ada, second 
ed. Menlo Park, CA: Benjamin/Cummings Publishing 
Co., Inc., 1987. 

Booch, Grady, Object Oriented Design with Applica­
tions. Redwood City, CA: Benjamin/Cummings 
Publishing Co., Inc., 1991. 

Coad, Peter, and Edward Yourdon, Object-Oriented 
Analysis, second ed. Englewood Cliffs, NJ: Prentice­
Hall,1990. 

Coad, Peter, and Edward Yourdon, Object-Oriented 
Design. Englewood Cliffs, NJ: Prentice-Hall, 1991. 

Graham, Ian, Object-Oriented Methods. Reading, MA: 
Addison-Wesley Publishing Co., 1992. 

LaFore, Robert, Object-Oriented Programming in Turbo 
C++. Emeryville, CA: The Waite Group Press, 1991. 

Peterson, J., and A. Silbershatz, Operating System 
Concepts. Reading, MA: Addison-Wesley Publishing 
Company, 1983. 

Rumbaugh, James, Michael Blaha, William Premerlani, 
Frederick Eddy, and William Lorensen, Object­
Oriented Modeling and Design. Englewood Cliffs, 
NJ: Prentice-Hall, 1991. 

KEy TERMS _______ __ 

3" x 5" approach 
binary message 
binding 
Booch diagram 
client object 
concurrent processes 
data subdomain 

device 
dialogue 
dynamic binding 
hardware sub domain 
human sub domain 
keyword message 
logical process flow 



538 CHAPTER 12 Object-Oriented Design 

message 
message traffic 
module 
module structure diagram 
multitasking 
multitasking objects 
object-based 
package specification 
package 
polymorphism 
private interface 
private package part 
problem-domain objects 
process diagram 
processor 
pseudo-dynamic binding 
public interface 

public package part 
round-trip gestalt 
scheduling 
scheduling objects 
server object 
service objects 
software subdomain 
static binding 
supervisor call (SVC) 
synchronizing 
synchronizing objects 
thread of control 
time events 
time-event diagram 
unary message 
utility objects 

EXERCISES _______ _ 

1. Continue with the exercise begun in Chapter 11. 
Design the application for Eagle Rock Golf 
League. 

2. Design all Customer processing for ABC's 
application. Why is it different from that of 
Videolnventory? If we add multiple members to 
a household, how does that change the design? 

3. Compare the SQL and C++ designs for ABC 
rental processing. If there are bottlenecks in pro­
cessing for the two designs, where are they 
likely to be? How might they be removed? 
Which design gives you better control over the 
computer and its resources? 

STUDY QUESTIONS ____ _ 

1. Define the following terms: 
message service objects 
object synchronizing 
polymorphism thread of control 
problem domain time-event diagram 
round-trip gestalt 

2. Define the four subdomains and the type of 
objects found in each. 

3. What benefits accrue from the allocation of 
processes to hardware, software, database, and 
human sub domains ? 

4. Why are service objects needed? When are 
they needed and when not? 

5. What is multitasking? Why is it important in 
application design? 

6. What is the purpose of a Booch diagram? 
7. List and compare three types of message 

formats. 
8. What is the purpose of a process diagram? 
9. Describe client/server computing and how it 

relates to object orientation. 
10. What is binding? What types of binding are 

possible? How do you know what type is used 
in an application you are developing? 

11. Describe an example of polymorphism. 
12. What are some of the problems associated with 

allocation of processes to subdomains? 
13. What does the configuration If on a time­

event diagram mean? 
14. Describe how to interpret a time-event 

diagram. 
15. Describe how operating systems relate to ser­

vice objects. 
16. Describe the kinds of activities managed by the 

task manager. 
17. What are the control levels in object orienta­

tion that are analogous to job and task manage­
ment in an operating system? Distinguish 
between them and the tasks they manage. 

18. What is memory management and why is it 
necessary? 

19. List the steps to defining service objects. 
Describe some of the problems related to this 
activity. 

20. What is the purpose of a Booch diagram? 
21. Describe the steps to developing a Booch dia­

gram. What information is shown on the 
diagram? 

22. What is a package? What are its contents on a 
Booch diagram? What are its contents in a 
working application? 

23. Booch recommends the use of 3" x 5" cards to 
create and 'play' with the Booch diagram con­
tents. What is the playing for? Why are 3" x 5" 
cards helpful to that process? 

24. List three design goals of messages. Create an 
example of message passing in an object­
oriented application. Describe different types 



of messages to illustrate good and poor mes­
sage designs. 

25. What information is placed in the message 
table to document message traffic in an 
application? 

26. Why is message definition a difficult activity? 
27. Describe the icons used in a process diagram 

and their purpose. 
28. How many Booch and process diagrams are 

drawn for an application? 
29. Describe the validation processes used 

throughout an object-oriented design process. 
Why is each validation step where it is in 
the process and what is the purpose of each 
validation? 

30. Discuss the statement: "There is no such thing 
as a one-shot object-oriented design." 

31. What information is provided for package 
specification documentation? How do you 
decide what is public and what is private infor­
mation to an object? 

32. What is the role of proto typing in object 
orientation? * EXTRA-CREDIT QUESTIONS 

1. Research queue or stack management. Write a 
two-page paper to describe the functions of that 
type of management. Then, design the object­
oriented class/objects and processing routines 
that would accomplish these functions. 

2. Booch discusses primitive processes in detail 
and names several different types of primitive 
processes. Research these types of processes and 
discuss their importance to object-oriented 
design. How important is it to have a name for 
each type of thing in a design? 

APPENDIX: UNIX/ ___ _ 
C++ DESIGN OF ____ _ 
ABC VIDEO _____ _ 

Although the Chapter 12 presentation of ABC 
Video's design began as object-oriented, it ended as 
a hybrid: part-object and part-not, because of the im­
plementation environment. This appendix is the 

Appendix: Unix/ C++ Design of ABC Video 539 

same design with a discussion of the decisions and 
alternatives from a purely object-oriented perspec­
tive. Chapter 12 presented a consistent discussion 
of the implementation throughout the text and shows 
what happens when you deobjectify the application 
to fit a particular language environment. This appen­
dix, then, gives you a basis for contrasting what 
would happen if you designed a purely object­
oriented application. Each stage of the process is 
presented with enough comment for you to see the 
differences between the hybrid and object designs. 
Package specifications and a prototype are still 
beyond the scope of this discussion, but we present a 
partial package specification so you can contrast the 
levels of detail for OOD to the other methodologies. 

A few terminology differences exist with the 
Unix, C++ environment and we start with them. 
Class structure is similar in C++ to the discussion 
in the chapter. Data in C++ is defined by structures. 
A structure that contains both data and functions is 
called a class. Classes were defined in the chapter 
as having public and private parts. In C++ classes 
have public, private, and protected parts. The public 
part is that part accessible by the rest of the system. 
The private part is not directly accessible by 
any other classes. These two definitions have not 
changed from the chapter. A protected part specifies 
what may be inherited, that is, processes that are 
accessible by member processes in its own class or 
in any class derived from its own. A derived class 
is one that has multiple inheritance and is made up of 
its own, and its inherited, data and functions. Class 
inheritance is implemented by having processes that 
have a protected status. Thus, in C++, the manner 
of implementing inheritance is to provide the pro­
tected part of an object and to distinguish inheriting 
objects by calling them derived classes. 

The term process refers to functions in C++. 
Functions can be part of a class (i.e., a member) and 
restricted in use, or they can be stand-alone entities 
that are independent of a class. At least one inde­
pendent function, mainO, is required to initiate pro­
cessing of a program or application. Many functions 
are provided in a library of reusable functions that 
are link-edited to compiled code for execution. We 
will not spend much effort on functions since they 
are most evident at the code level. 



540 CHAPTER 12 Object-Oriented Design 

Individual language operators are analogous to 
other languages. Polymorphism is termed operator 
overloading but the meaning is the same. Virtual 
functions are the method used to provide run-time 
binding for polymorphic functions. Other function 
types beyond the typical ones associated with classes 
include friend functions, that have read only ac­
cess to the private data of a class, and static func­
tions, that operate on the class level rather than at the 
object (i.e., instance) level. Borland's Turbo C++ 
provides an entire set of classes with functions and 
inheritance as the basis for developing applications. 
The' container' classes, for instance, include several 
types of arrays, associations, hash tables, lists, 
stacks, and queues. The container classes are impor­
tant because they provide a means for imple­
menting service objects. Next, we discuss the 
object-oriented design (OOD) activities. 

Allocate Objects to Subdornains 
In object-oriented analysis (OOA), we defined 
classes, class/objects, and superset classes needed 
to properly define all of the interrelationships among 
objects in the application. This diagram and the table 
matching processes to their objects are the basis for 
this activity. The allocation in Table 12-3 has no 
change here (see Table 12-A1). 

In allocating the data handling functions to the 
data subdomain in C++, we commit to designing 
generics to handle all files. This means that we need 
a new object for DB actions. Also, there will be no 
collapsing of data objects as in SQL. Object-access 
control will be implemented as a superset of func­
tions to mirror the object relationships. To imple­
ment the generics, a fixed message type that 
accommodates all of the processing for all of the 
data objects is required. Such a message's minimal 
contents are: From-Object, To-Object, Action, Ob­
ject, Return-code, Physical-Location-Key, Length­
of-Data, and Data. 

While the subdomain allocations do not change, 
the handling of them does. Once functions are allo­
cated to a DBMS, all developers need to know all 
allowable interactions. Those interactions must be 
defined and designed manually when no DBMS is 
used. A partial list of functions required includes: 

Locate Data (transform key to physical location) 
Get Data (may include a prechange write to a 

log for recovery) 
Rewrite (may include a postchange write to a 

log for recovery) 
Write (may include a postchange write to a log 

for recovery) 
Delete (may include a postchange write to a log 

for recovery) 
Space Management 
Queue Management (including service requests 

and service responses) 
Backout Management 
Commit Management 
Lock Management 
Access Control Management 
Error processing for such problems as data not 

found, out of space, hardware error, or unsuc­
cessful read, write, rewrite, or delete. 

These functions can be defined and incorporated into 
documentation at sub domain allocation time or dur­
ing service object definition. 

The human interface definition is also going to be 
different. In the main text of this chapter we 
designed the system for a 4GL, in which a screen is 
painted and the programmer only needs to know the 
fields, their format, and desired characteristics. The 
4GL software manages all of the formatting and set­
ting of field attributes. In a lower level language, 
such as C++, screen format, line, starting position, 
length, field attributes (e.g., blink, reverse video, or 
color), and field contents are all managed by the pro­
grammer and, therefore, require design. 

Another choice we make is to have full-screen, 
line-at-a-time, field-at-a-time, or character-at-a-time 
interactions. Selection of input method is application 
specific. In ABC's case, we decide that using a 
method that will not slow down users the least dur­
ing peak periods is best. Since actual data entry is 
limited to CustomerPhone, VideoBarCode, and 
money amounts, for rental processing, and since 
rental processing is the most used function, we 
choose field-at-a-time entry. If the application had 
thousands of users and millions of transactions each 
day, we might have field-level entry for rent/return 
processing and screen entry for customer and video 



Appendix: Unix/ C++ Design of ABC Video 541 

TABLE 12-A 1 Process Subdomain Assignments 

Process Name Data 

EnterCustPhone 

ReadCust X 

CreateTempTrans 

Retrieve VOR X 

DisplayTempTrans 

EnterBarCode 

RetrieveInventory X 

Display Inventory 

ComputeTempTransTotal 

EnterPay Amt 

ComputeChange 

DisplayChange 

UpdateInventory X 

WriteVOR X 

PrintTempTrans 

EnterBarCode 

Retrieve VOR X 

DisplayTempTrans 

AddRetDateTempTrans VOR 

AddltoVInv 

UpdateInventory X 

ComputeLateFees 

WriteVOR X 

EnterCustomer 

Create Customer X 

Enter VideoInventory 

Create Video Inventory X 

maintenance, because they are more data-entry in­
tensive activities. Whichever input 'chunking' 
method is chosen, we must intercept start and stop 
characters from the keyboard and bar code reader to 

Sub domain 

Hardware Process Human 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

synchronize processing between the input devices 
and the computer. 

With field-level input, we could choose field-level 
interactions, having local, PC-based intelligence 



542 CHAPTER 12 Object-Oriented Design 

simulating a 4GL that checks alphabetic/numeric 
contents and beeps on errors. This greatly compli­
cates the application and is decided against. At some 
future date, if the number of users begins to tax the 
file server, we could revisit this decision to speed 
processing by off-loading work from the server. 

Draw a Time-Event Diagram 
The time-event diagram also does not change and is 
presented here as Figure 12-Al. Now we will pay 
more attention to the potential for concurrency, 
because we must be able to prove the processing and 
that implies monitoring of the success of all write, 
rewrite, and print actions. 

The choices for concurrent processing all relate to 
data I/O, and the consequences of deciding for con­
currency must be considered. First, consider conse­
quences of concurrency if we opt for read/write 
concurrency. At the hardware level, the affected 
databases must be on separate buses (on a PC) or 
channels (on a mainframe) to ensure that the pro­
cesses are not contending for the same hardware disk 
access time. Second, management and synchroniz­
ing modules to reunite multiprocesses within a 
thread and to verify processing are required. This 
implies a need for queues for each process and for 
each thread. For each process we need process ID, 
thread ID, and return code. For each thread, we need 
all concurrent processes' IDs and return codes from 
processing. Side effects of potential errors must be 
considered. For instance, if Write VideoOnRental, 
RewriteVideoOnRental, PrintReceipt, and WriteHis­
tory objects are all active at the same time, we need 
to decide acceptable combinations of successful! 
unsuccessful processing and actions taken for each 
possible combination. 

Concurrency decisions should be based on busi­
ness constraints and needs for processing or re­
sponse time. There should be some attempt to 
compute how long a transaction will take and to 
determine response time. For example, ABC rental 
transactions have an approximate processing time 
of 8.6 seconds (8566 ms; see Table 12-A2) during 
nonpeak time and about 11 seconds during peak pro­
cessing times. From this table, which the SEs gen­
erate, we see that input and output from the terminal 

account for 8.1 seconds of the total and actual inter­
nal processing is about 506 ms or slightly over one­
half second. If the internal time were over two 
seconds, we would opt for concurrency to minimize 
the internal strain on processing. With under a half­
second processing time, we can continue thinking 
of sequential processing as we did with the SQL 
solution. The differences in using SQL versus an 
object-oriented language are not yet apparent. The 
major difference so far has been the level of detail 
of the reasoning process to make concurrency and 
data-related decisions. This level of detail is simi­
larly lower for the other OOD reasoning processes 
as well. 

Determine Service Objects 
In this section, we list the required service object 
functionality to show the level of detail and com­
plexity required of true object systems, but without 
much explanation. We will assume that the Unix/ 
C++ environment being developed for ABC will 
employ reusable code objects for many service func­
tions. 'Free' code is one of the benefits of using con­
sultants who come with their own implementation 
modules for many functions. We still need to deter­
mine which modules are needed, however. Referring 
back to Table 12-5, ABC is a sequential, multiuser 
application with needs for scheduling and multi­
tasking management, in addition to I/O, user, 
transaction, thread of control, memory, startup/ 
shutdown, and data management. Table 12-A3 lists 
high level service objects required to support ABC's 
application. 

Input/output is straightforward. There are four 
I/O functions to design: keyboard, bar code reader, 
display screen, and printer. We assume that all input 
interactions are from the keyboard or bar code 
reader, which read slightly differently. The keyboard 
is read one character at a time until a field is com­
plete. The bar code reader reads the entire code, or 
field, at once. Thus, we can use polymorphic mod­
ules to GetField and possibly for other functions as 
well. Likewise, we assume all output interactions are 
to the display screen and printer. The basic actions 
for all four devices is to start, synchronize (abbrevi­
ated synch from now on), get/put, wait, or stop. 



Appendix: Unix/ C++ Design of ABC Video 543 

14 

OBJECT 10 

12 
11 .--------1 

8 
9 

TempTrans 3 

Customer 
2 

or 
VideoOn Rental 2 4 

VINV 13 
4 9 12 

BCVideo 

4 9 12 
13 

O ______________________________________ ~~End 
Trans 

Time / Events 

Legend: 1 - Get Entry 
2 - ReadCust or Read VideoOnRental 
3 - Create TempTrans, ReadCust 
4 - Retrieve all related VOR, Read Videolnv. and Read BarCode Video 
5 - Compute Late Fees 
6 - Compute Total Amount Due 
7 - Display Temp Trans 
8 - Process Returns (includes return to steps 5, 6, 7) 
9 - Get new rentals, Read Videolnv. and Read Bar Code Video 

10 - Format and display new rentals, update Total Amt Due 
11 - Process Payment (includes EnterPayAmount, Compute Change, 

Display Change) 
12 - Print TempTrans, Rewrite old VORs Update BarCodeVideos 
13 - Write new VORs, Rewrite BarCodeVideos 
14 - End Trans 

FIGURE 12-A 1 ABC Time-Event Diagram 

Waiting requires a queue to manage multiple waiting 
requests. 

User routines initiate an application session and 
verify user access. The 'put' commands all interface 
to the screen I/O manager, handing off the message 
to be displayed. Similarly, the' get' commands all 
interface with the keyboard or bar code routines of 
the I/O manager. The purpose of user logon routines 
is to identify physical terminal address (TermID) and 
user (User/D). 

The transaction object and its routines manage 
individual transactions selected from menus. Infor­
mation is directed to a specific device based on the 

TermID and UserID passed from the User routines. 
For instance, customer Maintenance has four trans­
actions: create, delete, update, and retrieve. Job rou­
tines then display menus and alter menu contents 
based on user logon and access codes. As above, 
'puts' interface with the screen or printer routines 
of the I/O manager objects and 'gets' interface with 
the keyboard or bar code reader routines. The infor­
mation passed to the command object for use in 
process control includes Term/D, User/D, and 
TransCode. 

Thread of control is handled by a command 
object and routines which manage atomic processes, 



544 CHAPTER 12 Object-Oriented Design 

TABLE 12-A2 Rent/Return Transaction Processing Time Estimate 

Internal 
Instruction Input* Process Output Total 

Get 1000 1000 

Read (average 3) 30 ms each 96 96 
plus data transfer of 6 ms 
each 

Compute late fees 30 30 

Compute amount due 10 10 

Display (average 20 lines, 3000 3000 
150 ms/line) 

Get Returns (30% of 1000 1000 
transactions) 

Retrieve VOR (average 3) 96 96 

Compute late fees and amount 30 30 
due (10 ms each) 

Display 3 lines 450 450 

Get Rental (assume one) 1000 1000 

Retrieve 3 DBs 96 96 

Compute amount due 10 10 

Display rental line, amount 300 300 
due line 

Process payment-enter 1000 1000 
amount 

Compute change 10 10 

Display new amount due, 300 300 
change 

Print (assumes automating 10 10 
queuing and time to transfer 
queue address) 

Rewrite (average 3) 96 96 

Write (average one) 32 32 

Subtotal (nonpeak time) 4000 506 4060 8566 

Time in queue (average .33 2855 
trans waiting during peak 
times transaction time) 

Total peak processing time 11421 

* All times are in milliseconds. 



Appendix: Unix/ C++ Design of ABC Video 545 

TABLE 12-A3 Service Objects Required for C++ ABC Application 

I/O Manager 
Keyboard 
Processes 

Bar Code 
Reader 

Display 
Screen 

Printer 

User Object 

Get character until end of field 
Ready to receive (Sync keyboard) 
Start keyboard entry 
Reset keyboard 
Send entry to screen formatter 

Start reader 
Sync reader 
Get bar code 
Send bar code to calling routine 

Identify screen location and type 
interaction 

Format screen protected lines 
Format screen data lines 
Put keyboard entry in field 
Set field attributes 
Check allowable value 
Get error message 
Send entry to calling routine 
Put screen 
Put screen line 

Sync printer 
Start print 
Put lines until end of print 
Stop printer 
Get print lines until end of print 
Wait to print 
Store print lines for 60 seconds 
Queue address, length of print 

information 

Put logon prompt 
Get logon 
Verify logon 
Put error 

that is, they supervise execution of code modules. 
The object reads code into memory, passes one 
instruction at a time to the CPU for execution, and 
interfaces to the other manager routines to perform 
I/O, memory, and data management. The command 
object uses the fields passed from the transaction 
object and adds to it the task and task status. 

Memory management is designed simply to allo­
cate the maximum amount of space for a transaction 
to any request. The largest transaction is a rental! 

Transaction 
object 

Thread of 
control­
Command 
Object 

Memory 
Manager 

Put password prompt 
Get password 
Verify password 
Put password error 

Put menu 
Get selection 
Verify selection 
Get memory 
Release memory 
Set up global user area 
Release global user area 
Call defrag for user area 

Get memory address of data 
Get memory 
Set status 
Queue instructions for execution 

(i.e., call object/process) 
Transfer control to TempTrans or 

Data 
Enqueue transaction 
Dequeue transaction 
Execute instruction 
Check status 
Create status 
Delete status 
Release memory 

Allocate memory 
Deallocate (free) memory 
Defrag memory (i.e., defragment) 
Queue memory request 
Dequeue memory request 

(Table continues on next page) 

return which is estimated to take 13,860 bytes as 
follows: 

Design Element 

Screen 80 x 22 
Max fields 100 bytes x 10 lines 
Attribute bytes three/field 
Miscellaneous data area 
Code 

Total 

Bytes 

1,760 
1,000 

300 
800 

10,000 

13,860 



546 CHAPTER 12 Object-Oriented Design 

TABLE 12-A3 Service Objects Required for C++ ABC Application (Continued) 

Start/shut 
MainO 

Data Manager 

Set up all memory 
Initiate managers 
Load application code 
Allocate transaction code locations 
Store application code 
Get DB indexes 
Store DB indexes 
Start DBs 
Close DBs 
Transfer to User 

Open DB (Open Index, Read Index 
into memory, Position Index, 
Open DB files) 

Close DB (Write Index, Close Index, 
Release Locks, Backup DB, 
Backup Indexes, Close DB files) 

While this over-allocates memory, the alternative, 
to size memory to each transaction, is more com­
plex. If memory becomes scarce, the change to 
transaction size allocation can be made. To contrast 
the amount of memory required, a Customer Create 
transaction takes approximately 5K memory. 

Startup and shutdown could be handled as part 
of the user object, but a cleaner implementation is 
to design them as separate. This start/shut object 
allocates memory, initiates application and DB pro­
cessing, including bringing all transaction code and 
DB indexes into memory. In C++ implementation 
terms, the start/shut object will be the mainO rou­
tine that initiates ABC processing. 

TABLE 12-A4 Service Object Allocation 

Data Hardware 

Data Manager I/O-Print 

Read DB 
Write DB 
Rewrite DB 
Position DB 
Determine physical location 
Request Read 
Wait read 
Request Write/Rewrite 
position Index 
Read Index 
Wait write/rewrite 
Check item locks 
Enqueue item lock 
Dequeue item lock 
Wait for item lock 

Last, data management could be by file or by 
function. By file is simpler and easier for novices to 
maintain, but it also requires much more code and, 
therefore, more maintenance. Here we will define 
one set of generic CRUD functions for the data 
object with each requiring the specific DB name and 
data. If necessary, polymorphic processes for 
the CRUD functions can be customized for each 
database. 

After the services objects are developed, they are 
allocated to the four subdomains of data hardware, 
software, and human interface as shown in Table 
12-A4. Allocation of keyboard and bar code to hard­
ware would be a possible choice. They are left with 

Process 

User Manager 

Memory Manager 

Transaction Manager 

Command Manager 
(Thread of Control) 

Human 

I/O-Keyboard, Display, 
and Bar code reader 



Appendix: Unix/ C++ Design of ABC Video 547 

Hardware Subdomain 

J 

Data Subdomain Human Subdomain 

.. 

~ Process Subdomain 

'FIGURE 12-A2 Subdomain-Level Booch Diagram 

the human interface because they are closely related 
to the display processes which mirror all of their 
input. Keeping these processes together reduces the 
object-switching overhead required to change from 
one object context to another. 

Develop a Booch Diagram 
The first Booch diagram in Figure 12-A2 shows the 
subdomain-Ievel communication. To simplify the 
communications in the system, based on the subdo-

main message interchanges, we will define a generic 
message for use in most communications. The sec­
ond Booch diagram, shown in Figure 12-A3, is at the 
object level and is obviously more complex than the 
SOL solution. 

There are several major differences between the 
SOL and C++ designs. First, the schedule in SOL is 
a mainline routine that determines the next code to 
execute and is a centralized controller of the appli­
cation. That function is performed to some extent 
by the command manager objects in the C++ design, 



548 CHAPTER 12 Object-Oriented Design 

Memory 

FIGURE 12-A3 Object-Level Booch Diagram 

but the scheduler functions are at a lower level and 
spread over the service objects. At this level, the spe­
cific processes are not shown because the diagram 
would be more complex than necessary. Instead, we 
have shown the service and data objects only. To 
implement the application, we would complete that 
detail. 

The design as shown in Figure 12-A3 is still 
incomplete for the data part of the processing. In 
Figure 12-A4 the next lower level of detail to show 
the complexity of the data objects is developed. 

Command 

TempTrans 

Based on this diagram, we might decide to denor­
malize the data to provide minimal accessing of 
databases during rental processing. For instance, 
we might replicate all Videolnventory information 
in each BarCodeVideo object to eliminate the need 
to access another object as part of rental process­
ing. Similar denormalization might be done with 
Customer and VideoOnRental. Before a proto­
type could be built, a second design iteration on 
all objects and complete design of the details is 
required. 



Appendix: Unix/ C++ Design of ABC Video 549 

FIGURE 12-A4 Object-Level Booch Diagram with Data-Object Detail 



550 CHAPTER 12 Object-Oriented Design 

Define Message 
Communications 
The message list is shorter than that of the SQL 
solution if we use a generic message as described 
above. The generic message list for the C++ Booch 
diagram is shown as Table 12-A5. If we do not use 
a generic message, the number of connections 
increases from the SQL number of about 30 mes­
sages to over 170 messages for C++ as shown 
in Figure 12-A5, which depicts all connections in 
the Booch diagram, summarizing the processing 
for Command and I/O manager objects. In Fig­
ure 12-A5, the processes with no specific arrows 
have multiple calling routines and return to the 
caller. The other routines with arrows are chained 
as shown. 

In the SQL design, the network operating system 
and SQL shielded the application programmer from 
most of the complex elements-the service objects. 
With C++, the increased number of connections also 
increases the application's complexity. If we cannot 
use DB user views, there are more data objects on 
the diagram. If we do not have a sophisticated oper­
ating system to monitor execution and physical I/O 
aspects of the application, the capability must be part 
of the application. By using generic messages, 
we reduce the complexity somewhat by reducing 
object abends for wrong message type and by 
allowing generic code for message reception and 
interpretation. 

Develop Process Diagram 
The process diagram has no changes from Figure 
12-22, which is redrawn here as Figure 12-A6. 

Develop Package Specifications 
and Prototype 
Package specifications for SQL would be simple 
compared to those of C++. One package description/ 
program specification is shown below for customer 
data. The specification identifies public and private 
parts, plus the processing to be performed. Follow­
ing the specification is an example of a C++ code 

module to read the customer file based on a location 
that is passed to the read module. 

Customer Specification 

Item: 

Name: 

Documentation: 

Visibility: 

Cardinality: 

Hierarchy: 
Superclass 
Class 
Metaclass 

Generic 
parameters: 

Interface­
Implementation: 

Public: 

Protected: 

Operations: 

Persistence: 

Description 

Customer 

The customer database contains 
information about legal 
customers for ABC. 

All access is through the data 
manager routines. 

All data is passed to using routines. 

Private 

400-600 

Customer 
Cust 
None 

&custloc 
&custrec 

Only through passed parameters 

Uses:Customer class 
Fields = 

char custphon [10]; 
char custln [50]; 
char custfn [25]; 
char custadd1 [50]; 
char custadd2 [50]; 
char custcity [30]; 
char custstat [2]; 
char custzip [10]; 
char cctype [1]; 
char ccno [17]; 
date ccexp [8]; 
date entrydat [8]; 

Add (put) 
Seek (read) 
Update (put) 
Delete 

Static 



Appendix: Unix/ C++ Design of ABC Video 551 

TABLE 12-A5 C++ Design Message List for ABC Rental Processing 

Calling Called Input Output Action Return 
Object Object Message Message Type Object 

Temp Trans Data TasklD, TasklD, CRUD, Caller 
Start/Shut Manager TerminallD, TerminallD, Open, 

Thread ID, Thread ID, Close 
Database ID, Database ID, 
Type Request, Type Request, 
Data Return Code, 

Data 

Print Term Hardware- Data Address, None Print None 
Trans Print Type Print 

Temp Trans, 1/0-Bar Code Task ID, TasklD, Input Caller 
Start/Shut Reader, Terminal ID, TerminallD, 

1/0-Keyboard Thread ID, Thread ID, 
Database ID, Database ID, 
Type Request Type Request, 

Return Code, 
Data 

Start/Shut, I/O-Display TasklD, ACKor Display Command 
User Mgr, Terminal ID, Task ID, 
Trans Mgr, Thread ID, TerminallD, 
Human Database ID, Thread ID, 
Interface, Type Request, Database ID, 
Data Mgr Data Type Request, 

Return Code 

System Start/Shut Begin Non until Process User Mgr 
shut down 

Start/Shut User Mgr Term Id I/O-Display- Put Prompt 1/0-Display 
Logon screen 
request (no 
message return 
to caller) 

Command Temp Trans TasklD, Depends on next Process Either 
TerminallD, called routine, Command, 
Thread ID, either Task ID, Human Mgr, 
Database ID, TerminallD, Data Mgr, 
Type Request, Thread ID, HW-Printer 
Data Database ID, I/O Mgr 

Type Request, 
Data or Task ID, 
TerminallD, 
Thread ID, 
Database ID, 
Type Request, 
Return Code, 
Data 



552 CHAPTER 12 Object-Oriented Design 

Memory 

I AliocateMempry 

I FreeMemory 

I DefragMemo 

I QueMemory equest 

r DequeueMer oryRequest 

Transaction 
.----~F=======:;lf-­
I Put Mehu 

I~G=e=t=s:;e j::8c::t=iO=n ==::::: ~ 
I Verify election ~ 

r GetMe [nory 

I Relea~ Memory 

I SetUp lobals 

I Relea~ ~Globals ~ 

1~I=c=a=tIlD~etr::ag:::==:jf4J 

I/O 

I Mge ~ ieybd ----
I MgeE IarCode 

I Mge [ isplay ~ 

Main 
.-

I SetUp~1I 
---tIll" 

I LoadC alndexes ... 
r LoadA plication ... 
I ShutD wnAIl 

I Trans! ~rtoUser ~ 

User. 

I Put 10 on I~I'" 
I Get 10 on I~ 

I Verify oqon I ~ 

I~~~==~I"" .-Puter pr 

I~p=u=t p:::t:::\====~1 ~ 
~IG=e=t P::::J)'lt===~1 ~ 
I:=v=e=rify=i:w=====~l ~ 
I Put P\ error I ~ 

Command 

I Managj3Memory I ~ 
I Manag~Transactionl ~ 

I Managj3Status I ~ 

I Manag~Queues I ~ 
~L-___ ~------~ 

TempTrans 

.-L 
TempTrans 

r-

iCreateTempl rans I 

IComputeTerr pTransTotal1 

I ComputeChange II-_____ ~ 

I AddRetDat TempTrans I 

I Add1toVln I 

r ComputeL teFees I ~ 
Human 

~--+=======:::;-]ll ~ Hardware .... r EnterCustPhone ~ r:::.--

I EnterS rCode I I SyncP inter I ~I.~ 
rStartP nt I~ r Displa' TempTrans l 

r Displa Inventory I 

I Displa Change l 
I EnterC listomer I ~ 

r EnterV ffeolnventOrVl 

Data 

Open 

Create 

Retrieve 

Locate 

Update 

Video Inventory 

Delete 

[ Close l::c::!.. 
~ 

r Manage Locks -:ES 
~ 

rManage Requests I 

I~P=u=tL=ints===~1 ~ 
~IS=t=oP=Pfn=t ====~I ~ 
I GetPri tLines I ~ 

l::w=ai=tt0=tI>='rin=t====~1 ~ 
I Store rintLines IfooI-...... +------J 

I Queue~ddress I ~ 

FIGURE 12-A5 ABC Process Diagram 



Program fragment to read the customer data: 

Iiseekc.cpp 
Ilread particular customer using 
passed customer location 
#include <fstream.h> lifile stream 
class customer 
{ 
protected: 

char custphon [10]; 
char custln [50]; 
char custfn [25]; 
char custadd1 [50]; 
char custadd2 [50]; 
char custcity [30]; 
char custstat [2]; 
char custzip [10]; 
char cctype [1]; 
char ccno [17]; 
date ccexp [8]; 
date entrydat [8]; 

public: 
void custdb(); 

}; 
void main(custloc& custloc) 

Ilcustomer location passed 
{ 
person cust; 

II establish customer object 
ifstream cust; 

II establish customer file 
infile.seekg(O,ios:end); 

Ilgo to 0 bytes from end 
int endposition=cust.tellg(); 

lifind file position 
int n=endposition/sizeof(cust); 

Iinumber of customer on file 
int position=(custloc-1) * 
sizeof(cust); 

Ilrelative location # * record 
size locates individual record 
cust.seekg(position); 
cust.read((char*)&cust,sizeof 

(cust)) ; 
II read customer information 

} 

Appendix: Unix/ C++ Desigh of ABC Video 553 

File Impact 
Server Printer 

AIIP rocessing 

Personal 
Computer 

FIGURE 12-A6 ABC Process Diagram 



C HAP T E R 13 
SUMMARY AND 
FUTURE OF SYSTEMS 
ANALYSIS, DESIGN, 
AND METHODOLOGIES 

INTRODUCTION ____ _ 

There are an unlimited number of ways in which the 
methodologies discussed in the preceding six chap­
ters might be compared and analyzed. In addition, 
significant research is proceeding on individual 
methods as well as on integrating different meth­
ods. To confuse matters, new technologies intro­
duced daily profoundly impact our ability to develop 
applications and will require equally profound 
changes in methodologies to be used efficiently and 
effectively. In this chapter, we first compare the 
three methodologies to get a fix on their complete­
ness and ability to be used to analyze and design 
applications. Next, computer-aided software engi­
neering tools (CASE) are critiqued and summarized. 
The deficiencies and usefulness of CASE are dis­
cussed and related both to development of current 
applications and to the future applications that com­
panies now desire to build. Then, the changes in 
organizational and technological environments that 

554 

will require continuous evolution of methodologies 
are described and related to problems in application 
development. 

COMPARISON OF ____ _ 
METHODOLOGIES ___ _ 

In this section, we take two different approaches to 
summarizing the usefulness and sophistication of the 
three methodologies discussed in the preceding six 
chapters. In the first analysis, the phases, information 
developed, characteristics, and decisions made in the 
three classes of methodologies are traced following 
the work of Olle et al. [1988] and expanding the 
information analyzed for each of the methodologies. 
Then, Watts Humphrey's maturity framework is 
described and applied to the methodologies to 
describe which, if any, might be appropriate for use 
in a maturing IS organization. In the concluding 
remarks in this section, we summarize the findings 



and discuss the future of the methodology classes 
and, in particular, the three methodologies discussed 
in this text. 

Information Systems 
Methodologies Framework 
for Understanding 
In their classic work, Olle et al. [1988], developed 
the information systems methodology framework 
to compare methodologies, discuss the representa­
tion forms, and identify information supported in 
methodologies available for use in the mid-1980s, 
including the process methods and data methods 
analyzed in this text. Here, we summarize the frame­
work to analyze activities and phases supported by 
the three representative methodologies. Then we 
extend the analysis to evaluate the phases in which 
information becomes known, the general capabilities 
of the methodologies, and the sophistication of 
resulting designs. Before the evaluation, please be 
cautioned that these analyses are not intending to 
condemn or otherwise pass a value judgment on the 
methodologies presented in this text. If they were not 
the best of their class, they would not have been 
selected in the first place. Rather, any shortcomings 
in the methodologies only point out that an organi­
zation must compensate for the lacking activities, 
phases, or decisions by providing its own guide­
lines and methods, or by hoping that their analysts 
have the requisite skills to perform these tasks on 
their own. 

Activities and Phases 

This section analyzes the phases of application 
development work that may begin at the organiza­
tion level to develop information systems plans 
(ISPs) based on business objectives. An ISP is an 
analysis of both data and processes that includes 
manual or automated work to capture a snapshot of 
the work performed in an enterprise. The ISP is 
modified to provide the basis for organizational 
reengineering analysis as discussed in Chapter 5 
(which is not part of Olle et al. 's work). Work pro­
ceeds according to the framework to include busi-

Comparison of Methodologies 555 

ness process, entity and feasibility analysis for a 
given application. Analysis and design are discussed 
in terms of the orientation of the majority of tasks 
performed during those phases. Support for human 
interface design, allocation of work to hardware or 
firmware, and DBMS design are all included. Main­
tenance, the final phase of a project's life, is consid­
ered in the extent to which it is supported in the 
methodology. 

Table 13-1 shows the ratings of the process, data, 
and object methodologies from Chapters 6-12 
on these activity and phase criteria. The process 
method, including the work of DeMarco and Your­
don & Constantine, is most focused, including only 
analysis, design, and program development tech­
niques and methods. 

The information engineering (IE) data methodol­
ogy is the most complete, covering all phases of the 
life cycle except maintenance explicitly, and cover­
ing all design items to some extent (see Table 13-1). 
The support for hardware/firmware design is lim­
ited to allocation of tasks and data to distributed 
environments. There are no decisions in IE for how 
to allocate work to hardware or firmware as in object 
orientation. 

The enhanced Booch and Coad & Yourdon 
object-oriented (00) approach ignores front-end 
tasks, including organization level, business analysis 
of entities and process, and feasibility analysis. 
Rather, it assumes that these tasks have been per­
formed before object-oriented methods begin to be 
used. Object orientation is more specific in its 
approach to analysis and design than process orien­
tation, and, for some items, than data orientation. 
00 examines and selects the objects and processes 
of interest in developing the application during the 
analysis process. These are then subsequently 
refined and further defined until design primitives 
are developed. Object design explicitly discusses the 
control structure of the application in the form of ser­
vice objects which can support either batch, interac­
tive, or real-time applications with any number of 
users, in addition to providing for distributed com­
puting through the development of process dia­
grams. The other two methodologies do not 
specifically address design differences that relate to 
timing or number of users for an application. 



556 CHAPTER 13 Summary and Future of Systems Analysis, Design, and Methodologies 

TABLE 13-1 Methodology Comparison: Activities and Phases 

Knowledge 

Business objectives 
as basis for applications 

Organization Level 
Analysis 

Business Process 
Analysis 

Business Entity 
Analysis 

Feasibility Study 

Analysis 

Design 

Program 
Development 

Human Interface 
Guidelines 

HardwarelFirmware 
Attention 

DBMS Design 
Attention 

Maintenance 
Support 

Process 

No 

No 

No 

No 

No 

Process-Oriented 

Process-Oriented 

Program design has 
some heuristics but 
relies on personal 
expertise of SEs 

No 

No 

No 

No 

To summarize, information engineering (IE) cov­
ers more phases of the life cycle and more specific 
activities as identified by the One framework. Object 
orientation (00) has more depth to the design phase 
by providing for design of problem domain, hard­
ware, and service object activities. The guidance 
provided by IE for distributed computing decisions 
is significantly more detailed than the heuristics pro-

Data 

Yes 

Yes-Information 
Systems Plan (ISP) 
or Organizational 
Reengineering 

Yes 

Yes 

Yes 

Balanced Data 
and process analysis 

Balanced Process 
data integration 

Program design has 
some heuristics but 
assumes use of CASE 
which generates code 

Yes 

Distribution analysis 

Yes-Assumes 3rd 
normal form relational 
DBs 

No 

Object 

No 

No 

No 

No 

No 

Objects incorporate both 
Data and Processes and 
are defined during Analysis 

Encapsulated Object­
Oriented 

Iterative prototype 
development is an integral 
part of the methodology ... 
some methods are oriented to 
specific languages 

No 

Yes 

No 

Assumes independent 
modules which should be 
easily maintained 

vided by object-oriented design for allocation of 
work to processors. 

Where Information Becomes 
Known 

Next, we evaluate the phases in which information 
becomes known by classifying data, processes, 



relationships, and module information at different 
levels of detail. 

Table 13-2 shows that both data and object 
methodologies provide analysis of all the items but 
some items are completed in different phases. 
Major entities and processes can be known during 
the information systems planning (ISP) activity of 
IE, if it is conducted. In addition, the current au­
tomation state of the entities and processes is identi­
fied during ISP as well. The same items, using the 
term object for entity, are defined during object-ori­
ented analysis and are subject to refinement during 
object-oriented design. There is no explicit identifi­
cation of cur-rent automation status for any of the 
items in 00 methods. 

Business events and processing triggers are both 
identified in IE and object orientation. The timing 
of events, via event diagrams, is analyzed in more 
detail in object-oriented design, providing a basis for 
concurrent processing decisions. In IE, events are 
used to identify triggers for processing and to show 
where external data entry is performed in the appli­
cation. Process methods identify necessary data 
flows into and out of the application, but they are not 
specifically tied to business events or triggers. The 
event/trigger distinction is important because it iden­
tifies necessary and sufficient inputs whereas data 
flow identification leads to continuation of past 
data interactions without consciously reflecting on 
their need. 

The process method does not provide for data 
relationship analysis, nor is data structure analyzed 
at either the logical or physical levels. The pro­
cess method explicitly ignores timing and inter­
process relationships. 1 The lack of relationship 
analysis means that the resulting designs will be less 
likely to mirror the business requirements of the 
application. Even Yourdon's 19892 update to the 

1 This explicit ignoring of process timing and relationships is in 
DeMarco and Yourdon & Constantine. In extensions of process 
methods for real-time systems, these are both analyzed explic­
itly. For a discussion of the real-time extensions, see Ward, P. 
T., and S. J. Mellor, Structured Development of Real-Time Sys­
tems (three volumes). NY: Yourdon Press, 1985. 

2 See Yourdon, Edward, Modern Structured Analysis. Engle­
wood Cliffs, NJ: Prentice-Hall, Inc., 1989. 

Comparison of Methodologies 557 

methodology fails to integrate data with process 
analysis. 

Object orientation appears more complete for 
real-time and database applications in explicit analy­
sis and decisions for system, database, or software­
specific attributes and processes that might be 
required of the application. The event diagram more 
explicitly identifies opportunities and requirements 
for concurrency than the other methodologies. The 
reliance of both process and data methodologies 
(with or without extensions) on designer knowledge 
and experience leaves too much to chance and puts 
pressure on designers to remember these tasks 
(i.e., concurrency analysis and software-specific 
data design). 

General Capabilities 

In this section, the methodologies are compared 
according to the extent to which they support analy­
sis and design of the application characteristics 
described in Chapter 1: inputs, data, outputs, and 
constraints. In addition, processes and management 
of different sources of complexity are analyzed to 
complete the general description of an application. 
Inputs include the extent to which information and 
events that trigger processing are included in the 
analysis and design of the application. Data are 
internal, computerized representations of facts about 
entities in the real work that are stored in the data­
base for the application. Outputs are information that 
leaves the computer system either to a display or to 
paper or some other (e.g., image) media. Processes 
describe the activity being automated, for instance, 
transaction, decision, or inferential processing. 

Constraints define restrictions on objects, entities, 
data, relationships, or processes within an applica­
tion. Constraint types include prerequisites, tempo­
ral, inferential, structural, and control constraints. 

Although not explicitly defined in Chapter 1, the 
ability of the methodology to facilitate management 
of problem complexity is a key concern to develop­
ers. Complexity stems from several sources, includ­
ing management of the number of elements in the 
application; the degree and types of interactions, and 
the need to support novelty and ambiguity. 



558 CHAPTER 13 Summary and Future of Systems Analysis, Design, and Methodologies 

TABLE 13-2 Methodology Comparison: General Capabilities 

Knowledge 

Entities/Objects 

Entity Attributes 

Entity Identifiers 

Entity Class/Object 
Structure 

Data Relationships 

Specific attributes 
required of operating 
system, DBMS, or 
software 

Physical Data 
Design 

General Processes 

Detail Process Logic 

Data relationship to 
processes 

Events, Triggers 

Process relationships 

Module 
Structure 

Module 
Specifications 

Process 

Feasibility-Begun 
Design-Complete 
Terminology differs 

Feasibility-Begun 
Design-Complete 
Terminology differs 

Design Terminology 
differs 

NA 

No 

Design-Required 
knowledge of designers, 
not part of methodology 

Design, Programming 

Feasibility-Begun 
Design-Complete 

Feasibility-Begun 
Analysis-Complete 

Design 

None-Analysis includes 
identification of external 
entity inputs only. 

No 

Design 

Design 

Data 

During ISP if done 
Feasibility-High 
level fully known 
Analysis-Complete 

Analysis 
Design-Complete 

Analysis 

Design 

Analysis-Entity 
Hierarchy 

Design-Required 
knowledge of designers, 
not part of methodology 

Design, Programming 

During ISP if done 
Feasibility-High level 
fully known 
Analysis-Complete 

Analysis 
Design-Complete 

Analysis 
Design-Complete 

Design-Process 
Triggers on PDFD 

Analysis 
Design-Complete 

Design 

Design 

Object 

Analysis-May be revised 
during iterations 

Analysis 
Design-Complete 

Analysis 
Design-Complete 

Analysis, subject to 
change during Design 

Analysis-Object Lattice 
Hierarchy 

Design-Specifically 
part of the methodology 

Design, Proto typing 

Analysis 

Design 

Analysis 
Design-Complete 

Design-Event Diagrams 
State Transition Diagrams 

Process Timing defined 
in Analysis with State­
Transition and in Design 
with Event/Triggers 

Design 

Design 



Comparison of ~ethodologies 559 

TABLE 13-3 Methodology Comparison: General Capabilities 

Knowledge 

Inputs 

Data 

Output 

Prerequisite 
Constraints 

Temporal Constraints 

Inferential Constraints 

Structural Constraints 

Controls 

Complexity 
Management 

Management of 
Novelty 

Management of 
Ambiguity 

Process 

None 

Minimal 

None 

None 

None 

None 

None 

None 

Top-down perspective 

Relies on SE skill for 
proper manual 
decomposition 

None 

None 

As Table 13-3 shows, none of the methodologies 
are complete in providing for analysis of all types 
of design criteria. None of the methodologies sup­
port design of inputs or outputs, even though both 
data and object methods identify the need for inputs 
via event/trigger identification. 

None of the methodologies deal with inferential 
constraints (see Table 13-3). Remember, the fact that 
constraints might be missing from a methodology 
does not mean that they cannot be in the resulting 
application, only that they must be remembered and 
designed outside of the methodology and rely on 
designer skills. Process methods are the most limited 

Data 

Trigger Identification; 
Screen Design Heuristics 

Entity Relationship 
Diagram, DBMS, 
Normalization 

Screen Design Heuristics 

Yes 

Limited 

None 

Data only 

Problem domain 

Top-down perspective 

Relies on SE skill for 
proper manual 
decomposition 

None 

None 

Object 

Event Analysis 
State Transition Analysis 

Object Analysis 
Object Attribute Analysis 

None 

Yes 

Yes 

None 

Hierarchic inheritance for 
data and processes 

Includes both problem and 
service domains 

Round-trip Gestalt 
perspective 

Allocate processes to 
hardware, software, DBMS, 
and human interface; treat as 
four separate elements 

None 

None 

in providing no constraint identification and pro­
cessing as part of the methodology. In contrast, 
object-oriented analysis specifically provides a step 
to identify and define the constraints on processing 
and structural constraints as they relate to both data 
and processes. IE and data methods are in the middle 
with prerequisite constraints shown on action dia­
grams, while structural constraints are limited to 
those expressed in a class hierarchy for data. Con­
trols are explicitly provided for in both data and ob­
ject methods and are absent from process methods. 

Complexity management is similar in data 
and process methods since both take a top-down 



560 CHAPTER 13 Summary and Future of Systems Analysis, Design, and Methodologies 

perspective and are controlled through SE skills. IE 
decomposition is somewhat easier when an ISP is 
performed, because the software decomposition fol­
lows from primitive business processes which trans­
late into computer processes. The SE skills required, 
then, are for further decomposition of computer pro­
cesses into modules and execution units that pro­
vide for desired software characteristics such as 
minimal coupling, maximal cohesion, and so on. 

The 00 design perspective of round-trip gestalt 
and explicit use of iterative prototype development 
supports complexity management to some extent by 
providing increasingly detailed abstractions of the 
application with each iteration. 00 design also man­
ages complexity through inheritance which mini­
mizes the replication of both data and processes and 
by allocation of processes to hardware, software, 
DBMS, and human interface. Through the allocation 
of objects and processes to each subdomain, the sub­
domains can be considered independently, even by 
different design groups. The only need for inter­
group coordination is for interprocess message 
definition. 

For complexity management of ambiguous or 
novel requirements, none of the methodologies pro­
vides guidance. 

None of the methodologies guide input/output 
design. Process and object methods are unlikely to 
be useful in identifying conversion requirements of 
an application, since they do not differentiate auto­
mated from manual data as IE does. Similarly, 
process and object methods are not likely to lead to 
well-defined databases since the methods do not pro­
vide guidelines for database design.3 IE provides 
explicitly for normalization and logical database 
design while recognizing the need for physical 
design based on data usage requirements. 

None of the methodologies are perfect at com­
plexity management. Object orientation appears to 
facilitate complexity management more than the 
other methodologies through its support for inheri­
tance and allocation of processes to subdomains. 

3 Attempts by Booch (1991), for instance, to design databases 
into an OOD and by Yourdon (1989) to integrate entity­
relationship and data analysis in Modern Systems Analysis 
are incomplete and cursory. 

Novelty and ambiguity of requirements are not 
addressed by any methodologies. 

Sophistication in Explicit Design 
Decisions 

Sophistication means "developed in form or tech­
nique,"4 complex, or worldly. In this section, we rate 
the methodologies in their ability to guide the 
development of sophisticated modules, programs 
and applications to exhibit characteristics of 
reusability, modularization, information hiding, 
maximal cohesion, and minimal coupling. The 
issue is not can the methodologies use or result in 
modules with these characteristics-the answer is 
absolutely yes, they can. The issue is the extent to 
which the methodologies explicitly provide guide­
lines and validation heuristics for reaching designs 
that exhibit these characteristics. 

Neither data nor process methodologies provide 
for information hiding, maximal cohesion, or mini­
mal coupling beyond somewhat arbitrary heuristics. 
Only object orientation specifically can result in a 
clean design (see Table 13-4), but it can also be cor­
rupted if the designers significantly change intra­
object and class/object structures or relationships 
during design. By early encapsulation of objects and 
processes during analysis, object orientation auto­
matically imbeds cohesion in the application. By 
only allowing communication via minimal mes­
sages, object orientation automatically provides 
minimal coupling and information hiding. When 
implemented using object-oriented DBMSs and lan­
guages, object designs should have these properties. 

Problems and a loss of minimal coupling and 
information hiding will occur if nonobject languages 
or software are used to implement 00 designs. For 
instance, COBOL is the antithesis of object orienta­
tion. COBOL assumes global data and cannot man­
age encapsulated objects because it assumes 
separation of data and process. Therefore, if COBOL 
is the target language, object orientation would not 
be a good choice of methodology, all other things 
considered. 

4 From Webster s New World Dictionary, pocket edition. NY: 
Popular Library, 1973, p. 544. 



Comparison of Methodologies 561 

TABLE 13-4 Methodology Comparison: Explicit Design Decisions 

Knowledge Process 

Extent of Information NA 
Hiding 

Extent of Heuristics rely on 
Modularization SE skill 

Extent of Maximal Heuristics rely on 
Cohesion SEskill 

Extent of Minimal Heuristics rely on 
Coupling SE skill 

Supports reusable No 
object design 

Supports reusable Yes 
module/object use 

Extent of Reusability Relies entirely on 
SE skill 

The other measure of sophistication is the extent 
to which the methodologies support reusability and 
reusable module/object design. Only object orienta­
tion provides for explicit identification of potential 
reusable processes and objects. Once the reusable 
items are identified, object orientation does not pro­
vide further guidance in how to actually design 
reusable modules; nor should it necessarily provide 
such guidelines. 

IE covers the whole life cycle, something both 
process and 00 methodologies need to provide for 
application development. The IE data methodology 
provides more human interface design guidance and 
is the only methodology that covers the complete life 

Data Object 

NA Analysis-Begun 
Design-Complete 

Uses Process-design Forces design until 
heuristics and SE skill primitives, highly dependent 

on implementation language. 
Relies on SE skill and proto-
typing. 

Heuristics rely on Analysis-Begun 
SE skill Design-Complete 

Heuristics rely on Forced by the methodology 
SE skill but could be subverted by 

SE errors. 

No Heuristics and procedure 
for identifying reusable 
objects 

Yes Includes heuristics and 
limited procedure for identi-
fying reusable objects 

Relies entirely on Can be 80%+ 
SE skill Organization dependent 

cycle of an application. IEs' disadvantage is that 
many activities rely on SE skill and experience to 
know the activity should be performed rather than 
incorporating the need for the activity in the method­
ology. When data is complex, nonobject software 
(either DBMS or language or both) are used, or if 
human interface design is paramount, information 
engineering would be the choice. 

Structured analysis and design, the process meth­
odology, is the least prescriptive in telling users how 
to perform the various activities, and it has the least 
activities in the methodology. 

Overall, object-oriented methodologies would 
be expected to lead to a design that more closely 



562 CHAPTER 13 Summary and Future of Systems Analysis, Design, and Methodologies 

resembles the functional requirements, if the func­
tional requirements are adequately stated before 00 
analysis begins. The lack of front-end activities in 
00 hinders its usefulness in business. Keep in mind 
that just because object orientation is the most 
explicit methodology, it is weak in actual data 
design, human interface design, and must be used 
with object-oriented languages in order to realize the 
benefits from its use. Also, every author has a dif­
ferent 00 methodology with different notation and 
different reasoning. As a result, the fledgling 00 
methodology will change and be refined over the 
next decade. Large-scale commitment to 00 without 
attaining some consensus and stability of methods 
certainly adds risk to application development. 

Humphrey's Maturity 
Framework 
The Humphrey's maturity frameworks was devel­
oped for the Department of Defense as a self­
assessment framework that identifies levels of 
computing and application development process 
maturity. The goal of the framework is to provide a 
means of assessing and accelerating technology 
transfer from research to practice throughout the 
Department of Defense. According to Humphrey, 
the ideal software process is predictable, consistent, 
measurable, and monitored according to objective 
standards. The maturity levels are initial, repeat­
able, defined, managed, and optimizing (see Fig­
ure 13-1). 

At the initial level, neither measures (i.e., statisti­
cal control) nor orderly progress are possible. This is 
the level at which organizations operating under no 
methodology and no life cycle operate. Managerial 
oversight for quality, productivity, and change con­
trol to provide some stability to project schedules are 
required organizational supports that must be present 
to even attain the initial level. 

At the repeatable level the organization has 
introduced managerial controls in the form of project 

5 See Humphrey, Watts, Managing the Software Process. Read­
ing, MA: Addison-Wesley Publishing, Inc., 1989. 

l 

I Optimizing J 
~rocess Control 

l"""--M-a-n-ag...c.e-d-'J 

L Process Measurement 

I"'---D-ef-in~ed-----'J 

/ Process Defin"ion ...--__ L--_, 
I Repeatable J 

/ Basic Management L Control 

Initial J 

FIGURE 13-1 Humphrey's Five Levels of 
Maturity 

management cost, schedule, and change controls. 
Project team members are expected to commit to 
their tasks and be measured against their commit­
ments. While never actually saying the words, the 
repeatable level implies the recognition of both a life 
cycle and a methodology, that is, a repeated set of 
global level tasks with deliverable products that 
implicitly become the measures of sche?u~e and c~s~ 
performance and that are performed wlthl~ a def~n­
able process. Humphrey's reason for havmg a hfe 
cycle/methodology is to provide a framework wit.hin 
which to address the risks to a development project 
from new tools, methods, and/or technologies. Orga­
nizational support in the form of providing for 
walk-throughs, formal design methodologies, con­
figuration management for code, and application 
testing standards and methods are required at the 
repeatable level to continue to the next stage. 
Humphrey argues the need for a process group 
(i.e., a Standards group) which defines the steps to 
making orderly progress in project work and that 
provides a nucleus for transferring the process 
knowledge to the working groups. 

The defined level requires the definition of the 
software development process, which defines the 
methodology in sufficient detail to guide the work 



process and define detailed subphase products that 
collectively become the phase deliverables needed to 
further manage the tasks. Each deliverable product 
has process and product measures of quality and pro­
ductivity that are aggregated to the phase and project 
level for managerial oversight and assessment. At 
this stage, a quality assurance group that performs 
independent analysis of product and application 
quality is formed to report to management on a prod­
uct-by-product basis. At the defined level, a process 
database is established and all SEs are trained in the 
use of the information to provide history for the 
organization on the use and productivity of each 
project and tool. 

At the managed level the organization initiates 
"comprehensive process measurements, beyond 
those of cost and schedule" [Humphrey, 1988, 
p. 302]. The managed process requires analysis of 
the process database measures to ensure that com­
parable statistics are available and can be universally 
interpreted, and that project-specific data that high­
light unique characteristics or aspects of application 
development projects are stored and interpreted 
properly. At the mana~ed process level, the data for 
the process database should be gathered automati­
cally and used to modify the process to "prevent 
problems and increase efficiency" [Humphrey, 1988, 
p. 306]. Humphrey takes pains to point out that the 
database should not be used to penalize either proj­
ect teams or individuals, but that type of use by man­
agers can be taken. One example of measures is 
function points. 

The optimizing level is one at which the orga­
nization continues improvements begun at the 
managed level and starts development process opti­
mization. The optimizing level, ideally, allows SEs 
to identify many types of errors in advance of their 
causing delays and problems on a current project by 
analyzing and identifying the patterns of mistakes 
from other projects based on information in the 
process database. In my opinion, this is truly an ideal 
at this point in time since our ability to detail the 
steps to what appear to be random incidences of 
Murphy's Laws is rudimentary, at best, and nonex­
istent, in practice. 

While Humphrey's framework is useful for dis­
cussing key differences between methodologies, 

Comparison of Methodologies 563 

it is not without problems. First, it is based on 
Humphrey's and others' experiences in the field but 
has never been subjected to empirical validation of 
its definitions. Humphrey asserts that the maturity 
framework "represents the actual ways in which 
software-development organizations improve" 
[Humphrey, 1988, p. 307]. The stages are presented 
as distinct and sequential, with the implicit under­
standing that to attain, for instance, the optimizing 
level, an organization must have moved through all 
previous levels. There is no basis for this supposi­
tion. In fact, the framework represents Humphrey's 
ways of attaining software development maturity 
without recognizing that it may not fit all situations. 
The second drawback to the framework in analyz­
ing methodologies is that many of the requisite 
support activities are organizational, not method­
ological. For instance, walk-throughs, configuration 
management software, and testing standards are out­
side the scope of methodologies. We assume they are 
not an issue in this discussion. 

Having said these criticisms, the framework is 
still useful for discussing problems with methodolo­
gies that relate to the extent to which they define 
development activities and support phase work. 

Table 13-5 shows my subjective ratings of the 
methodologies with respect to Humphrey's frame­
work. None of the methodologies has a uniformly 
high rating in all of the categories. 

In general, process methods are the least pre­
dictable, consistent, measurable, or monitorable 
because they leave so many activities to SE skill and 
omit specific activities from the methods. At worst, 
process methods are at Humphrey's initial stage; at 
best, they are repeatable. Because the focus is on 
process, I would assume that consistency and mea­
surability of processes should be medium, that is, 
different people should arrive at similar analyses. In 
fact, we think they are low to medium. Designs 
would be expected to vary most because the heuris­
tics are vague. Data analysis, data design, and human 
interface design, which some authors add on as an 
afterthought, would all be expected to vary signifi­
cantly across different SEs because they are not 
explicitly part of the methodology. 

Measurability is low to medium. Assuming func­
tion point metrics, measurability is low because 



564 CHAPTER 13 Summary and Future of Systems Analysis, Design, and Methodologies 

TABLE 13-5 Methodology Comparison: Humphrey's Framework 

Knowledge 

Predictable 

Consistent 

Measurable 

Monitored 

Process 

Low 

Low-Medium 

Low-Medium 

Low-Medium 

function points concentrate on externals (e.g., 
numbers of interfaces, files, I/Os, and so on) and not 
on processing complexity. 

The ability to monitor the methodology-defined 
tasks is probably about medium. The ability to mon­
itor process-oriented applications is low when only 
methodology-supported phases and tasks are moni­
tored and would be inconsistent if monitored tasks 
were defined by project. 

The data methodologies have slightly better over­
all ratings. In Humphrey's framework they are, at 
worst, repeatable and, for some activities, reach the 
defined level. IE is reasonably predictable in having 
a set of activities defined into phases for ISP, feasi­
bility, analysis, design, and program design. If using, 
for instance, Texas Instruments' version of IE, there 
are many more tasks that are not all necessary for a 
given application; thus the activities are not com­
pletely predictable across projects. The activities 
should provide a level of consistency across SEs 
who should be expected to define the same entity­
relationship diagram and the same activities even 
though details would probably differ. Therefore, 
consistency should range from medium to high. The 
extent to which IE analyses and designs are measur­
able is ranked as medium. If function point analysis 
is used and baselines for the company have been 
defined, the measurability is probably medium since 
IE analyzes the major function point items. The 
extent to which IE can be monitored is medium. IE 
defines more tasks and activities and follows more 
phases of the application life cycle; therefore, its 
ability to be monitored is greater than that of pro­
cess and object methods. However, all projects 
are subject to unforeseen problems that require 
unplanned time, and monitoring cannot assist in 

Data Object 

Medium-High Medium 

Medium-High Low-Medium 

Medium Medium-High 

Medium Low-Medium 

foreseeing those problems. Therefore, not all tasks 
and activities can be monitored to the extent that 
they eliminate problems during the development 
process. If a CASE tool, such as IEF, is used for 
development, monitorability is high because the 
entire life cycle has well-defined stages,products, 
and reports on status that can be tracked for 
all phases. 

Object orientation, in the form of the enhanced 
and integrated Booch/Coad & Yourdon method­
ology is similar to IE in predictability and mea­
surability. Consistency is lower and varies from 
low to medium because individual SE skill is 
required to define the calling sequences and ultimate 
operational structure of the application, even though 
the definition of the object pieces is fairly well 
described. The difference between a good calling 
sequence and message set and a bad one is difficult 
to define in abstract, procedural terms, but can only 
be noticed through prototyping and actual compari­
son of different schemes. Monitorability is less 
because of the ill-defined nature of service­
object identification and of language-specific 00 
requirements. Moving targets, like 00, are hard to 
measure. 00 is repeatable at best in Humphrey's 
framework. 

The bottom line on methodologies and 
Humphrey's framework is that the methodologies 
alone do not offer enough guidance to support the 
defined level of application development manage­
ment, let alone get to the optimizing level. For this 
reason, more work on methodologies, life cycle, and 
development activities are needed to accommodate 
the variety of work for different types of applica­
tions. Having said this, we also need to be realistic 
about just how much predefinition of decision 



Comparison of Automated Support Environments 565 

processes can, in fact, be imbedded in methodolo­
gies. Two things seem obvious. One is that we can 
define some of the methodology-driven activities 
more completely. The other is that the engineering 
nature of the SE task is that each appiication will 
require unique characteristics and design that cannot 
be codified! 

In summarizing this section, no single method­
ology appears to be complete and sufficient for 
all the tasks and activities performed during an 
application development. There is no silver bullet 
that will solve our application development prob­
lems or provide a complete cookbook for the devel­
opment process. For these reasons, there will always 
be a need for SE expertise in application develop­
ment. There is also a need for continued definition of 
tasks needed during application development and the 
continuous evolution of techniques that are inte­
grated into the various methodologies to guide those 
tasks. 

COMPARISON OF ____ _ 
AUTOMATED __________ __ 
SUPPORT _______ __ 
ENVIRONMENTS ____ _ 

There is a marked degree of consensus on many 
design features of the ideal CASE environment. 
Table 13-6 summarizes many features and functions 
that Pressman, Gane, Booch, Martin, and McClure 
recommend. The curiosity is that the vendors do not 
seem to listen. Take three general requirements as an 
example: integration, intelligence, multiuser support. 

CASE integration is the absence of barriers 
between one graphical or text form and others. The 
experts agree that the most useful CASE should sup­
port all project life-cycle activities within an inte­
grated environment. The rationale for this position is 
that tools that support only application development, 
even if they include project management, address 
only a small, possibly noncritical, portion of the SE 
discipline. Further, the integration should be seam­
less, that is, transparent to users. Transparent inte­
gration includes the automatic conversion of 
diagrams and design text into other forms of docu-

mentation or program code with little or no manual 
intervention. The integration should be both between 
tools and between life-cycle phases. This level of 
integration implies that some resolution of funda­
mental semantic and syntactic differences between 
phases is required. Specifically, differences between 
analysis and design should be eliminated through 
CASE use. To reach this sophisticated level of inte­
gration, the methodologies require some redesign to 
remove their own built-in lack of seamlessness 
between phases activities. For instance, in process 
methods, one major intellectual stumbling block is 
the transition from data flow diagram (DFD) in 
analysis to structure diagram in design. Many people 
ask, Why not develop a structure diagram in analysis 
instead? Or, conversely, Why not carry DFDs 
through to design? 

Next, intelligence in tools is desirable. Artificial 
intelligence (AI) in CASE facilitates reusability and 
provides consistency and completeness checking 
within and between graphical and text forms. AI rou­
tines can be used to implement the concepts of 
reusable analysis, design, program specifications, 
and code. The routines can locate, retrieve, and 
select specifications matching design parameters and 
can identify specification fragments that do not 
match what is required. Other applications of AI are 
the analysis of completeness and consistency of 
requirements or code. Other checking is between 
phases to match logical design to physical design to 
code. This use of AI is technically feasible and not 
particularly difficult. What we don't know about AI 
for these uses is what to match, how to match it, and 
when the best time for matching occurs. New meta­
language descriptions of analysis and design re­
quirements will be required to fully exploit AI in 
CASE. These meta-languages must also be consis­
tent and no additional burden to the other integration 
and multiuser support requirements of CASE. 

One consistently recurring theme in all CASE 
products and research is concern over the replace­
ment of one sort of complexity with another sort of 
complexity. The solution to software development 
productivity, quality, and reliability problems is to 
build tools that, in hiding some complexities of the 
development process, are necessarily complex them­
selves. The hidden complexities require absolute 



566 CHAPTER 13 Summary and Future of Systems Analysis, Design, and Methodologies 

TABLE 13-6 Desired Computer-Aided Software Engineering Features and Functions 

Project Management: 
Work breakdown 
Cost estimation 
Person/task scheduling 
Monitoring allocated vs. actual times 
Budget creation 
Monitoring budget vs. actual money spent 

Documentation for all Work 
Word processing editor functionality 
Integration of text and graphics 
Nesting of text, graphics, and so on with recall at 

all levels 
Document templates-predefined and customizable 
Query capabilities to all parts of the graphical and 

text definitions 
Version/release control support 
Change control support 

Analysis 
Graphical and text support for specific methodology 
Intelligent syntactic evaluation of completeness 

and correctness 
Repository (i.e., dictionary) support for all graphic 

and text information with nesting and linkage 
within and between levels 

Support for reusable component recognition, 
definition, use 

Human interface definition support 
Prototyping support 
Customizable reporting facility 

accuracy and reliability themselves to make their use 
worthwhile; the systems will have to reveal them­
selves upon request so users may understand internal 
processing. With AI routines, that, for instance, learn 
to predict what is required for code based on design 
specifications, these revelations are crucial to guar­
anteeing CASE's continued use. 

The integration of phases and tools must also be 
multiuser. Multiuser CASE support implies some 
sort of centralized repository of information about 
the application that is accessible by any number of 
people concurrently. Warnings to users when a com­
ponent is changed and automatic version control are 
desired features. Multiuser support extends to group 

Design 
All analysis functions above 
First-cut of next step graphicalJorm from analysis 

via automated functions 
Support for program definition language (PDL) with 

interface to code generators for several languages 
Bi-directional interface to analysis and code from 

design 
Sensitivity analysis on designs 

Code 
All above plus 
Source code templates 
Source code syntax checking and comparison to 

requirements 
Automated code generation 
Automated third normal form database definition 

from repository data definitions 
Automated minimal test set definition ... with 

generation of test data 
Integration to software configuration management tool 

General 
Consistent interface with function keys having 

identical uses across phases 
On-line documentation, suggestions for problems 
Adaptability to local conventions for methodology use 
Support on any operating system, hardware platform, 

DBMS generation, and if not, machine indepen­
dence of designed application 

Interfaces to other tools and products 

work collaboration, scheduling, tracking, sensitivity 
analysis, and electronic meeting support. 

Now, let's first examine the extent to which the 
methodologies themselves exhibit the properties 
thought to be desired for CASE, then extrapolate 
from that to determine the level of support for these 
features we can realistically expect from CASE 
products. 

First, integration across phases and graphical 
forms is important to building intelligence into 
CASE. If we examine the three methodologies 
described in this text, structure analysis and design 
(SA), information engineering (IE), and object ori­
entation (00), we would find the most integration in 



Comparison of Automated Support Environments 567 

00 with less in IE and even less in SA. 00 begins 
with tables that are increasingly elaborate but whose 
contents can be traced from the beginning of analy­
sis through to development of module specifications. 
There is no shift in thinking required once the data 
and processes become encapsulated, because they 
continue to be encapsulated throughout the remain­
ing steps. 

IE has less integration because there are two 
fairly distinct paths of thought in IE, one for data and 
one for processes. Within each path, the level of 
integration is consistent and high, but between paths, 
the integration is less consistent and there are few 
guidelines for integrating the two. One example of 
this lack of consistency is that, depending on the 
author, IE should not have data files or entities 
shown on action diagrams; action diagrams should 
remain a process sequencing and event trigger iden­
tifying graphical form. If this line of reasoning is fol­
lowed, data and processes are integrated at the 
program specification level. Program specification 
work is micro-design that could then miss major 
global problems because of the lack of data-process 
integration. 

SA is even less integrated than IE because data 
are not specifically addressed in the methodology. 
The analyst is supposed to know what 'data stores' 
are required and the appropriate contents of those 
data stores. Some authors6 assert that a data store can 
refer to a group of related normalized relations, 
while others 7 assert a data store is a third normal 
form relation. When data analysis is not an official 
activity, by definition it cannot easily be integrated 
into the methodology. Similarly, there are numerous 
texts that describe how to use SA for developing 
real-time applications8 and that provide a foundation 
for several of the graphical forms used in 00. But 
close analysis of the Ward & Mellor methodology, 
for instance, identifies a very different approach to 

6 See Gane, Chris, Computer-aided Software Engineering: The 
Methodologies, The Products, and The Future. Englewood 
Cliffs, NJ: Prentice-Hall, Inc., 1990. 

7 See Yourdon, 1989. 
8 Ward, P. T., and S. J. Mellor, Structured Developmentfor 

Real-Time Systems (three volumes). NY: Yourdon Press, 
1985, is one ofthe most commonly used. 

developing applications from the original DeMarco 
and Yourdon & Constantine approaches. 

Given the levels of integration as low for SA, 
medium for IE, and medium to high for 00, the 
greatest potential for CASE to provide seamless, 
complete integration of functions seems most likely 
for object orientation. Further, the higher the level 
of integration, the greater the intelligence that can 
be built into the software, once again, identify­
ing 00 as the most likely to provide extensive use of 
AI. Does that mean that AI cannot be used for the 
other methodologies? Absolutely no! It means 
thatsophisticated AI that recognizes reusable analy­
sis, design, or code fragments and that performs sig­
nificant semantic analysis of the contents of 
diagrams and the interdiagram relationships is most 
likely in 00. Anyone using any CASE tool today 
knows that they provide fairly extensive syntactic 
evaluation intelligence that will tell you, for 
instance, if your connections on a data flow diagram 
(DFD) are all legal, or that the external entity inter­
actions from the context diagram are all accounted 
for in the DFD. 

From the discussion of the previous two issues, 
you should be able to figure out that multiuser sup­
port in products also lags behind the desire for its 
sophistication in industry ... and it will continue to 
do so for at least five years. Multiuser support adds a 
level of underlying complexity because of the need 
for locking mechanisms, access security, and con­
current multiplatform hardware support that impedes 
vendor development. Since there are no competitive 
reasons for developing multiuser capabilities, that is, 
no other vendors have it either, vendors are not 
spending their resources on multiuser support. Cur­
rent tools with a central repository allow segmenting 
of repository items, such as an ERD. When multiple 
users want to change the ERD, they check out seg­
ments and work on their respective segments indi­
vidually. The completed checked-out segments are 
checked-in to a reconciliation procedure that fre­
quently fails because of inconsistencies that are then 
manually reconciled. In a truly concurrent environ­
ment, locking mechanisms would support multiple 
concurrent users without segmenting and check -out 
processing, but with locking mechanisms similar to 
those used in DBMS software. 



568 CHAPTER 13 Summary and Future of Systems Analysis, Design, and Methodologies 

What does the state of integration and AI mean 
for CASE? CASE tools are necessarily limited in the 
number of processes, number of entities, number of 
attributes, complexity and detail of description, and 
so on. These limitations are higher candidates for 
removal by vendors than are these three more 
abstract concepts: integration, intelligence, and 
multiuser support. The CASE industry has entered a 
push-pull stage of product development. The push 
comes from the ever increasing desire of client com­
panies to develop ever more complex and sophisti­
cated applications, and their recognition that CASE 
can be used to deploy ITs to their competitive 
advantage. The pull comes from the products on the 
market and their growing sophistication. As soon as 
one vendor provides a feature or function, others feel 
obligated to offer it too, or risk losing market share. 
Many vendors try to support as many methodologies 
as they can, frequently without regard to underlying 
differences in mental thought processes required to 
comply with the methodologies. So, for instance, 
DeMarco's SA and IE analysis might both be adver­
tised as supported by the same vendor. But DFDs are 
not action diagrams and vice versa, nor will they 
ever be. So, when vendors claim multimethodology 
support, beware of the claim. 

RESEARCH ______ _ 
RELATING TO _____ _ 
ANALySIS, ______ _ 
DESIGN, AND _____ _ 
METHODOLOGIES ___ _ 

There are two growing bodies of research9 relating 
to methodologies and the application development 
process. The first research is attempting to reconcile 
the differences in methodologies to develop an 
improved hybrid. The second type of research stud­
ies the decision processes that occur in analysis and 
design activities. Both of these lines of research are 
described in this section and related to future 

9 See Adelson & Soloway, 1985; Guindon & Curtis, 1988; 
Guindon, Krasner, & Curtis 1987; Pennington, 1987; Vessey 
& Conger, 1993. 

changes that we might expect in methodologies and 
application development. 

The methodology research consists of normative 
and descriptive writing on the procedures and appli­
cation focus in analyzing application problems. 
From this body of work, we have over 60 identifiable 
methodologies with primary concentrations, such as 
SA, IE, and 00, described in this text. Unfortu­
nately, the value of these methodologies has not been 
studied. There is no evidence that any of these meth­
odologies is better than any other of these method­
ologies. Nor is there any evidence that any 
methodology is more appropriate for a particular 
problem domain than any other. Intuitively, they 
can't all be best in all situations. Current research is 
taking two directions to follow on this idea: First, 
one line of research attempts to integrate methods 
to create an improved hybrid; second, the other line 
of research is trying to determine when and which 
methodologies are appropriate for different types 
of problems. 

Current research in building hybrid methodolo­
gies is primarily applied. All authors, so far, are 
seeking to integrate 00 notions and notations with 
some other methodology, including structured analy­
sis, Jackson systems design, information engi­
neering, and others. 1O This research is purely 
prescriptive, of the form: "If I were going to put 00 
together with structured analysis, here's what I 
would do." While this research is promising, the lack 
of researcher attention to the differences in reasoning 
and thinking processes of the methods needs to be 
resolved. Also, these authors will need to offer evi­
dence of the synergy they promise but for which they 
currently offer no evidence. 

The second type of research discusses methodol­
ogy learning by novices. Having learned COBOL 
or another procedural language, novice learning of 
structured analysis is easier and more accurate than 
learning of other methodologies.1l Since there is less 
to learn, this is not surprising. In addition, this 
research notes that the thought processes of 00 are 
decidedly different that those of SA and IE. We 
would conclude then that novices who learn Ada 

10 See for example, Sanden, 1989; and Ward, 1989. 

11 See Vessey and Conger, 1993. 



Business and Technology Trends that Impact Application Development 569 

first, for example, would have an easier time learning 
00 than structured analysis, and their 00 designs 
would be more accurate. This is a promising line 
of work that needs much more study, including 
analysis of real analysts doing real work before any 
results applicable to business use of methodologies 
can be expected. 

The study did find that analysts' development of a 
mental model is crucial to complete solution of a 
task. The process followed by successful analysts 
includes development, expansion, and simulation of 
a mental model that uses personal problem-solving 
plans that are used to elaborate constraints, and 
notemaking as a means of deferring work until a 
later time. Many of these skills in Chapter 2 recom­
mended for you to think of while studying the text 
were identified through this research. 

Also, some comments about easy and hard fea­
tures of methodologies can be developed. The easy 
features of 00 are those that automatically lead to 
information hiding, minimal coupling and maximal 
cohesion, the traceability of information throughout 
the process, and the essential continuity of the 
method (i.e., building tables and progressively add­
ing details to the information). The hard 00 features 
are the extensive experience in operating systems re­
quired to determine service object requirements and 
the significant coupling between the implementation 
language and the application design. 

The easy features of IE are entity analysis, full­
life cycle approach including enterprise through 
maintenance phases, the methods for deciding distri­
bution, and the balanced thinking given to both data 
and processes. The hard IE features are the mental 
shift required to move from design to program speci­
fication and from an action diagram to its compo­
nents. The decisions about the size and content of 
components is left to the SE. 

The easy feature of SA is the simplicity of the 
thought process which is easily grasped by most 
people. The hard SA features are the disjoint phase 
relationships moving from DFD to structure diagram 
and decomposing the structure diagram into mod­
ules. These actions, like similar ones of IE, are left to 
SE skills and have few guidelines. 

To summarize the application development liter­
ature, we know that skills needed seem to vary by 
activity both across and within phases of a system 

development life cycle, that task domain facilitates 
the process of building a mental model of the prob­
lem solution, and that different types of domain 
knowledge exist, including methodology and task 
domains. 

For SEs, this research has several implications. 
First, the entire field of methodology research is in 
its infancy. As it matures, both the methods and the 
way we use them should be expected to change. Sec­
ond, hybrid methodology that attempts to integrate 
methodologies requiring different mental models of 
a problem, for instance, structured analysis and 00, 
are unlikely to be very productive. Rather, we need 
to identify which methodological orientation best 
fits different problem domains, concentrating on 
methodology improvement and use in the appropri­
ate domains. 

Last, since methodologies do not provide com­
plete analysis of all aspects of problem domains, by 
definition, CASE tools based on the methodologies 
will also provide partial task coverage. The more 
complete the methodology, the more complete the 
CASE tool. Some vendors add completing tasks to 
support, for example, code generation; these CASE 
tools are even more complete than those that are only 
methodology-based. The most notable example of a 
more complete tool is Texas Instruments' Informa­
tion Engineering Facility (IEF). 

Applying Humphrey's framework to research in 
IS, methodologies are in either the initial stage or the 
defined stage. CASE tools help methodologies attain 
the defined stage, but sometimes impose such rigid­
ity in doing so that usage is constrained and might 
not fit either the way SEs work or the work itself. 

BUSINESS AND ____ _ 
TECHNOLOGY __________ _ 
TRENDSTHAT ______ _ 
IMPACT ________ _ 
APPLICATION ______ _ 
DEVELOPMENT ________ _ 
There are several trends in application management 
and development that will change dramatically the 
way business computing is performed in the next ten 



570 CHAPTER 13 Summary and Future of Systems Analysis, Design, and Methodologies 

years. The trends are both technological and busi­
ness related, including management of legacy sys­
tems and data, client/server computing, development 
of repositories and data warehouses, multimedia ap­
plication development, and the business globaliza­
tion. Each of these trends are briefly described with 
their impact on application development and soft­
ware engineering. 

Legacy Systems 
Legacy means handed down as from an ancestor. 
Legacy systems are applications that are in a main­
tenance phase but are not ready for retirement. 
Legacy systems are most often mainframe, COBOL 
applications that were probably built using no 
methodology and no life cycle. Such applications are 
frequently referred to as 'held together with spit and 
glue' because they are fragile, that is, susceptible to 
introduction of errors caused by unrelated changes. 
In short, they are a liability. The reason these sys­
tems are not all rewritten and done away with 
is because of the tremendous investment in their 
development. 

A related concept is legacy data which is data 
used by outdated applications that are required to be 
maintained for business records. Legacy data are as 
much as 50% incorrect and may be in an unusable 
form without considerable expenditures of time and 
money. In short, they are a liability. The reason 
legacy data are not reformatted in some new DBMSs 
that can optimize storage and access time is the 
inherent cost of correcting the data which could be 
ten times or more than the cost of reformatting. 

The impact of legacy data and systems is to 
inhibit and slow the integration of data across orga­
nizations and applications, and to inhibit the inte­
gration of technologies for application use. 
Ultimately, companies with significant legacy prob­
lems will be forced, for competitive reasons, to 
spend the money to transform the systems and data 
into useful items or to abandon them and write off 
the expense. 

The impact of legacy systems and data on SE is to 
continue to inhibit new application development by 
requiring attention. The new pulls from industry 
include need for reengineering data, methods, and 

software that support data scrubbing to remove 
anomalies and errors. These are nontrivial needs that 
will divert some industry resources away from 
methodologies toward these very practical and real 
problems. 

Repositories and Data 
Warehouses 
A related issue is the notion that organizations 
no longer want to discard data. For instance, the 
maintenance of legacy data sometimes is mandated 
by the government. The means to store unlimited, 
continuously growing databases currently are called 
data warehouses. 

Similarly, all of this data must have meta-data 
that defines each attribute and its related entities (or 
objects), the applications and software allowed to 
access the data, and the allowable using organiza­
tions. The meta-data definitions are in a repository 
which, in its most sophisticated form, is a data dic­
tionary for data, processes, hardware, and software. 

Repositories control and centralize management 
of data as an organizational resource. Distributed 
repositories will be developed in the future but are 
currently only available as one-user chunks of a cen­
tralized repository that must be reintegrated with the 
centralized, official data. 

Both repositories and data warehouses have sig­
nificant overhead (i.e., human) costs associated with 
managing and tracking all of the information actu­
ally managed by the software. Because of this over­
head expense, companies must choose carefully 
those items they really want to maintain indefinitely. 
The luxury of being a 'data packrat' has currently 
unknown costs. 

The impact of data warehouses will be felt in the 
need to design time-dependent databases12 that have 
associative relationships and to migrate legacy data 
to the warehouse. Associative data relationships 
are irregular, dictated by data content rather than 
abstractions such as normalization. An example 

12 Time-dependent databases are also referred to as temporal 
databases and have an entire body of research associated 
with their definition and use. 



Business and Technology Trends that Impact Application Development 571 

might be in an image document that describes an 
insurance policy. That policy needs to be related to 
the insured, the owner, the beneficiaries, and its 
value over time so that a complete reconstruction of 
its status at any single point in time can be deter­
mined. Existing database products can support tem­
poral databases but are not specifically designed for 
temporal data. This implies the development of a 
specialized temporal database type, or the extension 
of existing database products to accommodate tem­
poral data definitions. 

Client/Server 
Client/server computing describes a situation in 
which multiple processors share responsibility for 
managing pieces of an application. Currently, the 
pieces include data, presentation software for the 
human interface, and application. For a given pro­
cessing request, one processor acts as a client 
requesting that a processing service be provided; the 
other processor is the server that executes the 
request. In this context, examples of a service 
request are to access data, perform a routine, or dis­
play data on a terminal screen. In a true client/server 
environment, any processor can be a client and any 
processor can be a server. The same processor might 
be a client for some actions and a processor for oth­
ers. Therefore, the client/server environment, in its 
truest form, is describing a peer-to-peer network­
ing scheme in which intelligent sharing of resources 
and data across multiple processors is taking place. 

The state of client/server development changes 
almost daily, so by the time you read this, Figure 
13-2 will be out-of-date. Don't worry, it is only to 
give an example of the alternatives and confusion in 
the client/server marketplace. The figure shows the 
alternative configurations of presentation software, 
data (and DBMS), and application software with tra­
ditional, centralized mainframe resource manage­
ment on the upper left of the diagram. Moving down 
the diagonal to full distributed client/server process­
ing, we have first presentation software that resides 
both on the mainframe and on a PC. The PC soft­
ware interfaces to the mainframe presentation soft­
ware and is translated for use by the application. At 
the next level of sophistication, the presentation soft-

ware is offloaded to the PC completely. Then data is 
partitioned (i.e., split by columns or rows or both), 
and accessible via DBMS in both places. Next, the 
data are moved fully to the distributed environment, 
possibly with replication (i.e., multiple data copies). 
At the next stage, some application functions are 
performed on a PC and others on a mainframe. In 
its most advanced state, all functions (or pieces of 
each) are stored both on mainframes and PCs and 
with access determined by the closest processor with 
available CPU time. 

In client/server's most advanced form, for exam­
ple, simple functions might be on a LAN and com­
plex processing functions on a mainframe. The data 
might be anywhere. The application part closest to 
the request decides type of processing to be per­
formed and ships the request off to be executed in 
the most efficient place. If that location is busy, its 
software might forward the processing request 
to another processor until idle CPU cycle time is 
found. The executing processor would obtain the 
nearest version of the data and perform the requested 
service. The result is sent back to the requesting 
processor. 

Client/server processing is sometimes confused 
with downsizing. Downsizing is the shifting of pro­
cessing and data from mainframes to some other, 
less expensive environment, usually to a multiuser 
mid-size machine, such as an IBM AS400, or to a 
LAN of PCs. Downsizing can occur with or without 
client/server computing. The reasons for buying 
mainframes are diminished with the availability of 
client/server computing, but the compelling argu­
ment for maintaining an existing mainframe envi­
ronment is to obtain the most benefit from the 
tremendous start-up and maintenance costs associ­
ated with them. Downsized environments also have 
large start-up costs that sometimes are equivalent to 
mainframe start-up cost. 

The impact of client/server computing on SE is 
here now. There is tremendous demand for SEs who 
know how to integrate data, applications, and pre­
sentation software over multiple processors and net­
works. The large accounting companies, such as 
Ernst & Young, who also do conSUlting, have found 
a niche in providing leading-edge services of this 
type. But the need is in every size of company, even 



572 CHAPTER 13 Summary and Future of Systems Analysis, Design, and Methodologies 

Mainframe Environment 

Local Area Network Environment 

No 
Client/Server 
Support 

Legend: 

Limited 
Client/Server 

Support 

Full 
Client/Server 

Support 

D = Database Management System 
P = Display Presentation Software 
A = Application Software 

FIGURE 13-2 Client/Server Alternatives 

those that cannot afford a large consulting com­
pany's fees. The pressure on SE professionals then is 
to develop the integration skills to develop and sup­
port these applications as fast as possible. 

Multimedia 
Multimedia is a term that describes the integration 
of object orientation, database, and storage tech­
nologies in one environment. By the 21st century, 
multimedia will transform both applications and the 
way we interact with them. New technologies must 
be able to be incorporated into traditional application 
processing to be useful in business organizations. By 
defining equipment as objects and storing the object 
definitions in a database repository, integrating new 
equipment and technologies in traditional applica­
tions becomes not just possible, but fairly easy. 

SEs developing multimedia applications require 
new skills for authoring the contents of multimedia 

systems, and for developing the applications that 
make the information accessible in a meaningful 
manner. For graphic design, video direction, and so 
on, one strategy has been to hire graphics artists or 
movie school graduates, for instance, to be multi­
media authors rather than to teach an SE about video 
production. This splitting of duties still requires SEs 
to develop skills in integrating multimedia in appli­
cations. At present, the skills required include 00 
analysis and design, media knowledge, and human 
interface design incorporating moving and still­
motion video, graphics, text, and data in the same 
interface. 

Globalization 
Globalization is the movement of otherwise local 
businesses into world markets. In 50 short years, 
business organizations worldwide have evolved 



Business and Technology Trends that Impact Application Development 573 

from national to multinational to global enterprises. 
As with all trends, there are forces that both ease and 
inhibit movement into global markets. In general, 
information technologies enable globalization; and, 
in general, cultural differences and history inhibit 
globalization. The technology enablers are applica­
tion and communications technologies that remove 
the barriers of geography and time, while providing 
equal access to multimedia applications. The histor­
ical and cultural barriers inhibit cross-cultural 
exchange of ideas, technologies, and methods of 
work. Dealing successfully with both the technolog­
ical and cultural issues is a challenge to information 
systems professionals and business managers. 
Preparing yourself for deploying globalizing tech­
nology is the challenge to SEs today. 

There are three main social barriers to globaliza­
tion of businesses: infrastructure differences, tech­
nology transfer differences, and political and cultural 
differences. Infrastructure usually refers to the 
installed base of equipment and services for commu­
nications, transportation, and services of a geo­
graphic entity (i.e., a country). Infrastructure relates 
to computers, telecommunications, and supporting 
software, including, for instance, database and net­
working software. 

There are two infrastructure challenges to SEs. 
The first challenge is technical, learning both current 
and past technologies, and devising sometimes 
messy ways to integrate them. The second challenge 
is social, developing and presenting alternatives and 
trade-offs for imaginative, practical, cost-effective 
applications in developing countries. 

Technology transfer is a large scale introduc­
tion of a new technology to some previously non­
technical environment. Transfers of computing and 
communications technologies to all developing 
countries in Eastern Europe, Asia, Latin America, 
and Africa are needed. History leaves me pessimistic 
about such transfers taking place easily, smoothly, or 
soon. Broadscale transfers for such disparate tech­
nologies as farming methods, birth control, building 
of dams, and water purification have failed simply 
because technologists fail to contend with cultural 
differences and resistance. 13 Technology transfer 

13 See Hirschman, A. 0., Development Projects Observed. 
Washington, D.C.: The Brookings Institution, 1967. 

suffers from the same bias that diffusion of innova­
tion theory in general suffers: If the technology is 
not accepted, there is something wrong with the 
intended user, not the transfer agent or the technol­
ogy. Naively, we think our way of implementing and 
using are the right way as if no other way is as good. 
The concept of equifinality-many paths lead to the 
same goal-eludes most Westerners. We fail to 
evaluate the technology within the context of the 
intended cultural structure. We assume stupidity on 
the part of the users and also assume this stupidity 
can be corrected by sufficient education. What we 
forget is that projects fail when planning is incom­
plete, potential difficulties are not assessed or are 
misassessed, and cultural impacts of projects are 
insufficiently analyzed. The challenge to SEs is not 
to oversimplify projects and circumstances of their 
implementation that inhibit technology transfer, but 
to attend to the cultural aspects of implementations. 

In any technology transfer project, it is imperative 
that the sensitivity to local differences is maximal. 
Teaching and training in a different culture does not 
mean making the target audience the same as you. 
Equifinality must be allowed. SEs' roles change 
from doer to facilitator, with less control than usual 
over outcomes. Successful globalization of applica­
tions and technologies requires considerable breadth 
experience for SEs; for those who can develop and 
integrate the necessary business skills with their 
technical skills, the rewards will be huge. 

Client/server and multimedia are technologies 
that enable globalization and require different ways 
of thinking in a global context. Most effective place­
ment of data, database software, software, storage 
media, and computers is the main issue. Distribu­
tion of data and functionality will require new deci­
sion criteria. Before distributed applications, 
decisions were based on what the software and hard­
ware could do. Constraints drove the decision pro­
cess. Now we can have anything anywhere. The 
decision criteria shift from being technologically dri­
ven to being business driven. Why do we need data x 
for y PCs in location z if we can have a data for b 
PCs in location c? What business requirements 
demand this placement of data, hardware, and so on? 
The extent of distributed multimedia access and 
enabling of peoples in far-off locations that takes 
place will become a conscious business decision. 



574 CHAPTER 13 Summary and Future of Systems Analysis, Design, and Methodologies 

Ethical, political, and practical issues inform dis­
tributed media placement decisions. 

Multimedia applications, because they support 
data, graphics;photos, audio, and video images, also 
have a significant cultural component in a global 
application. Design of culture-free or culturally-rich 
applications becomes a decision. Is it truly possible 
to design culture-free applications? My feeling is no, 
all applications have cultural assumptions at least 
implicit in their design. Multimedia will make obvi­
ous our assumptions about appropriate words, pic­
tures, and ideas for users. Biases that surface 
will relate to information system developers, user 
designers, and manager approvers. When applica­
tions go global, assumptions that survive in the 
United States, in all likelihood, will be inappropri­
ate globally. The assumptions will require develop­
ment of the same application with different media 
components to fit the using culture. SEs will need to 
learn how to surface cultural assumptions of appli­
cation developers and how they carryover to the fin­
ished product. SEs will need to make assumptions 
explicit, then use the assumptions to design cultural 
diversity into applications. 

In summary, business and technical trends are 
pointing toward breadth and depth of skill levels 
in SEs in many different areas. Methodologies 
do not support these trends today. Therefore, con­
tinued evolution and change to methodologies can 
be expected. 

SUMMARY ________ ~ __ _ 
Two methods of analyzing methodology classes 
were used in this chapter. The first, the information 
systems methodology framework, was extended to 
include the characteristics of applications from 
Chapter 1 and the desirable characteristics of appli­
cations. From the analysis we know that both infor­
mation engineering (IE) and object orientation (00) 
are more complete in desciibing applications than 
structured analysis (SA), but each addresses differ­
ent phases of the life cycle. IE is more complete in 
coverage of organization level information systems 
planning and analysis, both of which precede design 

and implementation. 00 is more detail- and pro­
gramming-oriented, resulting in a deeper level of 
design by the end of the design phase. SA is so 
process-oriented that data, input, output, and other 
detailed aspects of the application are left to 
SE skill and are not specifically addressed by the 
methodology. 

The second analysis of methodologies used the 
Humphrey's maturity framework to discuss the 
maturity of methodologies. Humphrey discusses the 
initial, repeatable, defined, managed, and optimizing 
levels of maturity. The results of this analysis show 
that no methodologies are currently beyond the 
defined level and that SA is only at the initial level. 
There are too many activities that are not addressed 
by SA to reach the repeatable level for all requisite 
tasks. At the repeatable level different people would 
arrive at the same design. IE is at worst repeatable, 
and, when completed in a CASE tool, may reach the 
defined level. 00 is at the repeatable level for many 
early activities, but is at the initial level for package 
and message communication design. 

CASE tools were discussed in their ability to pro­
vide three key design objectives: integration, intelli­
gence, and multiuser support. The ability of CASE is 
hampered by methodologies that are not themselves 
integratable because of shifts in thinking that must 
be made from one phase of work to another. In gen­
eral, SA and IE characterize such shifts and have rel­
ative difficulty in CASE interphase integration of 
work. In contrast, 00 is more consistent in the think­
ing and documentation forms both within and 
between phases, thus, the CASE tools supporting 
00 are more highly integrated and represent the 
ever more detailed thinking required in OOD, and do 
so within similar graphical and text forms through­
out the CASE tools. 

Next, business and technology trends that impact 
application development were discussed, including 
legacy systems, repositories and data warehouses, 
client/server computing, multimedia applications, 
and business globalization. Legacy systems and data 
are historical leftovers from premethodology days 
that may have errors and structural flaws that make 
their conversion to new environments costly and dif­
ficult. In particular, client/server, data warehouses, 
and repositories are three emerging technologies to 



which companies want to migrate the legacy systems 
and data. Client/server environments provide for 
storage and processing of data wherever it is most 
needed by the organization in a peer-to-peer 
network. Data warehouses are storage technologies 
that provide for massive amounts of historical data. 
Repositories are versatile means of storing informa­
tion about data, applications, hardware, and software 
that provide the definitions of interchangeable tech­
nology components. Multimedia applications will 
use repositories to define the integration of object 
orientation, database, and storage technologies in 
one application environment. 

Globalization is the movement of businesses into 
worldwide markets. Global application developers 
must deal with difficulties in development due to 
infrastructure differences and technology transfer 
difficulties. Technology transfer is the large-scale 
introduction of new technology to a new environ­
ment, usually a developing country. Problems in 
technology transfer relate to cultural and political 
differences more than to the new technology. SEs 
developing global applications will need to attend 
to the culture and politics to be successful. Client/ 
server technology enables global applications. Mul­
timedia was discussed as one type of application 
with a significant cultural component. 

REFERENCES ______ ~ __ __ 
Adelson, B., and E. Soloway, "The role of domain 

experience in software design," IEEE Transactions on 
Software Engineering, SE-11 , Vol. 11,1985, pp. 
1351-1360. 

Bergland, Gary D., "A guided tour of program design 
methodologies," IEEE Computer, October 1981, 
pp.13-37. 

Card, David N., Frank E. McGarry, and Gerald T. Page, 
"Evaluating software engineering technologies," IEEE 
Transactions on Software Engineering, Vol. SE-13, 
#7, July 1987, pp. 845-85I. 

Conger, S. A., "Teaching globalization in information 
systems courses," in Global Information Technology 
Education: Issues and Trends (M. Khosrowpour and 
K. D. Loch, eds.). Harrisburg, PA: Idea Group Pub­
lishing, December 1992, pp. 313-353. 

Datamation; "The best in client/server computing," Spe­
cial Issue, October 1, 1991, pp. 1-24. 

References 575 

Dunsmore, H. E., W. M. Zage, D. M. Zage, and 
G. Cabral, "Building an empirical case for CASE," 
Software Engineering Research Center Report 
SERC TR-8-P, Lafayette, Indiana, December 16, 
1987. 

Episkopou, D. M., and A. T. Wood-Harper, "Towards a 
framework to choose appropriate information systems 
approaches," The Computer Journal, Vol. 29, #3, 
1986, pp. 222-228. 

Gane, Chris, Computer-Aided Software Engineering: The 
Methodologies, the Products, and the Future. Engle­
wood Cliffs, NJ: Prentice-Hall, 1990. 

Guindon, R., and B. Curtis, "Control of cognitive 
processes during software design: What tools are 
needed," CHI Proceedings. ACM: 1988, pp. 263-268. 

Guindon, R., H. Krasner, and B. Curtis, "Breakdowns 
and processes during the early activities of software 
design by professionals," in Empirical Studies of Pro­
grammers-2nd Workshop (G. Olson, E. Soloway, 
S. Sheppard, eds.). Norwood, NJ: Ablex Publishing 
Co., 1987, pp. 65-82. 

Hirschman, A. 0., Development Projects Observed. 
Washington, D.C.: The Brookings Institution, 1967. 

Humphrey, Watts S., "Characterizing the software 
process: A maturity framework," reprinted in Mile­
stones in Software Evolution, Paul W. Oman and Ted 
G. Lewis, eds. Washington, D.C.: IEEE Press, 1988, 
pp. 301-307. 

Humphrey, Watts, Managing the Software Process. Read­
ing, MA: Addison-Wesley Publishing, Inc., 1989. 

Iivari, Juhani, "Levels of abstraction as a conceptual 
framework for an information system," Proceedings 
of IFIPS WG 8.1: Information Systems Concepts: An 
In-Depth Analysis, Belgium, October 18-20, 1989, 
pp. 122-15I. 

Kelly, John c., "A comparison of four design methods 
for real-time systems," ACM SIGSOFT Software 
Engineering Notes, Vo1.12, 1987, pp. 238-25 I. 

Keys, Paul, "A methodology for methodology choice," 
Systems Research, Vol. 5, #1, 1988, pp. 65-76. 

McClure, Carma, CASE Is Software Automation. Engle­
wood Cliffs, NJ: Prentice-Hall, 1989. 

Olle, T. William, Jacques Hagelstein, Ian G. McDonald, 
Colette Rolland, Henk G. Sol, Frans J. M. Van 
Assche, and Alexander A. Verrign-Stuart, Information 
Systems Methodologies: A Frameworkfor Under­
standing. Wokingham, England: Addison-Wesley 
Publishing Company, 1988. 

Panzi, David J., "A method for evaluating software 
development techniques," The Journal of Systems and 
Software, Vol. 2,1981, pp. 133-137. 



576 CHAPTER 13 Summary and Future of Systems Analysis, Design, and Methodologies 

Pennington, N., "Stimulus structures and mental repre­
sentations in expert comprehension of computer pro­
grams," Cognitive Psychology, Vol. 19, 1987, pp. 
295-341. 

Pressman, Roger S., Making Software Engineering 
Happen: A Guide for Instituting the Technology. 
Englewood Cliffs, NJ: Prentice-Hall, 1988. 

Sorenson, Paul G., Jean-Paul Tremblay, and Andrew J. 
McAllister, "The metaview system for many specifi­
cation environments," IEEE Software, March 1988, 
pp.30-38. 

Wand, Yair, and Ron Weber, "On the deep structure of 
information systems," Information Systems Research, 
Vol. 4,#2, 1993,pp.23-45. 

Ward, P. T., and S. J. Mellor, Structured Development for 
Real-Time Systems (three volumes). NY: Yourdon 
Press, 1985. 

Yourdon, Edward, Modern Structured Analysis. Engle­
wood Cliffs, NJ: Prentice-Hall, 1989. 

KEY TERMS ________ _ 

AI inCASE 
associative data 

relationships 
CASE integration 
client/server 
complexity 
data warehouse 
downsizing 
equifinality 
fragile applications 
globalization 
Humphrey's defined level 
Humphrey's initial level 
Humphrey's managed 

level 
Humphrey's maturity 

framework 
Humphrey's optimizing 

level 

Humphrey's repeatable 
level 

information systems 
methodology framework 

information systems plan 
(ISP) 

infrastructure 
legacy 
legacy data 
legacy systems 
multimedia 
multiuser CASE 
peer-to-peer network 
process groups 
repository 
seamless CASE 
technology transfer 

EXERCISES _______ _ 

1. Write a three- to five-page paper describing 
some new technology--distributed database 
(e.g., Informix or Sybase), Multimedia, Simple 
Network Management Protocol (SNMP) (net-

working protocol), im:lging. Predict how the 
technology will change in use in applications in 
the next five years. Predict IS and user organiza­
tional changes as well as design changes. 

2. Discuss globalization of businesses and other 
changes to software engineering activities that 
might be required. 

3. Compare the methodologies using your own 
technique. What are the important methodology 
issues to you? How easy or hard do you find the 
work involved in describing the ABC applica­
tion in each methodology? How easy or hard is 
it to really learn each methodology? Which are 
you most likely to continue using? How likely 
do you think these methodologies are to be use­
ful for the emerging technologies of client/ 
server and multimedia? How would you change 
any or all of the methodologies to make them 
more usable? How might methodologies 
become less tied to technology? (Please send 
your responses to the author.) 

STUDY QUESTIONS ___ _ 

1. Define the following terms: 
client/server Humphrey's maturity 
downsizing framework 
equifinality legacy data 
globalization repository 

2. What phases of application development are in 
the Olle et al. information systems methodol­
ogy framework? 

3. Describe the features of the Olle et al. 
approach to comparing methodologies and 
identify the sophistication of the three method­
ologies on each feature. 

4. Why do you think the ISP was left out of the 
process methods of Tom de Marco and 
Ed Yourdon? (You might refer back to Chapter 
1 's historical discussion for a hint.) 

5. Object-oriented methodologies all ignore the 
front-end tasks of feasibility and data collec­
tion. Why? Can they continue to ignore those 
actions and still be useful in business applica­
tions? Why? 



6. The Olle et al. framework was expanded to 
analyze the phases within each methodology 
where information is expected to become 
known. Describe this framework extension 
and identify, for data, processes, relationships, 
physical database model, and event triggers, 
where this information is known in each of the 
three methodologies. 

7. What is the position of process methodologies 
with respect to data and data modeling? What 
is the significance of this position? How inte­
grated is data to process description? What is 
the significance of this level of integration? 

8. List three sources of application complexity. 
How does each source add to the complexity of 
an application? 

9. Which methodology handles complexity the 
best and why? What is deficient about the other 
methodologies' handling of complexity? 

10. To what extent do the three methodologies dis­
cussed guide input/output design? What is the 
significant of this? 

11. Rate the three methodologies on desirable 
application characteristics: minimal coupling, 
maximal cohesion, and information hiding. 
Justify your ratings. 

12. What is Humphrey's maturity framework? 
How is it used to assess IS organizations? How 
is it used to assess IS methodologies for appli­
cation development? 

13. What are three shortcomings of Humphrey's 
framework? How might they be eliminated? 

14. List and describe the five levels of maturity in 
Humphrey's framework. 

15. Do many organizations or methodologies reach 
the optimizing level of Humphrey's frame­
work? 

16. Describe the three methodologies in terms of 
Humphrey's framework. 

17. If you have access to a CASE tool, use Table 
13-6 to analyze the sophistication of your tool. 
List five ways in which the tool you use could 
be improved to contain more of the desired 
CASE features and functions. 

18. Three issues in CASE are discussed: integra­
tion, intelligence, and multiuser support. How 

Exercise Questions 577 

does the author view current products on the 
market? How does a CASE tool you use rate 
on these three criteria? What changes might be 
made to the tool you use to improve its integra­
tion, intelligence, and multiuser support? 

19. Describe the research that seeks to integrate the 
best of all methodologies into a new, improved 
hybrid. Critique the utility of such a methodol­
ogy and identify three of the problems with 
this approach. What benefits might accrue from 
a hybrid methodology? Why is it such a popu­
lar topic of research? 

20. Describe the research that studies novice analy­
sis of problems and relate this research to that 
which seeks to integrate the best of all method­
ologies into a new, improved hybrid. How 
can the analyst research be used to improve 
methodologies? What effect will hybrids have 
on novice learning? 

21. What impact do legacy systems and data have 
on the use of new methodologies and CASE 
tools? 

22. Define and discuss the issues of legacy systems 
and data. 

23. Define a data warehouse and why companies 
are moving toward implementation schemes of 
this concept. 

24. What is an associative data relationship and 
why does it impact data storage techniques? 

25. Define client/server computing and downsiz­
ing. Discuss how they relate. 

26. What is multimedia and how does it relate 
to application development and method­
ologies? 

27. Describe some of the cultural issues in global 
information systems development. 

28. What are the main issues in deploying global 
applications? 

* EXTRA-CREDIT QUESTION 

1. Change the scenario for ABC Video. Assume 
ABC is an international organization that not 
only rents videos but also sells concert tickets, 
CDs, and other related entertainment and musi­
cal merchandise. What cultural assumptions are 



578 CHAPTER 13 Summary and Future of Systems Analysis, Design, and Methodologies 

in the case description of ABC Video that need 
to be reexamined for an application to be used 
in locations all over the world? What other 
changes might be required for worldwide use 
of the rental application? Don't concentrate 
on merchandise; concentrate on the cultural and 

equipment differences. If each of 3,000 stores 
in 60 countries send information to a single site 
in, let's say, Los Angeles, once each day, 
what technology considerations might be 
required? 



CHAPTER14 

___ THE FORGOTTEN 
___ ANALYSIS AND ------------------__________ r----

___ DESIGN ACTIVITIES ________ -

INTRODUCTION ____ _ 

The forgotten activities of systems analysis are 
design of the human interface, conversion/imple­
mentation process, and user documentation. This 
chapter concentrates on human interface because the 
guidelines are not context specific and are based on 
research as well as practice. Rules of thumb for the 
other activities are discussed. Both the human inter­
face and conversion are planned for ABC Video's 
rental processing application. 

HUMAN ___________ __ 
INTERFACE ______ _ 

DESIGN 

The presentation of information for selection and 
data entry is the single most important design item in 
an application. The format, type, size, color, and 
content of the display all are important to a user 
locating, controlling, entering, or monitoring infor­
mation. A badly designed screen makes a user tire 
faster, make more mistakes, and miss information 
that might have disastrous effects on decision mak­
ing. Misrepresented data can have the same effects. 
The user's perception of the application and how it 
helps or hinders in performing his job is directly 
related to the human interface. If a user perceives the 

application as helpful and facilitating productivity, 
the application will be used with a high degree of 
satisfaction. If a user perceives the application as dif­
ficult, obscure, or reducing productivity, the applica­
tion will not be used voluntarily and user satisfaction 
will be low. 

Interface design is one of the most intensely 
researched areas of computing, yet much of the 
research has not found its way to business applica­
tion design. In this section, we try to remedy that 
situation. First, the conceptual foundations of inter­
face design are reviewed briefly. Then the options 
and guidelines for each major activity during inter­
face design are presented. Following each section, 
we discuss how to apply screen design guidelines to 
ABC rental processing. 

Conceptual Foundations of 
Interface Design 
A combination of research, theory, and practice 
blend to provide the guidelines for interface design. 
In general interface design needs to answer ques­
tions about when, what, and how to enter data into, 
and present data from, applications. 

First, when to collect data has been resolved 
through long experience and research. The ideal data 
entry point is at the data source. There should be no 

579 



580 CHAPTER 14 The Forgotten Analysis and Design Activities 

creation and collection of paper from which data is 
then keyed into a machine. The more people who 
touch a transaction, the more errors it will have. 
Therefore, eliminate all middle men, enter data at 
its source, and errors are greatly reduced. 

Second, which data to collect and display are also 
issues. The general answer, based on practice, is all 
data required for business reasons. Data may be 
expanded to include company specific requirements. 
Also, data items IS staff think might some day be 
necessary, but for which users have no current or 
future business need, should not be collected or 
displayed. 

Last, and most complex, is how human-computer 
interactions should be structured and presented to 
ease learning, minimize errors, and facilitate use. 
Research and theory on physical and cognitive 
aspects of memory, information processing, pacing 
of work, color perception, icon perception, and key­
stroke effectiveness all are used to determine guide­
lines for interface design. The results of applying the 
research versus not applying the research are 
increased productivity and reduced errors. Since the 
research is so voluminous, it is presented in the con­
text of the chapter. 

With all the choices and research recommenda­
tions, deciding how to actually design functional 
screens can be a confusing exercise. In the next 
sections, practical guidelines from research and 
practice are developed. Information from the analy­
sis phase is used to define the display requirements 
of the human interface. The analysis information is 
used to define a task profile for the application. 
Then, a profile of users is developed to identify 
screen requirements that relate to users rather than 
to functions of the system. The task profile is 
matched to guidelines for the application type to 
define and select the general interface as menus, 
windows, or commands. Application type also sug­
gests functional screens as forms oriented, ques­
tions and answers, or direct manipulation. Once the 
general and functional interfaces have been defined, 
individual field presentation is defined and format­
ted for the screen. Finally, extra field characteris­
tics, such as color, are decided and added to the 
design. Each of these topics is summarized below 
and addressed in the following sections. 

1. Define task profile. 
2. Define user profile and application design 

response. 
3. Choose option selection screen type. 
4. Choose functional screen type. 
5. Design option selection interface. 
6. Design functional screen interface format. 
7. Choose field format options for normal, 

abnormal, alert, and alarm data conditions. 
8. Design on-line user documentation, error 

messages, and abnormal processing for all 
interfaces. 

9. Design reports as required. 

Develop a Task Profile 
Guidelines for Developing a Task Profile 

The first activity is to develop a task profile which 
summarizes work requirements of the application. 
The level of detail in developing a task profile 
depends on the type of application being developed. 
The first task, then, is to classify the application as 
either transaction, query, DSS, ESS, or process 
monitoring and control (a special type of TPS). 
Since transaction processing is the most frequent 
application type in businesses, they are discussed 
here. The level of detail and activities for task profile 
develop-ment are summarized in Table 14-1 for the 
above application types. 

For each activity, a hierarchy of processes is 
defined. This is the basis for screen navigation 
design. The top activities identified become selection 
options on a menu. Upon selection, the entries at the 
second hierarchic level are presented, and so on 
until a functional work screen is presented. The level 
of detail for the hierarchy should match the level of 
processing detail for the application type. 

Next, required and optional data are defined for 
each task (see Table 14-1). For business applications, 
following the methodologies discussed in Chapters 
7-12, required and optional data for entities should 
have been defined and documented in the data dic­
tionary. For most business applications, this infor­
mation can be developed at the entity/relation level 
rather than the attribute/field level. The idea is to 
identify multivariate dependencies which, in real-



Human Interface Design 581 

TABLE 14-1 Task Profile Development Activities 

Activity Transaction Query 

Define Task Process Level Activity Level 
Hierarchies 

Define Transaction/ Entity Level 
Required/ Field Level 
Optional Data 

Define Data Only if greater Only if greater 
Precision than 2 decimal than 2 decimal 

places for places for 
numbers numbers 

Define Data Process/ Activity Level 
Source Transaction 

Level 

Define Entity/ Entity Level 
Purpose Transaction 

Level 

Define Only if it varies Only if it varies 
Accuracy from 100% from 100% 

Define Domain Field Level Field Level 

ID Specific Field Level Field Level 
Display Criteria 

time systems, may need to meet synchronization and 
timing constraints. 

If not already defined, precision requirements 
should be specified, by field, for all numeric fields 
(Table 14-1). Precision requirements specify the 
number of decimal places and special display char­
acters required for numeric information. Precision 
is very important in mathematical, statistical, and 
process control applications. Precision beyond two 
decimal places is frequent in business applications 
dealing with large financial transactions. Banking 
applications, for instance, frequently require preci­
sion to five decimal places for computing interest 
due and paid. Specific maximum field size, need for 
sign (e.g., +), and need for debit/credit indicators 
[e.g., CR or ( ) ] should all be defined. For text 
fields, the maximum length should be defined, if not 
already done. Possible edit characters for numeric 

Process 
DSS ESS Control 

Activity/ Activity/ Process Level 
Process Level Process Level 

Entity Level Entity Level By input source 

Only if greater Only if greater For each field 
than 2 decimal than 2 decimal 
places for places for 
numbers numbers 

Activity/ Activity Level Field Level 
Process Level 

Entity Level Entity Level Field Level 

Only if it varies Only if it varies Field Level 
from 100% from 100% 

Field Level Field Level Field Level 

Field Level Field Level Field Level 

and text fields might be blanks, commas, or slashes. 
These definitions limit the number of data fields on a 
line while defining specific screen contents. 

The source of data for each process should be 
identified next (see Table 14-1). Data source can be 
user-provided through data entry, measured data 
entry, or system-derived through computation. The 
key to identifying source, if it is unknown, is to 
determine where users go when they have a question 
about data on a screen. The answer might define a 
user, instrument type, or application as the informa­
tion source. When user data entry is the source, train­
ing needs and help facilities are required to ensure 
proper entry. Edit checks for entry errors are re­
quired. When instrument measures are the source of 
data, the signal-to-noise ratio should be analyzed to 
determine the need for filtering devices or software. 
Fields for which the application is the source are 



582 CHAPTER 14 The Forgotten Analysis and Design Activities 

called derived fields for which data entry is not 
allowed. 

Next, the purpose of every entity or field should 
be defined, depending on the type of application. 
Possible choices for purpose are forms completion, 
information, alert, or alarm. Business applications 
data purposes are usually form completion and 
information. Rarely are data items used to alert or 
alarm the user. Because alarms are rare in business, 
entity level checking is sufficient for all but critical 
applications. For each entity, then, the task profile 
identifies needs to send alert or alarm signals to the 
user based on data changes or system process out­
comes. For critical and process control applications, 
each data element should have its purpose defined 
since the task of process control is to monitor 
changes in a system and correct any abnormal or 
undesired processes. Alerts to changed conditions 
and alarms to abnormal conditions are an integral 
part of process control interface design. 

The need for accuracy for each task and, if less 
than 100%, of the data processed should be assessed. 
In business applications, this definition should be 
provided only when it varies from 100%. Typically, 
variation in business is in query or ESS applications 
for which ballpark numbers are acceptable for many 
types of processing. 

For instance, a marketing person may want to tar­
get a product to one or more specific demographic 
groups. If the target mailing is 1,000,000 pieces, the 
marketer needs to know how many groups he needs 
to meet this goal. A sample based on selection crite­
ria (e.g., age, education level, and zip code) can be 
used to project the size of the population ±5%. In 
this case, a 0.1 % sample might be sufficient. Rather 
than read a 20,000,000 record file, only 20,000 
records are needed. 

The last two pieces of task information-domain 
and display criteria-are defined if not already com­
plete. The domain is the set of allowable values for 
each field. Special display criteria might include 
translations of data to text (or vice versa), or a spe­
cial color for some field, and so on. 

All of these task characteristics are used to deter­
mine the type of interface in system terms, and to 
determine training needs for users. 

ABC Rental Application Task Profile 

There is no special complexity in the ABC rental 
application, so completion of the task profile is rela­
tively simple. We are using the Information Engi­
neering analysis in Chapter 9 as the basis for 
this discussion. The first action is to create the 
task hierarchy. Using activity level as the top of each 
hierarchy, we rearrange the processes as the next 
level and their subprocesses as the third level, con­
tinuing until all processes are elementary (see Figure 
14-1). This diagram is the basis for navigation 
between screens. Each leg of each level on the 
hierarchy is translated eventually into a menu selec­
tion list. 

As of the analysis, all data were required for all 
entities (see Table 14-2). Precision for money fields 
is two decimal places. All other numeric fields are 
dates or integers. The source of Customer, Video, 
and Copy data is user data entry, so extensive edits 
will be needed in the entry programs to ensure that 
only correct data enters the system. End of day, 
Video History, and Customer History are all derived 
by the system and have no human interaction. The 
derived relations identify testing requirements for 
specific verification. The Rental relation is a combi­
nation of entered and derived data which identifies 
both edit and testing requirements. 

The purpose of the entities is either forms com­
pletion or information with one Rental relation 
exception. The credit field will be used to deny rental 
privileges to customers who have a poor credit 
rating. Some special processing may be desired to 
highlight bad credit ratings. The possibility of high­
lighting bad credit rating information should be 
discussed with Vic and his approval obtained. No 
decision is made at this time. 

Accuracy for all maintenance, rental, return, 
and query tasks is assumed to be 100% (see Table 
14-2). If Vic, while performing ad hoc querying, 
chooses to sample the data rather than read the entire 
database, that is okay, but not of interest for this 
definition. 

The domains of each field are in the data dictio­
nary. No special display criteria are identified at 
this time. 



Get Valid Customer 

Get Valid Video 

Get Return ID 

Add Return Date 

Get Open Rentals 

Check Late Fees 

Print Receipt 

Human Interface Design 583 

FIGU RE 14-1 Process Hierarchy Chart for ABC Rental Application 

Develop a User Profile 
Guidelines for User Profile 
Development 

A user profile is developed to determine the need 
for special interface design requirements that relate 
to the user rather than the task. User profile criteria 
include physical, educational, computer, and task 
capabilities (see Table 14-3). At the same time the 
user profile is developed, a matching profile for the 

application and how it will address the user needs is 
also developed. 

Information in the user profile is obtained from 
users through interviews, questionnaires, or person­
nel file searches. If personnel file searches are per­
formed, only average ratings of user skills should 
be computed unless each employee gives permission 
to use his or her information. Use of employee 
records for other than personnel purposes without 
permission is considered an unethical violation of 
privacy rights. 



584 CHAPTER 14 The Forgotten Analysis and Design Activities 

TABLE 14-2 ABC Rental Task Profile 

Activity 

Define Task Hierarchies 

Define Required and 
Optional Data 

Transaction 

Process Level 

Transaction/Field Level 

ABC Rental 

See Figure 14-1 

All data required 

Define Data Precision Only if greater than 2 decimal 
places for numbers 

None. Dollar amounts have 
2 decimal places. 

Define Data Source Processffransaction Level User Entry and Derived, See 
Data Dictionary 

Define Purpose 

Define Accuracy 

Define Domain 

Entityffransaction Level 

Only if it varies from 100% 

Field Level 

Form Completion, Information 

100% 

See Data Dictionary 

ID Specific Display Criteria Field Level 

In critical applications with possible life threaten­
ing consequences, each individual user should be 
profiled and reviewed for proper skills, computer 
experience, and task expertise before being assigned 
to use the new application. Education can take 
care of some deficiencies in skill levels, but with 
some critical applications, people may be reas­
signed to other jobs when their knowledge does 
not match the application requirements. For noncrit­
ical applications, the profile can average user skills 
for each characteristic. User profile is used to deter­
mine sophistication of the interface and train­
ing needs. 

Physical skills include color perception, typing 
skill, and physical disabilities that might be present 
in the user population. Color perception problems 
mean that reds and greens might not be perceived. 
If colors are used, users should be screened to ensure 
that they can recognize the selected colors. Also, 
color selection should relate to conventional mean­
ings for each color used. For instance, red is the 
usual alarm-signaling color. In an application using 
red to signal an alarm condition, then, all users 
should be screened for their ability to perceive the 
color red. 

o Required for Change field negative 
values. No other special requirements. 

Typing is the other typically used physical skill. If 
user typing skills are low, either the application must 
be designed not to require typing, or typing training 
should be provided to users. 

Education and math profiles can be either 
individual or average analyses (see Table 14-3). 
Education level determines the level of writing 
required to explain errors. For math-intensive or 
numerical control applications, specific math skills 
might also be necessary of users. When this is the 
case, math skills needed are defined for each task 
(e.g., one task might need algebra, one might need 
the ability to interpret geometric drawings, and so 
on). Users whose profile does not match the required 
skill levels are trained or reassigned. Many compa­
nies, such as Texas Instruments, Chevron Oil, and 
others, retrain their employees in math skills needed 
to manage complex computerized manufacturing 
equipment. 

When the average education and math levels are 
lower than high school-graduate level, the applica­
tion interface must be designed as simply as possi­
ble. Instructions and text help must be written using 
sentences under 25 words and use words averaging 
less than three syllables. Different indexes can be 



TABLE 14-3 User Profile and Application Response 

User Characteristic 

Physical Skills: 

Color Perception 

Typing 

Disabilities 

Educational Skill: 

Education Level 

Math Proficiency 

Language 

Native 

Proficiency with 
application language 

Computer Proficiency 

Average Proficiency 

Number of packages 

Job Characteristics: 

Turnover 

Experience 

Description 

Red/Green/Blue Color 
Perception 

Ability in words/minute 

Sight, hearing, or physical 
impairment that might change 
application hardware, software, 
or interface design 

Average or actual level of 
highest degree 

Average or actual level of 
math proficiency 

All native languages not the same 
as intended implementation 
language 

Average or actual level 
of proficiency 

Average or actual level of 
proficiency in years of 
experience 

Number and type of packages 
with which users are familiar 

Average % new employees per 
year 

Average years task experience 

Human Interface Design 585 

Application Response 

Either design application without the 
problem colors or reassign the users. 

Either design the application to fit the skill 
level or schedule typing training to increase 
skill level. 

Either design application to accom­
modate impairments or reassign the 
users. 

For both education and math, design 
application help and training to ensure users 
can learn and uSe the application. 

International applications should use 
language native to the region for the 
application interface. 

Training and text descriptions in appli­
cation can be no more difficult than the aver­
age level of proficiency. Training should be 
provided to ensure that all users attain the 
average level (i.e., the average becomes the 
minimum). 

Design the application help, messages, 
and user documentation to ensure 
understanding of all functions, 
messages, and menu options. 

Define training method and 
requirements. 

Define level of supervision after training is 
complete. 

Determine interface option selection 
type. 

Determine level of help and location (auto­
mated vs. manual and immediate screen mes­
sage vs. requested help). 



586 CHAPTER 14 The Forgotten Analysis and Design Activities 

used to compute reading level of text. For instance, 
the software RightWriter©, l provides the Kincaid 
reading grade level (scale of 1-16), Flesch index of 
readability (scale of 1-10), and a fog index (ratio of 
nouns and verbs to total words in a sentence) as mea­
sures of text difficulty. 

Information about native language is important to 
determining the language of the interface. As glob­
alization of the economy and development of global 
organizations increases, the need to implement the 
same system worldwide will become commonplace. 
When applications are implemented in other coun­
tries, the native language should be used as much as 
possible. From research we know errors are reduced 
and some user satisfaction comes from working with 
applications in one's native tongue. Sometimes, this 
requirement is government imposed. For instance, in 
the early 1980s, the King of Saudi Arabia declared 
that as of 1990 all communications, documentation, 
and application interfaces used in the kingdom 
would be in Saudi language. This posed a tremen­
dous challenge to every company doing business 
with Arabia because Arabic is read right to left, fre­
quently omits vowels, and has as much as 50% of 
every sentence in a local dialect. At the time of the 
declaration, there was no one recognized Arabic 
dictionary for the Arab world. Rather, each country 
had its scholars map the language for their country. 
In general, the more critical the application for 
controlling some potentially catastrophic process, 
the more important native language processing 
becomes. I would not like to think of a person 
who barely speaks English as the controller of a 
nuclear power plant with all systems and manuals 
in English! 

Next, computer experience is profiled. The aver­
age and range of number of years experience, num­
ber of software packages used, type of software (e.g., 
spreadsheet), and whether the individual develops 
his or her own software are all important to know. 
The level of computer experience, coupled with the 
skill level required of the application, determine the 
type of training that is most effective. For applica­
tions that are complex, critical, or have many vari-

1 RightWriter is a copy-protected product of RightSoft, Inc. 

able activities, classroom and hands-on training 
would be indicated. For applications that are simple 
and have few activities, classroom, computer-based 
training or on-the-job training are sufficient. Assign­
ment of new staff on the job might require close 
supervision for a period of time to ensure that they 
possess the skills to use the system properly. Close 
supervision should be used for all critical applica­
tions regardless of complexity or method of training. 

The level of task turnover in the next rating cate­
gory determines which of the training methods is 
actually used. If turnover is low, classroom or com­
puter lab training reach the most people at once and 
are the cheapest. If turnover is high, some method 
of individual training is required. Some alternatives 
for individual training are on-the-job, programmed 
instruction manuals, or computer-based programmed 
instruction. All can be effective means of training. 

Finally, task experience is estimated. If the aver­
age user has a high level of task experience, the 
labels for fields can be more abbreviated, less text is 
needed to guide data entry, and an expert mode of 
operation might be preferred. If the average user has 
a low level of task experience, or experience is vari­
able, novice and expert modes might both be needed. 

Task experience and turnover information to­
gether determine the mode of interface as novice or 
expert, and the extent to which on-line help should 
be provided. Figure 14-2 shows that with low expe­
rience levels, novice-only modes are required. With 
a high experience level, either a mixed mode or an 
expert mode-only are required. 

Figure 14-3 shows that the type of message and 
extent of on-line assistance also varies with experi­
ence and turnover. Low experience with low turn­
over suggests use of meaningful text error messages 
with on-line help to elaborate on the error messages. 
With high turnover, the on-line help should include 
information on menu options, fields to be completed, 
and error messages for data entry errors. With high 
experience levels, the on-line messages can be 
abbreviated (or eliminated with use of a beep instead 
of any text message), and with high turnover, sup­
plemented with a paper manual documenting errors 
and error recovery. 

Last, effective training for the application type, 
user education level, and experience level can be 



Task 
Experience 

Low 

High 

Low 

Novice Mode 

Expert Mode 

Human Interface Design 587 

Turnover 

High 

Novice Mode 

Mixed Novice and 
Expert Modes 

FIGURE 14-2 Turnover and Task Experience Determine Mode of Processing 

Task 
Experience 

Low 

High 

Turnover 

Low 

Extensive error 
messages with 
on-line help 

Simple, short error 
messages only 

High 

Extensive error, field, 
and menu prompting 

Extensive on-line help 
for all functions and 
options 

Simple error 
messages 

Paper manual for 
look-up of help 

FIGURE 14-3 Turnover and Task Experience Determine Level of On-line Assistance 



588 CHAPTER 14 The Forgotten Analysis and DeSign Activities 

decided. Training choices include classroom in­
struction, computer-based training (CBT), or on­
the-job training (OJT). Classroom training is the 
most cost-effective for groups of students. Students 
can ask questions and receive personalized training 
while a number of people are being trained simulta­
neously. The disadvantages of classroom training are 
high cost and the fact that training cannot be 
repeated without additional cost. 

CBT is most effective for training one or a small 
number of people simultaneously and at different 
rates. CBT is self-paced, low pressure, and does not 
require a senior person to monitor the training. The 
major disadvantage of CBT is its cost, which is 
steadily dropping. Much training in business will be 
computer-based by the year 2000 because, by then, it 
will be cost-effective for most business uses. 

On-the-job training is cheap but requires a senior 
person to teach trainees. The senior person is 
assumed to be a good teacher who can explain all 
necessary variations to someone else. These as­
sumptions may not be valid. If OJT is used, some 
manager or senior staff person should monitor train­
ing and privately correct the teacher if a problem 
arises. 

ABC Rental User Profile 

Video stores hire younger people, who are frequently 
in high school. The turnover is high because it is 
part-time work with mostly evening hours (prime 
date time) and because the business is somewhat 
cyclical in video rental patterns. Since the specific 
users are not known, the average user is estimated 
based on the four current ABC employees. The 
analysis is summarized in Table 14-4. 

In the ABC example, current employees have no 
physical impairments and none are anticipated. Typ­
ing skill is expected to be low. No particular prohi­
bitions on color or special ttquipment will be needed 
except to compensate for the lack of typing skills. 

The application will use a bar code reader, as sug­
gested by Vic, to replace the need to type most 
information. The bar code reader minimizes the key 
strokes required of users. The reader will scan user 
IDs, if they are used, and video bar codes to enter the 
information to the computer. If user IDs are not used, 

the phone (or other ID) number will be typed. An­
other typed entry is the total amount paid. This 
should not be too error prone because most people 
pay in even dollars, receiving change. If the need to 
enter a few numbers really worried Vic, user ID 
cards can replace the need to type user IDs, or, 
alternatively key pads are less error prone than type­
writer keyboards and could be used. 

The average education and math levels of em­
ployees is expected to be at the 10th-grade level. 
This means that algebra is the most abstract level of 
math skill. The system design criteria are KISS­
keep it simple, stupid-so the 10th graders can do 
the work easily. The math level should be acceptable 
since the only skills required are to enter the amount 
paid and to make change. 

The language of employees and the language of 
the application is expected to be English. 

Task turnover is high and task experience varies 
from low to high. Vic has one employee who has 
worked there four years and two who have been 
there two months. The task experience of the long~r 
employee is significantly greater than the other two. 
While the video rental business is not complex, the 
two newer employees cannot be expected to perform 
all functions. The system design criteria in response 
to high turnover and variable task experience is to 
provide a simple interface with message help on 
request for all selections, fields to be completed, and 
error messages. 

Computer experience is also expected to be vari­
able but generally low. Number of years' experience 
for the three employees ranges from zero to two 
years. Number of software packages ranges from 
zero to three. The software used is word processing 
by two people, and database and spreadsheet by one 
person. One person wrote his own software. 

With little computer experience, high turn­
over, low task experience, low task complexity, and 
10th-grade education, two alternatives are recom­
mended. First, individual, self-paced, computer­
based instruction (CBT) is recommended because 
the students can come in on their own time to train 
whenever it is convenient. When the store is not 
busy, they might continue their on-the-job training 
using the CBT. The method would be to give the per­
son one each of the different transaction types. The 



Human Interface Design 589 

TABLE 14-4 ABC User Profile and Application Response 

User Characteristic 

Physical Skills: 

Color Perception 

Typing 

Disabilities 

Educational Skill: 

Education Level 

Math Proficiency 

Language: 

Native 

Proficiency with 
application language 

Computer Proficiency: 

Average Proficiency 

Number of packages 

Job Characteristics: 

Turnover 

Experience 

Description 

No Problems 

Less than 15 WPM 

None 

10th Grade 

Algebra 

English/Spanish 

High 

Low, 0-3 yrs. 
Average = 1 Yr. 

0-3, Lotus, WP 

65% Yr. 

Low to High, 
Average = Low 

person would enter the information and the com­
puter would automatically do all subsequent pro­
cessing. Then, the person would do several of each 
type of transaction completely. The system would 
intercept their entries and prompt them for correc­
tion, displaying reasons for the correction when they 
made errors. 

Second, if CBT is too costly, on-the-job training 
(OlT) with a senior person monitoring and assisting 

Application Response 

None 

Design to minimize data entry by using bar 
code reader for Video ID, Copy ID; data to be 
entered Customer Phone, Amount Paid 

On-line help 

Needs no special design. Users must be able 
to make change. 

None unless Vic wants to verify user ability 
to read all display text 

English will be the implementation language. 

Training in basic computer skills, startup, 
shutdown, etc., required. 

Use extensive on-line help for all options, 
entry types, data types, forms fields. Provide 
expanded on-line help to supplement mes­
sages for errors. 

Provide extensive training in all transaction 
types, beginning with turning on the machine. 
Monitor performance for first week on the job 
to ensure that training was sufficient. 

the trainee should be sufficient. If this is the chosen 
alternative, the trainees should learn rental and 
return processing first. This can be followed with 
less important tasks after several days. If OlT is the 
preferred training method, Vic should monitor the 
trainer(s) and trainee(s) closely for several days to 
ensure that the trainers cover all alternatives, pace 
the instruction to fit the person, and make no as­
sumptions about the trainees' skills. 



590 CHAPTER 14 The Forgotten Analysis and Design Activities 

Option Selection 
Once the user profile is complete, the general form 
of the human interface is decided by mapping the 
user and task to the implementation environment. 
When this activity is complete, all interface recom­
mendations are presented to the user for discussion 
and decision. Two choices are made from the 
mapping of user and task to implementation envi­
ronment. Either or both of the choices may be con­
strained by particular hardware and software if these 
are already known. The choices are for general 
option selection screens and general functional 
screens. Each of these are summarized in Table 14-5. 
Each set of alternatives and guidelines is followed 
by a description of how to apply the information to 
screen design for ABC rental. 

TABLE 14-5 Summary of Interface 
Choices 

Interface Level 

Option Selection 

Functional Screen 

Data Presentation 

Screen Item 

Alternatives 

Menu 
Window 
Command Language 

Form 
Question & Answer 
Direct Manipulation 

Analog 
Binary 
Digital 
BarChart 
Column Chart 
Point Plot 
Pattern Display 
Mimic Display 
Text 
Text Form 

Color 
Size 
Type Font 
Type Style 
Blink 

Option Selection Alternatives 

Choices for interface option selection design are 
menus, command languages, and windows for get­
ting to some functional screen. Menus are lists of 
items from which a selection is made. Command 
languages are high-level programming languages 
that communicate with software to direct its execu­
tion. Windows are a form of direct manipulation 
environment that combine full screen, icon symbols, 
menus, and point-and-pick devices to simplify the 
human interface by making it represent a metaphor­
ical desk environment. 

In general, menus and windows are novice modes 
of operation, while command languages are expert 
modes. Windows are the interface design most rec­
ommended because they simulate an office desk and 
present the most familiar interface to users. The next 
section presents design guidelines for the selection 
level of processing. Details of design for menu 
and window design are presented in the following 
sections. 

General Option Selection Guidelines 

General design guidelines relate to the development 
of a consistent, standardized interface, consisting of 
a header, a body, and a footer (Figure 14-4). The 
screen may include error message lines and com­
mand entry lines as well. Many companies have 
standards for screen design, so much of the work is 
already complete. 

The header section of the screen should contain 
an identifier of the application, function, date, time, 
screen ID, and program ID. An example is shown in 
Figure 14-5. 

The body of the screen contains variable infor­
mation (see Figure 14-4). In hierarchic menu pro­
cessing applications, the body contains menu 
selection, forms for completion, graphics output, or 
graphical monitoring measures. The body of the 
screen is subject to many other guidelines which are 
discussed in the next section. 

IBM standards also suggest a user message line 
and an error message line (see Figure 14-6). Defin­
ing user commands and error message lines as fixed 
may take too many lines away from the screen, so 
these are optional. 



Human Interface Design 591 

FIGURE 14-4 General Screen Design 

Scr001 Company Name Header MM/DO/vY 

FIGURE 14-5 Screen Header Example 



592 CHAPTER 14 The Forgotten Analysis and Design Activities 

Scr001 Company Name Header MM/ODIYY 

Task:Main Menu Task/Menu Header HH:MM:SS 

xxx001 Error Message 
Command: 

FIGURE 14-6 Command and Error Line Examples 

The footer screen section contains indicators of 
navigation choices. Nav.igation choices should iden­
tify which key to select for each allowable move­
ment option. Movement can be within a screen, 
between screens, or between menus and functional 
screens. Usually, screen navigation actions are taken 
by using special keys: escape (ESC), delete (DEL), 
or programmed function keys (PF or F keys). The al­
lowable actions should be identified at the bottom 
of the screen in a manner similar to that shown in 
Figure 14-7. The identifiers should always contain a 
connector (such as colon) between the key label and 
the action label. The action labels should be con­
cise, clear, and consistent across the entire applica­
tion (see Figure 14-7). Ideally, only actions allowed 
from the current screen should be shown. Others 
might be blanked out or muted to indicate that they 
cannot be chosen here. 

Menu Standards 

The research on menu processing has given us 
guidelines for location and ordering of menu op­
tions. U ser/SE choices .prevail for menu option 

names and option selection technique. First, based 
on the number of items on the menu, location is 
decided. If the number of options is less than 10, the 
items should be centered as a left-justified list of 
options. If numbers or letters are assigned to the 
options, they should be right-justified, followed by 
a period, and two spaces to the left of the corre­
sponding choice (see Figure 14-8). 

When the number of options is 10 or greater, you 
should experiment with different layouts to make the 
menu simple and easy to use. If the options are all 
independent, separating sequences of four or five 
options by blank lines enhances understandability 
(see Figure 14-9). If list options are interrelated, then 
experiment with segmenting the screen into different 
areas with each area containing an area ID and a cen­
tered, justified list of options for the area (see Fig­
ure 14-10). 

The options for menu selection are entry of an 
option ID without cursor movement, point and pick, 
or entry of an option ID with cursor movement. 
Either of the first two are recommended and selec­
tion should be based on user preference (see Figure 
14-11). The third option requires more key strokes 



Human Interface Design 593 

Scr001 Company Name Header MM/DDIYY 

F7:End Trans F9:Pg Dn F11 :Sh L Tab:Nxt Fld 
F8:Pg Up F10:Sh R I\Tab:Lst Fld ESC:Quit 

FIGURE 14-7 Screen Footer Example with Function Keys 

Customer Maintenance 

1. Add 
2. Delete 
3. Update 
4. Query 

FIGURE 14-8 Numbered Menu Option List, Less than 10 Choices 



594 CHAPTER 14 The Forgotten Analysis and Design Activities 

1. Consultant Assessment 
2. Consultant Selection 
3. Applicant Scheduling 
4. Consultant Maintenance 

5. Consultant Contract Creation 
6. Interview Scheduling 
7. Client Maintenance 
8. Client Contract Creation 

9. Query Consultants 
10. Query Clients 
11. Client Billing 
12. Consultant Payment 

13. Business Trend Analysis 
14. Accounts Payable 
15. General Ledger 
16. Payroll 

FIGURE 14-9 Menu Option List, More than 10 Independent Choices 

and is more error prone; therefore, it is not recom­
mended. Option IDs can be alphabetic or numeric; 
alphabetic options can be the first letter of the 

Rental/Return Processing 

Create 
Update 
Query 

Video Maintenance 

Add 
Delete 
Update Video 
Update Copy 
Query 

option or letters assigned from the alphabet in 
sequence. Again, there is no one right answer and 
user preference should prevail. If a point-and-pick 

Customer Maintenance 

Add 
Delete 
Update 
Query 

Periodic Processing 

End of Day 
Report 
Startup 
Shutdown 
History Update 
Query 

FIGURE 14-10 Menu Option List, More than 10 Interrelated Choices 



Data Entry without Cursor Movement 

1. Create 
2. Delete 
3. Update 
4. Query 

Enter Selection: 

Cursor Movement and Selection 

Cursor to the Option, Press Return: 

Create 
Delete 
Update 
Query 

Data Entry with Cursor Movement 

Move to Option, Enter Number 

1. Create 
2. Delete 

_3. Update 
_4. Query 

FIGURE 14-11 Menu Selection Options 

device, such as a mouse, is used, no option IDs are 
required. 

In all cases, when entry of a selection option is 
used, the message requesting the data entry should 
be centered on the screen, two lines under the last 
menu item, and should be in this location on all 
screens. This means that the location of the entry line 
should be two lines under the longest list in the entire 

Human Interface Design 595 

application, and that it is always displayed on that 
line. 

The listing of options within the menu should be 
based on frequency of choice when point-and-pick 
selection is used, and should be based on alphabetic 
order of choices when entry of a selection ID is used. 
Frequency listing is used for point-and-pick selec­
tion because the cursor should be positioned auto­
matically at the most frequent choice (see Figure 
14-12). The positioning by frequency of use mini­
mizes keystrokes when moving to other choices. 
Alphabetic sequence of choices is used when a 
selection ID is entered, because users can read and 
understand an alphabetic list faster than a random 
list (see Figure 14-13). Both alternatives assume a 
novice user who does not know the options from 
memory. 

The last issue in menu design is option names. 
Some authors2 recommend specific names even if 
it means repeating some information (see Figure 
14-14). Other authors3 recommend concise but 
meaningful names with no repetitive information 
(see Figure 14-15). Combining these guidelines, we 
can design screens that are easily understood and 
used. First, the option names should be listed to com­
pletely define the process and entity(s) (as in Figure 
14-14). Then, any information repeating in all 
entries should be removed and placed in a header 
for the menu list (see Figure 14-16). The result is 
the concise list from Figure 14-15 with a short 
header providing the additional information from 
Figure 14-14. 

To summarize, menu applications should be 
designed in the context of a standard screen format 
that is used throughout the application. Menu items 
should be centered, selection action should be obvi­
ous, and minimal information should be in the body 
of the screen. 

Window Standards 

Windows are rectangular screen areas used to 
display information. Window displays differ from 

2 For instance, Banks &Weimer [1992]. 

3 For instance, Galitz [1981]; Thomas.[1982]. 



596 CHAPTER 14 The Forgotten Analysis and Design Activities 

Customer Maintenance 

Add 
Change 
Query 
Delete 

FIGURE 14-12 Menu Options Listed By 
Frequency 

menu-driven full screen displays because users can 
view different, possibly unrelated information at the 
same time in different windows. For instance, in 
ABC's rental application, we might be looking for 
rental information for Sarah Cropley. We can begin a 
query function, then type, for example a '?' in the 
Customer Name field to indicate a look-up. A new 
window opens up and shows customer names. We 
select Sarah Cropley, the window closes, the name is 
moved to the first window, and we continue the 
query. Look -up and selection of information from a 

Customer Maintenance 

Add 
Delete 
Query 
Update 

Enter Selection: 

FIGURE 14-13 Menu Options Listed 
Alphabetically 

Cursor to Selection, Press Enter 

Add Customer 
Change Customer 
Query Customer 
Delete Customer 

FIGURE 14-14 Complete Menu List 

window is simpler than a menu system which uses 
the entire screen for one thing at a time. Because 
windows are different from menus, they have dif­
ferent guidelines and standards for their use. 

A typical window can have the components 
shown in Figure 14-17. A Close Box stops process­
ing and is similar to an F3 key use defined for a 
menu. The Title Bar names the window the same 
as the header line in the header portion of a menu. 
Location ID and status indicator identify where the 
user is in the window and whether or not processing 

Cursor to Selection, Press Enter 

Add 
Change 
Query 
Delete 

FIGURE 14-15 Concise Menu List 



Customer Maintenance 

Cursor to Selection, Press Enter 

Add 
Change 
Query 
Delete 

FIGURE 14-16 Combined Menu List 

Close Box Menu Bar 

Human Interface Design 597 

is normal. The zoom box and resize box both are 
used to change window shape. Zoom toggles 
between current size to full screen and back. Resize 
allows the user to customize the desired width and 
height to the window. Scrolling elements, arrows, 
bars, and boxes are used to move vertically and 
horizontally in the window, and are similar to func­
tion keys FS-Fll we defined for the menu sys­
tem. A scroll box is dragged to move a variable 
distance, while a scroll bar pages up or down 
depending on where it is touched, and a scroll arrow 
moves one line at a time. Most window elements 
are available for use in a windowing application, 
such as Paradox, but usage is selected by the pro­
grammer. All are recommended if the application 
contains multi screen forms completion. At least one 
type of scrolling element for each dimension should 
be provided. 

Window Title Zoom Box 

I Box 

Body of Window ... Variable Information 

Scroll Arrow Scroll Box Scroll Bar Scroll Arrow 

FIGURE 14-17 Window Components 



598 CHAPTER 14 The Forgotten Analysis and Design Activities 

FIGURE 14-18 Window Component Hierarchy 

Windows have two basic varieties: tiled and over­
lapping. Tiled window systems only create non­
overlapping windows. These work best for process 
control and non data intensive applications. When 
many functions and types of data may be active at 
once, overlapping windows might be desired. Over­
lapping windows layer windows as opened, one on 
another, until the application maximum. To move 
from one window to another, the user clicks on the 
edge of the desired window to bring it to the front 
of the stack. 

Windows are defined as hierarchies of objects for 
management. Figure 14-18 shows the hierarchy for 
the window components in Figure 14-17. As new 
windows are opened, a new hierarchy is built. All 
of the window hierarchies are managed by a screen 
manager which links all hierarchies. 

Windows should be set off from each other and 
from the background by thick, easily recognized 
borders. Tiled windows should provide blank space, 

if it is available, between windows. In current win­
dowed systems, the user has little choice about 
positioning of selected options for title bar and scroll 
bars, for example, but, if choice is allowed, the 
design should be consistent in all tasks. One of the 
best features of the Macintosh environment is that 
Apple Computer requires any software operating on 
the Mac to use exactly the same interface definition 
as the Apple operating system. All software seems 
familiar before it is even used. Finally, if no other 
features beyond a window space are used, scrolling 
to allow viewing of all window accessible informa­
tion should be provided. 

Window menu styles include horizontal pull­
down, Lotus-style horizontal pop-up, and vertical 
pop-up. Horizontal pull-down menus show the 
top-level selection choice across the top of the 
screen, taking the least screen space of all menu 
options (see Figure 14-19). When a menu is acti­
vated, by having the cursor moved to its location, the 



Human Interface Design 599 

FIGURE 14-19 Horizontal Pull-Down Menu Example 

second-level menu is pulled-down from the original 
entry. To make a selection, the cursor is moved to the 
desired option and activated. Activation is either 
through a return key or by pressing a mouse button. 

Lotus-style horizontal pop-up menus present a 
second level of options shown as menu items (see 

Figure 14-20). The main difference is that pop-up 
selection continues to show between pull-down and 
pop-up menus the second level actions, whereas 
pull-down menus disappear as a selection is made. 

Vertical pop-up menus are long lists that con­
tain a portion of the list in a scrollable window (see 

FIGURE 14-20 Lotus-Style Horizontal Pop-Up Menu Example 



600 CHAPTER 14 The Forgotten Analysis and Design Activities 

FIGURE 14-21 Vertical Pop-Up Menu Example 

Figure 14-21). To select an action not currently 
showing, the menu is scrolled until the desired action 
is visible. Then it is activated. Vertical pop-up menus 
also disappear once an action is activated. In Figure 
14-21, the items that would not be showing on the 
screen are in the gray area. 

There is no research on the effectiveness of these 
three types of menus. In general, though, we know 
from past research that familiarity with the interface 
type leads to greater satisfaction with the software. 
Both horizontal pull-down and Lotus-style pop-up 
screens are familiar to most PC users. Vertical pop­
ups remain useful for long lists. 

Both pull-down and vertical pop-up menus offer 
a simple means for providing expert and novice 
modes of work. Command keys can be defined for 
specific functions and shown on a menu for optional 
use (see Figure 14-22). Novices can use the menu 
without paying attention to the commands, while 
experts can learn commands as they need them, 
becoming proficient in some areas and remaining a 
novice in others. This option, plus the office desk 
metaphor that people easily relate to, make win­
dowed environments the preferred development 
screen style. 

Scrollable elements 
not shown on 
the screen 

ABC Rental Option Selection 

The ABC rental application is mostly transaction 
processing with some query processing. Both 
windows and menus are recommended for transac­
tion systems, with windowed query development 
recommended for query applications. Both graphical 
and digital presentation are recommended. If hard­
ware has not already been chosen, these recom­
mendations imply math and graphic capabilities for 
the workstations. Standard displays should be suffi­
cient unless Vic wants many graphics, in which case, 
one display should be high-resolution for graph­
ical use. 

The key screen design decision is between win­
dows and full screen menus for selection. There is no 
one best choice in this decision. When software is 
chosen before screen design, software sometimes 
dictates the interface. For instance, mainframe soft­
ware, for the most part, does not support windows 
as this text is written. The most advanced screens 
require a full-screen menu interface. Conversely, 
some PC software does not support anything but 
menu bars and windows. To use full-screen menus in 
this software is cumbersome and costly. User pref-



Human Interface Design 601 

FIGURE 14-22 Function Keys on Pull-Down Menu for Expert Use 

erence for selection tends to be strong and should 
be the deciding factor. 

Assume no software is selected yet. To give Vic 
an informed choice we should sketch both window 
and menu screen and let Vic choose which he likes 
best. To do both, we have to design the interface to 
accommodate the application. For windows, the 
menu bar should include each major entity and/or 
process. The menu bars and subchoices for ABC 
rental processing are shown in Figure 14-23. This 
design might change with software selection, such 
as dBase IV, so a sample menu bar with subchoices 
for dBase is also shown as Figure 14-24. Next, a 
hierarchic menu system is defined for contrast 
(see Figure 14-25). The hierarchy menus mirror 
the task hierarchy defined above. One menu is 
present for each activity and for its successive lev­
els of subactivities until the functional screens 
are reached. 

The recommended design uses windows. Vic 
selects windows with the Figure 14-23 menus to be 
used. He dislikes the dBase menu because none of 
the functions relate.to his applications. Finally, Vic 
requests a 'quick look' at the screens on the com­
puter to confirm his choice. 

Functional Screen Design 

Functional Screen Design Alternatives 

Once all navigation through menus or commands is 
complete, the functional level of screen is presented 
for the real work of the application. Functional level 
screen choices are direct manipulation, question and 
answer, and form filling. Direct manipulation inter­
actions are those in which the user performs an 
action directly on some display object. CAD/CAM, 
CASE, and some computer-based training (CBT) 
systems have direct manipulation interfaces. 

Question and answer (Q&A) interfaces are 
those in which progressively more focused dialogue 
takes place based on responses to preceding ques­
tions. Artificial intelligence applications and some 
CBT systems are the most common uses of the Q&A 
format. 

Form-filling interfaces are most common in 
transaction processing applications but can be 
used for any application needing to collect discrete, 
single values for variables. Form-filling interfaces 
present the user with labels and indicators of where 
data is to be entered. Users are led through the form 



602 CHAPTER 14 The Forgotten Analysis and Design Activities 

FIGURE 14-23 Menu Bar for ABC Rental Processing 

completion process by cursor movement and mes­
sages from the software. 

Functional Screen Design Guidelines 

In general, the application type determines the most 
appropriate functional screen design. Recommended 

interface designs are shown in Table 14-6 for all 
application types. Windows are the preferred method 
of selection presentation because they can be layered 
to keep track of thinking processes during long 
selection sequences, and because their pop-up action 
matches the way people think more closely than 
menus. Command languages are not preferred for 

FIGURE 14-24 dBase IV Menu Bar for ABC Rental Processing 



Human Interface Design 603 

Option 1: All Menu Choices on One Screen 

Customer 
Maintenance 

Create 
RenVReturn Update 

Delete 
Query 

Video Maintenance Periodic Processing 

Create 
End of Day 

Update 
History 

Delete Update 

Query 
Query 
Startup 
Shutdown 

Option 2: Individual Menus for Each Level of Choice 

SCR01 ABC Video mmddyy 

Rental Processing Application 

Main Menu 

Move the cursor to your choice, 
Press Enter 

Rental Processing 
Customer Maintenance 
Video Maintenance 
Periodic Processing 

F1 :Hlp F3:End 

SCR03 ABC Video mmddyy 

Rental Processing Application 
Video Maintenance Menu 

Move the cursor to your choice, 
Press Enter 

Create 
Update 
Delete 
Query 

F1 :Hlp F3:End F5: Main 

SCR02 ABC Video mmddyy 

Rental Processing Application 
Customer Maintenance Menu 

Move the cursor to your choice, 
Press Enter 

Create 
Update 
Delete 
Query 

F1 :Hlp F3:End F5: Main 

SCR04 ABC Video mmddyy 

Rental Processing Application 
Periodic Processing Menu 

Move the cursor to your choice, 
Press Enter 

End of Day 
History 
Update 
Query 
Startup 
Shutdown 

F1 :Hlp F3:End F5: Main 

FIGURE 14-25 Hierarchic Menu Set for ABC Rental Processing 



604 CHAPTER 14 The Forgotten Analysis and Design Activities 

TABLE 14-6 Interface Design by Application Type 

Application Type 

AI 

DSS and ESS 

Process Monitor/Control 

Query 

Transaction Processing 

Selection 

Window 
Menu 
Command 
Language 

Window 
Menu 

Window 

Menu 

Command 
Language 

Window 

Menu 

Command Language 

Window 

Menu 

Command Language 

DSS and ESS because the users of these applications 
are usually managers who should not be expected to 
know a command language. DSS and ESS may be 
used infrequently and the interface should chauffeur 
and lead the user as much as possible. Command 
languages are the third choice for all application 
types because they assume expert level knowledge 
both of the task and of the computer system doing 

Function 

Q&A 
Fonn 

Fonns 
Windows 

Analog display 

Mimic display for 
multi valued or 
multidimensional 
data 

Digital display for 
specific numbers with 
symbols, numbers or 
indicators (e.g., alert) 

Command Language 

Direct Manipulation 

Window 

Fonn 

Command Language 

Fonns 

Display 

Text short answer is usual 
display; could also include 
graphic results. 

Graphical-bar column, point 
plot 

Digital 

Need help and cautionary 
comments for inappropriate 
output fonn use. 

N/A 

Graphical-bar column, or 
point plot 

Digital 

Fonns 

the task. Ideally, a combination of windows with 
optional expert commands should be provided. 

For transaction applications, forms completion 
screens are preferred for functional processing. 
Q&A is much less efficient for transaction applica­
tions (TPS) than forms because line-by-line entry 
takes longer and is fatiguing. Direct manipUlation is 
inappropriate for TPS. 



For query applications, all options can be used for 
selection and query generation. Query generation is 
the functional processing in a query application. For 
query generation, windows with query criteria are 
preferred. For experts, direct command language use 
is preferred. Query results can use graphical or digi­
tal styles of presentation. 

DSS and ESS should use a consistent interface 
until data results are presented. Either window 
selection with window request formulation or menu 
selection with form request formulation are recom­
mended. Results screens can combine any graphic 
and digital presentation styles, although warning 
messages for inappropriate display selections might 
be desirable. 

Artificial language applications usually result in a 
Q&A format. Each AI language environment uses 
its own method. For instance, Turbo Prolog TM4 uses 
a combination of windows and command language 
to initiate processing. A text answer which may have 
an associated probability of correctness is the usual 
AI output. Some AI language environments also 
support limited graphical display. 

Last, in process control applications, the func­
tional display is the results display. Analog, mimic, 
and graphical display are all common in process 
control, sometimes on the same screen. The display 
usually has a command line at the bottom of the 
screen. Commands are limited to requesting addi­
tional information about a certain measurement or 
part of the system being monitored, or requesting a 
different display. The most flexibility and sophisti­
cation of design are required in process control ap­
plications because they are most likely to be critical 
in terms of having life-sustaining responsibility. 

ABC Functional Screen Selection 

ABC rental processing is a TPS and will use forms 
for the data entry functions. The forms screens for 
data entry include rental, return, customer mainte­
nance, video maintenance, periodic, and query 
selection processing. These screens should not 
change regardless of which option selection inter-

4 Turbo Prolog is a trademarked product of Borland 
International. 

Human Interface Design 605 

face is selected. Therefore, they could be designed at 
the same time the general interface is being decided. 
In any case, the forms screens should be presented to 
Vic to get general comments and to correct any 
design he might dislike before a prototype is built. 

Presentation Format Design 
Once the general form of the interface is decided, 
details of display are decided. The first set of choices 
are for data presentation based on the type of data. 
The second set of choices are for specific field for­
mats. Presentation format describes the method of 
displaying data on a screen. 

Presentation Fonnat Design Alternatives 

The options for presentation format include analog, 
digital, binary graphic, bar chart, column chart, point 
plot, pattern display, mimic display, text, and text 
forms. 

ANALOG. Analog displays are for continuously 
variable data (see Figure 14-26) and are usually used 
in direct manipulation interfaces. Analog displays 
use a pointer of some kind to show a position that is 
analogous to a value the position represents. Ana­
log displays all should have a scale, pointer, a di­
rection indicator of increasing/decreasing measure, 
and an indicator of normal/abnormal measures (see 
Figure 14-26). For instance, analog display is effec­
tive for the pounds per square inch of pressure (psi) 
to show a measure of exerted force. Another exam­
ple from manufacturing is the continuous flow of 
various densities of oil from a cracking plant which 
is effectively conveyed via analog display. 

The scale is a numeric indicator of the item mea­
sures. A pointer indicates the current position on the 
scale. Pointers might be arrowheads or needles and 
may be fixed or moving. The indicator of increas­
ing/decreasing direction is usually a combination of 
arrows and text to indicate the meaning of direction 
of pointer movement. Normal and abnormal mea­
sures can be indicated by a shaded section of the 
scale, different colors to scale numbers, a change in 
color of the pointer, a tone for abnormal measures, or 



606 CHAPTER 14 The Forgotten Analysis and Design Activities 

Numeric Scale, Normal Range 
Indicated, Arrow Moves 

FIGURE 14-26 Examples of Analog Displays 

some means of showing expected and unexpected 
numbers. 

The guidelines for analog displays are summa­
rized as follows: 

Display Contents 
Scale to which the measure applies 
Pointer to indicate position on the scale 
Indicator of increasing/decreasing direction 
Normal/abnormal measures indicated 

Display Design 
Use conventional user mental model of item 
Use moving points on fixed scales 
Use same analog design for all analog 

measures on display 
Use design method~ircular scale or open, 

partial circle scale-to facilitate user 
recognition 

Usage 
Rate of change 
Range of values for continuous data 
Determine acceptable operation 

In general, the most effective displays fit the users' 
mental model of the measure, use moving pointers 
on fixed scales, and are consistently designed when 
more than one analog measure is used. If numeric 
analog values must be tracked, a semicircular open 
scale using a fixed pointer with a moving scale 
allows faster numeric recognition. 

Analog displays are best used for monitoring rate 
of change, monitoring a range of analog values, or 

Changeinlasthour:+.2 

Partial Circle, Numeric Scale, 
Amount and Direction of Change 
Shown, Arrow Moves 

for determining ranges of acceptable operation. 
Examples of rate of change are the flow of oils 
in a cracking plant or the voltage fluctuation 
in cables. A monitoring example is a speedometer 
for speed limit. Pressure gauges in a nuclear power 
plant or bond ratings selections that must fall within 
company guidelines are examples of ranges of 
operation. 

DIGITAL. A digital display is used to convey 
exact numerical information. Digital displays are 
most effective when used for variables that have one 
value at a time. Each value requires a label to iden­
tify the data value. 

Guidelines for digital data and an example are 
shown in Table 14-7. In general, only that data of 
required precision for accuracy should be displayed. 
Field size should provide for the maximum and min­
imum values. If data displayed changes frequently, 
as in a stock trading application, the data should 
stay on the screen long enough for comprehension, 
about five seconds, before being changed. If the user 
is monitoring change, an arrow, plus/minus signs, 
or other indicator of direction of change might 
be shown. 

BINARY. Binary means having two parts. A 
binary display shows some graphic to indicate a 
two-value selection option. Usually, we think of 
binary items as having on-off, or yes-no, or zero­
one values. 



TABLE 14-7 Guidelines and Example of 
Digital and Binary Data 

Display Contents: 
a. 'Y' or 'N' or other character 
b. 0 or· 
c. 'On' or 'Off' 
d. lor 0 (One or zero) or other numerals 
e. -J or blank 

Display Design 
If text form, use contents a, c, or d above 
If analog display, use bore 
If in a menu list, use b or e 

Usage 
To indicate an item that is 'turned on' or 'turned off' 

Human Interface Design 607 

correspond to the values of related variables (see 
Figure 14-28), 

By convention, bar charts show increases in value 
as the chart is read left to right. Bar charts are effec­
tively used to show task plans over time, percentage 
of task completion, comparisons of item values (i.e., 
item 1 value vs. item 2 value), and cyclic data (e.g., 
product sales over a fixed period). In business 
applications, bar charts are rarely used on screens 
with other graphic displays; they are generated by 
applications as summary output for managers, and 
can be easily generated on-line by many software 
packages. 

To indicate a two position setting COLUMN CHART. A column chart is a bar 

Example of digital time display 

Binary interface information can be presented 
using text or graphics in several ways (see Figure 
14-27). The binary item can be displayed in text 
using the words yes-no or on-off, or with letters 'y', 
'n'. A menu can list the option with a check mark to 
indicate an 'on' condition, A graphical button, or 
circle, can be used-when the button is empty, the 
item is not on; when the button is filled in, the item 
is on. 

By itself, binary indicator selection may not be a 
major decision. It becomes important when used 
with other information on the screen at the same 
time. If used in a menu, a check mark, change of 
color intensity, or change of color can all be used to 
effectively indicate an 'on' condition without using 
any extra characters. If used within a line of text, text 
presentation (e.g., 'y' or 'n') is more effective. 

BAR CHART. A bar chart summarizes numeric 
data as one or more horizontal bars whose lengths 

chart using vertical bars rather than horizontal ones. 
Bar charts are most often used when time is a fixed 
period (or is not relevant). Column charts are most 
often used when time varies and is shown on the 
x-axis (across the bottom), For instance, cyclic data 
is most effective in a bar chart when comparing 
a fixed period (see Figure 14-29). When compar­
ing cyclic data over periods, a column chart is 
more effective. 

The general rule is to use column charts for mul­
tiple time periods, to compare different items on the 
same scale, or for consistency with cultural conven­
tions which assume a vertical scale (e.g., plotting 
temperatures, times, revenues, sales). 

POINT PLOT. A point plot is a column chart that 
shows the x-y points on the diagram with or without 
a line connecting them (see Figure 14-30). Point 
plots might have trend lines generated to show the 
direction of change. A band chart is a special type 
of point plot that plots several variables on the same 
diagram. Band charts use shaded areas of the dia­
gram to show variable participation. Bar charts are 
most effective for showing cumulative variable par­
ticipation or percentage of participation of each vari­
able (see Figure 14-31). 

PATTERN DISPLAY. Pattern recognition is a 
human strength. When designing displays that are 
monitored for change in complex systems, patterns 



608 CHAPTER 14 The Forgotten Analysis and Design Activities 

Example of Alphabetic Listing Using YIN Indicators 

Name Sex Married? Deceased? 
Jones, Sandra 
Andrews, Darcy 
Lane, Bruce 

F 
F 
M 

N 
Y 
Y 

Example of Menu List 
Using' or Blank Indicators 

10 Pt. 
12 Pt. 

·14 Pt. 

Cairo 
Helvetica 

• New Century 
Times Roman 

N 
Y 
Y 

FIGURE 14-27 Examples of Binary Indicators 

are effective. Pattern displays repeat the same 
graphic several times with identical 'normal' dis­
plays (see Figure 14-32a). When a change to one 
portion of the pattern occurs (see Figure 14-32b), it 
is easily perceived by users. These are not very 
common in business applications. 

John 

Jane 

Marsha 

MIMIC DISPLAY. A mimic display shows a 
schematic or other replica of a system to allow the 
user to monitor its functioning (see Figure 14-33). 
Because mimic displays are usually symbolizing 
complex systems, the information presented should 
be kept to a minimum needed to control, monitor, 

8 10, 12 14 16 18 20 

Years of Education 

FIGURE 14-28 Example of Bar Chart 



Blue Jeans 

Sweaters 

T-Shirts 

20MM 

15MM 

10MM 

5MM 

Legend: 
1:::1 T-Shirts 

1:::::::::::::::::1 Sweaters 

1:::::::::::::::::1 Blue Jeans 

Bar Chart of Sales Data 
by Product for Month of 

September, 1993 

5MM 10MM 15MM 

Column Chart of Sales Data 

Sept. Oct. Nov. 

FIGURE 14-29 Bar and Column Charts of 
Sales Data 

or obtain information needed. The symbols, spacing, 
and relative sizes of symbols used in the display 
should conform to business conventions to convey 
immediately meaningful information. For example, 
Figure 14-33 shows an electrical diagram, not a 
plumbing diagram; therefore, the users should be 
electricians or electrical engineers. 

Mimic displays are best used when a monitoring 
application requires a view of the whole system. 

Human Interface Design 609 

They provide understanding of system component 
relationships and can be more easily understood than 
other types of graphics for the same information. 
Colors can be used to highlight abnormal function­
ing of components. In business applications, mimic 
displays are effective for monitoring network com­
ponents, telecommunication linkages between net­
works, and even for tracking problems in application 
interfaces. 

NARRATIVE TEXT. Text is verbiage in which 
words, rather than numbers or symbols, are used to 
describe the intended information. Text is hard 
to read, time consuming to understand, and requires 
a high skill level of the user. Ideally, text is mini­
mized; but some applications require comments or 
special, noncodable instructions that must be in 
text format. Some guidelines for text usage are the 
following: 

• Use no more than 60 characters per 80 charac­
ter line. 

• Wrap text as a word processor does. Do not 
require the user to change lines. 

• Use abbreviations common to the work con­
text, and use abbreviations sparingly. 

• Allow users to scroll, change paragraphs, and 
control the text creation process. 

TEXT FORMS. One of the major uses of displays 
in business applications is for data entry that corre­
sponds to a form. Form screens present a series of 
labeled fields of information for which some infor­
mation is completed by the user and some informa­
tion is generated by the application. Forms screens 
simulate paper forms that they replace or automate. 
Because forms automate information from paper, 
the format, sequence, spacing, and information to 
be completed should mirror that of the analogous 
paper form. 

Forms screens should have standard header, 
instruction, body, and footer information that differs 
from the general screen format (see Figure 14-34). 
The different areas should be clearly delineated, 
grouping information that is related (e.g., the header) 
or that repeats. The header should contain an appli­
cation identifier, function identifier, date, time, and a 



610 CHAPTER 14 The Forgotten Analysis and Design Activities 

Connected Line Plot 
Sales 
By Month LfL;. 

JFMAMJJASOND 

Sales Unconnected Line Plot 

By Month 

JFMAMJJASOND 

Sales By Month 
By Location 

FIGURE 14-30 Example of Point Plots 

screen/program ID as discussed above, The header 
may be the same as the general screen header. 

The instructions can be in the form of screen text, 
help availability, or a short description of expected 
action. As much as possible, the screen should pro­
vide intuitive guidance. Instructions should lead the 
user to supply information to get to the next step. 

The body of a form contains the labeled fields 
to be entered in an easily understood, contextually 
related format. The footer should provide screen 

Trend Line 
Shows Average 

Change 

1\, /' 
: .. ' -'_. 

JFMAMJJASOND 

summary totals or other summarizing informations. 
Footers and instructions are optional. The body, 
then, is the main focus of attention. 

The body of the form should be partitioned or 
windowed to mirror sections of data to be entered 
(see Figure 14-35), The screen in Figure 14-35 
shows a simple Customer Add screen for ABC 
Video, All information relates to the customer and 
there is no additional family metp.ber information in 
the application. If additional family members are 



Human Interface Design 611 

$100MM Cumulative Revenue By Product 

$75MM 

$50MM 

$25MM 

T-Shirts Sweaters Blue Jeans 

FIGURE 14-31 Example of Band Chart 

added to the membership, the Customer Add screen 
might look like Figure 14-36 which shows two sec­
tions, one for general customer information and one 
for additional family members. 

Each field or group of fields should be clearly 
labeled to identify the required information. Cus­
tomer preferences are needed to design identification 
for some fields. For instance, three variations of 
name and address information are shown in Figure 
14-37; all three conform to different, good design 

a. Normal Pattern Display for 100 Indicators 

00000 00000 00000 00000 00000 

00000 00000 00000 00000 00000 

00000 00000 00000 00000 00000 

00000 00000 00000 00000 00000 

b. Abnormal Pattern Display for Several of 100 Indicators 

00000 00000 00000 00000 00000 

0000. 00000 00000 00000 00000 

00000 00000 00000 00000 00000 

00000 00000 00000 0000. 00000 

FIGURE 14-32 Normal (a) and Abnormal (b) 
Pattern Displays 

guidelines. The first variation shows each field 
labeled. The second shows major fields labeled and 
minor fields with understood labels. The third shows 
one heading for all fields; this heading minimizes the 
text on the screen. No one of these is preferred over 
the others. Rather, the customer should be allowed to 
choose the preferred design. 

Labels, and any codes designed as well, should be 
designed to be familiar, less than five characters 
long, and include letters and numbers. For instance, 
Figure 14-38 shows four possible codes for a Cus­
tomer ID. The first alternative, 913-8041, is a phone 
number. It is low in recognition for the clerks in the 
store, but the highest of any choice for the customer. 
Who doesn't know their own phone number? For 
that reason, high customer recognition, a phone 
number, is a good choice for Customer ID. 

The second choice, CONG001, is a combination 
alpha and numeric code. The first four characters are 
the first four letters of a last name and the last three 
characters are a sequential number. This is also high 
in recognition for both customers and clerks. It is 
less recognizable than a phone number, but a good 
choice in any case. The next code, 03001 uses '03' to 
denote 'C' and a sequential number '001' to denote 
sequence within the Cs. The purely numeric code is 



612 CHAPTER 14 The Forgotten Analysis and Design Activities 

00 

~ 
Connections that can fail are exaggerated to ease monitoring. 

FIGURE 14-33 Mimic Display for Electrical Monitoring System 

cryptic but short. It is less useful than the first two 
choices. 

Text information, such as names, should always 
be left-justified. Ideally, they should be long enough 

Header 

f-----
Instructions 

Body 

Totals 

f----------------
Footer 

FIGURE 14-34 Sections of a Form Screen 

to provide for the maximum length of the informa­
tion. This is difficult with names, especially hyphen­
ated names. Each application defines its own 
maximum; but, in general, over 90% of names in the 
United States are shorter than 35 characters. If disk 
storage space is tight, shortening fixed-length text 
fields is one way to conserve space; another is to 
define a variable length field that does not store 
unused spaces. 

After the individual labels, fields, and field codes 
are defined, the next task is to position them on the 
screen. The design is context related and should 
group fields that logically go together. From cogni­
tive psychology research we know human brain 
capacity is limited to holding 5-7 bits of information 
called 'chunks' in our short-term memories. Short­
term memory (STM), also called 'active' memory, 
is what is in your head while you are thinking. STM 
is measured in nanoseconds of response time for 
processing and is analogous to the arithmetic/logic 
unit (ALU) on a computer where all processing takes 
place. In designing presentation formats, we try to 
group items to take advantage of the chunking phe­
nomenon. For instance, in the Customer Add screen 



ScrCM1 ABC Video Rental Processing 12/12/93 
Customer Maintenance 2:30:15 

Create a Customer 

Name: ____ _ 
Address: ____ _ 

City: ___ St: _ Zip: __ 

Credit Card Type: _ (A, V, M) 

Credit Card Number: ____ _ 

Expiration Date: _ / _ /_ 

F1 :Hlp F3:Quit F5:Undo F6:End Ent F7:Save 
Tab:Nxt "Tab:Last ESC:Del Ent 

FIGU RE 14-35 Customer Add Screen 

in Figure 14-35 above, address and credit card 
infonnation fonn two natural groupings of infonna­
tion that should be on the screen as a group. Another 
aspect of short-term memory chunking is to posi­
tion required fields first, followed by optional fields. 
This placement should allow users to signal com-

ScrCM1 ABC Video Rental Processing 12/12193 
Customer Maintenance 2:30:15 

Create a Customer 

Customer Number: aaa999 
Name: ____ _ 

Address: ___________ _ 
City: ___ St: Zip: __ 

Credit Card Type: (A, V,M) 

Number: -----

Date: _I - 1_ 

Additional Members: 
First Name Last (if Different) 

F1 :Hlp F3:Quit F5:Undo F6:End Ent F7:Save 
Tab:Nxt JITab:Last ESC:Del Ent 

FIGURE 14-36 Customer Add Screen with 
Additional Family Members 

Human Interface Design 613 

pletion of data entry without having to tab through or 
touch unneeded fields. 

We must also account for long-tenn memory pro­
cessing in screen design. Long-term memory is 
what is stored in your brain, similar to disk storage 
for a computer. Retrieval of stored infonnation uses 
a schema, or mental model" of what are effectively 
primary and secondary keys for retrieving infonna­
tion. Retrieval time is measured in 100s of millisec­
onds or slower. When chunking cannot be done, 
screen items should be spatially separated to allow 
users to switch contexts as they move their eyes 
from one section of the screen to another. 

When positioning information on screens, you 
should also consider possible reusability for screens. 
For instance, the Customer Add screen above could 
also be used for delete verification, updating, and 
individual customer query. 

When positioning is complete, each screen should 
be given a system name that is added to the task 
hierarchy to relate screens to tasks. 

It used to be thought that the shortest possible ter­
minal interaction time was desirable, but this is not 
true any more. Research shows that we need to pace 
work so that 'psychic overload' does not occur. 
Chunking items for data entry that logically go 
together is one way of pacing work. Another is in 
pacing the response time for different types of work. 
Long transactions can take a relatively long time, 
up to 20 seconds, while short transactions should 
take a short time, less than five seconds. Keystroke 
response is a simple, direct interaction and should 
have immediate response from the computer. A 
query, request to activate a function, and selection 
of a menu item are all examples of simple interac­
tions. Examples of complex interactions are a data­
base update, saving a word-processed document, or 
sending a facsimile transmission of several pages. 
Delays of up to 20 seconds are acceptable if the user 
is kept informed on the status of the processing. 
Some methods of telling the user the system is work­
ing are a message, ' ... Working . .. ', a clock icon 
with hand movement synchronized to different per­
centages of completion, or a whirring sound from the 
equipment. 

Other field definitions for forms relate to char­
acter entry and default values. Guidelines for 



614 CHAPTER 14 The Forgotten Analysis and Design Activities 

a.) All Fields Labeled 

Last Name: ________ First: _____ _ 

Address: _______ _ 

City: _____ State: Zip: __ -__ 

b.) Major Fields Labeled 

Name: ___________ _ 

Address: ___________ _ 

---------

c.) One Heading, All Fields 

Name and Address 

---------

FIGURE 14-37 Label Variations for Name and Address Information 

character entry are listed below; examples of field 
guidelines are shown in Table 14-8. 

• Always display keyed information. 
• Never require delimiters to be keyed. For 

instance, in a social security number, provide 
dashes to split the numeric parts: xxx-xx-xxxx. 

• Do not require entry of leading zeros for nu­
meric fields or of following blanks for text 
fields. 

• Make areas of the screen not used for input 
inaccessible to the user. 

Guidelines for default values are: 

• Display all defaults before any data entry 
begins. 

• Confirm defaults by tabbing past the field. 
• Default replacement should not alter current 

default value. For instance, if the default date 
is today's date, and the operator places yester-



a.) Customer 10 is Phone Number 

913-8041 

b.) Customer 10 is Alphanumeric Code 

I CONG001 I 

c.) Customer 10 is Numeric 

03001 

FIGURE 14-38 Variations for Customer ID 
Code 

day's date in the field, the next transaction 
should still have the default of today's date. 

ABC Rental Presentation Format 

First, design the standard interface for all functional 
screens in the application. This should include 
header, date, time, screen ID, and program ID (see 
Figure 14-39). 

Next, design the keys for navigation, error cor­
rection, and help and design the footer to identify 
them and their functions. The standard used here is 
fairly common. Program keys and their meanings are 
shown in Figure 14-40. 

We need to know when a portion of processing 
is done, for instance, when returns are complete 
(F6), and we need to know when the transaction is 
complete for inputting the total amount paid (F6). 
The F8-Fll functions are used for retrieval and 
query processing to browse through multiscreen out­
put (F8-F9) that is longer than 80 characters (F10-
F 11). The other keys are for changing actions during 
data entry. 

The designations for F1, F3, and F8 through 
Escape (ESC) are IBM standards that have been fol­
lowed by many PC applications. The remaining 
keys: F2, F4-F7 are open to definition. F2 and F4 are 
not used here and can be used for future changes. We 
could have assigned the End Entry type and End 

Human Interface Design 615 

Transaction functions to F2 and F4 as easily as to 
F6 and F7 (see Figure 14-40). F2 and F4 are not used 
to minimize the probability of hitting the wrong key 
and canceling a good transaction. If either of these 
keys is pressed accidentally, it should have no effect. 

Finally, we design the detail form screen for 
rental/return processing. The periodic processing 
and customer and video maintenance screens are left 
as assignments at the end of the chapter. Rental/ 
return processing includes chunks for Customer 
information, Open Rental information, New Rental 
information, and Payment information. Correspond­
ing to the chunks of information, the screen can be 
thought of as having four sections. The middle two 
sections are identical except that New Rentals cannot 
have return dates, late fees, or other fees applied. 
So, we design three different sections. Each section 
is designed separately, keeping in mind that there are 
20 usable lines on the screen and that we want about 
75% blank space. For this screen design, we assume 
a screen size of 24 lines by 80 characters per line. 

The sections of screen information should be pri­
oritized for condensation and crowding if it becomes 
necessary. For ABC rental processing, the priorities 
are highest to lowest: rentals, payment information, 
returns, and customer. Since new rentals are generat­
ing the payment information, they are most impor­
tant. Payment information is second because it must 
be accurate and easily understood for the clerk to 
handle money properly. Returns are a low priority 
here because 90% of returns are on time; Customer 
information is only important for the clerk to verify 
the customer name. If necessary, the remaining cus­
tomer information could be condensed onto one line 
for display. 

The first section of the screen is for Customer 
information. The information to be included is name, 
address, city, state, zip, phone number, and credit 
status. 

The first issue to be decided is what type of field 
labels to use. For example, the options for Customer 
are individual field identifiers, only a Customer 
identifier, or some combination of the two (see 
Figure 14-41). To minimize information on the 
screen, we use only the word Customer (Option 2, 
Figure 14-41). This also makes sense since the Cus­
tomer ID probably is to be scanned to minimize data 



616 CHAPTER 14 The Forgotten Analysis and Design Activities 

TABLE 14-8 Field Fonnat Guidelines 

Content 

Do not intersperse letters and numbers 

Use alpha mnemonics that are meaningful, 
predictable, easy to remember, distinct 

Try not to mix special characters with 
letters and numbers 

Break long codes into groups of three 
and four digits 

Do not use frequently confused letters 
in codes 

Identify maximum number of spaces for 
item data entry; replace space marker 
as data is entered. 

Labels 

Use abbreviations and contractions 

Try to keep labels less than eight 
characters long 

Design abbreviations to be less than 
five characters 

Separate mnemonics by hyphens 

Place label to left of single occurrence field 

Place label over column of repeating 
information 

Poor Design 

A1B1C1 

ZXCVB001 

User types: 
$123.45 

277426631 

oandO 
1 and I 

Enter Vid-ID 

Poor Design 

Video Identification 

Customer name and 
and address 

Ident 

VidlD 

Name: 
Sam Jones 

Name: Sam 
Gerry 
Leonard 
Jesus 

Better Design 

ABC001 

VideoOOl 

Pre formatted 

$--_. --
User types: 12345 

277-42-6639 

Use zero, 0, only 
Use one, 1, only 

Enter Vid-ID: ____ _ 
after three char. 
Vid-ID:123 

Better Design 

Video ID 

Customer: 

ID 

Vid-ID 

Name: Sam Jones 

Name: 
Sam 
Gerry 
Leonard 
Jesus 

entry and the Customer information is displayed 
automatically. 

The second issue is format of the information. 

inducement to keep it the same. Unless screen space 
is a major problem, the post office format will 
be kept. 

The options in Figure 14-41 all follow a conven­
tional post office address format. The address need 
not be formatted in that manner, but the high recog­
nizability of addresses in this format is a strong 

Two fields remain: Customer ID and Credit Sta­
tus. Customer ID is an important field as the identi­
fier of the information and should be positioned in a 
way that highlights its presence. Conversely, Credit 



TABLE 14-8 Field Fonnat Guidelines (Continued) 

Error Messages 

Use upper and lower case if possible 

Only use asterisks in extreme situations 

Error IDs should be in a consistent 
location 

Should be brief 

Should be positive 

Should be constructive 

Should be specific 

Should be comprehensible 

Should allow the user to feel as if they 
control the system rather than the 
system controlling them. 

Provide levels of messages with less 
detail for error message and more 
detail for requested help. 

Poor Design 

ALL UPPER CASE 
IS DIFFICULT 
TO READ 

*****This ***** 
is *****very ***** 
distracting *****. 

PFOO 1 Error 00 1 
Error 002 PF002 

Numerics were expected 
by the application but you 
entered some nonnumeric 
information. 

You entered an illegal date 
format. 

You idiot! This mistake 
should NEVER occur. 

Illegal entry or ? 

FACDB 
29081230123 

? 

Human Interface Design 617 

Better Design 

Mixed case is preferred to 
enhance readability. 

*****ALERT***** 
The database may have 
been destroyed. 

PFOO 1 Error 001 
PF002 Error 002 

Numerics expected. 

Enter date format 
mm/dd/yy 

Reconstruct database and 
begin again. 

Enter data format 
mm/dd/yy 

Database error. 
Call the DBA at x3456. 

To undo, press F5. 

Status is only important when it is the cause of a can­
celed request. So, Credit Status needs some sort of 
'alert' design but, otherwise, can be positioned to 
conserve space. Several alternatives for Customer ID 
and Credit Status formats are shown in Figure 14-42. 
All alternatives are acceptable; the third option is 
selected because it minimizes labels and has credit in 

an easy-to-spot location-the upper right comer of 
the screen. 

The second section of the screen is for Open 
Rentals information. The information needed on 
the screen includes Video ID, Copy ID, Descrip­
tion, Rental Prices, Rental Date, Return Date, Late 
Fees, and Other Fees. By convention, a typical bill, 



618 CHAPTER 14 The Forgotten Analysis and Design Activities 

Screen 10. . mm/ddlyy 
ABC Video Rental Processing hh:mm:ss 

Activity Name 
Screen Function 

Body 

~-------------
Allowable Function Keys 

FIGURE 14-39 Standard for ABC Video 
Functional Screens 

invoice, purchase order, or shipping papers list the 
item identifier followed by its description. We follow 
this convention for ABC. Two basic alternatives for 
fees and dates are shown in Figure 14-43. Since the 
same line design will be used for the New Rentals 
screen section, the alternatives as they would display 
for new rentals are also shown. 

F1 
F2 
F3 
F4 
F5 
F6 
F7 
Fa 
F9 

F10 
F11 
DEL 
ESC 
TAB 

ShiftlTab 

Functions 

Help 
Not Used 
Quit/No Save 
Not Used 
Undo Last Entry 
End Entry 
End Trans/Save 
Page Forward 
Page Back 
Shift Page Right 
Shift Page Left 
Delete Character 
DEUCancel Field 
Go to Next Field 
Go To Last Field 

FIGURE 14-40 Program Keys and Functions 

The alternative which is easier to read and un­
derstand should be selected. If neither is obviously 
easier to read, the user should be consulted. The 
choice here is the first alternative. Keeping the dates 
together allows fast understanding of a tape's late­
ness, while keeping the rental information and return 
information separate allows fast understanding of 
rental fees owing. Vic has stated that no rentals are 
made without payment of rental fees, so the second 
option loses some appeal. The first option is selected 
then on the basis of keeping like things together­
dates with dates and money with money. When 
returns are processed, the default of today's date 
should be placed in the Return Date field. 

The third section of the screen is for New Rentals 
information. For this section, we use the Open 
Rentals line definitions and blank out the fields 
for return dates, late fees, and other fees (Figure 
14-43a). A default of today's date should be placed 
in the Rental Date field. The only issue is how many 
tapes should a customer be allowed to rent at anyone 
time. There are arguments for any number one can 
select and they all are determined by opinion. There­
fore, Vic should select the number of allowable tapes 
out on rent at anyone time. 

When asked, Vic wants no restrictions at first. 
Then, he reconsiders. "If I allow unlimited tapes, 
someone could theoretically give me a stolen credit 
card as identification, rent many tapes, leave town, 
and I'm out the tapes. Maybe I should limit the num­
ber. But, one or two does not seem enough. What if 
they are short, like music videos? What if they want 
to watch movies all day? Why should I stop them? 
Hmmmm. I think someplace between 10 and 20 is 
probably okay because most people would never 
rent that many. My biggest customer is George 
Anderson and he takes out about six tapes at a time. 
So, I guess 10 is a reasonable limit." 

With ten tapes as the limit, the screen needs no 
scrolling because all information will fit on one 
screen. Because this choice turns out to be an 
important design decision, Vic should be reconsulted 
and told that scrolling will not be available for rent/ 
return processing. If he chooses to change the num­
ber, or asks for scrolling, it should be provided. 

The fourth section of the screen is for Payment 
information. For payments, the fields are the Total 



Human Interface Design 619 

a.) Label Each Field 

Customer Name: ___________ _ 
Address: ___________ _ 

City: ______ St: Zip: __ - __ 

b.) Customer Only 

Customer: 

FIGURE 14-41 Customer Name Screen Options 

Amount Due, Total Amount Paid, and Change. These 
could be on one line, two lines, or three lines as 
shown in Figure 14-44. 

The choices for payment should be first, readabil­
ity and understandability, and second, space avail­
able. For ABC, all infoffi1ation can fit on the screen 
with three-line spacing and still have room left over. 
So, the last alternative (Figure 14-44c) is selected 
as most easily read. The money fields should be 

a.) Label Each Field, Position on Same Line for Easy Location 10 

Customer 10: Credit: 
Name: ___________ _ 

Address: ______ --=--_---=-,--__ 
City: ______ St: Zip: __ - __ 

b.) Label Each Field, Position Separately 

Customer 10: 
Name: ______ _ ____ _ 

Address: ______ --=--_---= __ _ 
City: ______ St: Zip: __ - __ 

Credit: 

---I 
right-justified with one set of numbers on the rental! 
return lines. The title fields should be right-justified 
for the group of three lines. 

Last, we consider placement of the entire screen 
in the blank area between the standard screen header 
and footer. So far we have 22 lines accounted for in 
the rental screen: two standard header, one screen 
header, two footer, four customer, ten rent/return, 
two rent/return header, and three total lines. There 

c.) Minimal Labels, Position on Same Line 

Customer: 

-~I 
d.) Minimal Labels, Identify Main Fields 

Customer: ---

Credit: _ 

FIGURE 14-42 Alternatives for Customer ID and Credit Status 



620 CHAPTER 14 The Forgotten Analysis and Design Activities 

Alternative A. Dates First, Fees Second 

Video Copy Rental Return Rent Late Other 
10 # Description Date Date Fees Fees Fees 

xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 99/99/99 99/99/99 99.99 99.99 99.99 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 99/99/99 99.99 

Alternative B. Rental Information First, Return and Extra Fees Second 

Video Copy Rental Rent Return Late Other 
ID # Description Date Fees Date Fees Fees 

xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 99/99/99 99.99 99/99/99 99.99 99.99 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 99/99/99 99.99 

FIGURE 14-43 Alternatives for Dates and Fees 

are no extra lines on the screen (see Figure 14-45). 
Ideally, one blank line should separate the header 
and footer from the body. Also, one blank line is de­
sired to separate the rental/return information from 
customer information. To provide blank lines, we 
either delete a header line or change the arrangement 
of information on the screen. According to our pri-
0rities' customer information should be condensed 
onto fewer lines to gain the blank lines. The Cus­
tomer ID can be added to the customer name line 

A. One line 

Total Due 999.99 Total Paid 999.99 Change 999.99 

B. Two lines 

Total Due 999.99 Total Paid 999.99 
Change 999.99 

C. Three lines 

Total Due 999.99 
Total Paid 999.99 
Change 999.99 

FIGURE 14-44 Alternatives for Payment 
Information 

and given its own label to specifically identify it 
(Figure 14-46a). This makes reading the Customer 
ID somewhat more difficult but adds to the readabil­
ity of the rental information. A better choice is to 
redesign the standard header and make it two lines, 
with the second line identifying the function, and 
only display function keys available and use one 
line. This screen (Figure 14-46b) is preferred and 
recommended. In the end, Vic should select his pre­
ferred screen and it should be the final design. Vic 
selected the recommended screen for the same rea­
sons that informed its design. 

Field Format Design 
Field Fonnat Alternatives 

Field format design selects the characteristics of 
individual fields or values of fields on a screen. The 
alternatives for field format design include size, font, 
style, color, and blink for individual field values, and 
include coding options for field labels. 

SIZE. Size is an issue in field attribute definition 
when it is selectable. For many software platforms, 
the size, spacing, and selection of characters is fixed 
within the application. Size of characters is mea-



Human Interface Design 621 

SCRR01 ABC Video Rental Processing 
Rent/Return Processing 

Rentals and Returns 

12/02/94 
02:03:15 

Customer: #Xxx999 
xxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxx, xx 99999 

Video Copy 
10 # Description 

xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxx xx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Rental 
Date 

99/99/99 
99/99/99 
99/99/99 
99/99/99 
99/99/99 
99/99/99 
99/99/99 
99/99/99 
99/99/99 
99/99/99 

Cr: x 

Return Rent Late Other 
Date Fees Fees Fees 

99/99/99 99.99 99.99 99.99 

99/99/99 99.99 99.99 99.99 

99/99/99 99.99 99.99 99.99 
99/99/99 99.99 99.99 99.99 
99/99/99 99.99 99.99 99.99 

99.99 
99.99 
99.99 
99.99 
99.99 

Total Due: 999.99 
Amount Paid: 999.99 

Change: 999.99 

F1: Hlp F3: Quit F5: Undo F6: End Ent F7: End Trans F8: Pg Up F9: Pg On F1 0: Sh R F11: Sh L 
Tab: Nxt Fld "Tab: Lst Fld ESC: Cncl 

FIGURE 14-45 Alternative 1 for ABC Rental Screen 

sured in points. A point is a measure of type that is 
approximately 1/72 of an inch (about 2.8 mm). In 
general, the size of characters should be no less than 
10 points and no more than 14 points unless an alert 
or alarm situation is being shown. These sizes are in 
the range of normal printed point sizes for display 
processing. An example of the range of point sizes is 
shown in Figure 14-47. 

The default in most applications is 12-point type. 
As you can see from Figure 14-47, the larger the 
point size, the fewer characters fit on a screen. At 
18 inches, the minimum point size should be about 
9 and a comfortable point size is 12. The further 
away from the screen the user is, the larger the point 
size should be. At 30 inches, the minimum point size 
should be 10 points and either 12 or 14 points print 
size are acceptable. At 10 feet, the size should be 
about 72 points, or one inch. 

FONT. Most software applications have a fixed 
default for type font as well as type size. Most 
applications default to a serif style such as that used 
in this text. A serif font has been proven easier to 
read and faster to comprehend than a sans-serif style 
such as this. If fonts are selectable, the rule of thumb 
is to select one or, at most, two fonts and use them 
consistently throughout the application for obvious 
distinctions. For instance, use one font for all field 
labels and another font for all information entered by 
the application user. Do not mix fonts for the same 
purposes or users will get confused and error rates 
will increase. 

STYLE. Type styles might include regular, bold, 
italic, oudlillll.e, reverse video, SMALL CAPS, ALL 
CAPS, underline, or stfilEB dUSHgk. While the 
options make for interesting reading, interchanging 



622 CHAPTER 14 The Forgotten Analysis and Design Activities 

a.) Customer 10 on Customer Name Line 

10: xxx999 Customer: xxxxxxxxxxxxx xxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxx, xx 99999-9999 

b.) Recommended Screen Design 

SCRR01 ABC Video 
Rent/Return Processing 

Customer: #xxx999 
xxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxx, xx 99999 

Video Copy Description Rental 
10 # Date 

xxx xx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 99/99/99 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 99/99/99 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 99/99/99 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 99/99/99 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 99/99/99 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 99/99/99 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 99/99/99 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 99/99/99 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 99/99/99 
xxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 99/99/99 

Cr: x 

Cr: x 

Return Rent 
Date Fees 

99/99/99 99.99 
99/99/99 99.99 
99/99/99 99.99 
99/99/99 99.99 
99/99/99 99.99 

99.99 
99.99 
99.99 
99.99 
99.99 

Total Due: 999.99 
Amount Paid: 999.99 

Change: 999.99 

Late 
Fees 

99.99 
99.99 
99.99 
99.99 
99.99 

F1: Hlp F3: Quit F5: Undo F6: End Ent F7: End X Tab: Nxt Fld ATab: Lst Fld ESC: Cnd 

FIGURE 14-46 Alternative 2 for ABC Rental Screen 

12/02/94 
02:03:15 

Other 
Fees 

99.99 
99.99 
99.99 
99.99 
99.99 

the styles on a form to be completed make it much 
harder to comprehend and will increase error rates. 
In general, regular print is acceptable in all applica­
tions for text display. For general purpose, noncriti­
cal text, regular print is recommended. 

video is to show cursor position. The character at 
which the cursor is positioned is shown in reverse 
video and switches back to normal as soon as the 
cursor is moved. 

Bold print and reverse video are useful to call 
attention to a field if it is warranted. For instance, 
bold type style is effective for alert field values on a 
monochrome screen. A common use of reverse 

Italics and outline are not generally used because 
they are harder to read and, therefore, increase com­
prehension time. Strike-through and underline are 
used mostly in word processing applications and 
can be effective in that context. For most forms-



Human Interface Design 623 

This is 10 point type. 

This is 12 point type. 

This is 14 point type. 

This is 18 point type. 

This is 24 point type. 

FIGURE 14-47 Sample Point Sizes 

completion TPS applications, neither of these is rec­
ommended. Finally, research studies have shown 
that use of all capital letters increases comprehension 
time and they are not recommended. 

COLOR. Color can be an effective addition to 
screen design, or it can seriously detract from the 
understandability and readability of the information. 
For indicating binary or ternary conditions, color is 
faster and easier to comprehend than any other cod­
ing scheme. 

Research provides clear guidance on appropriate 
and inappropriate uses of color for application dis­
plays. Color is most effectively used for search tasks 
in which the goal is to find one or two objects (of 
the same color) that differ from surrounding objects. 
This type of search does not occur often in business 
applications. Color coding also is effective for: 

• unformatted display of information 
• symbols which may be within a high density 

of information on the screen 
• tasks in which the position of the item to be 

identified is not known but the color is 
• screens for which color relates to the task 
• user tasks involving search and recognition of 

differences in symbol color 

Color is least effective for tasks in which a large 
number of colors are indiscriminately used, for 

which colors selected do not differ sufficiently to 
enable distinction, and for tasks in which the goal is 
to identify large numbers of objects (of the same 
color) when surrounded by a large number of objects 
of other colors. These ineffective color uses result 
in problems of discrimination. Research findings 
show that performance deteriorates with more than 
six colors on a screen. Many writers suggest using 
no more than four colors at anyone time for business 
tasks. 

Research on color selection recommends selec­
tion by wavelengths, ensuring sufficient contrast to 
speed comprehension. For instance, Figure 14-48 
shows common colors on a spectrum by wavelength. 
Poor choices would be blue, blue-green, and green 
for different meanings on the same screen. Good 
choices would be red, yellow, and blue, because they 
are sufficiently different to facilitate understanding. 

Because color blindness and other color percep­
tion problems are common, user profiles and user 
testing should be used to guarantee that all users 
can recognize all colors on a screen. Bold or odd 
colors of any type, for example, olive-green, should 
be avoided. 

Common meanings ascribed to colors should be 
used in the application, and the common meanings 
which change by culture should be adapted. The 
government recommends using red only for alert 
conditions, yellow for warning, and green for normal 



624 CHAPTER 14 The Forgotten Analysis and Design Activities 

Wavelength in Nanometers-Color 

420 r-- Violet 

460 -
Blue 

-

500 -

Green 

540 I-- Yellow 

580 I--

600 I--

640 '---
Red 

Adapted from Banks, William W., & Jon Weimer, 
Effective Computer Display Design. Englewood Cliffs, 
NJ: Prentice-Hall, 1992, p. 128. 

FIGURE 14-48 Color Spectrum 

because that is the common, conventional use for 
these colors. The use of a flashing red signal should 
be limited to an emergency condition requiring im­
mediate action. 

BLINK. Blinking characters or 'flashing' is a use­
ful attention-getting device for monochrome or lim­
ited color displays. Blinking is considered more 
annoying than color codes by most users and should 
be limited to no more than one field at a time or one 
meaning at a time. An example of effective flashing 
would be to flash all data entry fields in error. As 
errors are corrected, flashing stops. 

Blinking rates need to be monitored for the flash 
rate or speed of blinking. The optimal flash rate is 

2-3 times per second with equally spaced intervals 
for on and off. Rates of 8-12 flashes, while discem­
able, can cause nausea and even seizures in people 
with photo-epilepsy. For those of us over age 30, a 
phenomenon called flicker fusion causes us to see 
constant light when the flash rate is very high, over 
50 times per second. 

Guidelines for Field Format Design 

Assignment of field format characteristics is a judg­
mental activity based on SE experience and common 
sense. Follow the tenet 'less is more' in defining 
field formats that add formatting options. The use 
of these options diverts attention, causing a delay in 
the thinking process. If delay and attention shift are 
not desired, the result will increase error rates and 
reduce productivity. 

Effective uses of color, blink, or audio sound for 
directing attention should be considered; however, 
user approval should be obtained before adding for­
matting changes to the screens. 

ABC Field Format Design 

One field on a rental screen, credit standing, might 
be worth highlighting. In addition, when processing 
takes place, several other items might be high­
lighted. In particular, data entry errors and insuffi­
cient payments, late tapes, and special fees should be 
considered for use of color, blinking, or bold type. 
These items are chosen because they represent all 
of the abnormal conditions that occur during rental 
processing. 

A customer's credit standing is acceptable unless 
it is specifically changed by Vic during an update 
process. Since its change requires management 
action, a customer with a poor rating should proba­
bly be denied rental rights. This process has never 
been discussed with Vic and needs verifying. If he 

. approves, the credit standing for poor ratings only 
could be displayed as a red or a blinking field to 
highlight credit status. 

Data entry errors can also be highlighted. Since 
red is being used to signify denial of rental rights, a 



different color should be chosen. If data entry errors 
are highlighted, the recommended colors are either 
yellow or blue to make them distinct from the red 
used for credit standing. 

Insufficient payment occurs when the Change 
Amount is a negative number. The current design 
calls for moving the cursor to the payment field 
which is updated with the new Total Amount Due. 
Since this is not an expected occurrence, clerks 
might miss the cursor movement and complete the 
transaction even though insufficient payment has 
been made. Some method of highlighting is also 
desirable to ensure against such mistakes. The rec­
ommendation is to blink all money fields and move 
the cursor to the new Total Amount Due. 

Late tapes might cause a justifiable denial of 
rental rights, but this has also never been discussed 
with Vic. The number of days that constitutes sig­
nificant lateness needs to be defined. If monitoring 
of lateness is desired, a red, blinking value in the 
rental date field could be used to represent signifi­
cant lateness. 

Last, special fees, which require management 
update, might also be highlighted and a cause for 
rental denial. The use of special fees is not well­
defined to the project team at this point. Presumably 
Vic is using special fees for lost or damaged tape 
assessments. Perhaps if the fees are over a certain 
amount, to be defined, Vic would want the field high­
lighted and, unless paid, rentals would be denied. If 
Vic wants this highlighting, a red, blinking field, 
consistent with other rental denial fields, would 
be suggested. 

A long conversation with Vic resolves all of these 
issues. The recommendations for errors, credit prob­
lems, and insufficient payments are all accepted. Vic 
likes the idea of denying rental rights when tapes 
are over 10 days late. He questioned the use of the 
same blinking red signal, however, thinking that 
white blinking might be more effective. The SE 
explained that if one signal, blinking red, is used for 
rental denial regardless of reason, it will be more 
easily learned by the clerks. Vic agrees with the rec­
ommendation. He does not want special fees high­
lighted, nor does he want rental denied. He is using 
special fees for the two purposes described, but he 

Conversion 625 

also is using it for tapes purchases with money still 
owing, a usage never before defined. 

Design of Report Output 
In many companies, formal reports are no longer 
produced from application systems. Instead, users 
are provided with a query language and told to 
develop ad hoc reports as they are needed. When 
formal reports are required, they usually are based 
on queries of the same information. The guidelines 
for reports, then, follow similar guidelines for 
screens. 

1. Design a standard header and footer and 
be consistent in the general format on all 
reports. 

2. Keep report body as close to query screens as 
possible. 

3. If query screens are not present for the speci­
fied reports, follow the design'guidelines for 
screens. Define clearly identifiable areas for 
grouping information that is related or that 
repeats. Follow reasoning for individual 
fields on a report that parallels the reasoning 
used for screen design. 

The ABC rental receipt is shown in Figure 14-49 
as an example of a report that follows the design of 
its related screen. Notice that while the receipt has a 
header, it is preprinted and differs from that of the 
screen. Preprinted information is most effective 
when it is printed in some unobtrusive color, such 
as turquoise, which users can ignore when they 
become familiar with the report format. 

CONVERSION------

Conversion of applications is a systems analysis and 
design in miniature. The activity is only concerned 
with transforming data from its current format and 
storage media into a new application's format and 
storage media. Conversion is usually concurrent 
with design and done as a side activity by a small 
group of one to three people who report to the PM 



626 CHAPTER 14 The Forgotten Analysis and Design Activities 

ABC Video Rental 
5930 Preston Rd. 

Atlanta, Ga. 30303 

Customer Information: #xxx999 
xxxxxxxxxxxxx xxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxx,xx 99999 

Video Copy 
ID # Description 

99999- 999 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
99999- 999 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
99999- 999 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
99999- 999 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
99999- 999 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
99999- 999 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
99999- 999 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
99999- 999 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
99999- 999 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
99999- 999 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
99999- 999 xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Rental 
Date 

mm/dd/yy 
mm/dd/yy 
mm/dd/yy 
mm/dd/yy 
mm/dd/yy 
mm/dd/yy 
mm/dd/yy 
mm/dd/yy 
mm/dd/yy 
mm/dd/yy 
mm/dd/yy 

MM/DDNY 

Return Rent Late Other 
Date Fees Fees Fees 

mm/dd/yy 99.99 99.99 99.99 
mm/dd/yy 99.99 99.99 99.99 
mm/dd/yy 99.99 99.99 99.99 
mm/dd/yy 99.99 99.99 99.99 
mm/dd/yy 99.99 99.99 99.99 
mm/dd/yy 99.99 99.99 99.99 

mm/dd/yy 99.99 99.99 99.99 
99.99 
99.99 
99.99 
99.99 

Total Fees Due: 999.99 
Total Paid: 999.99 
Change: (99.99) 

Accepted By: ________________ _ 

FIGURE 14-49 ABC Rental Receipt 

and work with the DBA to define and populate the 
new database environment. The activities of con­
version are: 

1. Identify current and future locations for all 
data items. 

2. Define edit and validate criteria for all 
attributes. 

3. Define data conversion activities. 
4. Define options for data conversion. 
5. Recommend and gain approval for data con­

version strategy. 
6. Develop a schedule for data conversion 

based on estimates of time to convert one 
data item. 

7. Define options for application conversion and 
implementation. 

8. Recommend and gain approval for imple­
mentation strategy. 

9. Develop a schedule for application 
implementation. 

Identify Current and Future 
Data Locations 
The first task is to identify the data being converted. 
A matrix listing every relation with its attributes/ 
fields is developed. Then, in one column, the present 
location of each attribute is identified. An automated 
data field entry has the current file, relative address 
in the logical record, length, type characters, and 
current data name. A manual field entry identifies the 
data source and person responsible for data accuracy. 



A third column is created to identify specific con­
version errors if they are known. 

Define Attribute Edit and 
Validate Criteria 
For attributes that are simply being moved from one 
location to a new location, the edit and validate cri­
teria should already be defined in a data dictionary. If 
this information is not already defined, the conver­
sion team defines and documents necessary edit and 
validate criteria. 

When attributes are being encoded to use a short­
ened storage format, the encoding scheme must have 
been defined. If a coding scheme is not already 
defined, the conversion team works with the design 
team to define and document the encode-decode 
scheme. 

Define Data Conversion 
Activities and Timing 
Three major issues relate to data conversion. First, 
the automation status is either automated or man­
ual; second, is data accuracy and reliability; third, is 
the ease of mapping from the old data storage 
technique to the new data storage technique (see Fig­
ure 14-50). 

The extent to which data is already automated, 
clean, and has a simple mapping from the old to the 
new data storage technique, makes conversion sim­
ple. When data are manual, inaccurate, or not easily 
mapped, conversion is difficult. When data are all 
three-manual, inaccurate, and not easily mapped­
conversion becomes a critical task that may define 
the critical path for the application development. 

Manual data that must be automated require 
extensive edit and validation criteria in the data entry 
program to prevent bad data from getting into the 
database. Data that are not easily mapped may have 
no simple way for conversion staff to verify accu­
racy of processing, therefore, testing and test verifi­
cation with user assistance become critical tasks in 
determining data conversion success. 

Data that are inaccurate require two things. First, 
the conversion team must define what the possible 

Conversion 627 

correct data values are. Second, the conversion team 
and user must define the mapping from incorrect val­
ues to correct values. Then, any new values that 
might change the mapping from old to new storage 
technique must be reviewed with the systems design 
team to ensure that the application design is still 
valid. Third, an army of clerks must be hired to cor­
rect the errors. This means that special training for 
data correction is required. Fourth, training for the 
new application must address the data inaccuracies, 
the new values, and their interpretation for all cur­
rent data users. 

Data that have combinations of problems require 
multiple skills of conversion team members and 
complicate the conversion process. Data conversion 
planning should be complete early in the design 
stage. The planners should know which types of 
these problems are present and how the conversion 
team is planning to minimize their impact. 

Select and Plan an Application 
Conversion Strategy 
The methods of conversion are direct cutover and 
gradual conversion. Both methods mayor may not 
be supplemented by continuing parallel execution 
of the old application to allow comparison of results 
and verification of processing. 

Direct cutover means that on the set day, the old 
way of work is abandoned and the new way begins 
to be used. This is a risky method since few appli­
cations work perfectly the first time. There is no 
way to compare results and verify correctness of the 
new processing. 

Gradual, or incremental, cutover is a conver­
sion approach in which the new application is 
implemented in some piecemeal form. The imple­
mentations may be geographic, functional, iterative, 
or some combination of these. Geographic conver­
sion is an approach in which the entire application 
is implemented in each location, one location at a 
time. The application that is used to account for pay 
telephones in the United States, COIN, has several 
different versions in operation across the country at a 
time. As a new version is implemented, one of the 
locations volunteers to be the first to use it. It is 



628 CHAPTER 14 The Forgotten Analysis and Design Activities 

Best Case. 
Simple programmable conversion 

Difficult programmable conversion 

Significant edit/validate with clerical 
clean-up, but still programmable 

Significant edit/validate with clerical 
clean-up, difficult to program 

Use create program with all edit/validate 
high clerical support 

Use multiple create/merge programs, 
difficult verification, high clerical support 

"-_------- Use create program with all edit/validate 
high clerical support 

Worst Case. 
Use multiple create/merge programs, 
difficult verification, high clerical and 
management support 

FIGURE 14-50 Decision Tree on Ease of Data Conversion 

implemented in that one geographic location for six 
months. Then another location is added. After 
another six months, a third location is added. The 
timed geographic technique keeps the lives of the 
implementers relatively stable and allows the dis­
tributed companies using the software to choose 
their own implementation times. 

Functional conversion has three variations. 
First, work functions can be cut over one at a 
time to the new application. This is a local version of 
the geographic conversion method. Second, incre­
mental software development can place spe­
cific work functions into production use as soon as 

they are tested. Third, small numbers of trans­
actions or one type of transaction might be imple­
mented first using transaction conversion. Then, 
as the users gain experience and the application 
stabilizes, more transactions are cut over until 
all are in production. In the first variation, the 
entire application is implemented in one department 
or group at a time. In the second, pieces of the 
application are implemented one at a time, and may 
be in production company-wide or by group. In 
the transaction variation, the whole application is 
complete, but it is implemented piecemeal by trans­
action type. 



When a new application changes the old method 
of work, or when a specific problem is highlighted 
during feasibility or analysis for immediate imple­
mentation, some form of functional, incremental 
conversion is useful. Both of these circumstances 
occur in large business applications. Small applica­
tions may not have enough functionality to allow 
iterative conversion, requiring the complete appli­
cation to be placed into production at one time. 

Gradual conversions can not always be done. 
When the new application is automating a previ­
ously manual process, gradual conversion may be 
difficult unless unrelated transactions can be identi­
fied. When this occurs, the project team should 
develop a final test using live data that parallels 
daily production and can, therefore, be checked 
for accuracy. 

Parallel conversion means that the new and old 
methods of work, including any applications work, 
are both done every day for some period, usually one 
or two cycles of processing. Parallel conversions 
only work if the new application produces the same 
outputs as the old application and has comparable 
formulae and processing on the data. In the parallel 
method, the people using the application would do 
their jobs in the new way and follow it by doing the 
work in the old way with the same data. That is, the 
same information is processed twice. If the formu­
lae, processing, or outputs are very different, parallel 
processing might not work. Parallel conversion is 
also difficult when the number of people doing the 
work is insufficient for processing the double vol­
ume of work. Then, if parallel conversion is desired, 
some gradual method should be coupled with paral­
lel execution. 

ABC Conversion Strategy 
Conversion in ABC is from a totally manual to a 
totally automated application. This means that the 
planning for conversion should follow the need for 
data. Each relation is examined individually to 
determine its criticality for processing on the first 
day of Rental/Return use (see Table 14-9). 

Of the seven relations in the application, four 
(i.e., Rentals, Customer History, Video History, and 
End of Day) are derived from processing and need 
no conversion. The other three-Customer, Video, 

Conversion 629 

TABLE 14-9 ABC Rental/Return Data 
Relations and Conversion 

Relation Status Priority 

Rental! Derived from 0 
Return Processing 

Customer Manual/Clean 1 

Video Manual 2 
Clean if known 

Copy Manual 3 
Need a count 

Customer Derived from 0 
History Processing 

Video Derived from 0 
History Processing 

End of Day Derived from 0 
Processing 

and Copy-are manual and needed the first day of 
operation. All could have the same priority because 
the application cannot be tested without all three 
relations. The customer relation is given the highest 
priority because it has accurate data from the card 
file, and therefore, should be more easily converted. 
Another reason for choosing the customer relation 
first is because if it turns out to be error-ridden, the 
other two files can be assumed to be as bad or worse. 
Customers tend to overestimate the quality of their 
data, and errors become known when the method of 
processing changes. 

The strategy then is convert the customer file 
from the existing card files, followed by the video 
and copy information. The next issue is who is to 
do the data entry. The clerks might enter Customer 
information during nonbusy work hours or could be 
hired for extra hours of work. The estimate of con­
version for customer information is approximately 
70 hours (4 minutes * 1,000 customers / 60 minutes 
in an hour). This assumes four minutes of data entry 
time for each of 1,000 customers. The ideal solution 
is to hire clerks for extra work so their entire atten­
tion is only on conversion at the time. This speeds 
the process and minimizes errors that might occur 
from interruptions during the work day. 



630 CHAPTER 14 The Forgotten Analysis and Design Activities 

One alternative for doing the data conversion is to 
hire the current staff to work more hours. If three 
ABC clerks each worked two extra hours each day, 
and all work a five-day week, the customer conver­
sion would take between ten days and two weeks. 
This alternative is attractive because the current 
clerks know the data. The disadvantage of this 
alternative is that the clerks don't type and the 
four minute estimate might be very low for them. 
Another disadvantage is that because the clerks' typ­
ing skills are low, name and address errors, which 
are very difficult to identify via computer, might get 
into the file. 

A better alternative is to hire an experienced data 
entry person(s) from a temporary agency. The cost is 
not too high, $10-14/hour, and their accuracy will be 
greater. For an experienced typist, the four minutes is 
probably a high estimate. 

The next relations to be converted are Video and 
Copy. One issue in this conversion is the high 
amount of time for bar coding each copy of a video. 
Assignment of bar codes affects database design. Al­
ternatives are to use the bar code to identify each 
tape uniquely and duplicate video information in the 
copy relations, or identify each video with a portion 
of the bar code and identify each copy by a unique 
sequence number within bar code. The preferred 
solution from a data perspective is to generate one 
Video ID bar code that is the same for all copies of a 
tape. Database storage and typing time are mini­
mized, and retrievals will be faster. This solution is 
recommended. The only advantage to the other 
alternative is that no sorting of the physical inven­
tory is required. The disadvantage of the unique base 
code for each tape alternative is that video informa­
tion is replicated a number of times thus increasing 
the time for data entry, error rates, and retrieval time. 

The related issue in video-copy conversion is the 
physical inventory identification of all copies of each 
video for entry into the application. The scheme we 
chose of one Video ID bar code for all copies of the 
same tape makes data entry easy but makes the phys­
ical work more difficult. The people doing this work 
must sort all of the tapes by video, assign the Video 
ID, and generate and affix the bar codes to each 
copy. Last, each copy's bar code must be entered into 
the system. Since we chose one Video ID bar code 

for all copies, we can enter the video information 
and a count of copies and have the application gen­
erate all Copy relations. Part of the change procedure 
for a video, then, must include changing the number 
of copies. Increasing the number poses no problems. 
Decreasing the number means that a check for 
outstanding or past rentals must be made and, if 
present for a number to be removed, the number may 
not be removed. These maintenance requirements 
should be discussed with the design team to ensure 
that they treat video processing in this way. 

The last issue to decide about data conversion is 
who should do the video and copy conversion data 
entry. The estimated time for a complete physical 
inventory is about 28 hours. This number assumes 
six seconds of inspection time per tape for 10,000 
tapes, plus four seconds overhead for extra move­
ment of tapes to make room for the sorted ones (i.e., 
10 * 10,000/60 seconds per minute / 60 minutes per 
hour = approximately 28 hours). This includes sort­
ing the tapes by title alphabetically and keeping 
them in that order until the data are completely 
entered. Tapes out on loan must be included in each 
day's conversion process to ensure 100% conversion 
coverage. Once the tapes are in sequence, the clerks 
putting tapes back into inventory are assumed to 
alphabetize them automatically, adding no extra time 
to the conversion. 

The data entry for each tape, because of the cod­
ing scheme defined, should take only about two min­
utes per tape for a total time of about 33 hours (i.e., 
2 * 10,000/60). The total conversion time for the 
ABC rental/return application is about 120 hours, or 
about three weeks. 

Again, the clerks, who know the inventory best, 
could be hired extra hours to work on conversion 
sorting and data entry, or Vic might hire outside 
workers to come in daily for 8-10 hours for sev­
eral days. 

If Vic wants to use his current clerical staff to use 
otherwise idle time, the amount of time for conver­
sion is 120 hours divided by the number of idle hours 
per day. If the three clerks are idle a total of six hours 
per day, the conversion will take approximately 20 
days. This is a long period of time and usually, the 
longer conversions continue, the greater the likeli­
hood of errors. The recommended approach is to hire 



temporary data entry clerks to sort the tapes, assign 
bar codes, and enter the data into the system. 

The alternatives and recommendations are pre­
sented to Vic for his approval. He chooses to hire 
two temporaries for two weeks to work full-time on 
converting all data. His rationale is that he really 
wants his clerks to concentrate on customers, and 
he decides they can help with the physical inventory 
sort in their spare time. The remainder of the time 
they should be working at helping customers. If 
videos are missed during the inventory sort, they will 
be found as they are rented and their information will 
be entered into the application then. 

USER ______________ __ 

DOCUMENTATION ______ __ 

Mix of On-Line and Manual 
Documentation 
User documentation is important because it is usu­
ally the first information about an application that 
new employees are given. Therefore, it should be 
developed and maintained to disclose accurate usage 
information about an application. User documenta­
tion is started after analysis and can be a parallel 
activity to design. Some researchers and practition­
ers recommend developing the user documenta­
tion before design begins. The application is 
then designed to meet the requirements of the user 
documentation. 

Frequently, users develop the manual documenta­
tion and define what they would like for on-line help 
and messages. At the least, users should participate 
in developing user documentation. The arguments 
for having users develop their own documenta­
tion are: 

• Users are less likely to assume knowledge 
that SEs take for granted (e.g., how to start an 
application). 

• Users know what to do better than SEs. 
• Users who develop their own documentation 

require less training because they already 
know how the system will work. 

User Documentation 631 

With complete novices who have never used a 
computer system, having them develop the user 
manuals is NOT a good idea. 

Contents of the user documentation vary with 
each project and company. In general, the writing 
sty Ie should not be patronizing, but should take the 
users' general level of computer expertise into con­
sideration. This means that documentation written 
for experts can be concise, use jargon, and have less 
explanatory information about how to get started. 
Documentation written for novices should begin at 
an elementary level, for example, "The button to 
turn on the machine is located .... " 

An outline for general contents of user documen­
tation is provided in Table 14-10. First, any docu­
ment should contain a table of contents. A system 
overview describing the scope of processing is next. 
Assumed level of user and expected system-user 
interactions should be included in the overview. 
Diagrams should be frequent and 'understood by 
your mother.' Also in the overview, include in­
formation about whom to call for help and what 
kind of help they offer. For instance, Operations pro­
vides assistance if the terminal malfunctions, 
or the Information Center assists in developing 
ad hoc queries. 

Describe the hardware, software, and at a very 
high level, how the equipment is connected. This is 
especially important when LANs, distributed appli­
cations, or PCs hooked to mainframes are being used 
and some functions are local and some remote. Be 
specific about what work is performed in what loca­
tion and how to determine problems. 

Next, describe the general formats for screens and 
functions. Begin the details of system operation with 
startup and shutdown, including security informa­
tion, without documenting security codes! Describe 
all function keys and what they do. 

Then, for each screen in the application, present 
the screen and the required/optional entries made by 
the operator. Be specific about the type of data to be 
provided. Present an example of a correct screen 
and of an incorrect screen with error messages. 
Sequence this information by logical groupings of 
activities. For instance, for ABC, there would be 
four functional description sections: rental/return, 
customer maintenance, video maintenance, and 



632 CHAPTER 14 The Forgotten Analysis and Design Activities 

TABLE 14-10 User Documentation 
Contents 

Introduction 
Application Overview 
Special Features 
Format of Document 
Support Group Services, Contacts 

General System Information 
Obtaining a User ID 
Starting the Machine 
Shutting the Machine Down 

System Access Procedures 
Logon Procedures 
Logoff Procedures 

General Data Entry Information 
Menus and Menu Selection with examples 

of all screens 
Data Entry Screen Format with one example screen 
Function Key Assignments 

Rent/Return Procedures 
Customer Maintenance 

Procedures 
Video Maintenance Procedures 
Periodic Processing Procedures 
Backup/Recovery Procedures 
Error Recovery Procedures 
Error Messages 

For each section: 
List screen( s) 

Required 
entries 

Optional 
entries 

Procedure for 
screen 
completion 

periodic processing. For each screen, describe nor­
mal, error, optional, and required processing. 

Include backup and recovery information if 
the user is expected to perform those activities. 
Be specific about what actions are performed and 
the sequence of actions. If recovery must be acti­
vated from a specific terminal, for instance, begin 
the instructions with something like the following. 
"At Terminal 011, located on the 2nd floor of 
235 West Covina in the southwest corner, and 
labeled 'MAIN OPERATOR TERMINAL,' enter 
the following." 

In an appendix, provide a list of all error mes­
sages, by message ID with a detailed description of 
how to correct the error. Format the appendix to cor-

respond to the sequence of functional sections in the 
body of the report. 

AUTOMATED __________ __ 
SUPPORT FOR __________ _ 
FORGOTTEN __________ __ 
ACTIVITIES ___________ _ 
Many products are available to support the activi­
ties in this chapter. For screen design, screen 'paint­
ers' and application generators both provide screen 
design. Screen painters are forms-oriented design 
tools that allow fast prototyping and layout of 
screens that then generate coded descriptions of the 
screens. A user identifies that screen design is 
desired; if the relation is described in the tool, the 
fields can be listed to provide screen design guid­
ance, and the user 'paints' the screen by placing 
labels and field names on the screen in the target 
location. When complete, the screen can be called 
up to allow printing and viewing of the screen 
as it would be presented to the data entry clerk. 
Screen painters can be stand-alone software pack­
ages but are more frequently a function of CASE 
environments. 

A second type of software support for screen 
design is available in application generator software. 
The screens for menus are designed first with menu 
entries typed in by the software user. Then as func­
tional screens are reached, the program code to gen­
erate the requisite screen interaction (e.g., SQL) is 
coded. If custom form design for data entry is 
required, some packages include that activity, too; 
others require the designer to generate the code 
within the package. 

Conversion software support is mostly in the 
form of utility programs that allow easy reformatting 
of data to move from a current automated file to 
one or more new files. Merging of information from 
two sources to create new composite files is some­
times provided but requires more complex soft­
ware coding. 

Manual-to-automated data conversion ideally 
uses the application code for data creation to further 
test it and increase estimations of reliability. Sev-



eral application generator packages, for example, 
Focus™ ,5 provide automatic screen generation with 
no underlying edit or validation for 'quick and dirty' 
data entry. This is useful in proto typing and demon­
strating prototypes, but should not be used for the 
production application. Focus generates the screen 
by sequentially listing the fields as defined in the 
database. As a line fills up with data, a new line is 
generated. This automatic screen utility only works 
on files with no repeating information and cannot 
join files for combined data entry. 

Help packages are now plentiful in the market­
place. Help used to be totally manual and all mes­
sages had to be in the user documentation. As help 
has moved to become an on-line function, more mes­
sages are documented on-line than in manuals. The 
advantage of a Help package that is independent of 
specific software is that it, and its messages, can be 
used across applications and software environments. 
This cross-application use can help ensure that defi­
nitions are consistent throughout the company and 
can make data administration standards compliance 
easier to monitor. 

The automated packages supporting the screen 
design, conversion, and help processing are summa­
rized in Table 14-11. 

SUMMARY ________ ~ __ _ 
In this chapter, human interface, conversion, and 
user documentation were discussed as three required 
activities during analysis and design that are omit­
ted from many methodology discussions. 

Human interface design focuses on screen inter­
actions between users and the application. Using a 
task profile and user profile to guide the design 
process, first the option selection method is chosen. 
The alternatives for option selection are menus, win­
dows, or command languages. Then, the presenta­
tion format(s) most effective for the data to be 
displayed are decided. Presentation formats include 
analog, digital, text, text form, bar chart, column 
chart, point plot, pattern, and mimic displays. Within 

5 Focus is a product of Information Builders, Inc., New York. 

References 633 

the presentation format, each screen item's charac­
teristics of size, type font, style, color, and blink rate 
are defined. In designing forms, decisions about the 
chunks of data to be presented and formatting of 
chunks on the screen are required. 

Conversion alternatives are direct conversion or 
incremental conversion. Incremental conver­
sion may be geographic or functional (by transac­
tion, by department function, or by application func­
tion). Direct conversion has the highest risk of 
failure because the old method disappears at con­
version; therefore, when an alternative is present, 
it is usually recommended. Incremental conver­
sion type selected is determined by the context of 
the application. 

Reports are designed following the same general 
guidelines as those of screens. Whenever a report is 
of displayed information, both screen and report 
should use the same format. 

User documentation is an important introduction 
to an application for many new employees. As such, 
it should be easy to read, oriented toward the educa­
tion and computer experience level of the reader, and 
should include all information for normal and abnor­
mal processing of an application. Lists of contacts 
for different types of problems should be identified. 

REFERENCES __________ __ 

Bailey, R. W., Human Performance Engineering: Using 
Human Factors/Ergonomics to Achieve Computer 
System Usability, 2nd ed. Englewood Cliffs, NJ: 
Prentice-Hall, 1989. 

Banks, William W., Jr., and Jon Weimer, Effective Com­
puter Display Design. Englewood Cliffs, NJ: 
Prentice-Hall, 1992. 

Carter, R. c., "Visual search with color," Journal of 
Experimental Psychology: Human Perception and 
Performance, Vol. 8, 1982, pp. 127-136. 

Christ, R. E., "Review and analysis of color coding 
research for visual displays," Human Factors, Vol. 17, 
1975, pp. 542-570. 

Cohen, Barbara F. G. (ed.), Human Aspects in Office 
Automation. New York: Elsevier, 1984. 

Galitz, Wilbert 0., Human Factors in Office Automation. 
Atlanta, GA: Life Office Management Association, 
Inc., 1980. 



634 CHAPTER 14 The Forgotten Analysis and Design Activities 

TABLE 14-11 Automated Support for Interface Design, Conversion, and On-Line 
Documentation 

Product 

APS Dev. Center 

Deft 

Easytrieve 

Focus 

Foundation 

IEF 

IEW, ADW(PS/2 Version) 

PacBase 

Teamwork 

Telon and other products 

Visible Analyst 

Company 

Sage SW 
Rockville, MD 

Deft 
Ontario, Canada 

Ribek, Inc. 
Tacoma Park, MD 

Information Builders, Inc. 
New York, NY 

Arthur Anderson & Co. 
Chicago, IL 

Texas Instruments 
Dallas, TX 

Knowledgeware 
Atlanta, GA 

CGI Systems, Inc. 
Pearl River, NY 

Cadre Technologies Inc 
Providence, RI 

Pansophic Systems, Inc. 
Lisle, IL 

Visible Systems Corp. 
Newton, MA 

Technique 

Screen/Form/Report Painters 

Form/Report Painter 

Data Conversion Utility 

Prototyper 
Screen Generator 
Application Generator 

Prototype Generation 
Screen Design 
Version Control 

Dialog Flow 
Screen Design 

Screen Design 

Screen Flow 

Screen Painter 

Screen/Report Layout 

Screen Painter/prototyper 

Galitz, Wilbert 0., Handbook of Screen Format Design. Powell, James E., Designing User Interfaces. San Mar­
cos, CA: Microtrend Books, 1990. Wellesley, MA: QED Information Sciences, Inc., 

1981. 
Martin, James, Design of Man-Computer Dialogues. 

Englewood Cliffs, NJ: Prentice-Hall, 1973. 
Mayhew, D. J., Principles and Guidelines in Software 

User Interface Design. Englewood Cliffs, NJ: 
Prentice-Hall, 1992. 

Morland, D. Verne, "Human factors guidelines for 
terminal interface design," Communications 
of the ACM, Vol. 26, #7, July 1983, pp. 484-494. 

Olsen, Dan R., Jr., User Interface Management Systems: 
Models and Algorithms. San Mateo, CA: Morgan 
Kaufmann Publishers, 1992. 

Schneiderman, Ben J., Designing the User Inter­
face: Strategies for Effective Human-Computer 
Interaction. Reading, MA: Addison-Wesley, 1987. 

Thomas, John c., "User interface design," Proceedings 
of NYU Symposium on Human Factors, New York, 
NY, May 1982. 



Tullis, T. S., "Screen design," Handbook of Human 
Computer Interaction, Mark Helander (ed.). 
New York: Elsevier, 1988, pp. 377-411. 

KEYTERMS ____________ _ 

analog display 
band chart 
bar chart 
binary 
binary display 
body of form 
body of screen 
classroom instruction 
close box 
column chart 
command language 
computer-based training 

(CBT) 
derived field 
digital display 
direct cutover 
direct manipulation 
direction indicator 
field format 
flash rate 
flicker fusion 
footer screen section 
form screen 
functional conversion 
geographical conversion 
gradual cutover 
header screen section 
horizontal pull-down menu 
incremental cutover 
incremental software 

development 
location ID 
long-term memory 
Lotus-style horizontal 

pop-up menu 

menu 
mimic display 
normal/abnormal measures 
on-the-job training (OJT) 
option selection 
overlapping windows 
parallel conversion 
parallel execution 
pattern display 
paint 
point 
point plot 
pointer 
precision requirements 
question & answer format 
resize box 
scale 
screen painter 
scroll arrow 
scroll bar 
scroll box 
scrolling elements 
short-term memory 
status indicator 
task profile 
text 
tiled windows 
title bar 
transaction conversion 
user profile 
vertical pop-up menu 
window 
zoom box 

EXERCISES _______ _ 

1. Complete the screen design for Customer and 
Video data entry for ABC Video. For video data 
entry, keep in mind how conversion defines the 
add function to automatically provide for Copy 
relation creation. Specifically, identify reused 

Study Questions 635 

portions of screens or whole screens for differ­
ent functions. Discuss why complete reuse of 
Create Video screens is not possible for Video 
Update processing. 

2. For the CCD Medicaid case described in Appen­
dix A, design windowed menus for the applica­
tion. Design the screen for Patient Information 
Creation. How much scrolling is necessary? 
What colors, type, style, font, and so forth, do 
you recommend for each field? 

STUDY QUESTIONS ___ _ 

1. Define the following terms: 
analog display OIT 
field format scrolling elements 
flash rate user profile 
form task profile 
horizontal pull-down 

menu 
2. Why is the data source the best location at 

which data should be entered into automated 
applications? 

3. Why should screen design guidelines be 
followed? 

4. Describe a task profile and how it is used in the 
application development screen design and 
conversion. 

S. When should individual users be profiled and 
when can average user information be used? 

6. Describe how novice/expert modes of opera­
tion should be determined. 

7. Describe how extent and type of on-line mes­
sages and help are defined. 

8. Describe the option selection choices and how 
you decide which to use. 

9. Why is command language use by itself rare? 
10. What is a screen window and why are they 

popular? 
11. How many scrolling options are available? 

What is the minimum scrolling that should be 
provided in an application? 

12. What are the differences between tiled and 
overlapped windows? 

13. Why should function keys be consistent? 



636 CHAPTER 14 The Forgotten Analysis and Design Activities 

14. Describe general screen design contents. 
15. What is direct manipulation interface? 
16. What application types use forms as the most 

common functional screen design? 
17. List and define five data presentation alterna­

tives. For each alternative, describe one possi­
ble business application use. 

18. When are bar and column chart use recom­
mended? 

19. How are fields positioned on a screen? On a 
line? 

20. Why are short-term memory (STM) and long­
term memory (LTM) important in screen 
design? 

21. When is color effective in screen design? How 
many colors should be used on screens at any 
one time? 

22. How can type font be varied for effective 
screen design? 

23. What are three options for incremental conver­
sion? How do you choose which to use? 

24. Discuss issues in data conversion. 
25. Why should users do user documentation? 

Why should application developers do user 
documentation? 

26. Discuss how contents of user documentation 
can be varied to match user skills and computer 
expertise. * EXTRA-CREDIT QUESTION 

1. Define a poorly designed menu and functional 
screens for ABC Customer Maintenance. Use at 
least 10 bad design elements. Then, fix the 
design problems and define effective screens for 
the same function. Describe the guidelines fol­
lowed in defining each element of the good 
screens. Write a paragraph discussing the kind 
of errors that users might make from using the 
poorly designed screens. 



PAR T IV 
IMPLEMENTATION ----------------.. --------~----I 
~D ____________________ ~ ____ ~_I 
~AINTEN~CE _______________ ~ _____ _1 

The five chapters in this section discuss implementa­
tion and maintenance issues. An application is never 
completed until it is retired. After analysis and 
design, we must be able to implement the design on 
computer hardware using computer software or our 
work is useless. The first three chapters in this sec­
tion relate to implementation issues: selecting a 
computer language; evaluating and selecting hard­
ware, software packages, or consulting services; and 
testing/quality assurance of the finished product. 

Chapter 15 defines characteristics of languages, 
to allow us to distinguish between ten languages that 
are evaluated. Then, the languages are matched to 
the application types discussed in Chapter 1 and 
to the methodologies discussed in Chapters 7-12. 
Language selection, rather than code structure, is 
emphasized because of the increased use of com­
puter-aided software engineering (CASE) tools to 

generate code. The language selected must be able to 
support the application requirements. In Chapter 15, 
we first describe identifying characteristics of lan­
guages. Then, the implementation of each charac­
teristic is described for ten languages. Based on the 
language characteristics, we define the types of ap­
plications for which each language is best suited. 

Similarly, outsourcing and use of software pack­
ages are growing in all industries because it is 
frequently cheaper to buy rather than build an appli­
cation and/or its environment. In Chapter 16, we dis­
cuss the evaluation process and highlight the types 
and alternatives for soliciting bids from vendors. 
Sections and contents of a request for proposal 
(RFP) are defined and developed for the ABC case 
to show what they look like. Hardware, software, 
and consulting services might all be contracted for in 
the same request, or could individually be the subject 

637 



638 PART IV Implementation and Maintenance 

of RFPs. Examples of RFP expectation criteria for 
each type of work are provided to give a sense of 
the level of detail to which work is defined in an 
RFP. Then, vendor proposal evaluation alternatives 
are defined and discussed in relation to ABC Video's 
application. 

Regardless of the development product-pack­
aged software, generated CASE code, or manually 
programmed code-proving that the software works 
by testing it at various levels of detail and aggrega­
tion is required. Chapter 17 defines the different 
strategies for testing and types of testing performed. 
Test types are matched to strategies to develop an 
effective overall strategy for testing applications. For 
each level of testing, key issues in test case devel­
opment are identified. Based on research on testing 
errors found, guidelines for deciding when to stop 
testing at each level are provided. The ABC case is 
then analyzed to demonstrate how the theories 
apply in practice. 

The last two chapters relate to change. Chapter 18 
discusses application change management that all 
take place throughout the life of a project. Change 
is a way of life in computing and application devel­
opment is no exception. In Chapter 18, we first dis­
cuss how to design for reusability by using templates 
and reusable modules. Then, change management 
techniques that apply to documents, decisions, soft­
ware, and application configurations are presented. 
The automated tools section includes software rep­
resentative of each type of change management. 

Documentation for project work can be thousands 
of pages long. Since errors in code usually begin to 
be traced through documentation, it is important to 
identify changes to facilitate the error tracing pro­
cess. Also, users and maintenance personnel who 
might only infrequently review documentation 
should be directed to the new information rather than 
having to read entire documents each time. The tech­
niques for identifying change easily are identified in 
Chapter 18. 

Similarly, application decisions might provide a 
useful trace of the considerations and discarded 
ideas throughout a project's life. Few project teams 
keep such a decision trace because, historically, to do 
so meant maintenance of more thousands of pages of 
paper. With automated decision support and sophis­
ticated word processing, keeping a record of deci­
sion history is now feasible and can be useful in 
organizations with rapidly changing management or 
on projects that support business functions that are 
subject to rapid industry change. 

Software changes and application configuration 
management are the other major topics of Chapter 
18. A recent buzzword identifies software reengi­
neering, also called reverse engineering, as the back­
ward design of undocumented programs and 
applications that were probably built without the 
team having followed a methodology to guide the 
work. Also called spaghetti code, such applications 
can be maintained beyond a useful life. In the chap­
ter, we describe how to decide when to reverse 



engineer, reengineer, or retire applications and/or 
individual programs. Once the decision is made to 
maintain software, management of the software 
maintenance process is an important task in deter­
mining that the correct configuration of modules, 
functions, programs, and so on, is in production. The 
issue of configuration management is more compli­
cated when multiple versions of software, such as a 
DOS and MVS versions, exist. Techniques and man­
agement practices for configuration management are 
described in the chapter. 

Finally, your career is important and requires 
management by you for your working life. It is dif­
ficult to plan a career without having a sense of what 
opportunities and expectations are available. First, 
the typical job levels and types of jobs found in busi-

Implementation and Maintenance 639 

nesses are described. Then, one way to plan a career 
by thinking through your wants and requirements for 
technical, job, company, geography, and opportuni­
ties for advancement is developed. A method for 
defining your chances of job success is defined next. 
Trends of IS jobs over the last five years by geogra­
phy, salary, and industry are discussed. Part of 
developing yourself into a professional and having 
a career is to maintain your professional status. 
Techniques for maintaining professional status and 
building on knowledge areas including education, 
professional association membership, accreditation, 
and reading are all defined, with suggested ap­
proaches to applying the information to your own 
situation. 



C HAP T E R 15 
CHOOSINGAN 

--------------------------------------------------~ 

IMPLEMENTATION ______ ---II 

LANGUAGE 

INTRODUCTION ____ _ 

In this chapter, we discuss the selection of a lan­
guage for implementing an application. Program­
ming is the process of designing and describing an 
algorithm to solve a class of problems. As any pro­
grammer knows, any activity can be programmed 
in any language ... just not necessarily as effec­
tively or completely in each language. When work­
ing on an application, we do not always have a 
choice of the language we use. But with the selec­
tion of the wrong language, we constantly compro­
mise the requirements to fit the constraints of the 
language. In this chapter, we discuss characteristics 
of languages and how to select a programming lan­
guage based on requirements of an application so 
that, if there is a choice to be made, an appropriate 
language can be selected. The activity of program­
ming is not discussed in this text because, with 
CASE environments and tools, much program code 
is automatically generated. 

First, the characteristics of languages are defined. 
Then 10 computer languages--SQL, Focus, BASIC, 
COBOL, Fortran, C, Pascal, Ada, PROLOG, and 
Smalltalk--are evaluated according to the char­
acteristics. These languages represent the major 
programming paradigms, including procedural (For­
tran, COBOL, BASIC, Pascal), object orientation 
(Smalltalk, Ada), declarative processing (SQL, 

640 

PROLOG), fourth-generation languages (4GL, 
Focus), and expert systems (PROLOG). They also 
represent the most popular languages in use in busi­
ness organizations today and in the years to come. 
Then, languages are matched to different types of 
applications and methodologies. Finally, automated 
support for programming is discussed. First, we 
develop the characteristics that distinguish between 
languages. 

CHARACTERISTICS ___ _ 
OFLANGUAGES ____ _ 

To differentiate languages, we must evaluate how 
each language deals with data definition and 
processing, mathematical and logical processing, 
control, conditional, array, input/output, and sub­
program processing in addition to nontechnical 
assessment of each language's ease of use, portabil­
ity, and maintainability. Finally, available automated 
development aids such as CASE and code generators 
are noted. 

Data Types 
Each language supports some data types. A data 
type is a language-fixed definition of data. All lan­
guages support variables and constants for numeric 



Data Type 

Integers 

Real 

CharacterlStri ng 

Example 

1,2,3 

-1.01,3.21 

Abc12;'. 

FIGURE 15-1 Examples of Universal Data 
Types 

and character data. The universally supported data 
types are integers, real numbers, and character 
strings. Example of each are shown in Figure 15-I. 
Integers are whole numbers such as one, two, or 
three. Real numbers include positive and negative 
continuous numbers, including all decimals. Char­
acter strings are any legal combination of alphanu­
meric characters. 

Fewer languages support one or more of logical, 
Boolean, pointer, object, bit, date, or user-defined 
data types. Logical data types are notation provid­
ing for nonnumeric comparison including and, or, 
or not processing (see Figure 15-2 for example). 
Also, the comparison operators used in logical data 

Data Type Example 

Logical And, Or, Not, <, >, =, 
~,~,i= 

Boolean True, False 

Pointers 16F26 
(where 16F26 is a valid 
memory address) 

Object Customer=12346, Add, 
Change, Delete, Inquire 

Bit 0, 1 

Date 022893 

FIGURE 15-2 Examples of Nonuniversal 
Data Types 

Characteristics of Languages 641 

types include all variations of equality and inequality 
operators (see Figure 15-2). 

Boolean operators generate binary true/false in­
dicators based on some logical comparison (see Fig­
ure 15-2). Pointers are addresses of other program 
or data constructs that are used for reference within 
a program. 

Objects are programmed encapsulations of data 
with methods. The example in Figure 15-2 shows 
only the names and ID of an object with the names of 
the methods or program modules that can manipu­
late the data. In actuality, an object contains all of the 
data and all of the program code for the methods. 

A bit is an individual binary digit (see Figure 
15-2). Bit manipulation is highly desirable in pro­
grams using binary status indicators. In an eight-bit 
character set, use of one bit rather than eight to indi­
cate a single value can save millions of characters 
of storage space. 

Date data types define combinations of months, 
days, and years that support only legal date entries 
(see Figure 15-2). Rather than writing routines 
to validate dates, the language tnay have built-in 
validation processing. 

Finally, user-defined data types are data defini­
tions that become fixed within a program or appli­
cation. User-defined data types can be for any 
application-specific combination of legal characters. 
A common user-defined data type is for a date con­
struct when the language does not provide a date 
data type. 

Data Type Checking 
Data type checking refers to the extent to which a 
language enforces matching of specific data defini­
tions in mathematical and logical operations. There 
are four levels of type checking, ranging from type­
less to strong checking. Which level is required is 
dependent on the application type. In general, the 
more stringent the requirements for accuracy and 
consistency of processing, the more desirable strong 
type checking becomes. With object methodologies, 
strong checking is desirable because with polymor­
phism, the ability to have multiple modules process­
ing the same function but on different data types, 



642 CHAPTER 15 Choosing an Implementation Language 

01 COBOL-INFO. 

05 EXAMPLE-NUMBER PIC 9(5). 

01 TARGET-INFO. 

05 TARGET-NUMBER PIC 9(5). 

PROCEDURE DIVISION. 

Move 'A124X" to COBOL-INFO. *** Causes no 
errors *** 

Move COBOL-INFO to TARGET-INFO. 
*** Causes no errors *** 

Move EXAMPLE-NUMBER to TARGET­
NUMBER. *** Abend-Illegal data in 
EXAMPLE-NUMBER *** 

FIGURE 15-3 Cobol Typeless Checking 

the probability of errors is reduced with strong type 
checking. 

Typeless checking means that there is no explicit 
checking performed. In typeless languages, such as 
BASIC or COBOL, alphanumeric characters are 
allowed in an integer field, but might cause an abend 
if the field is referenced as an integer (See Figure 
15-3). Operations using typeless fields are not guar­
anteed to execute successfully. Typeless field pro­
cessing is not consistent across languages or 
compilers. 

The next level provides automatic type coercion 
in which mixed data types are allowed, but conver­
sion of incompatible types occurs when used 
together. Also called mixed mode type checking, 
different data types within a category (e.g., numeric) 
are converted to a single target type for mixed mode 
operations. In Fortran, for instance, mixing a real 
and integer number in a mathematical operation 
leads to unpredictable results because the target type 
is determined by the result field definition (see Fig­
ure 15-4). If the result field is defined as real, the 
process will yield a real number. In Fortran, the first 
character of a field determines its data type. Names 
beginning with A-H and O-Z are real; names 
beginning with I-N are integer. In Figure 15-4a, the 
result field begins with B; therefore, the result field is 

a real number. If the result field is defined as inte­
ger, the process rounds the answer and the result is 
integer. In the example in Figure 15-4b, the answer is 
either zero or one depending on the computer system 
and how it rounds integers. Obviously, without 
detailed knowledge of the internal language process­
ing, programming errors can result. 

Pseudostrong type checking, the third level of 
data type checking, permits operations only on data 
objects of the same data type when they are defined 
in the same module. But, unlike strong type check­
ing languages, there are language inconsistencies, 
or undocumented features, that allow programmers 
to mix data types. Pascal is a pseudostrong type 
checking language in that it supports strong typing 
within modules, but has no type checking across 
modules. So, data passed from one module to an­
other for processing may be combined in the called 
module with another data type with no penalty. 

At the highest level of data type checking, lan­
guages with strong type checking permit operations 
only on data objects of the same, prespecified data 
type whether in the same or other modules. If a mod­
ule contains an illegal data type, the application 
would stop processing and issue an error message. 
Ada provides strong type checking. 

Language Constructs 
Language constructs determine what and how 
operations on data are carried out. They provide for 
sequencing, iteration, selection, and data structure 

a. The formula is: I/A = B 
5/10.0 = 0.50 

The data are converted to real because B is a real 
name. 

b. The formula is: IIA = J 
5/10.0 = 1.0 or 0.0 

Data are converted to integer and rounded. 
Results vary depending on the computer system. 

FIGURE 15-4 Mixed-Mode Data Type 
Checking 



processing, and differ for each language classified. 
In general, the richer the language, the more these 
constructs will be present. However, with the rich­
ness comes a trade-off in language complexity that 
forces users to learn more language details to 
become proficient. 

The need for rich language constructs depends 
somewhat on the language paradigm. For instance, 
SQL is a declarative, set processing language that 
does not need iteration because iteration is embed­
ded in the language. In a declarative language, you 
code what you want to do, not how. With set pro­
cessing, you identify the database and the language 
controls all file manipulation. The more procedural 
the language, the richer the language constructs need 
to be. The more detailed the application, the richer 
the language of the application should be. 

Sequencing occurs between and within com­
mands. Between-command sequencing is controlled 
by you as the programmer who defines the order of 
commands. Intracommand sequencing is part of lan­
guage definition and is called operator precedence. 
Operator precedence is the prioritizing of symbols 
to manipulate data. All languages have at least four 
arithmetic symbols in common: + for add, - for sub­
traction, * for multiplication, and / for division. Most 
languages also have many other symbols and opera­
tions supporting unary and binary operations includ­
ing relational processing (e.g., "less than," "less than 
or equal," etc.), logical processing (e.g., "and," "or," 
or "not"). A list of operators available in different 
languages is provided in Figure 15-5. 

Control language constructs support iteration, 
sequential or selection processing via loops, exits, 
conditional statements, or case constructs. Loops 
provide iterative, repetitive processing and are usu­
ally supported through structured programming 
notations such as "do while ... " or "do until. ... " 
Conditional statements support "if ... then .. . 
else" processing. Conditional statements are used in 
some languages to control iterative loop processing. 
Common loop notations are shown in Figure 15-6. 

Case statements allow identification of code seg­
ments that combine to identify the "case," for 
example, in Focus file maintenance processing you 
can code screen processing cases for add, change, 
and delete cases. This simplifies the thought pro-

Operator 

Add 

Subtract 

Multiply 

Divide 

Exponent 

And 

Or 

Not 

Equal 

Characteristics of Languages 643 

Symbol 

+ 

I, -7-

**, A 

AND 

OR 

Less < 

Greater > 

Less or equal ~, =<, <= 

Greater or equal 2, =>, >= 

FIGURE 15-5 Language Operators 

cesses involved in programming by "chunking" case 
contents. 

Exits leave the current code module and return 
to the calling module or to some other named mod­
ule. Exits can be simple returns to the calling mod­
ule, such as Return, Cut, or Exit statements (see 
Figure 15-7); exits can indicate the nature of the end 
as in PROLOG's Fail exit, or exits can return to a 
named module in a Goto statement. 

Arrays, or tables, are a third type of language 
construct that mayor may not be supported by a lan­
guage. Linear arrays, or lists, are one type of data 
that are relatively simple to support (see Figure 
15-8). When higher dimension arrays are supported, 
the maximum number of dimensions are identified. 
Occasionally a language will support n-dimensional 
arrays, with a user-defined maximum. 

Next there are four possible alternatives for phys­
ical input and output (I/O) of information to and 
from automated files or data entry fields. First, spe­
cific I/O statements (e.g., read/write) for externally 
stored data may be one of three types: record­
oriented, set-oriented, or array-oriented. Record­
oriented I/O reads (or writes) a physical record of 



644 CHAPTER 15 Choosing an Implementation Language 

BEGIN ... END 

BLOCK 

DO ... ENDDO 

FOR .. . 

FOR ... END FOR 

if False ... 

ifTrue ... 

INDEX .. . 

LOOP ... ENDLOOP 

REPEAT ... END 

REPEAT .. . 

WHILE .. . 

WHILE ... ENDWHILE 

whileFalse ... 

whileTrue ... 

FIGURE 15-6 Loop Notations 

information that may contain one or more logical 
records. Recall from database class that records (or 
tuples in relational terminology) are groupings of 
related fields. Record-oriented I/O requires opening 
and closing of files, reading or writing of records, 
and user management of all file processing, such as 
checks for end-of-file. COBOL, Fortran, Assembler 
languages, and Ada are record-oriented. 

Exit Type Processing 

Return Return to Calling Module 

Cut Return to Calling Module/Instruction 

Exit Return to Calling Module 

Fail Go to Calling Module/Instruction 
with Boolean indicating process 
failure 

Goto Go to Named Module 

FIGURE 15-7 Exit Types 

Linear Array, List 

2 

3 

4 

5 

Two Dimensional Array of Months and Days 

January 

February 

March 

April 

31 

28 

31 

30 

Three Dimensional Array of Sales By Year By Month 

Year Month Sales 

1996 January 220,000 

1996 February 250,000 

Year Month Sales 

1995 January 150,000 

1995 February 170,000 

Year Month Sales 

1994 January 100,000 

1994 February 100,000 

FIGURE 15-8 Types of Arrays 

Set-oriented I/O assumes that all records (or 
tuples) are treated the same and that some selection 
criteria, when applied, identify the desired informa­
tion. The language controls all file and read/write 
processing according to user-defined selection crite­
ria. At the end of a procedure, the set of records 
(tuples) resulting from the procedure are stored in 
memory for printing or display. SQL is set-oriented. 

Implicit I/O is similar to set-oriented I/O. Implicit 
I/O is used in 4GLs in which reading and writing of 
data is hidden from the user. The user specifies the 
type of process, for instance, TABLE FILE ... , and 
the language infers the type of file processing 
required from the command. Set-oriented I/O is 



more rigorously defined and has provably correct 
contents based on mathematical set theory which 
underlies relationship processing. Implicit I/O, on 
the other hand, is in languages which predate rela­
tional theory and do not have provably correct 
results. 

Array-oriented I/O reads and writes strings of 
fields that are assumed to be some sort of array. The 
user is responsible for defining and manipulating the 
nature and data type of array. The language simply 
reads or writes until the end of the array. Pascal is 
an array-oriented language. 

List-directed I/O is a variant of array-oriented 
I/O. List-directed I/O is used in Fortran to define a 
list of variable names to which items are directed as 
they are read. The language reads until the list is full, 
then continues processing until the read is again 
executed. Data items are not specifically formatted, 
rather the format is implicit in the variable names. 

The extent to which data formats and I/O pro­
cessing can be defined and controlled distinguishes 
languages as I/O-oriented versus CPU -oriented in 
their processing. The more elaborate the I/O pro­
cessing, the more I/O-oriented the language. The 
more primitive the I/O processing, the more CPU­
oriented the language. Fortran is an example of a 
CPU-oriented language, while COBOL is an exam­
ple of an I/O-oriented language. 

Modularization and Memory 
Management 
The extent to which modularization and memory 
management are supported is an indication of lan­
guage sophistication. Modularization is the creation 
of subprograms or stored functions. Languages dif­
fer in the manner in which the subprogram and their 
data are supported. First, the ability to define sub­
programs or functions is important to attaining 
desirable program characteristics such as maximal 
cohesion. Not all languages allow SUbprograms. In 
particular, set-oriented languages (SQL) do not eas­
ily support subprograms. 

Second, how data in modules is managed is 
important. Data can be local or global. Local data 
storage defines data variables and constants that are 

Characteristics of Languages 645 

only used within a given module. Global data are 
accessible to any module in the application. The 
ability to have local data is important to attaining 
information hiding and minimal coupling. The 
extent to which global data is required limits the 
quality of resulting programs by limiting informa­
tion hiding and cohesion. 

Subprograms' activation is similar across lan­
guages. Called modules are referenced by module 
name. For instance, "CALL FACTORIAL, 5" might 
be a subprogram call that passes the value five for 
factorial computation. Modules must reside in a 
library that is linked to the calling module via control 
language (e.g., JCL). Options for call processing 
include passing of variable data either by name, by 
address, or directly, by value. Value passing requires 
local data definition while passing data by name or 
address is used with either local or global data. 

Generally, when using subprograms, a main mod­
ule calls the subprogram which performs its process­
ing and returns to the calling module. The ability to 
support subprogram processing requires one or more 
entry and exit points. Exit and return processing are 
also important when passing control of processing 
between modules. In general, the more opportunities 
to enter and exit a given module, the more proficient 
the programmer needs to be to ensure proper pro­
cessing. According to structured programming ten­
ants, a well-designed module should have one entry 
and one exit point. Some languages, such as Small­
talk and Ada, enforce this idea by allowing only one 
entry and one exit per module. One entry-one exit 
modules are less error-prone than modules that allow 
many alternatives. 

The next level of sophistication is the extent to 
which programmers have control over their own 
memory management. Memory management refers 
to the ability of a program to allocate more computer 
memory as required. This is an option frequently 
desired in variable list processing and real-time 
applications that manage multiuser resources. Mem­
ory in less sophisticated languages is static: The pro­
gram is assigned a maximum at the time it is initiated 
for processing. If more memory than that allocated 
is needed, the program abends, more memory is 
requested manually via job control language, and the 
program is rerun. 



646 CHAPTER 15 Choosing an Implementation Language 

With dynamic memory management capabili­
ties, the program monitors its own use of storage and 
allocates more memory as needed. In sophisticated 
languages, the capability to dynamically allocate 
memory is present. 

Exception Handling 
Exception handling is the extent to which programs 
can be coded to intercept and handle program errors 
without abending a program. This capability adds to 
both the complexity and the range of usefulness of a 
language. This capability ranges from none to some. 
For instance, COBOL allows you to intercept data 
errors such as overflow or divide by zero, but not 
others, such as invalid data definition or read past 
end-of-file. In contrast, Smalltalk allows the inter­
ception of any error. 

Multiuser Support 
The extent to which language constructs for memory 
management, global/local variables, and subprogram 
management are available, determines the extent to 
which a language can support multiple users. There 
are three levels of support for multiple users that 
relate to program modules having the properties of 
reusability, recursion, and reentrancy. Reusability, 
also called serial reusability, is a property of a mod­
ule such that many tasks, in sequence, can use the 
module without its having to be reloaded into mem­
ory for each use (see Figure 15-9). To accomplish 
this level of program, any changes to local variables 
must be reset to their original contents before the 
completion of processing and return to the calling 
module. The easiest way to develop reusable pro­
grams is to provide global variables that can change 
contents and local variables that either cannot 
change or are always reset after the module's use. 
Reusable programs can support sequential or inter­
active processing, but not multiuser or real-time 
processing. 

Recursiveness is a property of modules such that 
they call themselves or call another module that, in 
turn, calls them. An example is factorial multiplica­
tion in which the same process is performed on a dif­
ferent number of variables a number of times (see 

Reusable Pseudo-code 

Factorial (N, Nfact) 
End=O 
If N=O or 1 

Loop. 
go to exit. 

If N=1 

else 
go to exit 

Nfact = N * (N-1) 
N = N-1 
go to Loop. 

Exit. Exit. 

Recursive Pseudo-code 

Function FACT (N) 
Begin 

If N =0 
Then Factout = 1 

Else Factout = N * FACT(N-1) 
End {Function Fact}; 

FACT is a function that recurs continuously 
until N = O. 

Reentrant Pseudo-code 

Load N, Nfact, First-Exec 
If N = (0 or 1) and First-Exec = 0 

Then Nfact = 1 
Else 

If N > 1 
Nfact = N * (N-1) 
N = N-1 
First-Exec =1 
Save N, Nfact, First-Exec. 

FIGURE 15-9 Examples of Reusable, 
Recursive, and Reentrant Modules 

Figure 15-9). Processing with recursion is explicitly 
outlawed in some languages, while it is considered 
a main strength of others, such as PROLOG. Recur­
sion requires serial reusability of programs in addi­
tion to the ability to maintain a queue (or stack) of 
outstanding requests to be completed. This queue­
ing support provides for multiple uses of the mod­
ule by one user. 

Reentrancy is a property of a module such that 
it can be shared by several tasks concurrently. There 
is a constant part and a variable part to each reentrant 



module. The constant part is loaded into memory 
once and it services tasks in a serially reusable man­
ner until it is overwritten by another program. A 
copy of the variable part is activated for each task 
when it is initiated (see Figure 15-9). A queueing 
mechanism keeps track of the user's identification, 
the location of the variable part, program status 
word, and register contents for the task. This infor­
mation is swapped into (or out of) the active area as 
the user becomes activated (or interrupted). Only 
one task is active at a time, but several tasks might 
be in various stages of task completion. Only the 
property ofreentrancy allows true real-time process­
ing and support for multiple concurrent users. Both 
serial reusability and recursiveness are required to 
achieve reentrancy in programs. 

To summarize, programming languages differ 
in the extent to which they support alternatives 
for defining data types, input/output process­
ing, mathematical, relational, logical, bit, control, 
array, subprogram, and memory processing. The 
less extensive the language constructs supported, 
the simpler the language, but the more restricted the 
domain of problems to which it is amenable. The 
more extensive the language constructs sup­
ported, the more complex the language, and the 
more extensive the domain of problems to which it 
is appropriate. 

NONTECHNICAL ____ _ 
LANGUAGE _____ __ 
CHARACTERISTICS ___ _ 

Nontechnical characteristics are at least as important 
as technical characteristics when selecting a lan­
guage. The nontechnical characteristics evaluated 
here are uniformity, ambiguity, compactness, local­
ity, linearity, ease of design to code translation, com­
piler efficiency, and portability. The availability of 
CASE tools, availability of code generators, and 
availability of testing aids also add to a language's 
attractiveness, and are discussed in a later section. 

Uniformity is the use of consistent notation 
throughout the language. An example of nonunifor­
mity in Focus is the use of single quotes for cus-

Nontechnical Language Characteristics 647 

tomized report column titles and the use of double 
quotes for customized report page titles. This type of 
inconsistency hinders the learning of the language 
and almost guarantees that novices and infrequent 
users will make mistakes. 

Ambiguity of a language refers to the extent to 
which humans and compilers will differ in their 
interpretation of a language statement. Ideally, 
humans' thinking should be identical to compiler 
interpretation, and that compiler interpretation 
should be intuitive to humans. Unfortunately, ambi­
guity may be inherent to some problems, such as 
artificial intelligence applications which reason 
through a process. As new rules and inferences are 
added to an AI application, interpretation of exist­
ing data and rules might also change, thus intro­
ducing ambiguity into a previously unambiguous 
application. 

Compactness of a language is its brevity. The 
presence of structured program constructs, key­
words and abbreviations, data defaults, and built-in 
functions all simplify learning and programming. 
Contrast SQL or Focus, both fourth-generation 
languages, with COBOL, a third-generation lan­
guage. A report that takes three to five lines in 4GL 
procedure code requires 50-150 lines of COBOL 
code (see Figure 15-10). That learning time is con­
siderably shorter for Focus than COBOL, partly due 
to the compactness of the language. 

In turn, compactness implies locality in providing 
natural "chunks" of code that facilitate learning, 
mental visualization of problem parts, and simula­
tion of solutions. Locality is provided through block, 
case, or other similar chunking mechanisms in lan­
guages. Chunks might be implemented via a per­
formed section of code in COBOL, a case construct 
in Focus, or an object definition in Smalltalk. In all 
three of these examples, a user's attention is focused 
only on the chunk of the code present. By being able 
to ignore other parts of the code, learning of the 
chunk is simplified. 

Linearity refers to the extent to which code is 
read sequentially. The more linear a language, the 
easier it is to mentally "chunk" and understand the 
code. Linearity facilitates understanding and main­
tainability. In Figure 15-10, the COBOL code 
chunks in paragraphs and performed sections; these 



648 CHAPTER 15 Choosing an Implementation Language 

4GL-Focus 
TABLE FILE SALES 
HEADING CENTER 'SAMPLE SALES REPORT' 
SUM SALES 

BY REGION 
ACROSS MONTH 
BY YEAR 

ON YEAR SUMMARIZE 
ON YEAR PAGE-BREAK 
END 

3GL-COBOL 

WORKING-STORAGE SECTION. 
01 CONTROL-TOTALS. 

05 LINE-COUNT 
05 END-OF-FILE 

88 EOF 

PIC99 
PIC9 

05 CURRENT-REGION PIC 99 VALUE ZERO. 
05 SUM-SALES. 

10 JAN-SUM PIC 9(5) 
10 FEB-SUM PIC 9(5) 
10 MAR-SUM PIC 9(5) 
10 APR-SUM PIC 9(5) 
10 MAY-SUM PIC 9(5) 
10 JUN-SUM PIC 9(5) 
10 JUL-SUM PIC 9(5) 
10 AUG-SUM PIC 9(5) 
10 SEP-SUM PIC 9(5) 
10 OCT-SUM PIC 9(5) 
10 NOV-SUM PIC 9(5) 
10 DEC-SUM PIC 9(5) 

01 REPORT-HEADER. 
05 FILLER PIC X(48) 
05 HD1 PIC X(19) 

'SAMPLE SALES REPORT'. 
01 COL-HEADER1. 

05 FILLER PIC X(132) 
'REGION MONTH'. 

01 Cot-HEADER 2. 
05 FILLER PIC X(132) 

JAN FEB MAR APR MAY 
JUNE JULY AUG SEPT OCT NOV DEC'. 

01 REPORT-DETAIL. 
05 FILLER PIC XXX 
05 REGION PIC XX 
05 FILLER PIC X(10) 
05 SALES PIC X(84) 

FIGURE 15-10 4GL versus 3GL Language Compactness 

VALUE 55. 
VALUE ZERO. 

VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 

VALUE SPACES. 
VALUE 

VALUE 

VALUE 

VALUE SPACES. 
VALUE SPACES. 
VALUE SPACES. 
VALUE ZEROS. 

VALUE 1. 



Nontechnical Language Characteristics 649 

05 SALES-NUMERICS REDEFINES SALES. 
10 JAN-SALES PICZZZ,ZZZ 
10 FEB-SALES PIC ZZZ,ZZZ 
10 MAR-SALES PICZZZ,ZZZ 
10 APR-SALES PICZZZ,ZZZ 
10 MAY-SALES PICZZZ,ZZZ 
10 JUN-SALES PICZZZ,ZZZ 
10 JUL-SALES PIC ZZZ,ZZZ 
10 AUG-SALES PIC ZZZ,ZZZ 
10 SEPT-SALES PIC ZZZ,ZZZ 
10 OCT-SALES PIC ZZZ,ZZZ 
10 NOV-SALES PICZZZ,ZZZ 
10 DEC-SALES PIC ZZZ,ZZZ 

PROCEDURE DIVISION. 

PERFORM SUMMARY-CONTROL THRU PRINT-REPORT-EXIT. 

SUMMARY-CONTROL. 
IF REGION = CURRENT-REGION 

GO TO PAGE-CONTROL 
ELSE 

PAGE-CONTROL. 

MOVE SUM-SALES TO SALES-NUMERICS 
MOVE YEAR TO REGION 
WRITE REPORT-DETAIL AFTER 3. 
ADD 3 TO LINE-COUNT. 

VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 
VALUE ZEROS. 

IF LINE-COUNT> 50 OR REGION NOT = CURRENT-REGION 
WRITE REPORT-HEADER AFTER PAGE 
WRITE COL-HEADER1 AFTER 2 
WRITE COL-HEADER2 AFTER 1 
MOVE 4 TO LINE-COUNT. 

MOVE REGION TO CURRENT-REGION. 
PRINT-REPORT. 

MOVE CORRESPONDING INPUT-SALES-SUMMARY TO REPORT-DETAIL. 
WRITE REPORT-DETAIL AFTER 1. 
ADD 1 TO LINE-COUNT. 

PRINT-REPORT-EXIT. 
EXIT. 

FIGURE 15-10 4GL versus 3GL Language Compactness (Continued) 



650 CHAPTER 15 Choosing an Implementation Language 

language features facilitate COBOL program under­
standability. 

The ease with which program specifications are 
translated into code is also important in language 
selection. In general, more declarative languages, 
such as SOL, are considered easier to code than 
more procedural languages such as Fortran. How­
ever, PROLOG and other inferential languages, 
while declarative and simple in developing single 
rules, are not simple when trying to determine 
whether the rules aggregate to the proper knowledge 
structures. 

Compiler efficiency is the extent to which a 
compiled language generates efficient assembler 
code. Compiler efficiency varies by vendor and by 
language. Compiled code efficiency is important 
especially when programming for small computer 
systems or for embedded applications that interact 
with other system components as part of a larger 
system. 

Along with efficiency of executable code, porta­
bility of code is important. Portability is the ability 
to transplant the code without change to a different 
operating platform that might include hardware, dif­
ferent operating system, or different software envi­
ronment. A hardware platform may be a single-user 
personal computer, a workstation, or a mainframe. 
Each of these might run the same operating system, 
for example Unix, or might use a different operat­
ing system. The more code that must be changed to 
accommodate a specific hardware or operating 
environment, the less portable the language. As 
global and distributed applications become more 
prevalent, the need for language portability will 
increase. Ideally, programs should be able to be 
developed anywhere for execution on any hardware 
or operating system platform. 

In summary, when technical characteristics do not 
distinguish languages for application use, nontechni­
cal characteristics of languages become important 
to their selection. The nontechnical characteristics 
evaluated here include uniformity, ambiguity, 
compactness, locality, linearity, ease of code devel­
opment, compiler efficiency, portability, and avail­
ability of automated development tools. In the next 
section, we discuss ten popular programming lan­
guages and the extent to which they contain the 

language constructs above. Then we discuss appli­
cation characteristics and how they map to the 
languages. 

COMPARISON OF ____ _ 
LANGUAGES _____ _ 
Ten languages are evaluated in this section to high­
light the differences across paradigms and language 
generations for all of the characteristics defined 
above. The ten languages selected were chosen 
because of their current and expected future popu­
larity either in academic circles (e.g., Pascal) or in 
industry. The languages include SOL, COBOL, For­
tran, BASIC, Focus, C, Pascal, PROLOG, Ada, and 
Smalltalk. Each language is discussed briefly below 
to highlight the characteristics that make it popular 
and unique. Table 15-1 summarizes the 10 languages 
on all of the characteristics described above. 

SQL 
As the American National Standards Institute's stan­
dard for database query language, SOL has enjoyed 
a successful life. SQL pervades any database course 
taught in North America and is a query language 
front-end to virtually every database package on the 
market regardless of machine size, number of users 
supported, or complexity of the database. SOL's 
virtues are mostly nontechnical: ease of learning, 
compactness, uniformity, locality, linearity, portabil­
ity, and availability of automated tools (see Table 
15-1). The simplicity of the language is evident in 
the small number of hours of learning time it takes 
novices to begin using the language. A novice might 
begin writing queries in literally minutes. Profi­
ciency, of course, takes longer, but time to become 
proficient is shorter than most database languages. 

Many CASE environments that support analysis 
and design also support logical database design 
through the process of normalization. Those prod­
ucts also generate SOL database definitions as 
the logical DB design output. Many of the same 

(Text continues on page 656) 



Comparison of Languages 651 

TABLE 15-1 Comparison of Languages 

SQL Focus BASIC COBOL Fortran 

Data Types 
Real Yes Yes Yes Yes Yes 
Integer Yes Yes Yes Yes Yes 
Character Yes Yes Yes Yes Yes 
String No No No Yes No 
Boolean No No No No No 
Date No Yes No No No 
User-Defined No No No No No 
Pointer No No No No No 
Bit Identification No No No No No 
String-Mask No No No No No 

Data Type Checking 
Typeless X X 
Automatic type 

coercion X 
Mixed mode X X 
Pseudo strong 
Strong 

Operator Precedence 0" */± 0" */± 0" */± 0" */± 0" */± 

Binary and Unary 
Operators Yes Yes Yes Yes Yes 

Arithmetic +,-, *,/ Yes Yes Yes Yes Yes 

Relational <,=,>,::;,~ Yes Yes Yes Yes Yes 

Logical and,or,not Yes Yes Yes Yes Yes 

Bit No No No No No 

Type Conversion No Yes, No Yes, Yes, 
Limited Limited and Limited and 

Inconsistent Inconsistent 
Control 

Loops No No FOR ... PERFORM ... FOR ... 
NEXT UNTIL CONTINUE 

Exits No EXIT, EXIT, EXIT EXIT, 
GOTO GOTO GOTO 

Conditional WHERE IF ... IF ... IF ... THEN IF ... 
Statements ELSE ... ELSE 

Case No Yes (not in No COBOL 88 No 
Statements query language) only 

Arrays 
Linear Arrays No No Yes Yes Yes 
Multiple 

Dimensions No No Upt02 Up to 3 Up to 3 

(Table continues on next page) 



652 CHAPTER 15 Choosing an Implementation Language 

TABLE 15-1 Comparison of Languages (Continued) 

SQL Focus BASIC COBOL Fortran 

Input/Output 
I/O of Records No No Yes Yes Yes 
I/O of Arrays No No No No Yes 
Implicit I/O Yes Yes No No No 
Format Control Automatic or Automatic or Programmed Programmed Programmed 

Programmed Programmed only only only 
Data-directed I/O No No No No Yes 

Subprograms 
Subroutines Nested Yes Yes Yes Yes 
Functions Limited Yes Limited Limited Limited 
Local/Global No Yes Limited Programmed Yes 

Storage only 
Static/Dynamic No No No No No 

Storage 
Entry Points No Yes Yes Yes One 
Pass Parameters No Yes Yes Yes Yes 

Call by Address No No No No No 
Call by Value No No No No No 
Call by Name No Yes Yes Yes Yes 

Reusability No Yes Yes Yes Yes 

Reentrancy No No No No No 

Recursion No No No No No 

Concurrency Only when Yes No No No 
used with DB2 

Exception Handling No Limited Limited Limited Limited 

Nontechnical 
Uniformity High Medium-High Medium Medium Medium 
Ambiguity Low-Medium Low-Medium Medium Medium Medium 
Compactness High High Medium-High Low Medium-High 
Locality High High Programmed Programmed Programmed 

only only only 
Linearity High High Low-Medium Low-Medium Low-Medium 
Ease of design 

to code High High Low-Medium Low-Medium Low-Medium 
Compiler Yes, Medium, Medium, Medium-High Medium-High 

Efficiency when used Mostly Mostly 
as embedded Interpreted Interpreted 
language; 
otherwise SQL 
is interpreted 

Source code 
portability High High Medium High High 



Comparison of Languages 653 

TABLE 15-1 Comparison of Languages (Continued) 

SQL Focus BASIC COBOL Fortran 

Nontechnical, cont. 
Availability of 

CASE tools Yes Yes No Yes No 
Code generators Yes No No Yes No 
Testing aids Yes No Yes Yes Yes 

Maintainability High Medium-High Low-Medium Low-High Low-Medium 

C Pascal PROLOG Ada Smalltalk 

Data Types 
Real Yes Yes Yes Yes Yes 
Integer Yes Yes Yes Yes Yes 
Character Yes Yes Yes Yes Yes 
String Yes Yes, Limited Yes Yes Yes 
Boolean No, but can be Yes No Yes Yes 

user defined 
Date No No No No No 
User-Defined Yes Yes No Yes Yes 
Pointer Yes No No Yes Yes 
Bit Identification Yes No No Yes Yes 
String-Mask No Limited Yes No No 

Data Type Checking 
Typeless X 
Automatic 
Mixed mode X 
Pseudo strong X 
Strong TurboProlog X X 

Operator Precedence () []-> not () ** not abs unary 
+ - (unary) */ div mod + -unary * /mod rem binary 
++-! ~ * + and-or mod div + - unary keyword 

& size of =<> < <= > >= * / + - & binary 
(type) <in + - binary relational 

* / % +-«» relational logical 

<= >=!= == operators short -circuit 
&/\ 

&&11 
?: 

= op=, 

No exponent No exponent No exponent No exponent 
operator operator operator operator 

Operators 
Binary and Unary Yes Yes Yes Yes Yes 

(Table continues on next page) 



654 CHAPTER 15 Choosing an Implementation Language 

TABLE 15-1 Comparison of Languages (Continued) 

C Pascal PROLOG Ada Smalltalk 

Operators, cont. 
Arithmetic +,-, * ,/ Yes, also % for Yes Yes Yes Yes 

modulus 
Relational <,=,>,:::;;,~ Yes Yes Yes Yes Yes 
Logical and,or,not Yes Yes Yes Yes Yes 
Bit Yes No No Yes Yes 
Type Conversion No No No No No 

Loops DO WHILE ... Simulated via BEGIN ... END iITrue 
FOR ... REPEAT ... WHILE ... ifFalse 
REPEAT ... WHILE ... FOR ... whileTrue 

END INDEX ... BLOCK while False 
LOOP ... END 
LOOP 

Exits RETURN RETURN FAIL EXIT 
GOTO CUT GOTO 

RETURN 

Conditional IF ... ELSE IF THEN None IF ... THEN iITrue 
Statements BEGIN ... ... ELSE ifFalse 

END ... ELSEIF whileTrue 
ELSE ... ; CASE whileFalse 

Arrays 
Linear Arrays Yes Yes Only as LIST Yes Yes 
Higher No limit to No limit to No No limit to No 

Dimensional number of number of number of 
Arrays dimensions dimensions, dimensions, 

Some dynamic Dynamic 
allocation allocation 
support support 

Input/Output 
I/O Statements Only using No TurboProlog, Yes Yes 

defined function else No 
I/O of Arrays Only using Yes No No No 

defined function 
Implicit I/O Only using No TurboProlog, No No 

defined function else No 
Format Control Only using Limited Yes Yes Yes 

defined function 
Data-directed I/O No No No No No 



Comparison of Languages 655 

TABLE 15-1 Comparison of Languages (Continued) 

C Pascal PROLOG Ada Smalltalk 

Subprograms 
Subprograms Yes Yes TurboProlog, Yes Yes 

else No 
Functions Yes Yes Yes Yes 
Local/Global 

Storage Both Both Both Both Both 
Static/Dynamic 

Storage Both No control Both Both Both 
Entry Points One per One per One per One per One per object 

function routine program routine 
Parameters 

Call by Address Yes No No Yes No 
Call by Value No Yes No Yes No 
Call by Name Yes Yes Clause name Yes Yes 

as subgoal 
Reusability Yes Yes Yes Yes Yes 

Recursion Yes Yes Yes Yes Yes 

Reentrancy No Yes No Yes Yes 

Concurrency No, unless Concurrent Depends on Yes Yes 
C++ Pascal only version 

Exception Handling Yes No Yes Yes Yes 

Nontechnical 
Uniformity Low-High Medium-High Medium-High Medium-High Medium-High 
Ambiguity Low-Medium Low-Medium Medium-High Low-Medium Low-Medium 
Compactness Low-High Medium-High Low-High Low-High Low-High 
Locality Low-High Low-High Low-Medium Low-High Low-High 
Linearity Low-High Low-High Low-High Low-High Low-High 
Ease of design 

to code Medium-High Medium-High Medium Medium-High Medium-High 
Compiler High High Usually Medium-High High 

Efficiency interpreted 
Source code 

portability High Medium-High Low Medium-High Low 
Availability of 

CASE tools No In academia, No Yes Yes 
yes 

Code generators No No No No No 
Testing Aids Yes Yes No Yes Yes 

Maintainability Low-High Low-High Low-High Medium-High Medium-High 



656 CHAPTER 15 Choosing an Implementation Language 

products also provide code generation of Cobol with 
embedded SOL providing DB access. Examples of 
CASE products are ADWTM and IEFTM. These prod­
ucts have their own code generators and can inter­
face to code generation software. 

In terms of technical capabilities, SOL is limited. 
It is assumed that complex programming is done 
in some other language with SOL embedded as 
described above. SOL can define and modify data­
bases, perform simple mathematical processing on 
fields for reporting, and generate default or cus­
tomized reports. 

Focus 
As a fourth-generation language, Focus consists of a 
database engine with its own query language, SQL 
compatibility, a full-screen processor, and language 
subsets for graphical, statistical, file maintenance, 
and intelligent processing. Focus DB supports rela­
tional, hierarchic, and network files as well as pro­
viding an interface to many popular mainframe 
DBMSs, such as IMS, IDMS, Adabas, Model 204, 
and so on. 

Like SQL, Focus' main strengths lie in the non­
technical characteristics of the language: compact­
ness, locality, linearity, ease of code translation, 
portability, and availability of CASE tools for docu­
menting analysis and design (see Table 15-1). 
Occasionally, Focus can be ambiguous in interpret­
ing handling of data across a hierarchy or in multiple 
joined files. 

Focus is a full-function database language. This 
means that files can be defined, maintained, vali­
dated, modified by transaction processing, and 
queried all in the same environment and the same 
language regardless of the hardware/software plat­
form. This high level of portability and full­
function nature of the processing make Focus a pop­
ular 4GL for rapid application development and user 
query processing. 

A reentrant version of Focus is available to sup­
port multiuser processing. Application code in Focus 
is not reentrant. A compiler is available for file mod­
ify routines; otherwise, Focus is interpreted. Focus is 

a language of defaults that does not support user­
defined or user-managed resources. 

BASIC 
BASIC is short for Beginner'sAll-purpose Symbolic 
Interchange Code. BASIC is present in this evalua­
tion because of the number of applications written in 
it regardless of whether it were appropriate or not. 
BASIC is, well, basic. Nothing fancy is supported 
in this language, but all rudimentary processing is 
present (see Table 15-1). BASIC is fairly easy to 
learn and write, with reasonable levels of uniformity, 
compactness, and good automated testing aids. The 
remaining characteristics vary considerably from 
one version of BASIC to another. In particular, its 
portability is low-medium since the I/O commands 
usually must change to suit a particular environment. 

BASIC does standard programming operations, 
supporting a limited, but standard number of data 
types, with no type checking. There are language 
constructs for loop, condition, and array processing. 
Files can be read and written. 

BASIC is popular because a whole generation of 
college graduates was subjected to it as the basis for 
learning programming. Provided an application does 
not require any nonstandard processing, BASIC can 
perform adequately. 

COBOL 
COBOL stands for COmmon Business Oriented 
Language. It is the most frequently used language 
in computer history and continues to maintain that 
status even though its demise is regularly reported as 
imminent. COBOL can be likened to a bus. Buses 
are uncomfortable, take longer than most other 
modes of transportation, but are suited to many types 
of trips. Similarly, COBOL is uncomfortable to 
code, it takes a long time to develop code, but it is 
suited to many business problems. As an all­
purpose language, COBOL does most everything, 
and it is written in a language that is close to English. 

COBOL input/output processing is consistently 
superior in efficiency and range of data structures 
supported (see Table 15-1). COBOL is not good for 



real-time applications and cannot be used to code 
reentrant or recursive structures. It is teamed with 
multiuser software, such as CICS for telecommuni­
cation interface processing or IMS DB/DC for tele­
communication interface and database manipulation, 
to build effective interactive, multiuser applications. 

In the nontechnical areas, COBOL rates high on 
availability of CASE tools, code generators, and 
testing aids. As the most frequently used language, it 
was first on the list of languages for which auto­
mated support was developed. It is a highly portable 
language and is supported by many efficient com­
pilers. In the other nontechnical areas, COBOL rates 
less desirable than SQL and Focus, but is compara­
ble to or better than other procedural languages. 

Fortran 
Shorthand for FORmula TRANslation, Fortran 
gained popularity as a number-cruncher language 
in the 1960s and has maintained a dwindling, but 
steady, popularity ever since. Fortran's weakness is 
in the data and file structures it supports (see Table 
15-1). It does not interface to DBMS software and 
is limited to sequential, indexed, and direct files. 
Also, input/output processing of most Fortran com­
pilers is slow, character operations are awkward and 
not recommended, and data format control is more 
limited than other languages. 

Fortran's strength is in the efficiency of algo­
rithms generated to perform numeric processing. 
Fortran's compilers usually are accompanied by a 
subprogram library that includes many frequently 
used algorithms for sort, statistical, and mathemati­
cal processing. Subroutine and subprogram process­
ing is facilitated through easily defined and accessed 
global and local variables. The mixed mode data typ­
ing in Fortran is an important language feature 
because numeric processing will have different 
results depending on the definitions of the fields 
being processed. 

Reusable programs can be developed using For-
. tran, but no one would use Fortran to develop a com­
plete on-line, interactive system. Rather, Fortran 
routines for numeric processing might be embedded 
in a system developed in some other language. 

Comparison of Languages 657 

c 
C is a high-level language developed to perform 
low-level processing. 1 Its generality and lack of con­
straints coupled with autonomy of data structure 
definition and a rich set of operators make it an 
effective language for many tasks, including interac­
tive, reusable, and recursive applications (see Table 
15-1). A C program is a series of functions that are 
invoked by embedding their names in code. Transfer 
of control is automatic as is return processing. Sys­
tem operators, called escape sequences, are embed­
ded in the program and recognized by a preceding 
backslash '\'. 

C is a concise, cryptic language that can be effi­
cient in the hands of an experienced, skilled pro­
grammer and can be a mess in the hands of a novice 
or poor programmer. "The language imposes virtu­
ally no rules regarding design or structure of pro­
grams and enforces nothing at all. This is not a 
dummy-proof programming language, and it cer­
tainly is not for beginners" [Friedman, 1991, p. 398]. 
As such, the nontechnical aspects of the language 
all range from low to high because the rating 
depends on the skill of the programmer. For expert 
programmers who understand how to build reusable 
modules, C language provides the capabilities 
to build reusable libraries with applications built 
from them. 

Pascal 
Pascal is a language designed to be unambiguous for 
teaching students of computer science.2 Programs 
in Pascal are free-format, but the language contains 
natural structuring syntax that can be indented to 
make the language easily readable. 

ConcurrentPascal provides for real-time control 
over processing. Other versions of Pascal support 
development of reusable and recursive programs and 

1 C was developed at Bell Labs by Kernighan & Ritchie, 1978. 

2 For instance, Cooper & Clancy, 1985, is a frequently used 
Pascal text. 



658 CHAPTER 15 Choosing an Implementation Language 

subprograms (see Table 15-1). However, standard 
Pascal cannot use subroutine libraries since it 
assumes all program modules are instream, that is, 
embedded within the code of a single program. 
There is little control over interrupt processing in 
the language, so abends cannot be intercepted and 
redirected. I/O processing is more limited than some 
languages in not supporting random access files and 
in very limited string processing. 

Pascal is similar to C on the nontechnical char­
acteristics in that the readability, ambiguity, local­
ity, and so forth of the language are dependent on the 
author using indentation and separation of state­
ments to ensure these characteristics. But, unlike C, 
the language constructs of Pascal support readability 
once the indentation is done. Pascal requires less 
technical knowledge of hardware or operating sys­
tems to be efficient. 

Because Pascal was developed as a teaching tool, 
automated programming support environments are 
available at least in academic settings.3 These envi­
ronments require the student to enter the construct 
desired; the software then displays a template of 
options for which the student fills in the blanks 
of the selected subconstructs. There are also many 
automated testing aids such as visual execution 
environments available to support Pascal pro­
gram testing. 

PROLOG 
PROLOG is short for PROgramming in LOGic. 
PROLOG is the only strictly artificial intelligence 
language included in this group. PROLOG was 
developed at the University of Marseilles in the early 
1970s with the most common version in the United 
States that of David H. D. Warren. PROLOG is a 
goal-oriented, declarative language with constructs 
for facts and rules. PROLOG facts are pieces of 
concrete, factual information. A fact might be: "A 
part of a widget is a wid." Another fact might be: 

3 Thomas Reps, MIT, developed a Pascal programming envi­
ronment for Cornell as part of his dissertation [Reps, 1984]. 

"A wid weighs 1.25 pounds." PROLOG rules 
define how facts are assembled to make information. 
An example of a rule might be: "If a widget is 
overweight, check the weight and tolerance of 
each component." 

PROLOG goals are data that match some selec­
tion criteria, for example, the probable cause of a 
manufacturing problem specified in the query: What 
could cause finished widgets to be 3.2 pounds over­
weight? Subgoals, which would be subprograms in 
the terminology of the other languages, are deter­
mined from the goal. In the example above, widget 
components, their weight, weight allowances, and 
how each is used in widget manufacturing might all 
be subgoal information to be determined to answer 
the query. Goals are satisfied/answered by satisfy­
ing all subgoals. When a subgoal fails, an alternative 
for arriving at similar information is found via logi­
cal backtracking through the rules. The subgoal 
might remain unsatisfied, leading to a low level of 
confidence in the deduced answer. 

Although the constructs for PROLOG are simi­
lar in many ways to those of declarative, procedural, 
and object languages, there are many significant dif­
ferences in both data and program processes (see 
Table 15-1). Data are facts that are normally stored 
in the program rather than as separate files. This is a 
limitation in using PROLOG for general purpose 
business processing. 

Program control is maintained through the order­
ing of clauses for execution and through the use of 
verbs like fail, which initiates backtracking by fail­
ing a subgoal, or cut, which prevents any more back­
tracking when a subgoal is fulfilled. Subprograms 
are simulated via call/return processing to clauses. 
Iteration is performed via recursive processing 
of rules. 

How one rates PROLOG on the nontechnical 
aspects of the language depends on the size of the 
problem being automated. For small problems, the 
language can be compact, local, and linear. For large 
problems, the language can be highly ambiguous, 
noncompact, difficult to follow in a linear manner, 
and without local references to facilitate understand­
ing. Ironically, PROLOG is viewed as a good lan­
guage for novices with little exposure to procedural 



languages. It is easy to learn if one can think in the 
goal-oriented manner of the language. 

Smalltal'k 
Smalltalk was developed as both operating environ­
ment and language during the 1970s at the Xerox 
Palo Alto Research Center by the Learning Research 
Group. It is an object-oriented language that treats 
everything as an object, even for instance, integers. 
Smalltalk is highly customizable and can, therefore, 
be used to design efficient applications. 

Many important object-oriented concepts are 
embodied in the language, including abstraction, 
encapsulation, and some class processing (see Chap­
ters 11 and 12). Abstraction is the definition of iden­
tifying characteristics of an object. Encapsulation is 
the term used to describe the packaging of data and 
allowable processing on that data together. Objects 
communicate with each other only by message pass­
ing. An individual object is an instance of a class. 
Classes describe objects that share common data and 
processes but that also may have data and processes 
that differ. For instance, the class employee might 
have subclasses manager, professional, and clerk. 
All subclasses are also employees and share that data 
and processing as well as their own. In addition, an 
individual might be a member of professional and 
manager classes at the same time. 

Smalltalk is a full-function, unconstrained pro­
gramming language that can literally be used to do 
anything (see Table 15-1). The major weakness of 
Smalltalk is that it does not specifically support per­
sistent objects, also known as files. But if the file is 
an object, then it, too, can be processed in Smalltalk. 

The strength of Smalltalk is in its use for event­
driven processing as in process control, heating sys­
tem monitoring, or just-in-time notification of 
manufacturing needs. These types of applications 
use nonpersistent messages from the external envi­
ronment to drive the processing done by the appli­
cation; these applications do not necessarily need 
files for processing. Similarly, message processing 
support in Smalltalk assumes point/pick devices, 
such as a mouse, for interactive, nonpersistent com­
munication with the application user. The only major 

Comparison of Languages 659 

caveat on Smalltalk use is that object orientation, 
and therefore object-oriented programming, requires 
a different kind of thinking than procedural language 
programming such as COBOL. 

Ada 
Ada, the official language ofthe U.S. Department of 
Defense, with a user population in the hundreds of 
thousands, has had more thought about its imple­
mentation than any other language. Ada was named 
after Ada, Countess of Lovelace, who originated the 
idea for stored programs to drive the use of comput­
ing devices. 

Ada's design by committee has not resulted in a 
perfect language, but in one that is better than most. 
Current versions of Ada are object based rather than 
object oriented. In object-based applications, pro­
grams are cooperative collections of objects, each 
of which represents an instance of some object type. 
All object types are members of a hierarchy of types 
which are linked through processing rather than 
through inheritance relationships. Classes, rather 
than types, are not formally recognized; there are no 
persistent objects such as files, and inheritance is not 
supported (see Table 15-1). 

Ada files, as in Smalltalk, are defined as a type 
within the constructs of the language and all pro­
cessing is on the type. Also, there is no real message 
processing in Ada, at least as of 1992. Rather, the 
system is fooled through function calls and parame­
ter passing to simulate message processing. Like 
Smalltalk, Ada's strength is its ability to support 
event-driven processing, like missile guidance in 
embedded defense-related systems. 

Future versions of Ada are expected to adapt mul­
ticlass inheritance structures and processing, 
dynamic binding of objects, real message process­
ing, and persistent objects that provide a variety of 
data structures. With these extensions, Ada is suit­
able for virtually any application. The same warn­
ing about the difference in object-oriented thinking 
expressed about Small talk is also appropriate here: 
Object-oriented design and program development is 
different in kind than procedural development of 
applications via languages such as COBOL. 



660 CHAPTER 15 Choosing an Implementation Language 

PROGRAMMING ____ _ 
LANGUAGE ______ _ 
EVALUATION _____ _ 

Two ways of matching program languages are con­
sidered in this section. The first is to match the pro­
gramming language to the application type (from 
Chapter 1). The second is to match the language to 
the methodology used for developing the application 
(from Chapters 7-13). 

Language Matched to 
Application Type 
Few heuristics have been available to guide pro­
grammers in matching a programming language to 
application type. The lack of heuristics is due mostly 
to the newness of most languages and their restricted 
use in academia (e.g., Pascal and PROLOG). Part 
of the reason for a lack of heuristics is also because 
most businesses have developed only transaction 
processing applications until the late 1980s; one or 
two languages were sufficient for most computing in 
the organization. With the development of query lan­
guages, AI applications and object orientation, more 
languages have proliferated and heuristics have 
slowly developed. Keep in mind that as experience 
with emerging paradigms, such as object orientation 
and intelligent applications grow, the heuristics will 
be refined and changed from those presented here. 
For each application type discussed in Chapter 1, the 
normally relevant characteristics and language 
choices are discussed below and summarized in 
Table 15-2. 

Transaction processing applications are divided 
for classification into batch, on-line, and real-time as 
the predominant form of processing. For batch 
applications, COBOL and Focus are best suited (see 
Table 15-2). For on-line applications, all languages 
except Fortran and PROLOG might be used. For­
tran is excepted because of its poor I/O processing; 
PROLOG is not recommended because data are usu­
ally embedded in the code, precluding most TPS 
processing. Language actually chosen should be 
based on the transaction volume, with high volume 

TPS moving away from the SQL and 4GL languages 
toward compiled, full-function languages. If there 
is a DBMS or other special data access software, the 
choices narrow to Focus or COBOL depending on 
the specific DBMS. 

Some business systems are specialized because 
they are real-time and have stringent response time 
requirements in addition to being critical to at least 
one organization. Examples of real-time TPS include 
airline reservations, securities transaction process­
ing, manufacturing process control, robotics control, 
or analog I/O applications. For such systems, the 
language recommendations are restricted to C, Pas­
cal, Ada, and Smalltalk (see Table 15-2). Any of 
these languages can be used to develop reentrant, 
multiuser, real-time applications, although attention 
to a specific dialect (or vendor version) is required to 
choose a reentrant version of the language. An 
alternative is to develop such applications using 
assembler language as the reentrant base with one 
or more of the application languages used for indi­
vidual modules. 

Query processing is restricted to SQL, Focus, and 
PROLOG (see Table 15-2). SQL, Focus, and PRO­
LOG support declarative statements of what is 
desired without having to anticipate the outcome in 
advance. As such, they are the only three languages 
of these ten to support query processing. PROLOG 
has the added feature that it can explain its reasoning 
process and provide probabilities of accuracy for 
its data. Both SQL and Focus assume they are work­
ing on complete information and there is only 
one answer to a given query. PROLOG can be pro­
grammed to develop confidence estimates in 
answers as well as to develop all possible answers 
to a query. 

Data analysis applications are those in which sta­
tistical routines, trend analysis, or other mathemati­
cal manipulation of data is desired. Data analysis 
applications can be programmed or can use pack­
ages combined with programs. For such applica­
tions, Focus, Fortran, Pascal, PROLOG, Ada, and 
Smalltalk might be used (see Table 15-2). COBOL is 
conspicuously absent from this list because it is not 
as adept at data analysis as other languages. Focus 
provides statistical modeling, financial modeling, 
graphical processing, and query processing all 



Programming Language Evaluation 661 

TABLE 15-2 Application Type Matched to Language 

Application 
Type SQL Focus BASIC COBOL 

TPS-Batch X X X X 

TPS-On-Line X X X X 

TPS-Real-
Time 

Query X X 

DSS/Data 
Analysis X X 

AI/Expert 
Systems 

EIS X 

within its one language. As such, it is the most full­
function data analysis tool in this group. The other 
languages have the individual tools for a program­
mer to build a data analysis application, but the 
assumption is that some processing would be done 
by general purpose modeling languages (e.g., Sta­
tistical Analysis System-SAS.4 If complex simul­
taneous equations are required, Focus is not the 
appropriate language. Then, choices are restricted 
to Fortran, Ada, or Smalltalk. Fortran does not actu­
ally provide simultaneous equation solutions, but it 
can be 'fooled' into performing as if it does. The 
other languages are better choices for simultaneous 
equation processing. Some dialects of C (Le., Con­
current C) and Pascal (i.e., Object Pascal) might also 
be used for simultaneous equations. 

ESS or DSS applications may have changing 
requirements that are not well understood due to the 
unstructured nature of the problem domain. For such 
applications, C, Pascal, PROLOG, Ada, or Smalltalk 
might be used (see Table 15-2). One or more of these 
languages might be combined with purchased soft-

4 SAS is a registered trademark of the SAS Corporation, 
Cary, NC. 

Small-
Fortran C Pascal PROLOG Ada talk 

X X X X 

X X X 

X X X X X X 

X 

X X X 

ware packages to provide all the functions of 
such applications. 

GDSS applications almost always use packages 
to support group decision processes, but might use 
C, Pascal, PROLOG, Ada, or Smalltalk for part of 
the processing, depending on the environment (see 
Table 15-2). 

Finally, artificial intelligence applications, specif­
ically expert systems, might use PROLOG (see 
Table 15-2). Only PROLOG supports inference 
through logic programming. None of the other lan­
guages is appropriate to AI applications. 

Language Matched to 
Methodology 
The experience with methodologies is similar to that 
of languages in that few heuristics are known to 
guide methodology selection. Rather, at the present 
time, a company tends to adopt and learn one 
methodology and it is used for all applications, 
whether appropriate or not. The position taken 
here is that the methodology and language should 
match the application type. In this section, the ten 



662 CHAPTER 15 Choosing an Implementation Language 

TABLE 15-3 Application Type Matched to Methodology 

Methodology SOL Focus BASIC COBOL 

Process X X X X 

Data X X X 

Object 

languages are matched to methodologies which were 
discussed in Chapters 7-13. 

Process methodologies which prevailed in busi­
ness until the mid-1980s are most successfully used 
with SOL, Focus, BASIC, COBOL, Fortran, C, Pas­
cal, and Ada (see Table 15-3). The other languages 
require too much attention to data or program design 
to lead to optimal language use with process meth­
ods. Also, the use of process methods should not be 
used with data-intensive applications because of the 
lack of specific attention given to data with such 
methods. The C-language is here because it is 
process oriented; if C++ were the language, it should 
only be used with object-oriented (00) methods. 
Similarly, Ada can be used here but it is best used 
with 00 methods. 

Data methodologies balance the design of pro­
cesses and data evenly and are useful with SOL, 
Focus, COBOL, C, and Ada applications (see Table 
15-3). For interactive applications in which the pro­
grammer needs only limited control, SOL and 
Focus are useful. For more complex applications, 
COBOL, with a DBMS and telecommunications 
monitor, provides interactive processing capabilities. 
The process discussion on C and Ada applies here; 
both languages can be used with data methods but 
are recommended with 00 methods. 

Finally, for object methodologies, C++, PRO­
LOG, Ada, and Smalltalk are most likely to lead to 
successful implementations (see Table 15-3). The 
languages omitted in the object category do not eas­
ily support one or more of the object tenets of poly­
morphism, message passing, class inheritance, or 
encapsulation. 

Small-
Fortran C Pascal PROLOG Ada talk 

X X X X 

X X 

c++ X X X 

AUTOMATED------------
SUPPORT FOR __________ _ 
PROGRAM ____________ _ 

DEVELOPMENT -----------------

In the age of the smart machine, the availability 
of developmental aids, CASE environments, code 
generators, and testing aids such as debuggers, 
incremental compilers, windowed execution envi­
ronments, and so on, all speed development of work­
ing code. Any language which has such automated 
development aids is assumed to lead to increased 
programmer productivity over languages that do not 
have such aids (see Table 15-4). 

CASE tools frequently have built-in code 
generators or have interfaces to other vendor's code 
generators, allowing you to mix and match the de­
velopment environment and the language generated. 

The automated support tools include code gener­
ation tools, incremental compilers, and program gen­
eration environments. All of these are loosely called 
Lower CASE or Back-end CASE tools. 

SUMMARY 
-----------,------In this chapter, a number of distinguishing charac­

teristics of languages were defined. These included: 
data type definitions supported, data type checking, 
operators supported, type of user processing sup­
ported, and processing for loops, conditional state­
ments, arrays, I/O, and subprograms. In addition, 
nontechnical characteristics included uniformity, 



TABLE 15-4 Automated Support Tools for Code Generation 

Product 

ADW-Construction Workbench 

C Development Environment, 
OOSD/C++ 

Developer Assistant for 
Information Systems (DAISys), 
Secure user Programming by 
Refinement/DAISys 

lEW 

NeXTStep 3.0 

ObjectMaker 

Software Through Pictures 

System Architect 

Teamwork, Ensemble 

Visible Analyst Workbench 

Company 

Knowledgeware, Inc. 
Atlanta, CA 

Environments (IDE) 
San Francisco, CA 

S/Cubed Inc. 
Stamford, CT 

Texas Instruments 
Dallas, TX 

NeXT Computer 
Redwood City, CA 

Mark V Systems 

Integrated Development 

Popkin Software & Systems Inc. 
New York, NY 

Cadre Technologies 
Providence, RI 

Visible Systems Corp. 
Newton, MA 

References 663 

Technique 

Builds Pseudocode for 
modules that can be used 
to Generate Code for 
MsDOS,MVS 

Object-oriented C++ code 
development environment 

Generates COBOL for IBM 
mainframe, AS/400, OS/2 

Generates C Code for MSDOS, 
OS/2 

Generates COBOL with 
Embedded SQL 

Generates C Code for MVS, 
MsDOS, OS/2 

Interfaces to Telon and other 
Code Generators 

Object Oriented DB 
development environment 

Generates C or C++ 
Code for MsDOS, VMS, 
Unix,AIX 

Generates C or C++ Code 
for Unix, AIX 

Generates C Code for MsDOS, 
OS/2 

Generates C or C++ Code for 
for Unix, OS/2, AIX 

Generates C Code for MsDOS 

ambiguity, compactness, locality, linearity, ease of 
code translation, portability, compiler efficiency, and 
availability of CASE, code generation, and testing 
tools. Each of ten languages were described accord­
ing to the characteristics. Then the languages were 
defined as appropriate for supporting different appli­
cation requirements and were discussed in terms of 
their support for development of transaction, query, 
data analysis, DSS, ESS, and ES applications. 

REFERENCES __________ __ 

Ageloff, Roy, and Richard Mojena, Applied Fortran 77 
Featuring Structured Programming. Belmont, CA: 
Wadsworth Publishing, 1981. 

Alcock, B., Illustrating Pascal. New York: Cambridge 
University Press, 1987. 

Barnes, 1. G. P., Programming in Ada, 3rd ed., Reading, 
MA: Addison Wesley, 1989. 



664 CHAPTER 15 Choosing an Implementation Language 

Barnett, Eugene H., Programming Time-Shared Comput­
ers in Basic. New York: John Wiley, 1972. 

Bjorner, D., and C. B., Jones, The Vienna Development 
Method: The Meta-Language. New York: Springer­
Verlag, 1978. 

Booch, Grady, Software Engineering with Ada, 2nd ed., 
Menlo Park, CA: The Benjamin/Cummings Publish­
ing Co., Inc., 1987. 

Bordillo, Donald A., Programmer's COBOL Reference 
Manual. Englewood Cliffs, NJ: Prentice-Hall, 1978. 

Clocksin, William, "A prolog primer," Byte, August, 
1987, pp. 146-158. 

Cooper, Doug, and Michael Clancy, Oh! Pascal!, 2nd 
ed., New York: W. W. Norton & Company, Inc., 1985. 

Date, C. J., and Colin While, A Guide to DB2, 2nd ed., 
Reading, MA: Addison-Wesley, 1988. 

Friedman, Linda Weiser, Comparative Programming 
Languages: Generalizing the Programming Function. 
Englewood Cliffs, NJ: Prentice-Hall, 1991. 

Gear, C. W., Programming and Languages. Chicago: 
Science Research Associates, 1987. 

Goldberg, Adele, Smalltalk-80: The Interactive Program­
ming Environment. Reading, MA: Addison-Wesley 
Publishing Co., 1984. 

Higman, B. A., Comparative Study of Programming Lan­
guages. New York: American Elsevier, 1967. 

Information Builders, Inc., Focus Users Manual. 
New York: IBI, Inc., 1984. 

Kernighan, Brian W., and Dennis M. Ritchie, The C 
Programming Language. Englewood Cliffs, NJ: 
Prentice-Hall, 1978. 

Martin, J., Fourth Generation Languages, Vols. 1-2. 
Englewood Cliffs, NJ: Prentice-Hall, 1985. 

S. Medema, C. H., P. Medema, and M. Boasson, The 
Programming Languages: Pascal, Modula, Chill, and 
Ada. Englewood Cliffs, NJ: Prentice-Hall, 1983. 

Nagrin, Paul, and Henry Ledgard, Basic with Style: Pro­
gramming Proverbs. Rochelle Park, NJ: Hayden 
Books, Inc., 1978. 

Philippakis, A. S., and Leonard J. Kazmier, Advanced 
COBOL Programming, 2nd ed., New York: McGraw­
Hill, 1983. 

Reps, Thomas W., Generating Language-Based 
Environments. Boston, MA: MIT Press, 1984. 

Stroustrup, Bjorn, "Data abstraction in C," AT&T Bell 
Labs Technical Journal, Vol. 63, October 8, 1984, 
pp. 1701-1732. 

Warren, David, H. D., "The SRI model for Or-parallel 
execution of PROLOG-Abstract design and imple­
mentation issues," Proceeding, 1987 International 
Symposium on Logic Programming, August 31-
September 4, San Francisco, CA, IEEE, pp. 92-102. 

KEy TERMS ______ _ 

Ada 
ambiguity 
array 
array-oriented I/O 
automatic type coercion 
BASIC 
bit data type 
Boolean 
C 
case statement 
character string 
COBOL 
compactness 
compiler efficiency 
conditional statement 
control language 

constructs 
data type 
data type checking 
date data type 
dynamic memory 

management 
ease of code translation 
exception handling 
exit 
Focus 
Fortran 
global data 
input/output (I/O) 
integer 
language constructs 
linearity 
list -directed I/O 
local data 
locality 
logical data type 

loop 
memory management 
mixed mode type 

checking 
modularization 
object 
operator precedence 
Pascal 
persistent object 
physical I/O 
pointer 
portability 
programming 
PROLOG 
PROLOG facts 
PROLOG goals 
PROLOG rules 
PROLOG subgoals 
pseudostrong type 

checking 
reentrant 
real number 
record-oriented I/O 
recursive 
reusability 
set-oriented I/O 
Smalltalk 
SQL 
static memory 

management 
strong type checking 
table 
typeless checking 
uniformity 
user-defined data type 

EXERCISES _______ _ 

1. For any (or all) of the cases in the Appendix, 
define the application concept as batch, on-line, 
real-time, or a mix of these. For the applications 
you choose, select an implementation language 
and develop the reasons why the language you 
recommend is best. What specific features and 
characteristics of the language make it your pre­
ferred choice? 



STUDY QUESTIONS ___ _ 

1. Define the following terms: 
Boolean data type reentrant 
dynamic memory set -oriented I/O 

management 
local data 
modularization 
operator precedence 
pointer 

static memory 
management 

type checking 
user-defined data type 

2. Why should we concentrate on language selec­
tion rather than on programming? 

3. In your opinion, is programming going to dis­
appear as an activity? Justify your response. 

4. What is a data type and why is it important in 
language selection? 

5. When is strong type checking important? 
6. Why do you think type checking is absent from 

a language like COBOL? 
7. Why is type checking important in object­

oriented programs? 
8. Define three logic-related language constructs 

and discuss their differences. 
9. What is operator precedence? Why, as a pro­

grammer, must you be aware of operator prece­
dence in a language? 

10. In an ideal program, how many exits should a 
module contain? Why? 

11. Define the three types of arrays that are com­
monly supported in languages. 

12. For SQL, COBOL, Fortran, Ada, C, and Pas­
cal, define the type of I/O orientation as record­
oriented, set-oriented, array-oriented, or 
list-directed. What difference does the I/O ori­
entation make? 

13. What are the differences between local and 
global data? How do they relate to properties 
of programs such as reusability, reentrancy, 
and recursion? 

14. Contrast static and dynamic memory 
management. 

15. Why is exception handling desirable in a lan­
guage? Why don't all languages support excep­
tion handling? 

Study Questions 665 

16. What level of code sophistication is required to 
support multiple concurrent users? Why? 

17. What is the relationship of recursion, 
reentrancy, and reusability of programs? 

18. List three nontechnical language characteristics 
and describe why they are important in lan­
guage selection. 

19. Define language portability. Is this property of 
growing or decreasing interest to businesses, 
and why? 

20. What is COBOL's appeal? 
21. Why is C a potentially dangerous language? 
22. Describe how and why PROLOG differs so 

much from the other nine languages in this 
chapter. 

23. How does PROLOG handle databases? 
24. What are the object-oriented languages? How 

do they differ from the other languages? 
25. Even though SQL and Focus both use implicit 

I/O, they are different. What is the main differ­
ence in the way they treat data? Which lan­
guage is 'cleaner' in guaranteeing the results of 
a query? * EXTRA-CREDIT QUESTIONS 

1. PROLOG is not the only logic-oriented, artifi­
cial intelligence programming language. Lisp is 
also popular. Investigate the differences between 
the two programming languages using the char­
acteristics discussed in this chapter. 

2. Object orientation and artificial intelligence are 
two characteristics of applications that are of 
growing interest to businesses. Can a typical 
COBOL transaction processing application in­
corporate object and AI tenets? Will COBOL 
change or will other languages come to be used? 
Can other languages be 'grafted on' or inter­
faced to COBOL gracefully? Be sure to docu­
ment your arguments. 



C HAP T E R 16 
PURCHASING ----------------------------------------------------~. 
HARDWARE AND '----------------------------------------------~ 
SOFTWARE ----------------------------------------------------------~ 

INTRODUCTION ____ _ 

When PC software companies first created the end­
user market in the early 1980s, the number ofPCs in 
companies was about one per every 4,000 people. 
By 1986, the number of PCs was about one per 
every 100 people; companies had settled on stan­
dard, supported products for spreadsheets, data­
bases, and word processing. In the intervening years, 
there was a mad scramble for market share during 
which vendors' claims were sometimes unfounded, 
the notion of vaporware was created, and major 
evaluations were done by buying companies. For 
every new market that develops, a similar set of 
activities takes place. In the 1990s, object-oriented 
languages, expert systems, imaging systems, multi­
media, CASE products, and distributed databases 
are the new markets that will have developed rec­
ognized leaders by the end of the decade. At best, a 
company selects a product and vendor that will 
weather the storms of industry growth and emerge 
a leader. At worst, they purchase several products 
before settling on one that works for their company. 

The purchasing process tries to minimize the 
guesswork and provide a rational, objective method 
of selecting hardware, software, or services. The 
techniques can be used on products of any type. 
There are two basic processes, one informal and one 
formal. There is a great deal of overlap in the activ-

666 

ities. The major difference is that the formal process 
is usually conducted in a more open environment, 
frequently for legal compliance. All governmental 
contracting for goods and services, for instance, is 
subject to a formal procurement process that 
includes the solicitation of proposals from vendors. 

In this chapter, we discuss how to evaluate and 
choose between alternatives for application use. The 
trade-off between building the item in-house or pur­
chasing it elsewhere is commonly called a make­
buy decision. This name is not always accurate, 
however, because you might be comparing develop­
ment alternatives, for instance, having a consulting 
company build a customized application versus pur­
chasing a software package. These alternatives all 
are considered in the make-buy decision process. 
RFPs can be used for deciding between vendors that 
have the same package but are selling turnkey prod­
ucts including all hardware and software in an 
'environment,' or for hardware only, software only, 
services only, or some combination of those three. 

In this chapter, we first discuss the formal pro­
curement process, describing the steps performed in 
the purchasing decision process. The informal pro­
cess is then described and compared with the for­
mal process. Then, the contents of each RFP section 
are detailed. Next, we discuss the selection process 
and criteria that are important to it. Finally, auto­
mated support tools for RFP management and eval-



uation are presented. The ABC case is woven 
throughout the discussion, providing examples of the 
major points. 

REQUESTFOR __________ __ 
PROPOSAL ____________ __ 
PROCESS ______________ _ 

A request for proposal, or RFP, is a formal, writ­
ten request for bids on some product. In our context, 
an RFP might relate to hardware, firmware, soft­
ware, or services such as programming or operations 
management. Also called RFQ, for request for 
quotation, an RFP provides formal requirements, 
ground rules for responses, and, usually, a stan­
dard format for the proposal responses. The basic 
stages of the request for proposal process, which 
are discussed in the ensuing sections, include the 
following: 

1. Develop and prioritize requirements 
2. Develop schedule and cost 
3. Develop requests for proposal 
4. Receive proposals 
5. Evaluate proposals and select alternative 

Develop and Prioritize 
Requirements 
The initial step in all software engineering projects, 
regardless of whether it is going out for bids or not, 
is to determine the requirements. When proposals 
are solicited, the requirements define the problem 
and the features and functions of the solution that 
will constitute the work of the bidding companies. In 
general, the requirements provided in an RFP are 
identical to those developed during analysis. If a 
requirements specification is available, it should be 
appended to the RFP and referenced in the docu­
ment. If no requirements specification has been 
developed, at a minimum, the topics summarized 
below should be provided. 

1. General instructions 
2. Statement of work 

Request for Proposal Process 667 

3. Technical specifications 
4. Management approach 
5. Financial requirements 
6. Company information requirements 
7. Vendor response guidelines 
8. Standard contract terms and conditions 

The level of detail and specificity of the require­
ments varies with the context, situation, and 
company. Some companies spell out every item in 
excruciating detail, leaving nothing to the vendors' 
imaginations. The advantage of such detail is that the 
proposals can be easily compared to the list of 
requirements to determine compliance with the basic 
request. Also, the likelihood of misunderstanding of 
requirements is lower when more detailed descrip­
tions are used. The disadvantage of detailed require­
ments is that, in information systems work, the 
complex engineering nature of the work frequently 
requires creative design that might be stifled or over­
shadowed by too specific a requirements list. The 
creative aspects of systems design also provide for 
cost differentiation that might not otherwise surface. 
To overcome this problem, when creativity is de­
sired, it can be specifically identified as a selection 
criteria in the RFP. 

There are four types of requirements: technical, 
managerial, financial, and company. Technical 
requirements address the specific hardware, soft­
ware, or services to be provided. Managerial 
requirements identify the level of detail at which 
schedule, staff plans, and staff management should 
be discussed in the proposal. Financial require­
ments list the type of bid desired and the expected 
format for the financial portion of the response. 
Company requirements list the type of vendor 
information to be supplied to assure the client of 
vendor ability to complete the work successfully. 
The details of each section are discussed in the RFP 
contents section. 

Develop Schedule and Cost 
The schedule and cost developed during an RFP 
process are neither as detailed nor as refined as 
if the item costs were developed in-house. If the 
in-house estimate is being compared to the vendors' 



668 CHAPTER 16 Purchasing Hardware and Software 

estimates in a make-buy decision, a detailed sched­
ule and cost should be developed. If the RFP is com­
paring only external purchase options, less detail and 
precision are required. In this case, the schedule pro­
vides an estimated end-date for the item to be used in 
comparing the proposals. The expected end-date 
might be omitted and left as a proposal item, or 
might be listed as either required or desired in the 
proposal. 

Occasionally, a user manager will mandate the 
desired completion date for a project. In that case, 
the in-house estimates are developed to determine 
the realism of the mandated date. If the date is 
unlikely because it is very different from the esti­
mate, the vendors can be asked in the proposal re­
quirements how they deal with completion date 
problems and a tight schedule. 

The planning process is the same as that followed 
in Chapter 6, with the level of precision adjusted to 
fit the situation. Requirements are converted into a 
task list. Each task's development time is estimated 
for the most likely outcome. Sophisticated estimates, 
including optimistic, average, and pessimistic times, 
mayor may not be developed. During the proposal 
evaluation process, vendor time estimates are com­
pared to the planned completion date. 

A similar activity is done for personnel estimates. 
A rough estimate of the number of people and their 
skill levels should be developed, based on the tasks 
and times for each task. During proposal evaluation, 
the estimated project team skills are matched against 
the skills of the people to be assigned to the project 
by each vendor. The closeness of match indicates 
several things. First, the closer the match, the more 
confidence you can have that the vendor understands 
the problem. Second, the closer the match, the more 
likely the vendor's reasoning is consistent with your 
reasoning about the project's needs. Third, the less 
close the match, the more likely the vendor is staff­
ing the project with people who are learning new 
skills and who, therefore, will not be fully knowl­
edgeable about the technology or application area 
of your problem. This third case is not necessarily 
bad, but it does imply that there will be one, or pos­
sibly two, key person(s) on whom the success of the 
project rests. This places you, as the client, in a 
somewhat more vulnerable position because you 

must rely totally on the key person(s), ensuring that 
they remain on the project until it is operational. 

Staffing estimates are used to develop personnel 
costs for the project. If the proposal includes hard­
ware or software, each item should be priced at the 
best retail prices available. For instance, MacWorld 
and PC magazines include tear-out pages of adver­
tising by discount vendors for both hardware and 
software. Professional data sources, such as Data­
Pro™,l provide retail prices which can be used as a 
basis to which proposed costs might be evaluated. 

Develop Request for Proposal 
The steps in developing the RFP are first, to deter­
mine likely vendors; second, select from the likely 
vendors the few that best meet your require­
ments; and third, develop and send the proposal to 
the vendors. 

Determine Likely Vendors 

Several stages of information gathering precede the 
actual bidding process. First, potential vendors are 
identified. Vendor identification can be from a com­
mercial information service, such as DataPro TM, or 
from trade magazine advertisements, for instance, 
from PC Magazine, Computerworld, or Network 
Week. This process should identify ten or more 
vendors. 

Narrow the Number of Vendors 

When potential vendors are identified, they are con­
tacted and requested to send information. Depending 
on the comp~ny and item, this can be an informal 
telephone call or can be a formal, written request 
for information (RFI). Documentation on the prod­
ucts requested is reviewed to narrow the number of 
alternatives to a manageable few, usually between 
two and five. 

The information review frequently identifies a 
need for more information to differentiate between 
products. Either requirements are refined or more 
information is obtained, or both. Another round of 

1 DataPro is a trademarked name of DataPro, Inc., Delran, NJ. 



information gathering might then take place. At this 
point, remaining vendors might be called in to pre­
sent their product( s) and demonstrate how they 
work. Specific technical questions to provide miss­
ing information are asked. 

The decisions after this round of information 
gathering depend on the nature and use of the prod­
uct being purchased. If the number of users is small 
and the product is inexpensive (e.g., under $10,000), 
a selection might be made. The more users and the 
more expensive the product, the more extensive the 
evaluation. Other companies that use the product 
might be solicited for experience with the company 
and product, and perhaps, are visited for an on site 
demonstration. In these cases, when the field of ven­
dors is narrowed to between two and five, an RFP is 
developed and proposals are requested. 

Develop and Send the Proposal 
to Vendors 

The RFP can be developed in parallel with vendor 
identification. There is some risk that doing so, how­
ever, will produce a biased requirements set that 
favors one particular vendor. The best approach, 
therefore, is to develop the requirements first, then 
search for vendors. When the vendor list has been 
narrowed to between two and five, the RFP is final­
ized, vendors are notified that they will receive the 
proposals, and the proposals are sent or delivered to 
each vendor. From this point, the requesting com­
pany begins to manage the proposal process. 

Manage Proposal Process 
The proposal process begins with release of an RFP 
to vendors and continues until the proposals are 
delivered and the selection process begins. The pro­
posal process might include one or more formal 
meetings, informal meetings, inquiry sessions, or 
other methods of information exchange between the 
vendors and the requesting organization. The more 
money involved and the more complex the proposed 
work product, the more process management is 
needed to ensure equitable treatment of all vendors. 
Equitable treatment means ensuring that all vendors 
receive the same information. Firm compliance with 

Request for Proposal Process 669 

due dates and locations for delivery of proposals is 
maintained. Late or incorrectly delivered proposals 
are dropped from further consideration, providing 
equitable treatment of all vendors. 

Assume a proposal is being let by the local 
police department for development of an applica­
tion that would deploy computer terminals in each 
police car for interactive look-up of license plates, 
arrest warrants, and moving violations. The appli­
cation requires both hardware and software to be 
developed for 14,000 police cars in a large metro­
politan area with over 3,000,000 inhabitants and 
covering several jurisdictions. Examples might be 
Washington, D.C., Los Angeles, New York City, 
Houston, or Chicago. Hardware cost alone is over 
$2,000,000. The databases each will have millions of 
entries with issues to be resolved about how and 
when information is removed from the files. Inter­
faces to several other applications for license plate 
information and access to arrest warrants from mul­
tiple local and national databases are desired. 

The proposed application has several sources of 
complexity, the least of which is that vendors prob­
ably know little about how a police officer spends his 
day. When New York City let a similar contract for 
its police force, they had a formal announcement of 
the proposal to vendors. Vendors were selected and 
invited to the presentation by mail based on previous 
contract work or reputation. Nonsolicited vendors 
were also welcome in response to announcements 
of the RFP that ran in the local newspaper for sev­
eral days. 

At the formal presentation, each vendor was 
invited to spend up to four hours traveling with an 
officer to view the tasks firsthand, for which the 
application would be built. A specific officer was 
identified as the liaison for these tours. 

In addition, the liaison officer was available for 
questions at any time until proposals were submitted. 
If questions were asked by a vendor, the question 
and response were recorded and a list of all such 
queries was sent to all vendors attending the pro­
posal announcement meeting. The purpose of pro­
viding all queries and responses to all vendors was to 
ensure that information inadvertently left out of the 
RFP that might alter the decision process could not 
be used by one vendor to the detriment of the 



670 CHAPTER 16 Purchasing Hardware and Software 

others. By giving everyone all responses, every ven­
dor had the same information. 

Halfway through the two-month proposal pro­
cess, another meeting was held for vendors to come 
ask more questions and to clarify the requirements 
from the document. That meeting was well attended 
but contained no real information. When one person 
was asked why he bothered attending, he replied, 
"To see what the competition asked." 

Each vendor presented his or her proposal on the 
due date and left the written copy for NYC review. 
Each vendor, then, heard the other vendors' propos­
als and had some sense of the differences between 
them. Ironically, the company with the best solution 
lost because the company was too small. One short­
coming of the RFP was that it had not identified 
company size as a selection criterion; if it had, the 
vendor would not have wasted his time bidding. 

Evaluate Proposals and Select 
Alternative 
The sections of the proposal responses are each eval­
uated separately, then summarized together. The 
technical evaluation reviews that requirements are 
met and scores the proposal based on the priority cri­
teria developed during the preparation of the RFP. 
A benchmark, or comparison test, might be used to 
identify differences between hardware or software 
packages. 

The management approach is evaluated for the 
type, quality, and nature of staff and vendor com­
pany resources proposed for the work. A financial 
evaluation is developed to show the present value 
of the proposed amount(s). Other analysis, such 
as payback period, or average cost per vendor 
employee, might be developed for comparison pur­
poses. Next, the vendor's prior experience with the 
firm, similar applications, and business reputation 
are ranked to evaluate the vendor's capability to do 
the proposed work. Finally, each section is weighted 
again for comparative section importance, creating 
a summary of the ratings and final weighted score for 
each vendor. Objectively, the vendor with the high­
est, overall weighted score is selected for the work. 
Each type evaluation is discussed in the evaluation 

sections. After selection, a contract is negotiated and 
work begins. 

INFORMAL ____________ _ 
PROCUREMENT ________ __ 
Most of the same information required for the RFP is 
required for the informal procurement process. The 
major difference is in the approach. In the informal 
process, few, if any, written documents are used for 
vendor-client communications. Rather, telephone 
calls, meetings, and document reviews are the 
major sources of information. The process of selec­
tion is similar to that of the RFP process, including 
trials and benchmarks for acceptance of the item 
being procured. 

Negotiation is verbal and may go back and forth 
between the principals for several weeks. Vendors 
signify agreement with the negotiated terms via a 
memo. A memo proposal summarizes the main 
points of agreement, then lawyers are called in, as 
with an RFP, to add the legal terms. 

CONTENTSOFRFP ______ _ 
RFP contents include a summary, information on 
the technical, managerial, company and financial 
aspects of the bid, a schedule of the process, selec­
tion criteria, vendor response requirements, and any 
standard contract terms (e.g., for EEO or OSHA 
compliance). Each RFP section is detailed below to 
identify optional and required information. 

Vendor Summary 
The Vendor Summary section provides a short, one­
page summary of the work to be done (see Table 
16-1). General terms and conditions of the proposal 
process are usually first to allow vendors to quickly 
decide whether or not they are interested in the 
engagement. The contents of the general instructions 
sections should include proposal instructions, loca­
tion and date for proposal delivery, dates for bidders' 
conferences, and contacts for status reporting and 
inquiries. 



TABLE 16-1 Detailed RFP Outline 

1.0 General instructions 

2.0 Statement of work 
2.1 Description of work to be performed 
2.2 Project milestones and deliverable products 
2.3 Criteria for vendor qualification 

3.0 Technical specifications 
Technical outlines are in Tables 16-4, 16-5, and 16-7 
for hardware, network, or operating system, and 
customer software or package, respectively. 

4.0 Management approach 
4.1 Schedule and staffing 
4.2 Support requirements of vendor 
4.3 Reporting 
4.4 Staff reporting structure and problem 

management 

5.0 Financial requirements 

6.0 Company information 

7.0 Vendor response guidelines 

8.0 Standard contract terms and conditions 

Required Information 
The requirements list details the requirements of the 
work as described in the sections on hardware and 
software. The section can refer to an attached docu­
ment that might have been developed in-house for 
functional requirements of the application, hard­
ware, or software. In any case, requirements should 
be listed and identified as mandatory or optional. A 
set of prioritized weights for the requirements should 
also be developed for use in scoring, but weights 
should not be published in the RFP. There are four 
general classes of requirements: technical, manage­
ment, corporate, and financial. 

Technical Requirements 

GENERAL REQUIREMENTS. The require­
ments should place the company and problem in a 
context for the vendors. First, a brief overview of the 
industry, company, and work domain is appropriate. 
Then, a summary of the problem being automated 
is presented. The major complexity, such as geo-

Contents of RFP 671 

graphic dispersion across 16 states, should be identi­
fied. Then, the details of work to be provided are 
described. 

DETAILED REQUIREMENTS. The work might 
include hardware, software, programming services, 
or other IS services. The criteria for each item should 
be detailed as much as possible. In general, regard­
less of the type of procurement, the features and 
functions of the equipment should be described in 
sufficient detail to enable the vendor to design a 
solution. Functional requirements-what-the item 
is expected to do are described in detail. Volume 
of data, throughput, response times, and growth 
requirements are identified. The type, contents, tim­
ing, and format of interfaces also are provided. A 
hardware interface might list, for instance, a network 
interface connection to a fractional T-1 (cable) ser­
vice for internetwork communication. A software 
interface might list, for instance, a DBMS interface 
connection to a SQL server. An application inter­
face might list, for instance, electronic messages to 
be sent to an Accounts Receivable Application. 

For services, the work description varies depend­
ing on the work. The two most common service 
RFPs request proposals for software development 
and for outsourcing of operations. For software 
services, the application requirements are the infor­
mation provided. For outsourcing operations, the 
business functions included and any existing job 
descriptions relating to those functions should be 
provided to the vendors. 

Diagrams, tables, and lists should be supple­
mented by text to provide clarification of incom­
plete, misleading, or ambiguous diagrams. For 
instance, a data flow diagram cannot describe timing 
of processes or process interrelationships that might 
be important. They also do not include constraints, 
need for simultaneous processes, and so on. Re­
quirements for these items would be described in 
text as required. 

AUDIT AND APPLICATION CONTROL RE­
QUIREMENTS. Recall from Chapter 10 that 
audit controls are frequently needed to prove 
processing. The audit and control section of the 
RFP identifies the minimum acceptable level 
of auditability required. If audit controls are in 



672 CHAPTER 16 Purchasing Hardware and Software 

compliance with laws or other professional guide­
lines, the requisite laws and guidelines should be 
referenced. 

Vendors' designs might assume human interven­
tions to ensure accurate application processing. A 
requirement should be developed to surface such 
assumptions. For instance, controls might include 
data integrity, data and process access, exception 
management, and print control of prenumbered doc­
uments (e.g., checks). These examples usually 
require manual interventions supplemented with 
interactive processing to recover from failures or to 
fix hardware problems. For instance, a check might 
jam in a printer after it is printed. Both software and 
human procedures are required to reprint the check 
and to account for the damaged check. (See Chapter 
10 for types of failures that should be planned.) Ven­
dors should be required to identify and detail all such 
interventions as part of their proposal. 

PERFORMANCE REQUIREMENTS. Perfor­
mance requirements include manual, hardware, and 
software performance. For instance, hardware per­
formance might define acceptable limits for down­
time, precision for mathematical computation, or 
cycle time. 

CONVERSION REQUIREMENTS. Recall that 
conversion requirements define the required changes 
from the current environment to the new automated 
environment (see Chapter 14 to review this discus­
sion). The RFP typically identifies data for conver­
sion, including the current format, current volume, 
and growth required. Conversion timing constraints 
should be identified if any exist. The vendors' 
designs should describe the target database for the 
data and a migration path for conversion. The ven­
dors' conversion plans also should estimate conver­
sion impacts on users, computer operations, and 
project staffing. 

TRAINING. Training to be provided as part of the 
contract should be listed as a required topic of 
the vendors. Training options can be left open to 
vendor proposal or be specified as requirements. 
Training might be provided for users, software main­
tenance staff, operations staff, or user support staff. 

The type of trammg can be one-on-one, pro­
grammed, individually self-paced, classroom, 
computer-based training, or some variation of these. 
Training information provided might include the 
type, number of sessions, location, and audience for 
training. The qualifications of expected trainers 
should also be requested. 

ACCEPTANCE. Acceptance criteria, specifying 
the contents and timing of the acceptance test, 
should be identified so the vendor knows how work 
will be judged. Acceptance criteria might include 
type and amount of test data, length of time for par­
allel and pilot runs, phased cutover approach and 
speed desired (e.g., five locations per month for five 
months), and performance criteria for success (e.g., 
five consecutive days with all accounts in balance at 
the end of daily processing). 

Hardware and software packages are usually 
benchmarked to verify that they perform as adver-' 
tised. A benchmark is a comparison test between two 
or more configurations. The contents of the test are a 
suite of application programs that are representative 
of the expected work load of the production system. 
A benchmark test provides you the ability to com­
pare throughput performance with the representative 
work load. In addition to the benchmark which pre­
cedes installation, hardware and software packages 
might also be run through a trial period similar to 
that described above for acceptance. 

~anagernenti\pproach 

SCHEDULE AND STAFFING. Vendors should 
be required to develop a schedule for the proposed 
work. Pert, critical path (CPM), Gantt charts, or 
other graphical schedules might be required. Mile­
stones for the project and deliverable work products 
should be identified as specific requirements. The 
discussion of work should be required to include 
number, timing, and skills of the expected employ­
ees. For contract software development, vendors fre­
quently attach resumes of the intended project 
manager(s) and project team members for client 
information. If the client wants the right of refusal on 
all employees, a representative set of contractor staff 
resumes should be provided for client review. 



PROJECT MANAGEMENT. Project manage­
ment is an important issue in an RFP because it fre­
quently identifies the one or two people the client 
will work with most closely. The requirements can 
include reporting structures, management of work, 
and problem resolution policies of the vendor 
firm. In general, vendors should identify an on-site 
manager and a more senior, vendor manager to over­
see and guarantee the quality and quantity of ven­
dor work. The resumes of one or both of those 
contacts should be required in the response to allow 
assessment of the qualifications of the managers for 
the proposed work. 

PROJECT REPORTING. Status reporting form, 
content, and timing should be requested of vendors. 
This can be left to the vendor to describe, or can be 
stated as a requirement for compliance by the ven­
dor. Normally, status meetings are held as required 
or weekly, whichever is more often. A written sta­
tus report should be required to identify work com­
pleted, progress against the schedule, problems 
needing resolution for project completion, and work 
assignments for the next period. 

VENDOR ASSUMPTIONS. Special vendor re­
quirements should be identified. The idea behind this 
section is that there should be no surprises because 
of erroneous assumptions by a vendor after a selec­
tion is made. The vendor's assumptions are stated 
in the response to ensure that the client also shares 
the same assumptions. Any hardware, configuration, 
purchased software, or facilities alterations assumed 
by the vendor to be available for their use are 
solicited. For instance, when vendors build custom 
software, they normally assume that their employees 
work at the client site, use client computing equip­
ment and software, and follow the client's employ­
ment practices. 

The vendor's expectations and type of support 
required from the client should be identified. For 
instance, copying, clerical, and secretarial support 
might be expected. In addition, access to the users 
should be identified with estimates of the num­
ber and expected participants for data gathering 
meetings. 

Contents of RFP 673 

Further assumptions about how application infor­
mation will be entered into the computer (e.g., 
keyboard entry by clerks, keyboard entry by pro­
grammers), the availability of computer resources 
for testing, and the frequency of tests for each ven­
dor staff member should be identified. 

Company Information 

Information in this section should qualify the vendor 
as viable to perform the work. Standard company 
information required in an RFP includes the com­
pany history, ownership, growth, current size, pre­
vious contracts with the requesting company, and 
references for similar work. If the company performs 
a specialized service, such as LAN installation and 
service, it can be highlighted in this section. 

Financial Information 

The last of the requirements is for a cost estimate of 
the work. Cost estimates vary depending on whether 
the work is for hardware or software or services (see 
summary in Table 16-2). In general, the vendors' 
responses provide the opening for negotiation of the 
financial aspect of a procurement. Except for fixed­
price bids defined below, the price quoted is rarely 
nonnegotiable. 

For purchased hardware, the options are to lease, 
to lease with an option to buy, or to purchase the 
equipment. Under a lease option, equipment is on 
loan from the vendor and is paid under a monthly 
leasing arrangement. In general, the more equip­
ment leased, the more flexible the vendor for lease 
negotiation. 

The lease with option to buy provides a basic 
leasing arrangement with some percentage of the 
lease payment applied to purchase of the equipment. 
At the end of the lease period, the lessor has the 
option of returning the equipment to the vendor or of 
paying the vendor the residual price (i.e., the 
remaining value of the equipment) and purchasing 
the items. 

A purchase option identifies the total current 
cost of the equipment and the payment terms that 
can be offered to entice a purchase. Frequently 
the purchase of very expensive equipment (e.g., 



674 CHAPTER 16 Purchasing Hardware and Software 

TABLE 16-2 Financial Options 

Item Being 
Acquired Financial Options 

Hardware Lease 
Lease with Option to Buy 
Purchase 

Software Base License Fee 
Plus 
Monthl y / Annual 

Maintenance Fees 

Services Time & Materials (T &M) 
Fixed Price 
T &M with Ceiling 

$250,000+) can span several years and the variations 
between proposals can be great. 

Software package purchases usually include a 
one-time license fee with a monthly maintenance 
fee, both of which are negotiable. The more sites and 
higher number of users, the lower the per copy price 
of software. As the number of sites and users 
increases, the average incremental cost per user 
decreases. The goal, then, of the licensing options is 
to have the vendor define available options from 
which a negotiation begins. 

For services, the financial options are a fixed 
price, time and materials (T &M) estimate, or T &M 
with a ceiling (i.e., semifixed). A fixed price bid 
means that the work is contracted for a set price and 
neither side is expected to renegotiate the terms 
unless a major change in the contractual arrange­
ments occurs. Fixed-price bids can be analyzed with 
no change. 

Time and materials bids (T &M) sum the total 
cost of personnel time plus the cost of paper, sec­
retarial, copy, computer, and any other vendor­
supplied support in doing the work. T &M bids are 
frequently presented as a range of times and costs. 
Optimistic, realistic and pessimistic estimates might 
be provided. The formula for determining the cost 
to be used iIi the financial analysis develops a 
weighted average cost which favors realistic esti­
mates (see Figure 16-1). 

Bids that are T &M with a ceiling purport to pro­
vide the best risk sharing between vendor and client. 
Fixed-price bids put the risk of not completing the 
work as scheduled on the vendor who loses any 
moneys above the bid price. T &M bids place the risk 
on the client who pays for all work until it is done 
whether it is on schedule or not. T &M with a ceil­
ing tries to share the risk by allowing T &M, assum­
ing the work is on budget, or a ceiling with vendor 
risk if the schedule is not kept. Whether this notion 
works or not in reality is subject to debate. In any 
case, the ceiling price is most commonly used in 
comparisons since most projects tend to end up at 
that price anyway. 

Schedule of RFP Process 
The schedule provides important dates throughout 
the RFP process, including all dates and periods 
of time for interaction between the vendors and 
requesting company, and the due date for the RFP. In 
addition, it should include the important dates for 
requesting company action, especially the decision 
date for the winning proposal. 

Description of Selection 
Processes 
The more vendors know about the selection process, 
the better able they are to determine if it is worth 
their effort to prepare a proposal. Specific require-

Weighted Average Cost = ((Optimistic + (2 * Realistic) 
+ Pessimistic) /4) 

Example: 

Total Optimistic Time 
Total Realistic Time 
Total Pessimistic Time 

4.2 Person Years 
6.0 Person Years 
10 Person Years 

WAC = ((4.2 + (2 * 6) + 10) / 4) = 26.2 / 4 
= 6.55 Person Years 

FIGURE 16-1 Weighted Average Cost 
Formula 



ments that might alter a vendor's interest in bidding 
are especially important. For instance, if only com­
panies for which the proposed work is less than 10% 
of net income will be considered, this should be 
made known. 

Other information that might be provided is a 
brief description of the selection process in terms of 
required and mandatory functions, and the relative 
importance of the four major areas of information: 
technical, management, financial, and company. The 
individual weights should never be identified or the 
responses will be written to get a good score rather 
than to address the design issues. 

Vendor Response Requirements 
An optional part of an RFP is the format for the ven­
dor's response. The argument for requiring a set 
response is that the comparison of multiple propos­
als is simplified when the responses all use the same 
format. The disadvantage of a fixed response is that 
some important area of consideration that might 
have been overlooked in the RFP or in the outline for 
the response, might never surface until after a vendor 
is selected. Some companies opt for requiring the 
financial data to be identical but allow discretion for 
the remainder of the vendors' responses. 

The major advantage of a standardized vendor 
response is an easier comparison of responses. If 
there is no standard format, you must first find the 
answer to each piece of desired information in each 
proposal, then create a cross-reference document, 
or otherwise identify each item for easy reference. 
Having no standard format also requires you to 
be much more careful in reading every document 
to ensure that you have identified the requisite 
information. 

The response outline should be tailored to fit the 
specific proposal and to ease response evaluation. 
In general, the sections follow the requirements 
above: Technical Response, Management Approach, 
Corporate Information, and Cost/Price. A full 
outline for a vendor response is provided in 
Table 16-3. 

One of the most important standard response for­
mats is for financial information. Each vendor usu­
ally provides his own information in his own format 

Contents of RFP 675 

TABLE 16-3 Vendor Response Outline 

1.0 Technical response 
1.1 Overview of the system 
1.2 Diagram( s) of processes and data 
1.3 Configuration diagram(s) 
1.4 Performance data 
1.5 Detailed explanation of the system features 

and functions 
1.6 Compatibility (with other client equipment, 

applications, etc.) 
1.7 Degree of risk in using proposed hardware, 

software, or application 
1.8 Maintenance estimates 
1.9 Reliability 

1.10 Quality assurance and control 
1.11 Training 
1.12 Deliverable products 

2.0 Management approach 
2.1 Organization 
2.2 Personnel and manpower controls 
2.3 Vendor/subcontractor and client relationship 
2.4 Delivery schedules and project plans 
2.5 Proposed staffing 
2.6 Consultants to the vendor (e.g., subcontractors) 

2.6.1 Subcontractor identification 
2.6.2 Subcontractor relationship and 

management structure 
2.7 Status reporting schedule and approach 

3.0 Corporate information 
3.1 Company background-Ownership, size, age, 

experience, capabilities, products, services 
3.2 Vendor previous experience with the client 

company 
3.3 Vendor experience with similar projects 

in such a way that his proposal is favorably pre­
sented. The risk is that information from several 
vendors will not contain information in such a way 
that it can be compared. The solution to this problem 
is to tell the vendors exactly how to present finan­
cial information. A simple format that summarizes 
all costs for easy use and analysis is best. Figure 
16-2 provides a sample financial summary for­
mat that includes all information that you, as the 
requesting organization, might need to compare 
the proposals. In customizing the form for a 



676 CHAPTER 16 Purchasing Hardware and Software 

PRICE PROPOSAL FOR VENDOR ________ _ 

Application Name ______ Number ______ _ 

______ Development _____ _ _ ____ Operating Expenses ___ _ 

Item: Analysis Design Implement 

I. Hardware 

1. 

2. 

3. 

4. 

TOTAL Hardware 

II. Software 

1. 

2. 

3. 

TOTAL Software 

"I. Labor (by Type) Rates: Base and Overtime 

1. 

2. 

3. 

4. 

TOTAL Labor 

IV. Other 

1. Documentation 

2. Testing/Assurance 

3. Site Preparation 

4. Supplies 

S. Travel 

6. Maintenance 

7. 

B. 

9. 

10. 

TOTAL Other 

Test Parallel Year1 Year2 Year3 

TOTAL Project Price (Operating + Development) $ _._._._ 

FIGURE 16-2 Sample Financial Summary Form for Vendor Response 

Year4 YearS 



specific procurement, you omit sections not re­
quired. So, for software-only procurement, omit all 
hardware sections. 

Standard Contract Terms 
Finally, the RFP should include any standard con­
tract terms and conditions that might be desired. For 
instance, penalties for nonperformance against the 
contract or conditions under which payments will 
be made or withheld are terms of an agreement for 
which companies frequently require standard con­
tract clauses. 

HARDWARE __________ __ 

Hardware might be described in detail, or more com­
monly, is described by its functionality. In this sec­
tion we discuss the hardware criteria that are usually 
in an RFP. The main categories of hardware infor­
mation in this section are functionality, operational 
environment, and performance. Training and accep­
tance criteria were discussed above and also apply 
to hardware. 

Functionality 
A technical requirements section outline for hard­
ware is shown as Table 16-4. Keep in mind that 
the outline would be customized to fit the specific 
components desired. If hardware requirements are 
known, they should be specified in sufficient detail 
to exactly identify needs. In this case, the vendors 
are not selecting a solution to your problem; they 
are bidding on a hardware configuration. For this 
type of specification, if the configuration does not 
meet all of your needs, the vendor is not liable 
because you detailed specific hardware. 

More often, you will not know the specific hard­
ware, but you do know the functions to be performed 
by the hardware. In this case, the information pro­
vided is to detail the work environment closely 
enough that the solution will work. For hardware, 
this means that all work to be performed and the con­
straints for the work should be identified. The num­
ber of users, work profile for each user, timing of 

Hardware 677 

TABLE 16-4 Technical Requirements 
Outline for Hardware 

3.0 Technical Hardware Requirements 
3.1 CPU cycle time 
3.2 Number of processors 
3.3 Memory cycle time and processing 
3.4 Number and type of registers 
3.5 Number, type, and prIority structure for 

interrupts 
3.6 Memory organization, maximum addressable 

memory 
3.7 Parallel operation capabilities 
3.8 Math/graphics co-processors 
3.9 Number, type, and transfer rate for data 

channels 
3.10 Channel control unit-type, maximum device 

assignment, effect on CPU 
3.11 Storage devices-number and type 
3.12 Tape drives-density, speed, transfer rate, 

tracks, size 
3.13 Disk-access time (seek + search), rotational 

delay, transfer rate, tracks and cylinders, 
capacity per unit 

3.14 Communications control capabilities­
maximum remotes, lines, interfaces 

3.15 Ability to connect to I/O peripherals-bar 
code, microform, imaging, graphics, multi­
media, and other special purpose equipment 

3.16 Expandability 
3.17 MTBF-mean time between failures 
3.18 MTTR-mean time to repair 
3.19 Support 
3.20 Software compatibility for operating systems 

and specific packages desired 
3.21 Site requirements-air-conditioning, electrical, 

heating, cooling, etc. 
3.22 Budget limitations 
3.23 Throughput requirements 
3.24 Delivery requirements 

work, volume of inputs and printed outputs, types, 
volume and contents of files, and software are mini­
mal requirements to specify. 

More detailed requirements, such as CPU cycle 
time or response time to a type of query, are pro­
vided for any critical requirements. Critical require­
ments, here, mean those monitoring or relating 
to human life (e.g., EKG monitor or space rocket 



678 CHAPTER 16 Purchasing Hardware and Software 

lift-off). Error processing, error recovery, security, 
types of human intervention, and so on are all spec­
ified if they are important considerations in the deci­
sion process. 

Equipment not desired should also be identified. 
For instance, most configurations can alternate 
between minicomputers or local area networks. If 
minicomputers, for instance, are not desired as a 
solution, the requirements should be stated as: "This 
proposal is for a local area networking solution to 
support ... " followed by a list of major applica­
tion functions. ABC's RFP might finish that sen­
tence: " ... a rent/return processing application for a 
video store." 

Operational Environment 
The operational environment includes the geo­
graphic, building, and room specifications for the 
equipment. The extent of vendor responsibility and 
information should be defined as explicitly as possi­
ble. If the vendor is responsible for the installation, 
that information should also be included. If a loca­
tion is known, but the site is not improved for the 
equipment yet, the vendor should be required to 
specify flooring, air, ventilation, electrical, plumb­
ing, and other environmental requirements of the 
installation. If a site is already prepared for equip­
ment, it should be described in sufficient detail for 
the vendor to know whether his configuration will 
tolerate the environment or if further alteration is 
required. Schematics of desk configurations should 
be provided for multiunit RFPs. 

Performance 
Performance requirements identify the tolerance 
limits for different types of problems. Hardware 
performance requirements might include any of 
the following: 

• Acceptable limits of downtime 
• Inquiry response time 
• File update response time 
• Maximum percentage of communication 

errors 
• Recovery times for hardware failures 

• Maintenance and reliability requirements 
• Peak and average transaction time 

requirements 
• Geographic or other environmental constraints 

on equipment 

Frequently, in the absence of specific hardware 
design requirements, performance requirements are 
the basis for the RFP. A sample outline for operat­
ing system or network performance requirements is 
shown as Table 16-5. In the table, the list includes 
support for all desired functions of the environment. 
The implication is that hardware is less important 
than the functional support to be provided by the 
operating system. Table 16-6 shows an example of 
performance requirements that might be used to 
specify a local area network to support diverse work. 

Vendor responses to hardware requests should be 
required to include all operating system, program­
ming language, software, and interface require­
ments, growth capabilities, and limitations. 

Software 
The basic categories of software criteria are needs, 
resources, performance, flexibility, and operating 

TABLE 16-5 Technical Requirements 
Outline for Operating System or Network 
Performance 

3.0 Generic Operating System Requirements 
3.1 Instruction set and types of numeric processing 
3.2 Cache memory 
3.3 Hardware compatibility 
3.4 Software compatibility 
3.5 Virtual and real memory requirements 
3.6 Job, task, data management structure 

and function 
3.7 Multiprocessing capabilities 
3.8 Fixed system overhead 
3.9 Variable system overhead 

3.10 Control language 
3.11 Compilers supported 
3.12 Packaged software supported 
3.13 File access methods supported 



Hardware 679 

TABLE 16-6 Example of LAN Performance Requirements 

3.1 Software Requirements 
Must support and run DB2 or SQL Server software. 
Must support and run Quattro or Lotus spreadsheet. 
Must support and run ADW or IEF PC-based 

CASE tools. 
Must support and run Word Perfect. 

Must provide multiuser support for simultaneous 
users of all software with lockout at the record or 
data item level. File level locking should be a 
user-selectable option. 

Must allow levels of security including at least 
three levels for department, group, and user; 
security assignment by software package, 
directory, or minidisk; and by function (e.g., read, 
write, or both). 

Must support transaction logging either in the 
operating system or by other packages, e.g., the 
database server and CASE packages. 

Must support roll-back processing or permit it by the 
software in the environment. 

3.2 Printing 
Must support direct access to printers by all users. 
Must provide printing of at least 100 pages per 

minute (ppm). 
Printer(s) must accommodate: 

One-ply, preprinted forms, 
8Y2 x 11, 16-1b or 20-lb paper 

characteristics. These categories and the major re­
quirements specified in an RFP are summarized in 
Table 16-7 and discussed below. 

Needs 
Needs identify context-specific requirements such as 
file processing, maximum number of simultaneous 
users, number of buffers, size of files and records 
that can be handled, or precision of numbers for 
mathematical computation. 

In addition, environmental factors are extremely 
important. The operating system, programming lan­
guage, and interfaces with other software determine 
whether the package can exist in your operational 
environment, even if your requirements are met. 

3.2 Printing, continued 
81/2 x 14, 16-lb or 20-lb paper 
4 x 9 envelopes 
7 x 10 envelopes 
Transparencies for overheads 
Graphics 
Address labels 

3.3 Processing 
Interactive processing for up to 64 PCs at a time. 
Growth to 120 PCs at a time in five years. 
Able to accommodate Word Perfect-36 users, 

SQL processing (see above)-12 users, spread­
sheet (see above)-10 users, and CASE tool 
processing-six users simultaneously. 

Able to accommodate doubling of users in all 
categories within five years. 

3.4 Benchmark Evaluation Criteria 
Current and past workload data. 
Current size and planned growth. 
Future fiscal policies that affect how computers are 

charged to users. 
Current and future manpower for operations 

support. 

Resources 
Package resources identify the hardware configura­
tion requirements for the software. The working set 
is the minimal, real memory usage when the soft­
ware is running. All software is designed to have two 
components, a real memory component and a vir­
tual memory component. The virtual component is 
swapped in and out of memory as it is accessed. 
When it is out of memory it is stored on some 
peripheral device, usually a disk. The real memory 
component is that minimal core of the software that 
maintains the beginning and ending addresses for 
buffers, queues, lists, arrays, and other memory the 
software manages, and the task management soft­
ware to control the software's execution. 



680 CHAPTER 16 Purchasing Hardware and Software 

TABLE 16-7 Technical Requirements 
Outline for Customer Software or Package 
(Section 3.0 of Detailed RFP Outline 
Table 16-1.) 

3.0 Technical Specifications 
3.1 Concept and overview 

3.1.1 Diagrams of processes, entities, 
configuration, etc. as appropriate 

3.1.2 Functional requirements classified as 
mandatory or optional 

3.1.3 Dictionary defining all terms, items, 
processes, entities, and relationships in 
the diagrams and above sections in detail 
sufficient to provide complete under­
standing of the nature of the work 
expected 

3.2 Audit and data integrity requirements 
3.3 Security and recoverability requirements 
3.4 Performance requirements 
3.5 Conversion requirements 
3.6 Interface requirements 
3.7 Special requirements, e.g., facilities alterations 
3.8 Training 
3.9 Acceptance criteria 

In addition to the working set, the peak usage real 
memory component is important. When the maxi­
mum number of users are present on the system, 
maximum sizes of the working set and virtual mem­
ory requirements should be identified. If there is no 
change to the memory requirements, but there is an 
optimum size for real memory for efficient process­
ing, that should be required information. 

The third type of resource information required 
is the amount of disk space required to store the soft­
ware on disk, and the average storage requirements 
for several standard sizes of files. An example of a 
standard file is a 10,000 record file with 50 fields of 
8 characters each, and three multifield indexes. 

Performance 
The performance requirements should identify both 
total throughput and individual transaction response 
requirements if there are any. 

Flexibility 
Flexibility issues are of two types. First, the pack­
ages' interconnectivity to other packages might be of 
interest. Second, the potential for client modification 
and customization might also be of interest. For 
either type of flexibility, the ability of the package 
to change, expand functionality, and loosen restric­
tions (e.g., move from ten open files to 256 open files 
at once) are a good indicator of how fast the pack­
age can change to accommodate different busi­
ness needs. 

To assess the vendor's capabilities, you can re­
quire a list of packages with which the package 
under review is compatible. Also, you can require 
information about the type and frequency of new 
releases of the software. If the new releases only fix 
old bugs, the software is more risky than if the new 
releases enhance package functionality. 

To assess the extent to which you might be able to 
customize the software, the requirements should 
specify this as necessary. In general, many software 
companies will not honor warranties on software if 
any code is changed. Several mainframe software 
vendors, for instance D&B-MSA TM, 2 specifically 
design their software for client customization. 

Operating Characteristics 
The operating characteristics requirements should 
require identification of the hardware, operating sys­
tems, and compatible configurations of networks on 
which the software can run. If interplatform connec­
tions are desired, such compatibility should be iden­
tified as a requirement. 

A second operating characteristic is the form of 
package code. Vendors typically supply a load mod­
ule form of package that cannot be examined for 
errors. If package does not function, the vendor is the 
only recourse for help. In this case, clients usually 
request source code and have a contract clause that 
specifies that source code should be held in escrow 
and made available at such time that the vendor 

2 D&B-MSATM is a wholly owned subsidiary of Dun and Brad­
street, New Jersey. 



company goes out of business or the software ceases 
to function. The same argument and requirements 
should be written for access to data stored under pro­
prietary methods in a software package. 

The type of installation work required and vendor 
assistance available are the other operating charac­
teristics of interest. Some installations require little 
or no planning, with the installer simply running a 
program that actually does the installation. Other 
software installations require weeks of planning, 
including both logical and physical design, and deci­
sions about how internal queues, buffers, and so on 
will be stored. The amount of work is important for 
operations planning, but the type and amount of 
vendor support during the installation are also 
important. 

RFP EVALUATION ___ _ 

General Evaluation Guidelines 
In general, the evaluation proceeds as follows. In 
each section, the required items are scored using a 
rating system previously decided. Vendor recom­
mendations beyond the requirements are identified 
and evaluated. Through discussion and professional 
judgment, the contribution of enhancements to the 
quality of the finished work product is determined 
and scored. The weighted scores for the individual 
items are summed by vendor to yield a section score. 
For the financial section, formulae are applied to the 
bids and like numbers across proposals are com­
pared and scored. The weighted scores for each sec­
tion are summarized and summed to yield a single 
score for each vendor. The vendor with the highest 
overall score is selected. 

If there is a tie or several vendors are very similar, 
the proposals are reevaluated for scoring method, 
weights, and relative importance of each type of 
information to eventually select a winner. The 
reevaluation is a form of sensitivity analysis that 
determines where the scoring method is most sensi­
tive to between-vendor differences and if the method 
should be changed to remove the sensitivity, or if 
one vendor is clearly superior in some area. 

RFP Evaluation 681 

Scoring Methods 

The scoring for the technical evaluation requires 
assessment of the extent to which the vendor com­
plies with requirements and addresses the required 
features and functions in the proposal. An implicit 
ranking of quality of proposed solution is included in 
the technical assessment. 

There is no one right way to score a proposal. 
Rather, three methods are most common. One scor­
ing method ranks each item according to its relative 
merit compared to the other vendors. If there are 
three vendors the items are all ranked on a scale of 
one to three. The second common method is to use 
a fixed scale, say zero to ten, and all items are eval­
uated and placed on that scale regardless of the num­
ber of proposals. The third scoring method is to 
simply list requirements of the application and sim­
ply score a zero if the requirement is not met and a 
one if the requirement is met. The chosen scale is 
then used for scoring technical requirements, man­
agement approach, and company history. 

Figure 16-3 shows the effect of the three meth­
ods on the same set of requirements. The second 
method is most sensitive to qualitative differences 
but is also the most subjective. The binary scoring 
method is most objective but the least sensitive to 
qualitative differences. The first method is both 
objective and able to distinguish differences. There­
fore, the first method is recommended for your use 
when you are given a choice. 

In the remaining example, we use the ranking 
method for the four vendors evaluated. Each item is 
scored and entered on the list. When the list is com­
plete, the item scores are multiplied by the weights 
to develop the weighted scores. The weighted scores 
are summed to give a section evaluation score for 
each vendor. 

The flaws of the methods are seen in the exam­
ple in Figure 16-3. According to the summary, we 
would select vendor 3 using the first two scoring 
methods and Vendor 2 with the binary method. How­
ever, let's say we disqualify Vendor 3 for noncom­
pliance with the second requirement. Then, the first 
two methods give us different answers. This exam­
ple highlights the need to do sensitivity analysis on 



682 CHAPTER 16 Purchasing Hardware and Software 

Requirements 

Provide for at least 10 relational 
files to be open simultaneously 

Provide at least three indexes 
per relation 

Provide user views that join up 
to six relations 

Summary 
L (Weight * Rank) 

Requirements 

Provide for at least 1 0 relational 
files to be open simultaneously 

Provide at least three indexes 
per relation 

Provide user views that join up 
to six relations 

Summary 
L (Weight * Rank) 

Method 1 
(Rank 1-3) 

Weight Rank 
1 1 

Weight Rank 
2 3 

Weight Rank 
3 2 

13 

Method 1 
(Rank 1-3) 

Weight Rank 
1 2 

Weight Rank 
2 2 

Weight Rank 
3 1 

9 

Vendor 1 Ranking 

Method 2 
(Rank 1-10) 

Weight Rank 
.5 1 

Weight Rank 
1.5 10 

Weight Rank 

3 3 

24.5 

Vendor 2 Ranking 

Method 2 
(Rank 1-10) 

Weight Rank 
.5 9 

Weight Rank 
1.5 10 

Weight Rank 
3 4 

31.5 

Method 3 
(Binary) 

Weight 
.5 

Weight 
1.5 

Weight 
3 

4.5 

Method 3 
(Binary) 

Weight 
.5 

Weight 
1.5 

Weight 
3 

5 

Rank 
0 

Rank 
1 

Rank 
1 

Rank 
1 

Rank 
1 

Rank 
1 

FIGURE 16-3 Example of Requirements Scoring Methods 

the scale used in scoring to ensure balancing of 
weights and scores. 

Technical Evaluation 

In ABC's scoring example, the technical section 
evaluation shows one page of technical requirements 
that describe characteristics of a software environ­
ment without specifying the software (see Figure 
16-4). This list might be an additional 8-10 pages 
longer when complete. To get the ranks for each 
item, the vendor responses are reviewed and the 
quality and completeness of each response is rated. 
The ranks are multiplied by the item weight and 
weighted scores are summed. The weighted score 
can then be normalized to account for between-

section differences in the number of items ranked 
by dividing the weighted score by the number of 
items, in the example, eleven. 

In both scoring systems, raw and normalized, 
Vendor 4's solution meets more criteria with a higher 
quality rating than the other vendors. Vendor 4 did 
not get the highest marks on all items, however. Ven­
dors 1 and 2 have low scores for the technical section 
with more bottom ratings than the other vendors. 
These vendors would probably not be chosen and 
could be deleted from the remaining analysis if it 
were extensive. 

None of the proposed language solutions has all 
required items with the highest rating. This means 
two things. First, the solution, whichever one is 
selected, should be reevaluated before a final deci-



RFP Evaluation 683 

Vendor 3 Ranking 

Method 1 Method 2 Method 3 
Requirements (Rank 1-3) (Rank 1-10) (Binary) 

Provide for at least 10 relational Weight Rank Weight Rank Weight Rank 
files to be open simultaneously 1 3 .5 10 .5 1 

Provide at least thl'ee indexes Weight Rank Weight Rank Weight Rank 
per relation 2 0 1.5 0 1.5 0 

Provide user views that join up Weight Rank Weight Rank Weight Rank 
to six relations 3 3 3 10 3 1 

Summary 
L (Weight * Rank) 12 35 3.5 

Method Vendor 1 Vendor 2 Vendor 3 

13 9 12 

2 24.5 31.5 35 

3 4.5 5 3.5 

Selected Vendor is shown in bold for each method 

FIGU RE 16-3 Example of Requirements Scoring Methods (Continued) 

sion to ensure that the application can be done with­
out too many design compromises because of flaws 
in the proposed language. Second, more evaluation 
of possible languages for implementation can be 
done and a language recommendation might be 
made to the selected vendor. In other words, the lan­
guage for implementation becomes a negotiating 
point for lowering the cost or for changing the pro­
posed solution. 

Management Approach Evaluation 

The section of the proposal on the management 
approach includes all the information about how the 
vendor will manage the staff and the process to the 
satisfactory completion of the client. The schedule, 
staffing, management reporting, and problem resolu­
tion should be included. In addition, the vendor dis­
cusses expected resources of the client company for 
the work engagement. 

There is no one right way to evaluate the man­
agement approach. Rather, this section is reviewed 

to determine the fit with client expectations and the 
realism of the approach. For instance, if there are 
more than one vendor staff, one of the staff should be 
designated the 'senior' person in charge of the work 
products and problems of the other person(s). Any 
personnel problems of vendor staff should not be 
dealt with by the client; the senior person has this 
responsibility. Also, a person from the vendor's 
management staff should be designated as responsi­
ble for guaranteeing the quality of work product by 
the company's staff. This person is usually the man­
agement contact for the client and is the ultimate 
manager for the vendor staff even though there may 
also be an on-site, working manager. 

Proposals should be assessed in a manner con­
sistent with that of the technical requirements. That 
is, either a zer%ne grading system, or a ranking 
system, is used, depending on which is used for the 
technical requirements. The management tech­
niques requested in the RFP for the management 
approach should have been previously prioritized 
and weighted. The items are listed, scored, and 



684 CHAPTER 16 Purchasing Hardware and Software 

Vendor 1 
Technical Requirements Weight Rank 

3 files with 2,000-200 
character records, 40 fields 5 

2 files with 50,000-40 
character records, 10 fields 5 2 

Process up to six simultaneous 
transactions 5 2 

Up to six attributes in 
compound key 5 

Max text field length of 
300 characters 3 2 

Max integer length 15 digits 3 2 

Max decimal number 9.2 3 

Provide for at least 
1 0 relational files to be open 
simultaneously 4 3 

Provide at least three 
indexes per relation 5 3 

Provide user views that join 
up to six relations 5 2 

Supports bar code reader 4 2 

Summary 
L (Weight * Rank) 
for items shown 90 

Normalized score 8.2 

FIGURE 16-4 ABC Technical Scoring 

weighted. Finally, a weighted average score for man­
agement approach is computed for each vendor and 
added to the financial summary sheet. 

In the example shown in Figure 16-5, Vendor 1 
omitted resumes of the proposed staff and lost sev­
eral rating points as a result. Vendor 2 assumed many 
more client resources than the company was willing 
to commit and lost points as a result. Only Vendors 3 
and 4 provided information that was complete. Their 
scores reflect their proposals' assessed quality 
differences. 

Vendor 2 Vendor 3 Vendor 4 
Rank Rank Rank 

2 3 4 

4 3 

4 3 

2 3 4 

3 4 

3 4 

2 3 4 

2 4 

2 4 

3 4 

4 3 

77 129 174 

7 11.7 15.8 

Financial Evaluation 

The next analysis evaluates the financial aspects of 
the proposals. The financial evaluation is indepen­
dent from the technical evaluation and assumes that 
all required features are present. In fact, the technical 
and financial evaluations might be done by different 
people in different departments. The project man­
ager and SEs usually perform the technical evalua­
tion, while the project manager and/or a financial 
support group might do the financial evaluation. 



RFP Evaluation 685 

Vendor 1 Vendor 2 Vendor 3 Vendor 4 
Management Requirements Weight Rank Rank Rank Rank 

Schedule and staffing 5 2 3 4 

Project management 5 2 4 3 

Status reporting 5 2 4 3 

Problem management 5 2 3 4 

Summary 
L (Weight * Rank) 30 30 70 70 

Normalized score* 7.5 7.5 17.5 17.5 

*Normalized Score = L (Weight * Rank) 1 # Items 

FIGURE 16-5 ABC Management Approach Scoring 

Recall that for services such as custom software 
development, there are three types of financial pro­
posals: fixed, time/materials (T &M), and T &M with 
a ceiling (semifixed). For hardware, there are three 
types of proposals: lease, lease with option to buy, 
and purchase. And for software packages, there is a 
basic license fee plus a maintenance fee. The first 
step in the financial analysis is to determine what 
set of numbers to compare. The proposal should 
specify the type( s) of financial bids solicited, but, if 
not, the three types need to be equated for proper 
comparison. 

After deciding on which numbers to compare, a 
simple net present value (NPV) analysis may be 
developed (see Chapter 6). Recall that NPV com­
putes the present value of multitime period expen­
ditures, assuming a specific interest rate on money 
(see Figure 16-6). If all vendors' proposed expendi­
tures are in the same time period, NPV is not neces­
sary and a simple comparison is used. The final 
value of each project is entered on the summary 
evaluation sheet (see Figure 16-7). Other analyses 
might include payback period, cost per vendor 
employee, and so on, depending on company 
convention. 

In Figure 16-7, the present value of all hardware 
options is listed and separated from the cost of 
labor. Then, rankings for hardware and software are 
applied based on the low cost. Both average and nor-

n 
NPV=L ~ 

t = 0 (1 + d)t 

Where: d Discount interest rate 

n Life of project in years 

Bt = Value of benefits in period t 

Ct = Value of costs in period t 

For instance, assume the life of the project is five 
years, and the per period cost is $1,000,000 at .075 
interest. The benefits of the project for the five years 
are zero, $100,000, $250,000, $450,000, and 
$2,000,000. The NPV is: 

NPV = (-1,000,000)/1.075 

+ (100,000 - 1,000,000)/1.0752 

+ (250,000 - 1,000,000)/1.0753 

+ (700,000 - 1,000,000)/1.0754 

+ (2,000,000 - 1,000,000)/1.0755 

= -930,232 - 576,923 - 443,548 
- 223,880 + 689,655 

= -$1,494,928 

FIGURE 16-6 Sample Net Present Value 
Computation 



686 CHAPTER 16 Purchasing Hardware and Software 

Financial Summary 

Net Present Value Hardware Lease 

NPV Hardware Lease with Option to Purchase 

NPV Hardware Purchase 

Total Cost T&M Labor 

Hardware Rank 

Software Rank 

Summary I. (Weight * Rank) 

Weight 

4 

6 

Vendor 1 

$22,000 

$30,000 

$45,000 

$17,500 

Vendor 1 
Rank 

4 

4 

40 

Vendor 2 

$30,000 

$32,000 

$37,800 

$22,600 

Vendor 2 
Rank 

10 

Vendor 3 

$27,250 

$31,750 

$37,500 

$28,400 

Vendor 3 
Rank 

2 

2 

20 

Vendor 4 

$22,300 

$24,600 

$32,500 

$27,500 

Vendor 4 
Rank 

3 

3 

30 

FIGURE 16-7 ABC Financial Evaluation Summary 

malized scores can be generated as we have shown. 
The normalized scores are used in the comparison 
with the scores of the other sections. In the rankings, 
the higher the score, the lower the cost. In this case, 
Vendor 1 receives the highest cost scores for both 
hardware and software. Vendor 4, the highest ranked 
vendor in the technical section, was third on both 
items, with a weighted score of 3. If hardware and 
software are equally important, we could have aver­
aged the scores for each vendor. Using weights 
which are somewhat higher than the weights for the 
other score categories increases the importance of 
the financial evaluation relative to the technical and 
other evaluations. 

Company Evaluation 

One risk any client takes when contracting work to 
others is that the vendor might not meet the terms 
of the contract for some reason. The company evalu­
ation is one way to define such risks and assign a 
score to each vendor company. 

In general, the longer the company has been in 
business and the larger the size, the less likely the 
company is to go out of business. Similarly, the 
smaller a percentage of the total company's work 
this particular contract is, the less likely schedule 

problems, for fixed price work, for instance, are to 
severely hamper the vendor's ability to do business. 
The first score assessed, then, is one of risk that the 
vendor can do this work without straining his or her 
own organization. 

The second type of evaluation gives credit for 
past work with the client company. The idea is to 
favor a company with successful past experience 
because their personnel are likely to know the 
client's way of doing business and need less intro­
ductory time than vendors without that experience. 
Other project managers who know the vendor should 
be asked about the quality and quantity of work of 
vendor employees, satisfaction with the vendor, and 
compliance with contract terms. A high ranking 
should be given for successful past projects and a 
low ranking (e.g., negative) for unsuccessful past 
work. Obviously, no ranking can be given for a com­
pany with no history at the client site. If this item is 
the decision criteria for a proposal, then the technical 
evaluation should be reevaluated to ensure that the 
best proposal is being selected. 

A similar evaluation gives vendors who have 
developed similar work products credit for that 
knowledge. Vendors who are already familiar with 
the problem domain, and who need less start-up time 
to learn the domain, are favored over those without 
that knowledge. 



Vendor 1 
Vendor Company Criteria Weight Rank 

Age/Size 5 3 

Similar work 5 3 

Work with ABC 5 0 

Reputation 5 3 

Summary 
I (Weight * Rank) 45 

Normalized score 9 

FIGURE 16-8 ABC Vendor Company Rating 

Vendors who claim similar experience should be 
checked by discussing the experience with reference 
clients. Unless another firm gives a positive recom­
mendation, no credit for domain experience should 
be given. A neutral or negative recommendation 
does not necessarily mean a negative rating. Rather, 
a negative rating raises a flag that not all projects 
are perfect but should not cause a vendor to be dis­
qualified. If all recommendations are negative, then 
the vendor might be given a negative rating. 

The scores for company evaluation are entered 
in the summary sheet which is completed. The final 
scores in all areas are multiplied by the weight for 
the section and summed to develop a final weighted 
assessment. The company with the highest overall 
score is selected unless some extenuating circum­
stance is present. 

In Figure 16-8, all four vendors scored zero in 
prior work with ABC, meaning that none have 
worked with ABC before. Vendor 4, the preferred 
vendor based on technical scores, ranks low in 
age/size and low in reputation. These numbers can 
be interpreted as identifying a small, fairly new com­
pany that has had some successes and some failures. 
This interpretation implies some risk in using Ven­
dor4. 

If we look at Vendor 3, who was ranked second 
on the technical list, the age/size and reputation are 
the best of the four vendors. The problem here is that 
Vendor 3 has little experience with similar work, 
thus, also identifying a source of risk. 

Vendor 2 
Rank 

o 

15 

3.7 

Vendor 3 
Rank 

4 

2 

0 

4 

50 

12.5 

Summary 687 

Vendor 4 
Rank 

2 

4 

0 

2 

40 

10 

The summary form (see Figure 16-9) shows the 
proposals summarized on one page for a manage­
ment overview. The weighted and normalized 
weighted scores should both be shown as an indica­
tor of the sensitivity of the weighting system in 
selecting the proposal winner. 

AUTOMATED __________ __ 
SUPPORT TOOLS _____ _ 
FOR VENDOR _____ _ 
EVALUATION _________ __ 

There are no automated tools that are advertised as 
specifically for RFP use. Rather, there is general pur­
pose software that can be used for different parts of 
the work. For instance, spreadsheets can be used for 
the financial analysis and for maintaining and moni­
toring the scores easily. Word processing and CASE 
tools might be used in the preparation of the RFP 
document, but are of less use in evaluating the ven­
dor proposals. Table 16-8 shows the most popular 
spreadsheets on the market at this time. Any of these 
packages can be used in the RFP analysis. 

SUMMARy ___________ __ 

This chapter discusses the procurement of hardware, 
software, or services for an IS organization. The for­
mal RFP process includes the development of work 



688 CHAPTER 16 Purchasing Hardware and Software 

Criteria 

Technical 

Management approach 

Company 

Financial average rank 

Cost of cheapest alternative 

Total weighted score 

Total weighted normalized score 

Weight 

.4 

.2 

.1 

.3 

Vendor 1 
Rank 

90 

30 

45 

40 

$42,500 

Vendor 1 

58.5 

14.6 

FIGURE 16-9 ABC Vendor Summary Ratings 

requirements, identification of vendors, development 
of a Request for Proposal (RFP), management of the 
RFP process, evaluations of the proposals, and se­
lection of a vendor. 

An RFP consists of a management summary, 
statement of requirements, proposal process descrip­
tion with important dates, and standard contract 
terms. Optional sections of the RFP include a defin­
ition of the vendor response. 

Ranking RFP responses requires the definition of 
the ranking scheme and of weights signifying the 

Vendor 2 
Rank 

77 

30 

15 

10 

$42,600 

Vendor 2 

41.3 

10.3 

Vendor 3 
Rank 

129 

70 

50 

20 

$55,650 

Vendor 3 

76.6 

19.2 

Vendor 4 
Rank 

174 

70 

40 

30 

$49,800 

Vendor 4 

96.6 

24.2 

relative importance of the ranked items. The least 
subjective, most informative of the three common 
ranking schemes is one that uses the number of ven­
dors as the number of ranks. Other options are a 
binary system and a subjective ranking based on an 
arbitrary number of ranks, such as 10. 

All response areas-technical, managerial, com­
pany, and financial-are ranked taking care to com­
pare like things across the vendors. When complete, 
the weighted ranks are summed by section and 
for the whole RFP, and the vendor with the highest 

TABLE 16-8 Automated Tools for Vendor Evaluation 

Product Company Technique 

COMNET, LANNET CACI Simulation of network 
San Diego, CA performance for different net-

work operating systems 

Excel, Multiplan MicroSoft Spreadsheet for financial 
Redmond, WA evaluation 

Lotus 1-2-3 Lotus Development Corp. Spreadsheet for financial 
evaluation 

Quattro Pro Borland Corp. Spreadsheet for financial 
evaluation 



score is selected. Do sensitivity analysis of the rank­
ing scheme to minimize obvious bias. 

REFERENCES --------Joslin, Edward 0., Computer Selection. Reading, MA: 
Addison-Wesley Publishing Co., Inc., 1968. 

King, John L., and Edward L. Schrems, "Cost-benefit 
analysis in information systems development and 
operation," in Computing Surveys, Vol. 10, #1, March 
1978, p. 25. 

Lucas, Henry c., Jr., The Analysis, Design and Imple­
mentation of Information Systems, 4th ed., New York, 
Mitchell McGraw-Hill, 1992. 

Stamper, David, Business Data Communications, 3rd ed., 
Redwood City, CA: The Benjamin/Cummings Pub­
lishing Company, Inc., 1991. 

KEy TERMS _______ _ 

acceptance criteria package purchase 
benchmark proposal process 
company requirements purchase bid 
data communications request for information 

network (RFI) 
financial requirements request for proposal (RFP) 
fixed price bid request for quotation (RFQ) 
lease option bid residual price 
lease with option to buy bid T &M with ceiling bid 
license fee technical requirements 
make-buy decision time and materials bid 
management approach (T &M) 
management working set 

requirements 

EXERCISES ----------1. Using the information provided for the ABC 
Case in Chapter 16, develop a different way of 
scoring the vendor responses that is plausible. 
Defend the use of your method. 

2. Develop an analysis of two well-known pack­
ages, such as Lotus and Quattro spreadsheets. 
What features are the same? Which are differ­
ent? How would you choose between them? 

3. Develop a list of issues for deciding what PC 
software packages should be the standards for a 
company. Are the criteria software features 
organizational in nature? Why? 

Study Questions 689 

STUDY QUESTIONS ____ _ 

1. Define the following terms: 
benchmark T &M 
fixed price bid management approach 
make-buy decision technical requirements 
RFI working set 

2. Is the process of selecting a product through 
the RFP completely objective? Why or why 
not? 

3. What is the purpose of an RFP? 
4. How does the RFP process differ from the 

informal procurement process? 
5. List and describe the seven types of financial 

proposals. 
6. Why are there so many types of financial 

proposals? 
7. List five criteria to be provided in a hardware 

RFP. 
8. List five criteria to be provided in a software 

package RFP. 
9. List five criteria to be provided in a software 

development RFP. 
10. What RFP criteria are provided for a network? 
11. Describe the three types of scoring systems for 

vendor proposals, identifying the pros and cons 
of each. 

12. Why is a standard for vendor responses a good 
idea? 

13. What formula is applied to develop the finan­
cial analysis? When is it not needed? 

14. What is the purpose of a benchmark? For 
which type(s) of procurement is benchmarking 
used? 

15. How can you determine a company's 
reputation? * EXTRA-CREDIT QUESTION 

1. Take some application that might be used at 
ABC Video--accounts payable, general ledger, 
payroll, rental order processing-and perform a 
software evaluation for two competing products. 
Try to be objective in the criteria and weights 
you assign. What are the deciding factors in the 
evaluation? 



CHAPTER17 

TESTING AND ----------------------,. ........ ----. 
QUALITY ___________ _____ 
ASSURANCE ___________________________ ~ 

INTRODUCTION ____ _ 

Testing is the process (and art) of finding errors; it 
is the ultimate review of specifications, design, and 
coding. The purpose of testing is to guarantee that 
all elements of an application mesh properly, func­
tion as expected, and meet performance criteria. 

Testing is a difficult activity to accept mentally 
because we are deliberately analyzing our own work 
or that of our peers to find fault. Thus, after work­
ing in groups and becoming productive teams, we 
seek to find fault and uncover mistakes through test­
ing. When the person conducting the test is not on 
the project as, for instance, acceptance testers, they 
are viewed as adversaries. 

Testing is a difficult activity for management to 
accept because it is costly, time consuming, and 
rarely finds all errors. Frequently, resources are 
difficult to obtain and risks of not testing are inade­
quately analyzed. The result is that most applica­
tions are not tested enough and are delivered 
with 'bugs.' 

Research studies show that software errors tend 
to cluster in modules. As errors are found in a tested 
unit, the probability that more errors are present 
increases. Because of this phenomenon, as severe 
errors are found, the lower the confidence in the 
overall quality and reliability of the tested unit 
should be. 

690 

In this chapter, we discuss useful strategies for 
testing and the strategies which are most applicable 
to each level of testing. Then, we discuss each level 
of testing and develop test plan examples for the 
ABC rental system. Finally, automated test support 
within CASE tools and independent test support 
tools are defined and examples listed. The next sec­
tion defines testing terminology. 

TESTING ______ _ 
TERMINOLOGY ____ __ 

As above, testing is the process ( and art) of finding 
errors. A good test has a high probability of finding 
undiscovered errors. A successful test is one that 
finds new errors; a poor test is one that never 
finds errors. 

There are two types of errors in applications. A 
Type 1 error defines code that does not do what it 
is supposed to do; these are errors of omission. A 
Type 2 error defines code that does something it is 
not supposed to do; these are errors of commission. 
Type 1 errors are most prevalent in newly developed 
applications. Type 2 errors predominate in mainte­
nance applications which have code 'turned off' 
rather than removed. Good tests identify both types 
of errors. 



Testing takes place at different levels and is con­
ducted by different individuals during the applica­
tion development. In this chapter we discuss the 
testing performed by the project team and testing 
performed by outside agents for application accep­
tance. Project team tests are termed developmental 
tests. Developmental tests include unit, subsystem, 
integration, and system tests. Tests by outside agents 
are called quality assurance (QA) and acceptance 
tests. The relationship between testing levels and 
project life-cycle phases are summarized in Fig­
ure 17-1. 

A unit test is performed for each of the smallest 
units of code. Subsystem, integration tests verify 
the logic and processing for suites of modules that 
perform some activity, verifying communications 
between them. System tests verify that the func­
tional specifications are met, that the human inter­
face operates as desired, and that the application 
works in the intended operational environment, 
within its constraints. During maintenance, testers 
use a technique called regression testing in addition 
to other types of tests. Regression tests are cus-

Life-Cycle Phases 

Testing Terminology 691 

tomized to test that changes to an application have 
not caused it to regress to some state of unaccept­
able quality. 

Finally, outside agents perform quality assur­
ance (QA) tests of acceptance for the application. 
The outside agent is either the user or a user repre­
sentative. The goal is to perform an objective, unbi­
ased assessment of the application, and an outside 
agent is considered more objective than a team 
member. QA tests are similar to system tests in their 
makeup and objectives, but they differ in that they 
are beyond the control of the project team. QA test 
reports usually are sent to IS and user management 
in addition to the project manager. The QA tester 
plans his own strategy and conducts his own test 
to ensure that the application meets all func­
tional requirements. QA testing is the last testing 
done before an application is placed into produc­
tion status. 

Each test level requires the definition of a strategy 
for testing. Strategies are either white box or black 
box, and either top-down or bottom-up. Black-box 
strategies use a 'toaster mentality': You plug it in, 

Testing Types 

QAf Acceptance 
Test 

FIGURE 17-1 Correspondence between Project Life-Cycle Phases and Testing 



692 CHAPTER 17 Testing and Quality Assurance 

~~ '" Input Results -- Black Box ..-
~ 

FIGURE 17-2 Black Box Data Testing Strategy 

it is supposed to work (see Figure 17-2). Created 
input data is designed to generate variations of out­
puts without regard to how the logic actually func­
tions. The results are predicted and compared to the 
actual results to determine the success of the test. 

White-box strategies open up the 'box' and look 
at specific logic of the application to verify how it 
works (see Figure 17-3). Tests use logic specifica­
tions to generate variations of processing and to pre­
dict the resulting outputs. Intermediate and final 
output results can be predicted and validated using 
white-box tests. 

The second type of testing strategy defines how 
the test and code development will proceed. Top­
down testing assumes that critical control code and 
functions will be developed and tested first (see Fig­
ure 17-4). These are followed by secondary func­
tions and supporting functions. The theory is that the 
more often critical modules are exercised, the higher 
the confidence in their reliability can be. 

Bottom-up testing assumes that the lower the 
number of incremental changes in modules, the 
lower the error rate. Complete modules are coded 

~ e, 
Input 

t I! 
.. 
~ 

and unit tested (see Figure 17-5). Then the tested 
module is placed into integration testing. 

The test strategies are not mutually exclusive; any 
of them can be used individually and collectively. 
The test strategy chosen constrains the type of 
errors that can be found, sometimes necessitating the 
use of more than one. Ideally, the test for the appli­
cation combines several strategies to uncover the 
broadest range of errors. 

After a strategy is defined, it is applied to the level 
of test to develop actual test cases. Test cases are 
individual transactions or data records that cause 
logic to be tested. For every test case, all results of 
processing are predicted. For on-line and real-time 
applications, test scripts document the interactive 
dialogue that takes place between user and applica­
tion and the changes that result from the dialogue. 
A test plan documents the strategy, type, cases, and 
scripts for testing some component of an application. 
All the plans together comprise the test plan for 
the application. 

Testing is iterative until no errors, or some ac­
ceptable number of errors, are found. In the first step 

h 

j 1 r Result 

... 

White Box 

FIGURE 17-3 White Box Logic Testing Strategy 



Legend: 

First Tested 

~ Second Tested 

I Third Tested 

D Fourth Tested 

FIGURE 17-4 Top-Down Testing Strategy 

of the testing process, test inputs, configuration, and 
application code are required to conduct the actual 
test. The second step is to compare the results of the 
test to predicted results and evaluate differences to 
find errors. The next step is to remove errors, or 
'debug' the code. When recoding is complete, test­
ing of changes ensures that each module works. The 
revised modules are then reentered into the testing 
cycle until a decision to end testing is made. This 
cycle of testing is depicted in Figure 17-6 for a top­
down strategy. 

The process of test development begins during 
design. The test coordinator assigned should be a 
capable programmer-analyst who understands the 
requirements of the application and knows how to 
conduct testing. The larger and more complex the 

Testing Terminology 693 

application, the more senior and skilled the test 
coordinator should be. A test team may also be 
assigned to work with the coordinator on large, com­
plex projects. The testing team uses the functional 
requirements from the analysis phase and the design 
and program specifications from the design phase 
as input to begin developing a strategy for testing the 
system. As a strategy evolves, walk-throughs are 
held to verify the strategy and communicate it to the 
entire test team. Duties for all levels of testing are 
assigned. Time estimates for test development and 
completion are developed. The test team works 
independently in parallel with the development team 
to do their work. They work with the DBA in devel­
oping a test database that can support all levels of 
testing. For unit testing, the test team verifies results 



694 CHAPTER 17 Testing and Quality Assurance 

Legend: 

I 
I 
I 
D 

First Tested 

Second Tested 

Third Tested 

Fourth Tested 

FIGURE 17-5 Bottom-Up Testing Strategy 

and accepts modules and programs for integration 
testing. The test team conducts and evaluates inte­
gration and system tests. 

TESTING _______ _ 

STRATEGIES _____ _ 

There are two kinds of testing strategies. The first 
type of strategy relates to how logic is tested in the 
application. Logic testing strategies are either black­
box or white-box. Black-box testing strategies 
assume that module (or program or system) testing 

is concerned only that what goes in comes out 
correctly. The details of logic are hidden and not 
specifically analyzed. Black-box strategies are data­
driven, which means that all test cases are based on 
analysis of data requirements for the test item.1 

White-box approaches to testing assume that spe­
cific logic is important and to be tested. White-box 
tests evaluate some or all of the logic of a test item to 
verify correct functioning. White-box strategies are 

Test item is the term used through the remainder of the discus­
sion to identify some thing being tested. A test item might be 
a module, group of modules, or the whole application. 



Testing Strategies 695 

Hardware/Software System JCL 
GOnfigUratiO~ System s7ffO'd Gode 

Program Stubs, 
Critical Logic, 
Ancillary Logic 

Test 
DataiCase~ Test 

~ 

Test 
Expected Results Output , 

Evaluate 

Problems 

[ Debug 
I----I .. ~ Error 

Corrections 

FIGURE 17-6 Testing Information Flow 

logic-driven, which means that all test cases are 
based on analysis of expected functions of the 
test item. 

The second type of testing strategy relates to how 
testing is conducted, regardless of logic testing strat­
egy. These conduct, or process, strategies are top­
down and bottom-up. Both top-down and bottom-up 
testing fit the project life-cycle phases in Figure 
17 -1; the difference is in the general approach. Top­
down is incremental; bottom-up is 'all or nothing.' 

Top-down testing assumes the main application 
logic is most important. Therefore, the main logic 
should be developed and tested first and continu­
ously throughout development. Continuous success­
ful testing raises confidence levels about code 
reliability. Program stubs that contain minimal 
functional logic are tested first with additional logic 
added as it is unit tested. Top-down testing fre­
quently requires extra code, known as scaffolding, 
to support the stubs, partial modules, and other 
pieces of the application. 

Bottom-up testing assumes that individual pro­
grams and modules are fully developed as stand­
alone processes. These are tested individually, then 
combined for integration testing. Bottom-up testing 
treats test phases as somewhat discrete. Unit testing 

leads to integration testing which leads to system 
testing. The next section discusses variations of 
black-and white-box testing strategies. 

Black-Box Testing 
Black-box testing attends to process results as evi­
denced by data. The test item is treated as a black 
box whose logic is unknown. The approach is effec­
tive for single function modules and for high-level 
system testing. Three commonly used methods of 
black box testing are: 

• equivalence partitioning 
• boundary value analysis 
• error guessing 

A fourth method that is less common in business, 
cause-effect graphing, is also used. Each of these 
methods are described in this section. 

Equivalence Partitioning 

The goals for equivalence partitioning are to mini­
mize the number of test cases over other methods 
and design t~st cases to be r((presentative of sets of 
data. For the given level of test, the test item data 



696 CHAPTER 17 Testing and Quality Assurance 

inputs are divided into equivalent partitions each 
representing some set of data. Then, test cases are 
designed using data from each representative, equiv­
alent set. The theory is that by exhaustively testing 
one item from each set, we can assume that all other 
equivalent items are also exhaustively tested. 

For instance, at the module level, field values 
identify equivalent sets. If the field domain is a range 
of values, then one set is allowable values and 
the other set is disallowed values. The analysis to 
define equivalent domain sets continues for each 
data item in the input. 

Equivalence partitioning gains power when used 
at more abstract levels than fields, however. For 
instance, interactive programs, for integration 
tests, can be defined as equivalent sets at the screen, 
menu selection, or process levels. At the system test 
level, equivalence can be defined at the transac­
tion, process, or activity level (from Information 
Engineering). 

Test scripts for on-line applications can be black­
box equivalence partitioning tools. A test script is 
an entry-by-entry description of interactive process­
ing. A script identifies what the user enters, what the 
system displays in response, and what the user 
response to the system should be. How any of these 
entries, actions, and displays takes place is not 
tested. 

Boundary Value Analysis 

Boundary value analysis is a stricter form of equiv­
alence partitioning that uses boundary values rather 
than any value in an equivalent set. A boundary 
value is at the margin. For example, the domain for 
a month of the year ranges from one to 12. The 
boundary values are one and 12 for valid values, and 
zero and 13 for the invalid values. All four bound­
ary values should be used in test cases. Boundary 
value analysis is most often used at the module level 
to define specific data items for testing. 

Error Guessing 

Contrary to its name, error guessing is not a random 
guessing activity. Based on intuition and experience, 
it is easy for experts to test for many error condi­
tions by guessing which are most likely to occur. For 

instance, dividing by zero, unless handled properly, 
causes abnormal ending of modules. If a module 
contains division, use a test that includes a zero 
divisor. Since it is based on intuition, error guessing 
is usually not effective in finding all errors, only the 
most common ones. If error guessing is used, it 
should always be used with some other strategy. 

Cause-Effect Graphing 

One shortcoming of equivalence and boundary test­
ing is that compound field interactions are not iden­
tified. Cause-effect analysis compensates for this 
shortcoming. A cause-effect graph depicts specific 
transformations and outputs as effects and identifies 
the input data causing those effects. The graphical 
notation identifies iteration, selection, Boolean, and 
equality conditions (see Figure 17-7). A diagram of 
the effects works backward to determine and graph 
all causes. Each circle on the diagram represents a 
sequence of instructions with no decision or control 
points. Each line on the diagram represents an equiv­
alent class of data and the condition of its usage. 
When the graph is done, at least one valid and one 
invalid value for each equivalent set of data on the 
graph is translated into test case data. This is con­
sidered a black-box approach because it is concerned 
not with logic, but with testing data value differences 
and their effect on processing. An example cause­
effect graph for Customer Create processing is 
shown in Figure 17-8. 

Cause-effect graphing is a systematic way to cre­
ate efficient tests. The trade-off is in time to develop 
the set of graphs for an application versus the time 
consumed executing large numbers of less efficient, 
possibly less inclusive test cases. The technique is 
used more in aerospace than in general business. 

Cause-effect graphs are more readily created 
from DFDs, PDFDs, and state-transition diagrams 
than from Booch diagrams even though it is partic­
ularly useful for real-time and embedded systems. 
Both types of systems use state-transition diagrams 
to show the causes and effects of processing. A 
cause-effect graph can be superimposed on a state­
transition diagram or easily developed from the 
state-transition diagram. Cause-effect graphing can 
be used in place of white-box approaches whenever 



Testing Strategies 697 

o Sequence of Code 

Identity 

~ "Not" 

"Or" 

"And" 

FIGURE 17-7 Cause-Effect Graphical Notation 

specific logic cannot be realistically tested because 
of combinatorial effects of multiple logic conditions. 

White-Box Testing 
White-box testing evaluates specific execute item 
logic to guarantee its proper functioning. Three types 
of white-box techniques are discussed here: logic 
tests, mathematical proofs, and cleanroom testing. 
Logic coverage can be at the level of statements, 
decisions, conditions, or multiple conditions. In 
addition, for mathematically specified programs, 
such as predicate logic used in artificial intelligence 
applications, theorem proof tests can be conducted. 

"Do While" 

"Do Until" 

"Case Logic" 

The newest development in white-box strategies is 
the 'clean room' approach developed by IBM. 

Logic Tests 

Logic tests can be detailed to the statement level. 
While execution of every statement is a laudable 
goal, it may not test all conditions through a pro­
gram. For instance, an if statement tested once tests 
either success or failure of the if. At least two tests 
are required to test both conditions. Trying to test 
all conditions of all statements is simply not practi­
cal. In a small module with 10 iterations through a 
four-path loop, about 5.5 million test cases would 



698 CHAPTER 17 Testing' and Quality Assurance 

No More Customers 

Qi 
E 
o en 
::I 
() 
Q) 

1il 
~ 
() 

FIGURE 17-8 Cause-Effect Graph for Customer Create 

be needed to try all possible combinations of 
paths (i.e., 410 + 49 + 48 .•• + 41). Obviously, some 
other method of deciding test cases is needed. The 
other white-box logic testing strategies offer some 
alternatives. 

Decision logic tests look at each decision in a 
module and generate test data to create all possible 
outcomes. The problem is that decisions are not 
always discrete and providing for compound deci­
sions requires a different strategy. A problem with 
logic tests at this level is that they do not test mod­
ule conformance to specifications. If the test is 
developed based on the specification, but the specifi­
cation is interpreted differently by the programmer 

(for better or worse), the test is sure to fail. The 
solution to this issue is to require program specifi­
cations to detail all logic. While this may be practical 
for first- and second-generation languages (i.e., ma­
chine and assembler languages), it defeats the pur­
pose of higher level, declarative languages. 

Condition logic tests are designed such that each 
condition that can result from a decision is exercised 
at least once. In addition, multiple entry conditions 
are tested. Thus, condition tests are more inclusive 
than decision logic tests. They still suffer from the 
problem of ignoring compound decision logic. 

Multicondition tests generate each outcome of 
multiple decision criteria and multiple entry points 



to a module. These tests require analysis to define 
multicriteria decision boundaries. If the boundaries 
are incorrectly defined, the test is ineffective. When 
designed properly, multicondition logic tests can 
minimize the number of test cases while examining 
a large number of conditions in the case. The use of 
this technique requires practice and skill but can be 
mentally stimulating and even fun. 

Mathematical Proof Tests 

When evaluating logic, the goal is zero defects. One 
method of approaching zero defects is to apply 
mathematical reasoning to the logic requirements, 
proving the correctness of the program. This method 
requires specifications to be stated in a formal lan­
guage such as the Vienna Development Method 
(VDM). Formal languages require both mathemati­
cal and logic skills that are beyond the average busi­
ness SE's ability at the present time. An example of 
a general process overview for a payroll system as 
specified in VDM is shown as Figure 17-9. While a 
detailed discussion of these methods is beyond the 
scope of this text, they deserve mention because they 
are the only known way for attaining zero defects 
and knowing it. 

Cleanroom Tests 

Cleanroom testing is an extension of mathematical 
proof that deserves some comment. Cleanroom test­
ing is a manual verification technique used as a part 
of clean room development. The theory of clean­
room development is that by preventing errors from 
ever entering the process, costs are reduced, soft­
ware reliability is increased, and the zero defect goal 
is attained. The process was introduced in IBM in 
the early 1980s by Mills, Dyer, and Linger, and 
applies hardware engineering techniques to soft­
ware. Formal specifications are incrementally devel­
oped and manually verified by walk-through and 
inspections teams. Any program that is not easily 
read is rewritten. All program development is on 
paper until all verification is complete. 

Cleanroom testing techniques are walk-throughs 
and formal mathematical verification. The goal is to 
decompose every module into functions and their 
linkages. Functional verification uses mathematical 

Testing Strategies 699 

techniques, and linkage verification uses set theory 
whenever possible to prove the application design 
and code. 

After verification, an independent testing team 
compiles and executes the code. Test data is com­
piled by analysis of the functional specification and 
is designed to represent statistical proportions of data 
expected to be processed by the live system. In 
addition to normal data, every type of catastrophic 
error is produced to test that the application does 
degrade gracefully. 

The success of cleanroom development and test­
ing is such that more than 80% of reported projects 
have an average failure time of less than once every 
500 software years. Software years are counted by 
number of sites times number of years of operation. 
For example, 100 sites for one year is 100 software 
years. This is an impressive statistic that, coupled 
with the 80-20 rule, can guide redevelopment of 
error-prone modules. The 80-20 rule says that 80% 
of errors are in 20% of modules. If those modules 
can be identified, they should be redesigned and 
rewritten. Modules for redevelopment are more eas­
ily identified using cleanroom techniques than other 
techniques. The disadvantages of cleanroom devel­
opment are similar to those of mathematical proof. 
Skills required are beyond those of the average busi­
ness SE, including math, statistics, logic, and for­
mal specification language. We will say more about 
the 80-20 rule later. 

Top-Down Testing 
Top-down testing is driven by the principle that the 
main logic of an application needs more testing 
and verification than supporting logic. Top-down 
approaches allow comparison of the application to 
functional requirements earlier than a bottom-up 
approach. This means that serious design flaws 
should surface earlier in the implementation process 
than with bottom-up testing. 

The major drawback to top-down testing is 
the need for extra code, known as scaffolding, to 
support the stubs, partial modules, and other pieces 
of the application for testing. The scaffolding usu­
ally begins with job control language and the main 
logic of the application. The main logic is scaffolded 



700 CHAPTER 17 Testing and Quality Assurance 

High Level Overview Process 

Employee File 

VDM Overview Process 

PAYROLL 

m.N tl:TcLst, rd. db:EmpDb, rd. al:ActLst, M el:ErrLst, M pl:PcLst 

~ db 1= <> .and. al 1= <> .and. pi = <> .and. el = <> 

~ tl = ~ pi + ~ el and for all i belonging to inds tl. 
paid(tl(i),al,db,pl) Q[ error (tl(i),al,db,el) 

LEGEND: 

VDM Name 
ActLst 
EmpDb 
ErrLst 
PcLst 
TcLst 

Diagram Name 
Chart of Accounts 
Employee File 
Error List 
Payment Details 
TimeCard 

Adapted from Conger, Fraser, Galiano, Kumar, McLean, Owen, and Vaishnavi, 1990. 

FIGURE 17-9 Vienna Development Method (VDM) Formal Specification Language Example 

and tested hierarchically. First, only the critical 
procedures and control logic are tested. 

For example, Figure 17-10 shows the mainline 
logic for Customer Maintenance. The mainline of 
logic is important because it will be executed every 
time a maintenance request is performed. Since cus­
tomer creation is the most probable maintenance ac­
tivity, it should be guaranteed as much as possible. 
Further, if creation works, it is easily modified to 
provide update and delete capabilities which are a 
subset of creation functionality. Figure 17-11 is an 
example of COBOL stub logic for Create Customer. 

These two modules would be tested first, before any 
other logic is verified. 

When critical procedures are working, the control 
language and main line code for less critical proce­
dures are added. In the example above, the stubs for 
updating, deleting, and querying customers would be 
tested second. These are tested and retested through­
out development as proof that the mainline of logic 
for all modules works. 

After stubs, the most critical logic is coded, unit 
tested, and placed into integration testing upon com­
pletion. In our example, the code for Create Cus-



Procedure Division. 

Main-Line. 

Display Cust-Maint-menu. 
Accept Cust-Maint-Selection. 
If Cust-Maint-Selection =("A" or F6) 

Call Create-Customer 

else 
If Cust-Maint-Selection =("U" or F7) 

Call Update-Customer 

else 
If Cust-Maint-Selection =("D" or F8) 

Call Delete-Customer 

else 
If Cust-Maint-Selection =("R" or F9) 

Call Query-Customer 

else 
If Cust-Maint-Selection =("E" or F3) 

Go to Cust-Maint-Exit 

else 
Display Selection-Err 
Go To Main-Line. 

Cust-Maint-Exit. Exit. 

FIGURE 17-10 Mainline Logic for Customer 
Maintenance 

tomer would be tested next. The 'critical' code 
includes screen data entry and writing to the file. 
Finally, ancillary logic, such as editing input fields, 
is completed and placed into testing. In our example, 
the less critical code is the actual edit and validation 
processing with error messages. Thus, in top-down 
testing, the entire application is developed in a skele­
tal form and tested. As pieces of the skeleton are 
fleshed out, they are added to the test application. 

In theory, top-down testing should find critical 
design errors earlier in the testing process than other 
approaches. Also, in theory, top-down testing should 
result in significantly improved quality of delivered 
software because of the iterative nature of the tests. 
Unit and integration testing are continuous. There is 
no discrete integration testing, per se. When the unit/ 
integrated test is complete, further system tests are 
conducted for volume and constraint tests. 

Identification Division. 
Program-ID. 

CreateCust. 
Environment Division. 
Configuration Section. 
Source-Computer. IBM. 
Object-Computer. IBM. 
File Section. 
FD Customer-Screen 

Testing Strategies 701 

01 Customer-Screen-Record . 
... screen description 

FD Customer-File 

01 Customer-File-Record . 
... customer record description 

Data Division. 
Working-Storage Section. 
01 Cust-Screen. 

01 Customer-relation. 

Procedure Division. 
Main-Line. 

Perform Display-Cust-Screen. 
Perform Accept-Values. 
Perform Edit-Validate. 
Perform Write-Customer. 
Display Continue-Msg. 
Accept Cust-Response. 
If Cust-Resp = 'yO 

go to main-line 
else 

go to create-customer-exit. 
Display-Cust-Screen. 

Write Cust-Screen from Customer-Screen-Record. 
DCS-exit. Exit. 

Accept-Values. 
AV-Exit. Exit. 

Edit-Validate. 
EV-Exit. Exit. 

Write-Customer. 
Write Customer-Relation from Customer-File-Record 

on error perform Cust-Backout-Err. 
WC-Exit. Exit. 
Create-Customers-Exit. Exit. 

FIGURE 17-11 COBOL Stub Program for 
Customer Create 

Top-down easily supports testing of screen 
designs and human interface. In interactive applica­
tions, the first logic tested is usually screen naviga­
tion. This serves two purposes. First, the logic for 
interactive processing is exhaustively exercised 
by the time all code and testing is complete. Sec­
ond, users can see, at an early stage, how the final 



702 CHAPTER 17 Testing and Quality Assurance 

application will look and feel. The users can test the 
navigation through screens and verify that it matches 
their work. 

Top-down testing can also be.used easily with 
prototyping and iterative development. Prototyping 
is iterative and follows the same logic for adding 
code as top-down testing. Presenting prototyping, 
iterative development, and top-down testing together 
for user concurrence helps ensure that prototypes 
actually get completed. 

Bottom-Up Testing 
Bottom-up testing takes an opposite approach based 
on the principle that any change to a module can 
affect its functioning. In bottom-up testing, the entire 
module should be the unit of test evaluation. All 
modules are coded and tested individually. A fourth 
level of testing is frequently added after unit testing 
to test the functioning of execute units. Then, exe­
cute units are turned over to the testing team for 
integration and systems testing. 

The next section discusses the development of 
test cases to match whatever strategy is defined. 
Then, each level of testing is discussed in detail with 
ABC Video test examples to show how to design 
each test. 

Test Cases 
Test cases are input data created to demonstrate that 
both components and the total system satisfy all 
design requirements. Created data rather than 'live,' 
production data, is used for the following reasons: 

1. Specially developed test data can incorporate 
all operational situations. This implies that 
each processing path may be tested at the 
appropriate level of testing (e.g., unit, inte­
gration, etc.). 

2. Predetermined test case output should be pre­
dicted from created input. Predicting results 
is easier with created data because it is more 
orderly and usually has fewer cases. 

3. Test case input and output are expanded to 
form a model database. The database should 

statistically reflect the users' data in the 
amount and types of records processed while 
incorporating as many operational processing 
paths as possible. The database is then the 
basis for a regression test database in addi­
tion to its use for system testing. Production 
data is real, so finding statistically representa­
tive cases is more difficult than creating 
them. 

Each test case should be developed to verify that 
specific design requirements, functional design, or 
code are satisfied. Test cases contain, in addition to 
test case input data, a forecast of test case output. 
Real or 'live' data should be used to reality test 
the modules after the tests using created data are 
successful. 

Each component of an application (e.g., module, 
subroutine, program, utility, etc.) must be tested with 
at least two test cases: one that works and one that 
fails. All modules should be deliberately failed at 
least once to verify their' graceful degradation.' For 
instance, if a database update fails, the application 
should give the user a message, roll back the pro­
cessing to leave the database as it was before the 
transaction, and continue processing. If the applica­
tion were to abend, or worse, continue processing 
with a corrupt database, the test would have caught 
an error. 

Test cases can be used to test multiple design 
requirements. For example, a requirement might be 
that all screens are directly accessible from all other 
screens; a second requirement might be that each 
screen contain a standard format; a third requirement 
might be that all menus be pull-down selections 
from a menu bar. These three requirements can all be 
easily verified by a test case for navigation that also 
attends to format and menu selection method. 

The development of test case input may be facil­
itated by the use of test data generators such as 
IEBDG (an IBM utility) or the test data generators 
within some case tools. The analysis and verification 
of processing may be facilitated by the use of 
language-specific or environment-specific testing 
supports (see Figure 17-12). These supports are 
discussed more completely iN the section on auto­
mated supports. 



COBOL Language Supports: 
Display 
Exhibit 
Ready Trace 
Interactive Trace 
Snap Dump 

Focus Language Supports: 

Variable Display 
Transaction Counts 
Online Error Messages 
Online Help 

FIGURE 17-12 Examples of Language 
Testing Supports 

To insure that test cases are as comprehensive as 
possible, a methodical approach to the identification 
of logic paths or system components is indicated. 
Matrices, which relate system operation to the func­
tional requirements of the system, are used for this 
purpose. For example, the matrix approach may be 
used in 

Retrieve Retrieve 

Testing Strategies 703 

• unit testing to identify the logic paths, logic 
conditions, data partitions or data boundaries 
to be tested based on the program spe­
cification. 

• integration testing to identify the relation­
ships and data requirements among interacting 
modules. 

• system testing to identify the system and user 
requirements from functional requirements 
and acceptance criteria. 

An example of the matrix approach for an inte­
gration test is illustrated as Figure 17-13. The 
example shows a matrix of program requirements 
to be met by a suite of modules for Read Customer 
File processing. The test verifies that each module 
functions independently, that communications 
between the modules (i.e., the message format, tim­
ing, and content) are correct, and verifies that all 
input and output are processed correctly and within 
any constraints. 

The functional requirements of the Read Cus­
tomer File module are related to test cases in the 

Call from Call from 

GetValid GetValid 
Good Bad Missing by Name by Name Good Bad Good Bad Customer Customer 

Cust-ID Cust-ID 10 (Good) (Bad) Credit Credit Data Data (Good) (Bad) 

1. X X X X X X X 

2. X X X X X 

3. X X X X X X X 

4. X X X X X X X X X X 

Legend: 

1. Read Customer 

2. Check Credit 

3. Create Customer 

4. Display Customer 

FIGURE 17-13 Read Customer File Requirements and Test Cases 



704 CHAPTER 17 Testing and Quality Assurance 

matrix in Figure 17-13. The 11 requirements can be 
fully tested in at most seven test cases for the four 
functions. 

Matching the Test Level to 
the Strategy 
The goal of the testers is to find a balance between 
strategies that allows them to prove their applica­
tion works while minimizing human and computer 
resource usage for the testing process. Noone testing 
strategy is sufficient to test an application. To use 
only one testing strategy is dangerous. If only white­
box testing is used, testing will consume many 
human and computer resources and may not iden­
tify data sensitive conditions or major logic flaws 
that transcend individual modules (see Table 17-1). 
If only black-box testing is used, specific logic prob­
lems may remain uncovered even when all specifi­
cations are tested; type 2 errors are difficult to 
uncover. Top-down testing by itself takes some­
what longer than a combined top-down, bottom-up 
approach. Bottom-up testing by itself does not find 
strategic errors until too late in the process to fix 
them without major delays. 

In reality, we frequently combine all four strate­
gies in testing an application. White-box testing is 
used most often for low-level tests-module, rou­
tine, subroutine, and program testing. Black-box 
testing is used most often for high-level tests-inte­
gration and system level testing. White-box tests find 
specific logic errors in code, while black-box tests 
find errors in the implementation of the functional 
business specifications. Similarly, top-down tests are 
conducted for the application with whole tested 
modules plugged into the control structure as they 
are ready, that is, after bottom-up development. 
Once modules are unit tested, they can be integration 
tested and, sometimes, even system tested with the 
same test cases. 

Table 17-2 summarizes the uses of the box and 
live-data testing strategies for each level of test. Fre­
quently black- and white-box techniques are com­
bined at the unit level to uncover both data and logic 
errors. Black-box testing predominates as the level 
of test is more inclusive. Testing with created data 
at all levels can be supplemented by testing with live 
data. Operational, live-data tests ensure that the 
application can work in the real environment. Next, 
we examine the ABC rental application to design a 
strategy and each level of test. 

TABLE 17-1 Test Strategy Objectives and Problems 

Test Strategy Method Goal Shortcomings 

White-Box Logic Prove processing. Functional flaws, data sensi-
tive conditions, and errors 
across modules are all diffi-
cult to test with white-box 
methods. 

Black-Box Data Prove results. Type 2 errors and logic prob-
lems difficult to find. 

Top-Down Incremental Exercise critical code Scaffolding takes time and 
extensively to improve may be discarded. Constant 
confidence in reliability. change may introduce new 

errors in every test. 

Bottom-up All or nothing Perfect parts. If parts Functional flaws found late 
work, whole should and cause delays. Errors 
work. across modules may be diffi-

cult to trace and find. 



Testing Strategies 705 

TABLE 17-2 Test Level and Test Strategy 

General Specific 
Level Strategy Strategy Comments on Use 

Unit Black-Box Equivalence Partitioning Equivalence is difficult to estimate. 

Boundary Value Should always be used in edit-
Analysis validate modules. 

Cause-Effect Graphing A formal method of boundary 
analysis that includes tests of com-
pound logic conditions. Can be 
superimposed on already available 
graphics, such as state-transition 
orPDFD. 

Error Guessing Not a great strategy, but can be use-
ful in anticipating problems. 

Math Proof, Logic and/or The best strategies for life-
Cleanroom mathematical proof sustaining, embedded, reusable, or 

other critical modules, but beyond 
most business SE skills. 

White-Box Statement Logic Exhaustive tests of individual 
statements. Not desirable unless 
life-sustaining or threatening conse-
quences are possible, or if for reus-
able module. Useful for 'guessed' 
error testing that is specific to the 
operational environment. 

Decision Logic Test A good alternative to statement 
logic. May be too detailed for many 
programs. 

Condition Logic A good alternative providing all 
conditions can be documented. 

Multiple Condition Desired alternative for program 
Logic testing when human resources can 

be expended. 

Live-Data Reality Test Can be useful for timing, perfor-
mance, and other reality testing 
after other unit tests are successful. 

Integration Black-Box Equivalence Partitioning Useful for partitioning by module. 

Boundary Value Analysis Useful for partitioning by module. 

Cause-Effect Graphing Useful for application interfaces 
and partitioning by module. 

Error Guessing Not the best strategy at this level. 

(Table continues on next page) 



706 CHAPTER 17 Testing and Quality Assurance 

TABLE 17-2 Test Level and Test Strategy (Continued) 

Level 

Integration 

System/QA-Application 
Functional Requirements 
Test 

System/QA­
Human Interface 

General 
Strategy 

Live-Data 

Black-Box 

White-Box 

Black-Box 

Specific 
Strategy 

Reality Test 

Equivalence Partitioning 

Boundary Value Analysis 

Cause-Effect Graphing 

Statement Logic 

Decision Logic Test 

Condition Logic 

Multiple Condition Logic 

Equivalence Partitioning 

Boundary Value Analysis 

Comments on Use 

Useful for interface and black-box 
tests after other integration tests are 
successful. 

Most productive approach to 
system function testing. 

Too detailed to be required at this 
level. May be used to test correct 
file usage, checkpoint/restart, or 
other data-related error recovery. 

Can be useful for intermodule test­
ing and when combined with equiv­
alence partitioning. 

Not a useful system test strategy. 

May be used for critical logic. 

May be used for critical logic. 

May be used for critical logic. 

Useful at the level for screen and 
associated process and for screen 
navigation. 

Useful at screen level for associated 
process and screen navigation. 

Useful for QA testing. 

TEST PLAN FOR ____ _ most highly skilled workers on a development team. 
A career can revolve around testing because skilled 
testers are in short supply. ABC VIDEO ORDER __ _ 

PROCESSING _____ _ 

Test Strategy 

Developing a Test Strategy 

There are no rules for developing a test strategy. 
Rather, loose heuristics are provided. Testing, like 
everything else in software engineering, is a skill 
that comes with practice. Good testers are among the 

As with all other testing projects, the strategy 
should be designed to prove the application works 
and that it is stable in its operational environment. 
While scheduling and time allotted are not most 
important, when the strategy is devised, one subgoal 
is to minimize the amount of time and resources 
(both human and computer) that are devoted to 
testing. 

The first decision is whether and what to test top­
down and bottom-up. There are no rules, or even 



Test Plan for ABC Video Order Processing 707 

TABLE 17-2 Test Level and Test Strategy (Continued) 

Level 
General 
Strategy 

Specific 
Strategy Comments on Use 

System/QA­
Human Interface 

White-Box Condition Logic May be used for critical logic. 

System/QA-Constraints Black-Box 

Multiple Condition Logic 

Equivalence Partitioning 

May be used for critical logic. 

May be useful at the execute unit 
level. 

Boundary Value Analysis Should not be required at this level 
but could be used. 

Cause-Effect Graphing Might be useful for defining how to 
measure constraint compliance. 

White-Box Multiple Condition Logic Could be used but generally is too 
detailed at this level of test. 

Live-Data Reality Test Useful for black-box type tests of 
constraints after created data tests 
are successful. 

System/QA-Peak 
Requirements 

White-Box Multiple Condition Logic May be used for critical logic, but 
generally too detailed for this level 
of testing. 

Live-Data Reality Test Most useful for peak testing. 

heuristics, for this decision. Commitment to top­
down testing is as much cultural and philosophical 
as it is technical. To provide some heuristics, in gen­
eral, the more critical, the larger, and the more com­
plex an application, the more top-down benefits 
outweigh bottom-up benefits. 

The heuristics of testing are dependent on the lan­
guage, timing and operational environment of the 
application. Significantly different testing strategies 
are needed for third (e.g., COBOL, Pl/1), fourth 
(e.g., Focus, SQL), and semantic (e.g., Lisp, PRO­
LOG) languages. Application timing (see Chapter 1) 
is either batch, on-line, or real-time. Operational 
environment includes hardware, software, and other 
co-resident applications. Heuristics for each of these 
are summarized in Table 17-3. 

Package testing differs significantly from self­
developed code. More often, when you purchase 
package software, you are not given the source code 
or the specifications. You are given user documen-

tation and an executable code. By definition, you 
have to treat the software as a black box. Further, 
top-down testing does not make sense because you 
are presented with a complete, supposedly working, 
application. Testing should be at the system level 
only, including functional, volume, intermodular 
communications, and data-related black-box tests. 
Next, we consider the ABC test strategy. 

ABC Video Test Strategy 

The ABC application will be developed using some 
SQL-based language. SQL is a fourth-generation 
language which simplifies the testing process and 
suggests certain testing strategies. The design from 
Chapter 10, Data-Oriented Design, is used as the 
basis for testing, although the arguments are the 
same for the other methodologies. 

First, we need to decide the major questions: 
Who? What? Where? When? How? 



708 CHAPTER 17 Testing and Quality Assurance 

TABLE 17-3 Test Strategy Design Heuristics 

Condition 

Critical 

Large 

Complex 

Timing 

Language 
Generation 

Test Strategy 

y 

y 

y 

y 

y 

y 

N 

N 

N 

BS 

2 

N 

N 

N 

BE 

2 

N 

N 

N 

BS 

3/4 

N 

N 

N 

BE 

3 

N 

N 

N 

BE 

4 

N 

N 

N 

Rule 

Top-Down! 
Bottom-Up, 
Both, or Either 

Both Both Either Either Either Either Cont Either Both Cont 

Black/White/ 
Both/Either 

Legend: 

Y Yes 
N No 

Both Both 

BS Batch-stand-alone 
BE Batch-execute unit 
Cont Control Structure 
Mod Modules 
T Top-down 
B Bottom-up 
W White 
BI Black 

Cont 

W 

Mod 

BI 

Cont 

W 

Mod 

BI 

Who? The test coordinator should be a member 
of the team. Assume it is yourself. Put yourself into 
this role and think about the remaining questions 
and how you would answer them if you were testing 
this application. 

What? All application functions, constraints, user 
acceptance criteria, human interface, peak perfor­
mance, recoverability, and other possible tests must 

Both 

T 

Mod 

B 

Either Either Both 

or or 

Both Both 

Cont 

W 

Mod 

Bl 

T 

Mod 

B 

BI 

be performed to exercise the system and prove 
its functioning. 

Where? The ABC application should be tested in 
its operational environment to also test the environ­
ment. This means that all hardware and software of 
the operational environment should .be installed and 
tested. If Vic, or the responsible project team mem­
ber, has not yet installed and tested the equipment, 



they are now delaying the conduct of application 
testing. 

When? Since a 4GL is being used, we can begin 
testing as soon as code is ready. An iterative, top­
down approach will be used. This approach allows 
Vic and his staff early access to familiarize them­
selves with the application. Testing at the system 
level needs to include the scaffold code to support 
top-down testing. The schedule for module coding 
should identify and schedule all critical modules for 
early coding. The tasks identified so far are: 

1. Build scaffold code and test it. 
2. Identify critical modules. 
3. Schedule coding of critical modules first. 
4. Test and validate modules as developed using 

the strategy developed. 

How? Since a top-down strategy is being used, 
we should identify critical modules first. Since the 
application is completely on-line, the screen controls 
and navigation modules must be developed before 
anything else can be tested. Also, since the applica­
tion is being developed specifically to perform 
rental/return processing, rental/return processing 
should be the second priority. Rental/return cannot 
be performed without a customer file and a video 
file, both of which try to access the respective cre­
ate modules. Therefore, the creation modules for the 
two files have a high priority. 

The priority definition of create and rental/return 
modules provides a prioritized list for development. 
The scaffolding should include the test screens, nav­
igation, and stubs for all other processing. The last 
item, backup and recovery testing, can be parallel to 
the others. 

Next, we want to separate the activities into par­
allel equivalent chunks for testing. By having paral­
lel testing streams, we can work through the system 
tests for each parallel stream simultaneously, speed­
ing the testing process. For ABC, Customer Main­
tenance, Video Maintenance, Rental/Return, and 
Periodic processing can all be treated as stand-alone 
processes. Notice that in Information Engineering 
(IE), this independence of processes is at the activ­
ity level. If we were testing object-oriented design 
(Chapters 11 and 12), we would look at processes 
from the Rooch diagram as the independent and par-

Test Plan for ABC Video Order Processing 709 

allel test units. If we were testing process design 
(Chapters 7 and 8), we would use the structure charts 
to decide parallel sets of processes. 

Of the ABC processes, Rental/ Return is the most 
complex and is discussed in detail. Rental/Return 
assumes that all files are present, so the DBA must 
have files defined and populated with data before 
Rental/Return can be tested. Note that even though 
files must be present, it is neither important nor 
required that the file maintenance processes be pres­
ent. For the two create processes that are called, pro­
gram stubs that return only a new Customer ID, or 
Video ID IC opy ID, are sufficient for testing. 

In addition to parallel streams of testing, we 
might also want to further divide Rental/Return into 
several streams of testing by level of complexity, by 
transaction type, or by equivalent processes to fur­
ther subdivide the code generation and testing pro­
cesses. We choose such a division so that the same 
person can write all of the code but testing can pro­
ceed without all variations completed. For example, 
we will divide Rental/Return by transaction type as 
we did in IE. The four transaction types are rentals 
with and without returns, and returns with and with­
out rentals. This particular work breakdown allows 
us to test all major variations of all inputs and out­
puts, and allows us to proceed from simple to com­
plex as well. In the next sections, we will discuss 
from bottom-up how testing at each level is designed 
and conducted using Rental/Return as the ABC 
example. 

Next, we define the integration test strategy. The 
IE design resulted in small modules that are called 
for execution, some of which are used in more than 
one process. At the integration level, we define 
inputs and predict outputs of each module, using a 
black-box approach. Because SQL calls do not pass 
data, predicting SQL set output is more important 
than creating input. An important consideration with 
the number of modules is that intermodular errors 
that are created in one module but not evidenced 
until they are used in another module. The top-down 
approach should help focus attention on critical 
modules for this problem. 

Because SQL is a declarative language, black­
box testing at the unit level is also appropriate. The 
SQL code that provides the control structure is logic 



710 CHAPTER 17 Testing and Quality Assurance 

and becomes an important test item. White-box tests 
are most appropriate to testing the control logic. 
Therefore, a mix of black- and white-box testing will 
be done at the unit level. 

To summarize, the top-down strategy for testing 
the application includes: 

1. Test screen design and navigation, including 
validation of security and access controls. 

2. Test the call structure for all modules. 
3. Test rental/return processing. 
4. Test create processing for customers and 

videos. 
5. Test remaining individual processes and file 

contents as parallel streams. 
6. Test multiple processes and file manipula­

tions together, including validation of 
response time and peak system performance. 
The test will use many users doing the same 
and different processes, simultaneously. 

7. Test backup and recovery strategies. 

Now, we develop and try a unit test to test the 
strategy. If a small test of the strategy works, we 
implement the strategy. 

Unit Testing 
Guidelines for Developing a Unit Test 

Unit tests verify that a specific program, module, or 
routine (all referred to as 'module' in the remaining 
discussion) fulfills its requirements as stated in 
related program and design specifications. The two 
primary goals of unit testing are conformance to 
specifications and processing accuracy. 

For conformance, unit tests determine the extent 
to which processing logic satisfies the functions 
assigned to the module. The logical and operational 
requirements of each module are taken from the pro­
gram specifications. Test cases are designed to verify 
that the module meets the requirements. The test is 
designed/rom the specification, not the code. 

Processing accuracy has three components: input, 
process, and output. First, each module must process 
all allowable types of input data in a stable, pre­
dictable, and accurate manner. Second, all possible 
errors should be found and treated according to the 

specifications. Third, all output should be consistent 
with results predicted from the specification. Outputs 
might include hard copy, terminal displays, elec­
tronic transmissions, or file contents; all are tested. 

There is no one strategy for unit testing. For 
input/output bound applications, black-box strate­
gies are normally used. For process logic, either or 
both strategies can be used. In general, the more crit­
ical to the organization or the more damaging the 
possible errors, the more detailed and extensively 
white-box testing is used. For example, organiza­
tionally critical processes might be defined as any 
process that affects the financial books of the organi­
zation' meets legal requirements, or deals with client 
relationships. Examples of application damage 
might include life-threatening situations such 
as in nuclear power plant support systems, life­
support systems in hospitals, or test systems for car 
or plane parts. 

Since most business applications combine ap­
proaches, an example combining black- and white­
box strategies is described here. Using a white-box 
approach, each program specification is analyzed to 
identify the distinct logic paths which serve as the 
basis for unit test design. This analysis is simplified 
by the use of tables, lists, matrices, diagrams, or 
decision tables to document the logic paths of the 
program. Then, the logic paths most critical in per­
forming the functions are selected for white-box 
testing. Next, to verify that all logic paths not white­
box tested are functioning at an acceptable level of 
accuracy, black-box testing of input and output is 
designed. This is a common approach that we will 
apply to ABC Video. 

When top-down unit testing is used, control struc­
ture logic paths are tested first. When each path is 
successfully tested, combinations of paths may be 
tested in increasingly complex relationships until 
all possible processing combinations are satisfacto­
rily tested. This process of simple-to-complex test­
ing ensures that all logic paths in a module are 
performing both individually and collectively 
as intended. 

Similarly, unit testing of multiuser applications 
also uses the simple-to-complex approach. Each pro­
gram is tested first for single users. Then multiuser 
tests of the single functions follow. Finally, multiuser 
tests of mUltiple functions are performed. 



Unit tests of relatively large, complex programs 
may be facilitated by reducing them to smaller, more 
manageable equivalent components such as 

• transaction type: 
e.g., Debit/Credit, Edit/Update/Report/Error 

• functional component activity 
e.g., Preparing, Sending, Receiving, 
Processing 

• decision option 
e.g., If true ... If false ... 

When the general process of reduction is accom­
plished, both black-box and white-box approaches 
are applied to the process of actually defining test 
cases and their corresponding output. The black-box 
approach should provide both good and bad data 
inputs and examine the outputs for correctness of 
processing. In addition, at least one white-box strat­
egy should be used to test specific critical logic of 
the tested item. 

Test cases should be both exhaustive and mini­
mal. This means that test cases should test every 

Equivalent Data Items for Year Tests 

Good Years Year Errors 

8 
Equivalent Data Items for Month Tests 

Test Plan for ABC Video Order Processing 711 

condition or data domain possible but that no extra 
tests are necessary. For example, the most common 
errors in data inputs are for edit/validate criteria. 
Boundary conditions of fields should be tested. 
Using equivalence partitioning of the sets of allow­
able values for each field we develop the test for a 
date formatted YYYYMMDD (that is, 4-digit year, 
2-digit month, and 2-digit day). A good year test will 
test last year, this year, next year, change of century, 
all zeros, and all nines. A good month test will test 
zeros, 1, 2, 4 (representative of months with 30 
days), 12, and 13. Only 1 and 12 are required for the 
boundary month test, but the other months are 
required to test day boundaries. A good day test will 
test zeros, 1,28,29,30,31, and 32, depending on the 
final day of each month. Only one test for zero and 
one are required, based on the assumption that if one 
month processes correctly, all months will. Leap 
year and nonleap years should also be tested. An 
example of test cases for these date criteria is pre­
sented. Figure 17 -14 shows the equivalent sets of 
data for each domain. Table 17-4 lists exhaustive test 

------- Good Months Month Errors 

Equivalent Data Items for Day Tests 

Good Days 

Day Errors 

FIGURE 17-14 Unit Test Equivalent Sets for a Date 



712 CHAPTER 17 Testing and Quality Assurance 

TABLE 17-4 Exhaustive Set of Unit Test Cases for a Date 

Test Case YYYY MM DD Comments 

1 aaaa aa aa Tests actions against garbage input 

2 1992* 0 0 Tests all incorrect lower bounds 

3 2010 13 32 Tests all incorrect upper bounds 

4 1993 1 31 Tests correct upper day bound 

4a 1994 12 31 Not required ... could be optional test of 
upper month/day bound. Assumption is that if 
month = 1 works, all valid, equivalent months 
will work. 

5 1995 1 1 Tests correct lower day bound 

6 1996 12 1 Not required ... could be optional test of 
upper month/lower day bound. Assumption is 
that if month = 1 works, all valid, equivalent 
months will work. 

7 1997 1 32 Tests upper day bound error 

8 1998 12 32 Not required ... could be optional test of 
upper month/upper day bound error. Assump-
tion is that if month = 1 works, all valid, 
equivalent months will work. 

9 1999 12 0 Retests lower bound day error with otherwise 
valid data ... Not strictly necessary but could 
be used. 

10 2000 2 1 Tests lower bound ... not strictly 
necessary 

11 2000 2 29 Tests leap year upper bound 

12 2000 2 30 Tests leap year upper bound error 

13 1999 2 28 Tests nonleap year upper bound 

14 1999 2 29 Tests nonleap year upper bound error 

15 1999 2 0 Tests lower bound error ... not strictly 
necessary 

16 2001 4 30 Tests upper bound 

17 2001 4 31 Tests upper bound error 

18 2002 4 1 Tests lower bound ... not strictly 
necessary 

19 2003 4 0 Tests lower bound error ... not strictly 
necessary 

*Valid dates are between 1/1/93 and 12/31/2009. 



Test Plan for ABC Video Order Processing 713 

TABLE 17-5 Minimal Set of Unit Test Cases for a Date 

Test Case YYYY MM 

aaaa aa 

2 1992 0 

3 2010 13 

4 1993 

5 1995 

6 1997 

7(9) 2000 2 

8(10) 2000 2 

9(11) 1999 2 

10(12) 1999 2 

11(14) 2001 4 

12(15) 2001 4 

cases for each set in the figure. Table 17-5 lists the 
reduced set after extra tests are removed. 

Other frequently executed tests are for character, 
field, batch, and control field checks. Table 17-6 lists 
a sampling of errors found during unit tests. Char­
acter checks include tests for blanks, signs, length, 
and data types (e.g., numeric, alpha, or other). Field 
checks include sequence, reasonableness, consis­
tency, range of values, or specific contents. Control 
fields are most common in batch applications and are 
used to verify that the file being used is the correct 
one and that all records have been processed. Usu­
ally the control field includes the last execution date 
and file name which are both checked for accuracy. 
Record counts are only necessary when not using a 
declarative language. 

Once all test cases are defined, tests are run and 
results are compared to the predictions. Any result 
that does not exactly match the prediction must be 
reconciled. The only possible choices are that the 
tested item is in error or the prediction is in error. If 
the tested item is in error, it is fixed and retested. 
Retests should follow the approach used in the first 
tests. If the prediction is in error, the prediction is 
researched and corrected so that specifications 

DD Comments 

aa Tests actions against garbage input 

0 Tests all incorrect lower bounds 

32 Tests all incorrect upper bounds 

31 Tests correct upper day bound 

Tests correct lower day bound 

32 Tests upper day bound error 

29 Tests leap year upper bound 

30 Tests leap year upper bound error 

28 Tests nonleap year upper bound 

29 Tests nonleap year upper bound error 

30 Tests upper bound 

31 Tests upper bound error 

are accurate and documentation shows the correct 
predictions. 

Unit tests are conducted and reviewed by the 
author of the code item being tested, with final test 
results approved by the project test coordinator. 

How do you know when to stop unit testing? 
While there is no simple answer to this question, 
there are practical guidelines. When testing, each 
tester should keep track of the number of errors 
found (and resolved) in each test. The errors should 
be plotted by test shot to show the pattern. A typical 
module test curve is skewed left with a decreasing 
number of errors found in each test (see Figure 
17-15). When the number of errors found ap­
proaches zero, or when the slope is negative and 
approaching zero, the module can be moved forward 
to the next level of testing. If the number of errors 
found stays constant or increases, you should seek 
help either in interpreting the specifications or in 
testing the program. 

ABC Video Unit Test 

Above, we said we would use a combination of 
black- and white-box testing for ABC unit tests. The 



714 CHAPTER 17 Testing and Quality Assurance 

TABLE 17-6 Sample Unit Test Errors 

EditNalidate 
Transaction rejected when valid 
Error accepted as valid 
Incorrect validation criteria applied 

Screen 
Navigation faulty 
Faulty screen layout 
Spelling errors on screen 
Inability to call screen 

Data Integrity 
Transaction processed when inconsistent with 

other information 
Interfile matching not correct 
File sequence checking not correct 

File Processing 
File, segment, relation of field not correctly 

processed 
Read/write data format error 
Syntax incorrect but processed by interpreter 

Report 
Format not correct 
Totals do not add/crossfoot 
Wrong field(s) printed 
Wrong heading, footing or other cosmetic error 
Data processing incorrect 

application is being implemented using a SQL soft­
ware package. Therefore, all code is assumed to be 
in SQL. The control logic and nonSELECT code is 
subject to white-box tests, while the SELECT mod­
ules will be subject to black-box tests. 

In Chapter 10, we defined Rent/Return processing 
as an execute unit with many independent code 
units. Figure 17-16 shows partial SQL code from 
two Rent/Return modules. Notice that most of 
the code is defining data and establishing screen 
addressability. As soon as two or three modules that 
have such strikingly similar characteristics are built, 
the need to further consolidate the design to accom­
modate the implementation language should be 
obvious. With the current design, more code is spent 
in overhead tasks than in application tasks. Overhead 
code means that users will have long wait times 
while the system changes modules. The current 

Number 
of 

Errors 

2 3 4 5 

Number of Test Runs 
6 

FIGURE 17-15 Unit Test Errors Found Over 
Test Shots 

design also means that debugging the individual 
modules would require considerable work to verify 
that the modules performs collectively as expected. 
Memory locations would need to be printed many 
times in such testing. 

To restructure the code, we examine what all of 
the Rent/Return modules have in common-Open 
Rentals data. We can redefine the data in terms of 
Open Rentals with a single-user view used for all 
Rent/Return processing. This simplifies the data part 
of the processing but increases the vulnerability of 
the data to integrity problems. Problems might 
increase because the global view of data violates the 
principle of information hiding. The risk must be 
taken, however, to accommodate reasonable user 
response time. 

The common format of the restructured SQL 
code is shown in Figure 17-17. In the restructured 
version, data is defined once at the beginning of 
Rent/Return processing. The cursor name is de­
clared once and the data is retrieved into memory 
based on the data entered through the Get Request 
module. The remaining Rent/Return modules are 
called in sequence. The modules have a similar 
structure for handling memory addressing. The 
problems with many prints of memory are reduced 
because once the data is brought into memory, no 
more retrievals are necessary until updates take 
place at the end of the transaction. Processing is 
simplified by unifying the application's view of 
the data. 



Test Plan for ABC Video Order Processing 715 

UPDATE OPEN RENTAL FilE (BOLDFACE CODE IS REDUNDANT) 
DCl INPUT_VIDEO_ID CHAR(8); 
DCl INPUT_COPY _10 CHAR(2); 
DCl INPUT_CUST_ID CHAR (9); 
DCl AMT _PAID DECIMAL (4,2); 
DCl CUST __ ID CHAR(9); 

CONTINUE UNTil All FIELDS USED ON THE SCREEN OR USED TO 
CONTROL SCREEN PROCESSING ARE DECLARED ... 
DCl TOTAl_AMT _DUE DECIMAl(5,2); 
DCl CHANGE DECIMAl(4,2); 
DCl MORE_OPEN_RENTAlS BIT(1); 
DCl MORE_NEW_RENTAlS BIT(1); 
EXEC SOL INCLUDE SOlCA: I*COMMUNICATION AREA*/ 
EXEC SOL DECLARE CUSTOMER TABLE 

(FIELD DEFINITIONS FOR CUSTOMER RELATION); 
EXEC SOL DECLARE VIDEO TABLE 

(FIELD DEFINITIONS FOR VIDEO RELATION); 
EXEC SOL DECLARE COPY TABLE 

(FIELD DEFINITIONS FOR COpy RELATION); 
EXEC SOL DECLARE OPENRENTAl TABLE 

(FIELD DEFINITIONS FOR OPENRENTAl RELATION); 
EXEC SOL DECLARE SCREEN_CURSOR CURSOR FOR UPDATE OF 

ORVIDEOID 
ORCOPYID 
ORCUSTID 
ORRENTAlDATE; 

ORDER BY ORCUSTID, ORVIDEOID, ORCOPYID; 
EXEC SOL OPEN SCREEN, CURSOR; 
GOTOlABEl 
EXEC SOL FETCH SCREEN CURSOR INTO TARGET 

:CUSTID 
:VIDEOID 
:COPYID 
:RENTAlDATE 

IF SOlCODE = 100 GOTO GOTOEXIT; 
EXEC SOL UPDATE OPEN RENTAL 

SET ORCUSTID = CUSTID 
SET ORVIDEOID = VIDEOID 
SET ORCOPYID = COPYID 
SET ORRENTAlDATE = TODAYSDATE 

WHERE CURRENT OF SCREEN_CURSOR; 
GOTO GOTOlABEl; 
GOTOEXIT; 
EXEC SOL CLOSE SCREEN_CURSOR; 

FIGURE 17-16 Two Modules Sample Code 

(Figure continues on next page) 



716 CHAPTER 17 Testing and Quality Assurance 

ADD RETURN DATE (Boldface code is redundant) 
DCl INPUT_VIDEO_ID 
DCl INPUT_COPY_ID 
DCl INPUT _CUST _10 
DCl AMT_PAID 
DCl CUST_ID 

CHAR(8); 
CHAR(2); 
CHAR (9); 
DECIMAL (4,2); 
CHAR(9); 

CONTINUE UNTil All FIELDS USED ON THE SCREEN OR USED TO 
CONTROL SCREEN PROCESSING ARE DECLARED ... 
DCl TOTAl_AMT_DUE DECIMAl(5,2); 
DCl CHANGE DECIMAl(4,2); 
DCl MORE_OPEN_RENTAlS BIT(1); 
DCl MORE_NEW_RENTAlS BIT(1); 
EXEC SQl INCLUDE SQlCA: !*COMMUNICATION AREA*! 
EXEC SQl DECLARE CUSTOMER TABLE 

(FIELD DEFINITIONS FOR CUSTOMER RELATION); 
EXEC SQl DECLARE VIDEO TABLE 

(FIELD DEFINITiONS FOR VIDEO RELATION); 
EXEC SQl DECLARE COPY TABLE 

(FIELD DEFINITIONS FOR COpy RELATION); 
EXEC SQl DECLARE OPENRENTAl TABLE 

(FIELD DEFINITIONS FOR OPENRENTAL RELATION); 
EXEC Sal DECLARE SCREEN_CURSOR CURSOR FOR 

SELECT * FROM OPEN_RENTAL 
WHERE VIDEOID = ORVIDEOID 
AND COPYID = ORCOPYID; 

EXEC Sal OPEN SCREEN_CURSOR 
GOTOLABEl 
EXEC Sal FETCH SCREEN CURSOR INTO TARGET 

:CUSTID 
:VIDEOID 
:COPYID 
:RENTAlDATE 

IF SOlCODE = 100 GOTO GOTOEXIT; 
EXEC Sal SET :RETURNDATE = TODAYS_DATE 

WHERE CURRENT OF SCREEN_CURSOR; 
EXEC Sal UPDATE OPEN_RENTAL 

SET ORRETURNDATE = TO DAYS_DATE 
WHERE CURRENT OF SCREEN_CURSOR; 

GOTO GOTOLABEl; 
GOTOEXIT; 
EXEC Sal CLOSE SCREEN_CURSOR; 

FIGURE 17-16 Two Modules Sample Code (Continued) 

The restructuring now requires a change to the 
testing strategy for Rent/Return. A strictly top-down 
approach cannot work because the Rent/Return mod­
ules are no longer independent. Rather, a combined 
top-down and bottom-up approach is warranted. A 
sequential bottom-up approach is more effective for 

the functional Rent/Return processing. Top-down, 
black-box tests of the SELECT code are done before 
being embedded in the execute unit. Black-box test­
ing for the SELECT is used because SQL controls all 
data input and output. Complete SELECT statements 
are the test unit. 



Test Plan for ABC Video Order Processing 717 

DCl INPUT _ VIDEO_ID CHAR(8); 
DCl INPUT_COPY _10 CHAR(2); 
DCl INPUT _CUST _10 CHAR (9); 
DCl AMT_PAID DECIMAL (4,2); 
DCl CUST_ID CHAR(9); 

continue until all fields used on the screen or used to control screen processing are 
declared ... 

DCl TOTAl_AMT _DUE DECIMAl(5,2); 
DCl CHANGE DECIMAl(4,2); 
DCl MORE_OPEN_RENTAlS BIT(1); 
DCl MORE_NEW_RENTAlS BIT(1); 
EXEC SOL INCLUDE SOlCA: /*COMMUNICATION AREA*j 
EXEC SOL DECLARE RENTRETURN TABLE 
(field definitions for user view including all fields from customer, video, copy, 
open rental, and customer history relations); 

EXEC SOL DECLARE SCREEN_CURSOR CURSOR FOR 
SELECT * from rentreturn 
where (:videoid = orvideo_id and :copyid = orcopyid) 
or :custid = orcustid) 

EXEC SOL OPEN SCREEN_CURSOR 
EXEC SOL FETCH SCREEN_CURSOR INTO TARGET 

:Request 
If :request eq "C?" set :custid = :request 
else set :videoid = :request1 

set :copyid = :request2; 

(At this point the memory contains the related relation data 
and the remaining rent/return processing can be done.) 

All the other modules are called and contain the following common format: 

GOTOLABEl 
EXEC SOL FETCH SCREEN_CURSOR INTO TARGET 
:screen fields 

IF SOlCODE = 0 next step; (return code of zero means no errors) 
IF SOlCODE = 100 (not found condition) CREATE DATA or CAll END PROCESS; 
IF SOlCODE < 0 CAll ERROR_PROCESS, ERROR-TYPE; 
Set screen variables (which displays new data) 
Prompt next action 

GOTO GOTOlABEl; 
GOTOEXIT; 
EXEC SOL CLOSE SCREEN_CURSOR; 

FIGURE 17-17 Restructured SQL Code-Common Format 



718 CHAPTER 17 Testing and Quality Assurance 

Test Type 

1. Test Sal SELECT statement 

2. Verify Sal cursor and data addressibility 

Black Box 

White Box 

3. Test Get Request White Box 

4. Test Get Valid Customer, Get Open Rentals Black Box for embedded SELECT statement, White Box for 
other logic 

5. Test Get Valid Video White Box for logic, Black Box for embedded SELECT 
statement 

6. Test Process Payment and Make Change White Box 

7. Test Update Open Rental 

8. Test Create Open Rental 

9. Test Update Item 

10. Test Update/Create Customer History 

11. Test Print Receipt 

Black Box for Update, White Box for other logic 

Black Box for Update, White Box for other logic 

Black Box for Update, White Box for other'logic 

Black Box for Update, White Box for other logic 

Black Box for Update, White Box for other logic 

FIGURE 17-18 Unit Test Strategy 

The screen interaction and module logic can be 
tested as either white box or black box. At the unit 
level, white-box testing will be used to test inter­
module control logic. A combination of white-box 
and black-box testing should be used to test intra­
module control and process logic. 

The strategy for unit testing, then, is to test data 
retrievals first, to verify screen processing, including 
SQL cursor and data addressability second, and to 
sequentially test all remaining code last (see Figure 
17-18). 

Because all processing in the ABC application is 
on-line, an interactive dialogue test script is devel­
oped. All file interactions predict data retrieved and 
written, as appropriate. The individual unit test 
scripts begin processing at the execute unit bound­
ary. This means that menus are not necessarily 
tested. A test script has three columns of information 
developed. The first column shows the computer 
messages or prompts displayed on the screen. The 
second column shows data entered by the user. The 
third column shows comments or explanations of the 
interactions taking place. 

A partial test script for RentIReturn processing is 
shown in Figure 17-19. The example shows the 

script for a return with rental transaction. Notice that 
the test begins at the Rent/Return screen and that 
both error and correct data are entered for each field. 
After all errors are detected and dispatched prop­
erly, only correct data is required. This script shows 
one of the four types of transactions. It shows only 
one return and one rental, however, and should be 
expanded in another transaction to do several rentals 
and several returns; returns should include on-time 
and late videos and should not include all tapes 
checked out. This type of transaction represents the 
requisite variety to test returns with rentals. Of 
course, other test scripts for the other three types of 
transactions should also be developed. This is left 
as an extra-credit activity. 

Subsystem or Integration 
Testing 
Guidelines for Integration Testing 

The purpose of integration testing is to verify that 
groups of interacting modules that comprise an exe­
cute unit perform in a stable, predictable, and accu-



Test Plan for ABC Video Order Processing 719 

System Prompt 

Menu 

Rent/Return screen, cursor 
at request field 

Error Message 1 : 
Illegal Customer or Video Code, 
Type Request 

Customer Data Entry Screen 
with message: 
Illegal Customer 10, enter new 
customer 

Rent/Return screen, cursor at 
request field 

Cursor at request field 

Cursor at return date field 

Cursor at return date field 

Cursor at request field 

Cursor at request field 

Cursor at Total Amount Paid 
field 

Cursor at Total Amount Paid 
field 

Cursor at Request field 

Cursor at Request field 

User Action 

Press mouse, move to 
Rent/Return, and release 

Scan customer bar code 
1234567 

Enter: 1234567 <cr> 

Scan customer bar code 
2221234 

Scan 123123123 

Enter yesterday's date 

Enter today's date 

Scan new tape 10-
123412345 

Press <cr> 

Enter <cr> 

Enter 10 <cr> 

Enter <cr> 

Enter P <cr> 

Go to SQL Query and verify Open Rental and Copy contents 

Open Rental tuple for Video 123123123 contents should be: 

22212341231231230123940200012594040000000000000 

Open Rental tuple for Video 123412345 should be: 

22212341234123450125940200000000000000000000000 

Copy tuple for Video 12312312, Copy 3 should be: 

12312312311019200103 

Copy tuple for Video 12341234, Copy 5 should be: 

12341234511319010000 

Verify the contents of the receipt. 

Explanation 

Select Rent/Return from menu 

Dummy bar code 

Dummy bar code 

Carriage return entered to end Create 
Customer process 

Legal customer 10. System should return 
customer and rental information for M. A. Jones, 
Video 12312312, Copy 3, Terminator 2, Rental 
date 1/23/94, not returned. 

Cursor moves to rented video line 

Error message: Return date must be today's date. 

Late fee computed and displayed ... should be 
$4.00. 

New tape entered and displayed. Video 
#12341234, Copy 5, Mary Poppins, Rental date 
1/25/94, Charge $2.00. 

System computes and displays Total Amount Due 
... should be $6.00. 

Error Message: Amount paid must be numeric 
and equal or greater than Total Amount Due. 

System computes and displays Change Due . .. 
should be $4.00. Cash drawer should open. 

Error Message: You must enter P or F5 to 
request print. 

System prints transaction 

FIGURE 17-19 ABC Video Unit Test Example-Rent/Return 



720 CHAPTER 17 Testing and Quality Assurance 

rate manner that is consistent with all related pro­
gram and systems design specifications. 

Integration tests are considered distinct from unit 
tests. That is, as unit tests are successful, integration 
testing for the tested units can begin. The two pri­
mary goals of integration testing are compatibility 
and intermodule processing accuracy. 

Compatibility relates to calling of modules an 
operational environment. The test verifies first that 
all modules are called correctly, and, even with 
errors, do not cause abends. Intermodule tests check 
that data transfers between modules operate as 
intended within constraints of CPU time, memory, 
and response time. Data transfers tested include 
sorted and extracted data provided by utility pro­
grams, as well as data provided by other applica­
tion modules. 

Test cases developed for integration testing 
should be sufficiently exhaustive to test all possible 
interactions and may include a subset of unit test 
cases as well as special test cases used only in this 
test. The integration test does not test logic paths 
within the modules as the unit test does. Instead, it 
tests interactions between modules only. Thus, a 
black-box strategy works well in integration testing. 

If modules are called in a sequence, checking of 
inputs and outputs to each module simplifies the 
identification of computational and data transfer 
errors. Special care must be taken to identify the 
source of errors, not just the location of bad data. 
Frequently, in complex applications, errors may not 
be apparent until several modules have touched the 
data and the true source of problems can be difficult 
to locate. Representative integration test errors are 
listed in Table 17-7. 

Integration testing can begin as soon as two or 
more modules are successfully unit tested. When to 
end integration tests is more subjective. When 
exceptions are detected, the results of all other test 
processing become suspect. Depending on the sever­
ity and criticality of the errors to overall process 
integrity, all previous levels of testing might be 
reexecuted to reverify processing. Changes in one 
module may cause tests of other modules to become 
invalid. Therefore, integration tests should be con­
sidered successful only when the entire group of 
modules in an execute unit are run individually and 

TABLE 1 7-7 Sample Integration Test 
Errors 

Intennodule communication 

Called module cannot be invoked 

Calling module does not invoke all expected 
modules 

Message passed to module contains extraneous 
information 

Message passed to module does not contain 
correct information 

Message passed contains wrong (or inconsistent) 
data type 

Return of processing from called module is to the 
wrong place 

Module has no return 

Multiple entry points in a single module 

Multiple exit points in a single module 

Process errors 

Input errors not properly disposed 

Abend on bad data instead of graceful 
degradation 

Output does not match predicted results 

Processing of called module produces unexpected 
results does not match prediction 

Time constrained process is over the limit 

Module causes time-out in some other part of 
the application 

collectively without error. Integration test curves 
usually start low, increase and peak, then decrease 
(see Figure 17-20). If there is pressure to terminate 
integration testing before all errors are found, the 
rule of thumb is to continue testing until fewer errors 
are found on several successive test runs. 

ABC Video Integration Test 

Because of the redesign of execute units for more 
efficient SQL processing, integration testing can be 
concurrent with unit code and test work, and should 



Number 
of 

Errors 

Number of Test Runs 

FIGURE 17-20 Integration Test Errors Found 
. Over Test Shots 

integrate and test the unit functions as they are com­
plete. The application control structure for screen 
processing and for calling modules is the focus of 
the test. 

Black-box, top-down testing is used for the inte­
gration test. Because SQL does not pass data as 
input, we predict the sets that SQL will generate dur­
ing SELECT processing. The output sets are then 
passed to the control code and used for screen pro­
cessing, both of which have been unit tested and 
should work. To verify the unit tests at the integra­
tion level, we should: 

1. Ensure that the screen control structure 
works and that execute units are invoked as 
intended. 

2. Ensure that screens contain expected data 
from SELECT processing. 

3. Ensure that files contain all updates and cre­
ated records as expected. 

4. Ensure that printed output contains expected 
information in the correct format. 

First, we want to define equivalent sets of pro­
cesses and the sets' equivalent sets of data inputs. 
For instance, the high level processes from IE analy­
sis constitute approximately equivalent sets. These 
were translated into modules during design and, with 
the exception of integrating data access and use 
across modules, have not changed. These processes 
include Rent/Return, Customer Maintenance, Video 
Maintenance, and Other processing. If the personnel 
are available, four people could be assigned to 

Test Plan for ABC Video Order Processing 721 

develop one script each for these equivalent sets of 
processing. Since we named Rent/Return as the 
highest priority for development, its test should be 
developed first. The others can follow in any order, 
although the start-up and shutdown scripts should be 
developed soon after Rent/Return to allow many 
tests of the entire interface. 

First, we test screen process control, then individ­
ual screens. Since security and access control are 
embedded in the screen access structure, this test 
should be white box and test every possible access 
path, including invalid ones. Each type of access 
rights and screen processing should be tested . 
For the individual screens, spelling, positioning, 
color, highlighting, message placement, consis­
tency of design, and accuracy of information are all 
validated (see Figure 17-21). 

The integration test example in Figure 17-22 is 
the script for testing the start-up procedure and secu­
rity access control for the application. This script 
would be repeated for each valid and invalid user 
including the other clerks and accountant. The start­
up should only work for Vic, the temporary test 
account, and the chief clerk. The account numbers 
that work should not be documented in the test 

1. Define equivalent sets of processes and data 
inputs. 

2. Define the priorities of equivalent sets for testing. 
3. Develop test scrips for Rent/Return, Other process­

ing, Customer Maintenance, Video Maintenance. 
4. For each of the above scripts, the testing will pro­

ceed as follows: 
a. Test screen control, including security of access 

to the Rent/Return application. 
b. Evaluate accuracy of spelling, format, and con-

sistency of each individual screen. 
c. Test access rights and screen access controls. 
d. Test information retrieval and display. 
e. For each transaction, test processing 

sequence, dialogue, error messages, and error 
processing. 

f. Review all reports and file contents for accu­
racy of processing, consistency, format, and 
spelling. 

FIGURE 17-21 ABC Integration Test Plan 



722 CHAPTER 17 Testing and Quality Assurance 

Test Startup Security 

System Prompt 

G:> 

Enter password 

Password must be alphanumeric 
and six characters. 

Enter Password 

Password illegal, try again. 

Enter Password. 

Three illegal attempts at 
password. System shutdown 

G:> 

Illegal start-up attempt 

System begins to beep continu­
ously until stopped by system 
administrator. No further prompts. 

Single User Sign-on 

G:> 

Enter Password: 

Password illegal, try again. 

Enter Password: 

User Sign-on menu 

Enter Initials: 

You must enter your initials. 

Enter Initials: 

Initials not authorized, try again. 

Enter Initials: 

Main Menu with all Options 

User Action 

StRenkcr> 

<cr> 

123456<cr> 

Abcdefg 

StRent<cr> 

StRenkcr> 

<cr> 

VAG5283 

<cr> 

VAV 

VAG 

Begin Main Menu Test. 

Explanation 

StRent is Exec to startup the Rental/Return Pro­
cessing application 

Error 

Error-illegal password 

Error-illegal password 

Error-3 illegal attempts requires special start-up. 

StRent is Exec to startup the Rental/Return 
Processing application 

Error 

Temporary legal entry 

Error 

Error 

Legal entry (VAG is Vic) 

FIGURE 17-22 ABC Video Integration Test Script 

script. Rather, a note should refer the reader to the 
person responsible for maintaining passwords. 

In the integration portion of the test, multiuser 
processing might take place, but it is not necessarily 
fully tested at this point. File contents are verified 

after each transaction is entered to ensure that file 
updates and additions are correct. If the integration 
test is approached as iteratively adding modules for 
testing, the final run-through of the test script should 
include all functions of the application, including 



start-up, shutdown, generation and printing of all 
reports, queries on all files, all file maintenance, and 
all transaction types. At least several days and one 
monthly cycle of processing sli,ou~d be simulated for 
ABC's test to ensure that end-oi-day and enCl-of­
month processing work. 

Next, we discuss system testing and continue the 
example from ABC with a functional test that is 
equally appropriate at the integration, system, or 
QA levels. 

System and Quality Assurance 
Testing 
Guidelines for Developing System and 
Quality Assurance Tests 

The system test is used to demonstrate an applica­
tion's ability to operate satisfactorily in a simulated 
production environment using its intended hardware 
and software configuration. The quality assurance 
test (QA) is both a system test and a documentation 
test. Both tests also verify that all of the system's 
interacting modules do the following: 

1. Fulfill the user's functional requirements as 
contained in the business system design spec­
ifications and as translated into design 
requirements in the design spec and any 
documents controlling interfaces to 
other systems. 

2. The human interface works as intended. 
Screen design, navigation, and work inter­
ruptability are the test objects for human 
interface testing. All words on screens should 
be spelled properly. All screens should share 
a common format that is presented consis­
tently throughout the application. This format 
includes the assignment of program function 
keys as well as the physical screen format. 
Navigation is the movement between screens. 
All menu selections should bring up the cor­
rect next screen. All screens should return to 
a location designated somewhere on the 
screen. If direct navigation from one screen 
to any other is provided, the syntax for that 
movement should be consistent and correct. 

Test Plan for ABC Video Order Processing 723 

If transactions are to be interruptible, the 
manner of saving partial transactions and 
calling them back should be the same for all 
screens. System level testing should test all 
of these capabilities. 

3. All processing is within constraints. General 
constraints can relate to prerequisites, 
postrequisites, time, structure, control and 
inferences (see Chapter 1). Constraints can 
be internally controlled by the application or 
can be externally determined with the appli­
cation simply meeting the constraint. Inter­
nally controlled constraints are tested through 
test cases specifically designed for that pur­
pose. For instance, if response time limits 
have been stated, the longest possible trans­
action with the most possible errors or other 
delays should be designed to test response. If 
response time for a certain number of users is 
limited, then the test must have all users 
doing the most complex of actions to prove 
the response time constraint is met. Exter­
nally controlled constraints are those that the 
application either meets or does not. If the 
constraints are not met, then some redesign is 
probably required. 

4. All modules are compatible and, in event of 
failures, degrade gracefully. System tests of 
compatibility prove that all system compo­
nents are capable of operating together as 
designed. System components include pro­
grams, modules, utilities, hardware, database, 
network, and other specialized software. 

5. Has sufficient procedures and code to provide 
disaster, restart, and application error recov­
ery in both the designed and host software 
(e.g., DB2) 

6. All operations procedures for the system are 
useful and complete. Operations procedures 
include start-up, shutdown, normal process­
ing, exception processing, special operator 
interventions, periodic processing, system 
specific errors, and the three types of 
recovery. 

In addition, the QA test evaluates the accu­
racy, consistency, format, and content of application 



724 CHAPTER 17 Testing and Quality Assurance 

documentation, including technical, user, on-line, 
and operations documentation. Ideally, the individ­
ual performing the QA test does not work on the 
project team but can deal with them effectively in the 
adversarial role of QA. Quality assurance in some 
companies is called the acceptance test and is per­
formed by the user. In other companies, QA is per­
formed within the IS department and precedes the 
user acceptance test. 

The system test is the final developmental test 
under the control of the project team and is consid­
ered distinct from integration tests. That is, the 
successful completion of integration testing of suc­
cessively larger groups of programs eventually leads 
to a test of the entire system. The system test is con­
ducted by the project team and is analogous to the 
quality assurance acceptance test which is conducted 
by the user (or an agent of the user). Sample system 
test errors are shown in Table 17-8. 

Test cases used in both QA and system testing 
should include as many normal operating conditions 
as possible. System test cases may include subsets of 
all previous test cases created for unit and integration 
tests as well as global test cases for system level 
requirements. The combined effect of test data used 
should be to verify all major logic paths (for both 
normal and exception processing), protection mech­
anisms, and audit trails. 

QA tests are developed completely from analysis 
and design documentation. The goal of the test is 
to verify that the system does what the documenta­
tion describes and that all documents, screens, and 
processing are consistent. Therefore, QA tests go 
beyond system testing by specifically evaluating 
application information consistency across environ­
ments in addition to testing functional software 
accuracy. QA tests find a broader range of errors 
than system tests; a sampling of QA errors is in 
Table 17-9. 

System testing affords the first opportunity to 
observe the system's hardware components oper­
ating as they would in a production mode. This 
enables the project's test coordinator to verify 
that response time and performance requirements 
are satisfied. 

Since system testing is used to check the entire 
system, any errors detected and corrected may 

TABLE 17-8 Sample System Test Errors 

Functional 

Application does not perform a function in the 
functional specification 

Application does not meet all functional accep­
tance criteria 

Human Interface 

Screen format, spelling, content errors 

Navigation does not meet user requirements 

Interruption of transaction processing does not 
meet user requirements 

Constraints 

Prerequisites treated as sequential and should be 
parallel ... must all be checked by (x) module 

Prerequisite not checked 

Response Time/Peak Performance 

Response time not within requirements for file 
updates, start-up, shutdown, query, etc. 

Volume of transactions expected cannot be 
processed within the specified run-time intervals 

Batch processing cannot be completed in the time 
allotted 

Expected number of peak users cannot be 
accommodated 

Restart/Recovery 

Program-Interrupted printout fails to restart at 
the point of failure (necessary for check process­
ing and some confidential/financial reporting) 

Software-Checkpoint/restart routine is not called 
properly 

Hardware-Printer cannot be accessed from main 
terminal 

Switches incorrectly set 

System re-IPL called for in procedures 
cannot be done without impacting 
other users not of this application 

Expected hardware configuration has 
incompatible components 



TABLE 1 7-9 Sample ON Acceptance Test 
Errors 

Documentation 

Two or more documents inconsistent 

Document does not accurately reflect system 
feature 

EditNalidate 

Invalid transaction accepted 
Valid transaction rejected 

Screen 

Navigation, format, content, processing inconsis­
tent with functional specification 

Data Integrity 

File 

Multifile, multitransaction, multimatches are 
incorrect 

File create, update, delete, query not present or not 
working 

Sequence, data, or other criteria for processing not 
checked 

Report specification 

Navigation, format, content, processing inconsis­
tent with functional 

Recovery 

Printer, storage, memory, software, or application 
recovery not correct 

Performance 

Process, response, user, peak, or other perfor­
mance criteria not met 

User Procedures 

Do not match processing 

Incomplete, inconsistent, incomprehensible 

On-line help differs from paper documents 

Operations Procedures 

Do not match processing 

Incomplete, inconsistent, incomprehensible 

Test Plan for ABC Video Order Processing 725 

require retesting of previously tested items. The sys­
tem test, therefore, is considered successful only 
when the entire system runs without error for all 
test types. 

The test design should include all possible legal 
and illegal transactions, good and bad data in trans­
actions, and enough volume to measure response 
time and peak transaction processing performance. 
As the test proceeds, each person notes on the test 
script whether an item worked or not. If a tested 
interaction had unexpected results, the result ob­
tained is marked in the margin and noted for review. 

The first step is to list all actions, functions, and 
transactions to be tested. The information for this list 
is developed from the analysis document for all 
required functions in the application and from the 
design document for security, audit, backup, and 
interface designs. 

The second step is to design transactions to test 
all actions, functions and transactions. Third, the 
transactions are developed into a test script for a sin­
gle user as a general test of system functioning. This 
test proves that the system works for one user and all 
transactions. Fourth, the transactions are interleaved 
across the participating number of users for multi­
user testing. In general, the required transactions are 
only a subset of the total transactions included in the 
multiuser test. Required transactions test the varia­
tions of processing and should be specifically 
designed to provide for exhaustive transaction cov­
erage. The other transactions can be a mix of simple 
and complex transactions at the designer's discre­
tion. If wanted, the same transaction with variations 
to allow multiple use can be used. Fifth, test scripts 
for each user are then developed. Last, the test is 
conducted. These steps in developing system/QA 
tests are summarized as follows: 

1. List all actions, functions, and transactions to 
be tested. 

2. Design transactions to test all actions, func­
tions, and transactions. 

3. Develop a single-user test script for above. 
4. Interleave the tests across the users partici­

pating in the test to fully test multiuser func­
tioning of the application. 

S. Develop test scripts for each user. 



726 CHAPTER 17 Testing and Quality Assurance 

6. Conduct the test. 
7. Review test results and reconcile anomalous 

findings. 

Designing multiuser test scripts is a tedious and 
lengthy process. Doing multiuser tests is equally 
time-consuming. Batch test simulator (BTS) soft­
ware is an on-line test aid available in mainframe 
environments. BTSs generate data transactions 
based on designer-specified attribute domain charac­
teristics. Some BTSs can read data dictionaries and 
can directly generate transactions. The simulation 
portion of the software executes the interactive pro­
grams using the automatically generated transactions 
and can, in seconds, perform a test that might take 
people several hours. BTSs are not generally avail­
able on PCs or LANs yet, but they should be in 
the future. 

Finally, after the system and QA tests are suc­
cessful, the minimal set of transactions to test 
the application are compiled into test scripts for a 
regression test package. A regression test package 
is a set of tests that is executed every time a change 
is made to the application. The purpose of the 
regression test is to ensure that the changes do not 
cause the application to regress to a nonfunctional 
state, that is, that the changes do not introduce 
errors into the processing. 

Deciding when to stop system testing is as sub­
jective as the same decision for other tests. Unlike 
module and integration tests, system tests might 
have several peaks in the number of errors found 
over time (see Figure 17-23). Each peak might rep-

Number 
of 

Errors 

Number of Test Runs 

FIGURE 17-23 System Test Errors Found 
Over Test Shots 

resent new modules or subsystems introduced for 
testing or might demonstrate application regression 
due to fixes of old errors that cause new errors. 
Because of this multipeak phenomenon, system 
testing is the most difficult to decide to end. If a 
decreasing number of errors have not begun to 
be found, that is, the curve is still rising, do not stop 
testing. If all modules have been through the system 
test at least once, and the curve is moving toward 
zero, then testing can be stopped if the ab~o­
lute number of errors is acceptable. Testmg 
should continue with a high number of errors 
regardless of the slope of the line. What constitutes 
an acceptable number of errors, however, is decided 
by the project manager, user, and IS managers; there 
is no right number. 

QA testing is considered complete when the 
errors do not interfere with application functioning. 
A complete list of errors to be fixed is developed and 
given to the project manager and his or her manager 
to track. In addition, a QA test report is developed 
to summarize the severity and types of errors found 
over the testing cycle. Errors that are corrected 
before the QA test completes are noted as such in 
the report. 

The QA report is useful for several purposes. The 
report gives feedback to the project manager ~bout 
the efficacy of the team-testing effort and can Iden­
tify weaknesses that need correcting. The reports 
are useful for management to gain confidence (or 
lose it) in project managers and testing groups. Proj­
ects that reach the QA stage and are then stalled for 
several months because of errors identify training 
needs that might not otherwise surface. 

ABC Video System Test 

Because ABC's application is completely on-line, 
the system test is essentially a repeat of the inte­
gration test for much of the functional test.ing. 
The system test, in addition, evaluates response tIme, 
audit, recovery, security, and multiuser process­
ing. The functional tests do not duplicate the inte­
gration test exactly, however. The first user mi~ht 
use the integration test scripts. Other user(s) dIa­
logues are designed to try to corrupt processing of 
the first user data and processes and to do other 



Test Plan for ABC Video Order Processing 727 

Trans # Rents Returns Late Fees Payment Receipt 

T111 2 0 Exact Automatic 

T112 0 Over Automatic 

T113 1 (Total) No Over Automatic 

T121 10 0 Over Automatic 

T122 0 2 (From T121 ) No No 

T141 0 2 (From T121 ) 2,4 days Over Automatic 

T151 4 2 (From T121) 2,5 days Over Automatic 

T211 1 (Total) 1 day Exact Automatic 

T212 0 1 (Total) No No 

T213 0 1 (Total) No Requested 

T214 0 1 (Total) 2 days Under, then exact Automatic 

T221 2 0 Under-abort No 

T222-Wait 
required 0 2 (From T121) No Requested 

T311 0 1 (Total) 10 days Over Automatic 

T312 1 (with other 0 Over Automatic 

open rentals) 

T313 6 (with other 0 Exact Automatic 

open rentals), 
error then rent 5 

T411= T311 0 1 (Total) 10 days Over Automatic 
Err 

T412=T312 1 (with other 0 Over Automatic 
Err open rentals) 

T413=T313 6 (with other 0 Exact Automatic 
Err open rentals), 

error then rent 5 

T331 0 2 (From T121) 2,2 days Exact Automatic 

T332 2 0 Under-abort No 

T511 5 (with other 2 1 tape, 3 days Over Automatic 

open rentals) 

NOTE: Txyz Transaction ID: x = User, x = Day, z = Transaction number 

FIGURE 17-24 ABC Video System Test Overview-Rent/Return Transactions 

independent processing. If the total number of The first step is to list all actions, functions, and 
expected system users is six people simultaneously, transactions to be tested. For example, Figure 17-24 
then the system test should be designed for six lists required transactions to test multiple days and 
simultaneous users. all transaction types for each major file and process-



728 CHAPTER 17 Testing and Quality Assurance 

User 1 User2 User 3 

Start-up- Start-up- Start-up-
success Err Err 

Logon Logon Logon 

Rent-T111 Rent-T211 Cust Add 
Errs + Good Errs + Good Errs + Good 
data data data 

Rent-T112 Rent-T111 Rent-T311 
Err, abort 

Rent-T113 Rent-T212- Rent-T312 
Err 

Rent-T14 Rent-T213 Rent-T313 

Rent-any Rent-any Rent-any 
trans trans trans 

END OF DAY, SHUT-DOWN, and STARTUP 

Rent-T121 Rent-T221 Rent-any 
trans 

Rent-T122 Rent-T111 Rent-any 
trans 

END OF DAY, SHUT-DOWN, and STARTUP 

Cust Add Cust Change- Rent-T331 
Errs + Good Err, Abort 
data 

Delete Cust- Delete Video Rent-T332 
Errs + Good Errs 
data 

END OF DAY, SHUT-DOWN, and STARTUP 

END OF MONTH 

User 4 

Password-
Err 

Logon 

Cust Change-
Err, Abort 

Cust-Change 

Rent-T411 

Rent-T412 

Rent-any 
trans 

Rent-any 
trans 

Rent-any 
trans 

Copy Change­
Errs + Good 
data 

Cust-Change 

User 5 

Logon-
Err 

Logon 

Video Add 
Errs + Good 
data 

Copy Change-
Errs + Good data 

Rent-T511 

Rent-any 
trans 

Rent-any 
trans 

Rent-any 
trans 

Rent-any 
trans 

Try to crash 
system with 
bad trans 

Video Add 

User 6 

Logon 

Shutdown-Err 

Try to crash 
system with bad 
trans 

Delete Cust­
Errs + Good 
data 

Delete Video 
Errs 

Delete Copy­
Errs + Good 
data 

Rent-any 
trans 

Rent-any 
trans 

Rent-any 
trans 

Rent-any 
trans 

NOTE: Txyz Transaction ID: x = User, x = Day, z = Transaction number 

FIGURE 17-25 ABC Video System Test Overview-Test Schedule 

ing activity for Rent/Return. These transactions 
would be developed into a test script for a single user 
test of the application. 

Then, the transactions are interleaved with other 
erroneous and legal transactions for the other ABC 
processes as planned in Figure 17-25. Notice that the 



required transactions are only a subset of the total 
transactions included in the test. The required trans­
actions provide for exhaustive transaction coverage. 
The other transactions in Figure 17-25 are a mix of 
simple and complex transactions. Test scripts to fol­
low the plan for each user are then developed; this 
is left as a student exercise. 

Last, the test is conducted. During each shutdown 
procedure, the end-of-day reports are generated and 
reset. The data mayor may not be checked after the 
first day to verify that they are correct. If errors are 
suspected, the files and report should be checked to 
verify accuracy. When one whole day is run through 
without errors, the entire set of test scripts can be 
executed. After an entire execution of each test script 
completes, the test team convenes and reviews all 
test scripts together to discuss unexpected results. 
All data from the files are verified for their predicted 
final contents. That is, unless a problem is suspected, 
intermediate intraday results are not verified during 
system testing. Errors that are found are reconciled 
and fixed as required. The test scripts are run through 
repeatedly until no errors are generated. Then, the 
test team should take real transactions for several 
days of activity and do the same type of test all over 
again. These transactions should also have file and 
report contents predicted. This 'live-data' test should 
be successful if system testing has been successful. 
If it is not, the errors found should be corrected and 
transactions to cause the same errors should be 
added to the system test. After the test is complete, 
the regression test package is developed for use dur­
ing application maintenance. 

AUTOMATED __________ __ 
SUPPORT TOOLS ____ _ 
FOR TESTING _____ _ 

Many CASE tools now support the automatic gen­
eration of test data for the specifications in their 
design products. There are also hundreds of different 
types of automated testing support tools that are not 
related to CASE. Some of the functions of these 
tools include 

Automated Tool Support for Testing 729 

• static code analyzers 
• dynamic code analyzers 
• assertion generators and processors 
• test data generators 
• test driver 
• output comparators 

In Table 17-10, several examples of CASE testing 
tools are presented. Many other types of testing sup­
port tools are available for use outside of a CASE 
environment. The most common test support tools 
are summarized below and sample products are 
listed in Table 17-11. 

A code analyzer can range from simple to com­
plex. In general, static code analyzers evaluate the 
syntax and executability of code without ever exe­
cuting the code. They cross-reference all references 
to a line of code. Analyzers can determine code that 
is never executed, infinite loops, files that are only 
read once, data type errors, global, common, or 
parameter errors, and other common problems. 
Another output of some static analyzers is a cross­
reference of all variables and the lines of code on 
which they are referenced. They are a useful tool, but 
they cannot determine the worth or reliability of the 
code which are desired functions. 

A special type of code analyzer audits code for 
compliance to standards and structured program­
ming (or other) guidelines. Auditors can be cus­
tomized by each using company to check their 
conventions for code structure. 

A more complex type of code analyzer is a 
dynamic tool. Dynamic code analyzers run while 
the program is executing, hence the term dynamic. 
They can determine one or more of: coverage, trac­
ing, tuning, timing, resource use, symbolic execu­
tion, and assertion checking. Coverage analysis of 
test data determines how much of the program is 
exercised by the set of test data. Tracing shows the 
execution path by statement of code. Some tools 
list values of key variables identified by the pro­
grammer. Languages on PCs usually have dynamic 
tracers as an execute option. Thning analyzers iden­
tify the parts of the program executed most fre­
quently, thus identifying code for tuning should a 
timing problem occur. Timing analysis reports CPU 



730 CHAPTER 17 Testing and Quality Assurance 

TABLE 1 7-10 CASE Test Tools 

Tool Name Vendor Features and Functions 

Teamwork Cadre Technologies, Inc. 
Providence, RI 

Testing Software 

Telon and other products Pansophic Systems, Inc. 
Lisle,IL 

Code Generation, 
Test~anagement 

time used by a module or program. Resource usage 
software reports physicall/Os, CPU time, number of 
database transactions, and other hardware and soft­
ware utilization. Symbolic executors run with sym­
bolic, rather than real data, to identify the logic paths 
and computations for programmer-specified levels 
of coverage. 

An assertion is a statement of fact about the state 
of some entity. An assertion generator makes facts 
about the state the data in a program should be in, 
based on test data supplied by the programmer. If the 

TABLE 1 7-11 Other Testing Support Tools 

Tool Name Vendor 

Assist 

assertions fail based on program performance, an 
error is generated. Assertion generators are useful 
testing tools for artificial intelligence programs and 
any program language with which a generator can 
work. Assertion checkers evaluate the truth of pro­
grammer-coded assertions within code. For instance, 
the statement 'Assert make-buy = o. " might be eval­
uated as true or false. 

A test data generator (TDG) is a program that 
can generate any volume of data records based on 
programmer specifications. There are four kinds of 

Features and Functions 

Coverage analysis, logic 
flow tracing, tracing, symbolic 
execution 

Attest University of ~assachusetts 
Amherst, ~A 

Coverage analysis, test data 
generation, data flow analysis, 
automatic path selection, con­
straint analysis 

Automatic Test Data 
Generator (ATDG) 

Autoretest 

C/Spot/Run 

TRW Systems, Inc. 
Redondo Beach, CA 

TRW, Defense Systems Dept. 
Redondo Beach, CA 

Pro case Corp. 
Santa Clara, CA 

Test data generation, path 
analysis, anomaly detection, 
variable analysis, constraint 
evaluation 

Comparator, test driver, test data 
management, automated com­
parison of test parameters 

Syntax analysis, dependency 
analysis, source code filtering, 
source code navigation, graphi­
cal representation of function 
calls, error filtering 



Automated Tool Support for Testing 731 

TABLE 1 7-11 Other Testing Support Tools (Continued) 

Tool Name 

COBOL Optimizer 
Instrumentor 

Cotune 

Datamacs 

DAVE 

DIFF 

FACOM and Fadebug 

Fortran Optimizer 
Instrumentor 

McCabe Tools 

MicroFocus Cobol 
Workbench 

Softool80 

UX-Metric 

Vendor 

Softool Corp. 
Goleta, CA 

Management & Computer Services, Inc. 
Valley Forge, PA 

Leon Osterweil 
University of Colorado 
Boulder, CO 

Software Consulting Services 
Allentown, PA 

Fujitsu, Ltd. 

Softool Corp. 
Goleta, CA 

M. McCabe & Associates 
Columbia, MD 

MicroFocus 
Palo Alto, CA 

Softool Corp. 
Goleta, CA 

Quality Tools for Software Craftsmen 
Mulino, OR 

Features and Functions 

COBOL testing, path flow 
tracing, tracing, tuning 

Coverage analysis, timing 

Test file generation, I/O spe­
cification analysis, file structure 
testing 

Static analyzer, diagnostics, 
data flow analysis, interface 
analysis, cross-reference, stan­
dards enforcer, documentation 
aid 

File comparison 

Output comparator, anomaly 
detector 

Coverage analysis Fortran 
testing, path flow tracing, 
tracing, tuning 

Specification analysis, visual 
path testing generates conditions 
for untested paths computes 
metrics 

Source navigation, interactive 
dynamic debugging, structure 
analysis, regression testing, 
tuning 

Coverage analysis, tuning, 
timing, tracing 

Static analyzer, syntax 
checking, path analysis, tuning, 
volume testing, cyclic tests 

test data generators: static, pathwise, data specifica­
tion, and random. A static TDG requires program­
mer specification for the type, number, and data 
contents of each field. A simple static TDG, the 
IEBDG utility from IBM, generates letters or num­
bers in any number of fields with some specified 
number of records output. It is useful for generating 

volumes of test data for timing tests as long as the 
records contain mostly zeros and ones. Unless the 
test data generator is easy to use, it quickly becomes 
more cumbersome than self-made test data. 

Path wise TDGs use input domain definitions to 
exercise specific paths in a program. These TDGs 
read the program code, create a representation of the 



732 CHAPTER 17 Testing and Quality Assurance 

control flow, select domain data to create represent a -
tive input for a programmer-specified type of test, 
and execute the test. The possible programmer 
choices for test type include all feasible paths, state­
ment coverage, or branch coverage. Since these are 
white-box techniques, unless a programmer is care­
ful, a test can run for excessively long times. 

Test drivers are software that simulate the exe­
cution of module tests. The tester writes code in the 
test driver language to provide for other module 
stubs, test data input, input/output parameters, files, 
messages, and global variable areas. The driver uses 
the test data input to execute the module. The other 
tester-defined items are used during the test to exe­
cute pieces of code without needing physical inter­
faces to any of the items. The major benefits of test 
drivers are the ease of developing regression test 
packages from the individual tests, and the forced 
standardization of test cases. The main problem with 
drivers is the need to learn another language to use 
the driver software. 

On-line test drivers are of several types. Batch 
simulators generate transactions in batch-mode 
processing to simulate multi-user, on-line process­
ing. Transaction simulators copy a test script as 
entered in single-user mode for later re-execution 
with other copied test scripts to simulate multi-user 
interactions. 

Output comparators compare two files and 
identify differences. This makes checking of data­
bases and large files less time-consuming than it 
would otherwise be. 

SUMMARY ________ ~ __ __ 
Testing is the process of finding errors in an appli­
cation's code and documentation. Testing is a 
difficult activity because it is a high-cost, time­
consuming activity for which the returns diminish 
upon success. As such, it is frequently difficult for 
managers to understand the importance of testing in 
application development. 

The levels of developmental testing include unit, 
integration, and system. In addition, an agent, who is 
not a project team member, performs quality assur­
ance testing to validate the documentation and pro-

cessing for the user. Code tests are on subroutines, 
modules, and programs to verify that individual code 
units work as expected. Integration tests verify the 
logic and processing for suites of modules, verify­
ing intermodular communications. Systems tests 
verify that the application operates in its intended 
environment" and meets requirements for constraints, 
response time, peak processing, backup and recov­
ery, and security, access, and audit controls. 

Strategies of testing are either white-box, black­
box, top-down, or bottom-up. White-box tests ver­
ify that specific logic of the application works as 
intended. White-box strategies include logic tests, 
mathematical proof tests, and cleanroom tests. 
Black-box strategies include equivalence partition­
ing, boundary value analysis, and error guessing. 
Heuristics for matching the test level to the strategy 
were provided. 

REFERENCES ______ ~ __ __ 
Curritt, P. A., M. Dyer, and H. D. Mills, "Certifying the 

reliability of software," IEEE Transactions of Soft­
ware Engineering, Vol. SE-12, 1986, pp. 3-11. 

Dunn, Robert H., Software Quality: Concepts and Plans. 
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1990. 

Mills, H. D., M. Dyer, and R. Linger, "Cleanroom soft­
ware engineering," Software, Vol. 4, #5, 1987, 
pp.19-25. 

Musa, J. D., and A. F. Ackerman, "Quantifying software 
validation: When to stop testing?" Software, Vol. 6, 
#3,Ma~ 1989,pp. 19-27. 

Myers, Glenford J., The Art of Software Testing. NY: 
John Wiley & Sons, 1979. 

Selby, R. W., V. R. Basili, and F. T. Baker, "Cleanroom 
software development: An empirical evaluation," 
IEEE Transactions of Software Engineering, Vol. 
SE-13, 1987 pp. 1027-1037. 

BIBLIOGRAPHY _____ _ 

De Millo, Richard A., W. Michael McCracken, R. J. 
Martin, and John F. Passafiume, Software Testing and 
Evaluation. Reading MA.: Benjamin Cummings Pub­
lishing Co., 1987. 
This text describes testing and evaluation for military 
contracts and compliance with Department of Defense 
standards such as 2167a which describes the phases 



and documents required of all government sponsored 
software development projects. It includes a rich 
description of different types of testing, in particular 
formal verification. 

Dyer, M., Cleanroom Software Development Method. 
IBM Federal Systems Division, Bethesda, MD, Octo­
ber 14, 1982. 
This monograph is a detailed description of the clean­
room development method. 

Mills, H. D., M. Dyer, and R. Linger, "Cleanroom soft­
ware engineering," Software, Vol. 4, #5, 1987, 
pp.19-25. 
This is a brief description of the methodology of 
cleanroom development which includes a description 
of testing. 

Musa, John D., Anthony lannino, and Kazuhira 
Okumoto, Software Reliability: Measurement, Predic­
tion, and Application. NY: McGraw-Hill Book Co., 
1987. 
This text takes a quantitative approach to proving pro­
gram correctness. 

Musa, J. D., and A. F. Ackerman, "Quantifying software 
validation: When to stop testing?" Software, Vol. 6, 
#3,Ma~ 1989,pp. 19-27. 
Musa and Ackerman's article discusses the trajectory 
of error finding over test shots and when the risk of 
stopping begins to diminish. 

Myers, Glenford J., The Art of Software Testing. NY: 
John Wiley & Sons, 1979. 
This is the best book I have ever read on testing. It is 
short, clear, and easy to follow. The only drawback is 
that real-time systems were not prevalent enough to 
have been included in the book. 

Selby, R. W., V. R. Basili, and F. T. Baker, "Cleanroom 
software development: An empirical evaluation," 
IEEE Transactions of Software Engineering, Vol. 
SE-13, 1987 pp. 1027-1037. 
This article reviews cleanroom projects and develops 
statistics about reliability of the software. 

KEy TERMS _______ _ 

acceptance test 
assertion 
assertion checker 
assertion generator 
batch simulator 
black-box strategy 
bottom-up testing 
boundary value analysis 

cause-effect graphing 
cleanroom development 
coverage analysis 
developmental test 
dynamic code analyzer 
equivalence partitioning 
error guessing 
integration test 

output comparator 
pathwise test data 

generator 
program stub 
quality assurance (QA) 

test 
regression test 
regression test package 
resource usage 
scaffolding 
static code analyzer 
static test data generator 
subsystem test 
symbolic executor 
system test 
test case 
test data generator (TDG) 

Study Questions 733 

test driver 
test plan 
test script 
test strategy 
testing 
timing analyzer 
top-down testing 
tracing 
transaction simulator 
tuning analyzer 
type 1 error 
type 2 errors 
unit test 
Vienna Development 

Method (VDM) 
white-box strategy 

EXERCISES _______ _ 

1. Describe the process of test development for an 
application. What are the roles, activities, docu­
mentation, and procedures followed by partici­
pants to testing? 

2. Develop a test script for user 1 for the system 
test. 

STUDY QUESTIONS - ___ _ 

1. Define the following terms: 
scaffolding test strategy 
white box testing test case 
black box testing test plan 
integration test 

2. What is testing and why is it important? 
3. How do you know when a test result is right? 
4. Why do managers shorten the time allotted to 

testing? 
5. Why do SEs and programmers sometimes 

resent testing? 
6. What is the purpose of predicting results? Do 

the results have to be exact or can they be 
approximated? Why? 

7. What is the purpose of a unit test? How is it met 
through test strategy selection? 

8. When is it appropriate not to test all program 
logic? How do you decide what to test? 



734 CHAPTER 17 Testing and Quality Assurance 

9. What are the different test strategies? Define 
each and discuss how they differ. 

10. How many test cases does a program need? 
11. What is the purpose of an integration test? 

What test strategy(s) are usually used in inte­
gration testing? Why? 

12. What is the purpose of a systems test and how 
does it differ from the other test types: unit and 
integration? 

13. Why is top-down testing by itselfnot a good 
idea at the system level? 

14. Why is top-down testing a good idea at the sys­
tem level? 

15. At which test levels are bottom-up and top­
down most appropriate? How do the top-down 
and bottom-up pieces get integrated? 

16. At which level of testing does the human inter­
face get tested? 

17. How does proto typing fit with testing? Does 
proto typing also require a testing strategy? 
Why or why not? 

18. What is the role of users during testing? Can 
users conduct the systems test? the integration 
tests? the unit tests? For each, why or why not? 

19. For each level of testing, when can you end 
testing? 

* EXTRA-CREDIT QUESTIONS 

1. Develop the test plan for Customer Maintenance 
in the ABC rental application. 

2. Develop test scripts to unit test the other three 
transaction types for ABC Video. Use the screen 
design from Chapter 14 to help you visualize the 
data and processing requirements. The three 
transaction types are rentals without returns, 
returns without rentals, rentals with returns 
(i.e., Customer /D is entered first rather than 
Video/D). 

3. Develop a test strategy for testing the entire 
application for a case in the appendix. Keep in 
mind that testing that involves users should min­
imize their time commitment while obtaining 
essential information from their involvement. 
Specifically define roles, responsibilities, timing, 
and test strategy for each level of testing. 

4. Develop a presentation to senior user and IS 
managers to justify the time and resources re­
quired to do application testing. Present the dis­
cussion to your class. 



C HAP T E R 18 
r-CHANGE ---------------------------, ________ .r--~ 

r- MANAGEMENT 
----------------------------~--~ 

INTRODUCTION ____ _ 

Nothing is rarer in information systems development 
than an application without changes. Users forget 
requirements and remember them late in the design. 
The business changes. Bugs get fixed and require 
documentation. Change occurs in all phases and all 
levels of application development. Procedures to 
manage change, therefore, are necessary to main­
tain sanity and order on the project team. 

The three major types of change in an applica­
tion's life cycle-requirements, software, and docu­
mentation-are discussed in this chapter. For each, 
the importance of the change management tech­
niques is discussed. Then, for each, techniques for 
managing changes are developed. At the end of the 
chapter, automated tools are identified for collabora­
tive work, documentation, reverse engineering, and 
code management. First, we discuss the importance 
of designing for maintenance, regardless of the envi­
ronment, architecture, or item being developed. 

DESIGNING FOR ____ _ 
MAINTENANCE ____ _ 

Applications are usually in production for an aver­
age of eight years. Many applications are much 
older, having been patched and modified regularly 

for 10 or even 20 years. Applications that are flexible 
enough to withstand years of modification are de­
signed with change in mind. That is, regardless of 
the methodology, independent modules with local 
effects are developed. 

Programs with 10,000 lines of, for instance, 
COBOL procedure code, rarely are modified easily. 
Usually, they are such spaghetti, that if they ever 
work, it is due to good luck. Frequently, change is 
precarious and likely to cause problems in un­
touched parts of the program. 

In this section, we discuss the techniques used in 
designing for maintenance. The first, reusable 
libraries, have been used widely in the aerospace 
industry. Because cost savings can now be demon­
strated from reusable libraries, they are moving into 
other industry segments. Reusable modules are 
complete programs that perform some complete 
function. The next section relates methodology to 
maintenance effort and discusses how each method­
ology attempts to provide for maintenance. Finally, 
CASE tools are related to maintenance and change. 

Reusability 
Reusability is a property of a code module such that 
the module can be used, as is, by several applica­
tions. In designing for reuse, the goal is to identify 
modules for potential reuse. The two most popular 

735 



736 CHAPTER 18 Change Management 

methods of implementing code reuse are program 
templates and reusable modules. 

Program templates consist of standard code that 
performs a simple function. For instance, there are 
three basic types of business programs: report, edit/ 
validate, and file update. For a report, there are stan­
dard sections for reading file data, formatting the 
data, and writing the report (see Figure 18-1). Read­
ing and writing can be standardized regardless of the 
data definition for input. The formatting of data must 
be customized. In writing the report, there are sec­
tions of code for beginning-of-page, body-of-page, 
and end-of-page. There may be sections for begin­
ning-of-report and end-of-report, too. The report 
program might or might not have an internal sort 
routine that changes the sequence of the input file. 

Templates can be developed to describe the 12 or 
so most common variants of the three basic types of 
programs. For instance, a report program is devel­
oped with and without sorts. COBOL or some other 
procedural language is used to define the stan­
dard versions and the only items left to the appli­
cation programmer are procedures specific to the 
application. 

The templates are stored as read only modules 
in a library. When a new use is defined, the module 
to be used is copied and given a new name. The 
newly named module is then modified and cus­
tomized for its current use. 

The advantage of a template is that a finite num­
ber of variations are developed and then are modi­
fied as needed for a specific use. There is little or no 
maintenance on the templates once they are devel­
oped, and only a few new templates per year would 
ever be developed. The number of support staff 
could be close to zero. 

A template is a partial program that is completed 
for a particular application. A reusable module is a 
small, single function, well-defined, and standard­
ized program module that can be used as a called 
routine, or as a copy book in COBOL. For instance, 
a date edit routine might be developed as a reusable 
module (see Figure 18-2). 

When a reusable module is desired, a library of 
reusable modules is studied to determine which 
ones fit the application's needs. For reusable mod-

ules that do fit an application, the individual module 
code is examined to verify that it performs as 
required. Then the module is called at the appropri­
ate place in the application's processing. 

Each application team determines which modules 
it might have that could be reused in its own or in 
other applications. Then the modules are singled out 
for special development as independent routines. 
The finished module is quality assurance tested by 
the librarians to ensure that it performs as docu­
mented. The librarian is an expert in reusable 
standards, quality assurance testing, and code man­
agement techniques. Eventually, the code is stored in 
a reusable library whose contents are published for 
application developers' use. 

Publication of reusable library contents can be 
awkward. Paper might be too voluminous to be use­
ful or cost-effective. Electronic publication requires 
indices to assist users in identifying potential 
modules for their use. The indices might include 
keywords to describe function, language, date of 
development, type of input, and so on. If indices are 
not coded to capture the essential characteristics of 
the modules, they are useless. 

The amount of organizational support required 
to maintain reusable libraries has been the major 
impediment to reusable library adoption in most 
industries. Librarians test, store, and maintain refer­
ences to the modules in the reusable library. A large 
number of modules, for instance over 1,000, makes 
maintenance of the library integrity and accuracy a 
major task. Locating modules for use is also a 
major task. Librarians become specialized in per­
forming these functions. Without proper organiza­
tional support, reusable libraries soon become 
unused and useless. 

The arguments for reuse are substantial. As much 
as 75% of all code on a typical business application 
is redundant, and therefore, a candidate for reuse. 
Database descriptions, program procedure tem­
plates, and individual modules are all candidates for 
reuse that can save companies time and money in 
application development. The more reused code, the 
less extensive the custom code developed, the less 
extensive the testing required, and the less the cost of 
the application. 



FIGURE 18-1 

Identification Division. 
Program-ID. ABCVIDADD. 
Environment Division. 
Configuration Section. 
Source-Computer. IBM-3080. 
Object-Computer. iBM-3080. 
File Section. 

Select Input-File from UR-D0001 as RPTIN. 
Select Report-File from UR-P001 as RPTOUT. 

File Division. 
Input Section. 
FD Input-File 

Block contains 100 records. 
Record contains 400 characters. 

01 Input-File-Record 
FD Report-File 

Block contains 1 record. 
Record contains 132 characters. 

01 Report-File-Record 
Working-Storage Division. 
01 Miscellaneous-counters. 

05 Page-Count 
05 Line-Count 
05 Input-record-count 
05 Output-record-count 
05 End-of-file-marker 

88 End-of-file 
88 Not-end-of-file 

Picx(400). 

Pic x(132). 

Pic 99 
Pic 99 
Pic 9(7) 
Pic 9(7) 
Pic 9 

01 Copy Input-File-Description statement goes here. 

01 Report-Headers. 
05 Header-01. 

05 

10 Filler pic x(45) 
10 H1 piC x(23) 

'Company Standard Header'. 
10 Filler pic x(15) 
10 Date pic x(8) 
Header-2. 
10 Filler pic x(45) 
10 H1 pic x(23) 

'Report Standard Header'. 
10 Filler pic x(15) 
10 Time 

15 Hour pic xx 
15 Filler piC x 
15 Hour pic xx 
15 Filler pic x 
15 Hour pic xx 

Designing for Maintenance 737 

value zero. 
value zero. 
value zero. 
value zero. 
value zero. 
value 1. 
value O. 

Value spaces. 
value 

value spaces. 
value spaces. 

Value spaces. 
value 

value spaces. 

value spaces. 
value ':'. 
value spaces. 
value ':'. 
value spaces. 

Partial COBOL Program Template for a Report 



738 CHAPTER 18 Change Management 

Linkage Section. 
01 In-Date. 

05 In-Date-Month 
05 In-Date-Day 
05 In-Date-Year 

01 Errors. 
05 

Procedure Division. 
Link. 

Err-table occurs x times. 
10 Err 

Enter linkage. 

pic xx. 
pic xx. 
pic xx. 

pic 9 compo 

Entry Link-date-edit using in-date, errors. 
Enter COBOL. 

Initialize. 
Move zeros to Errs. 

Check-Numerics. 
If In-Date-Mo not numeric move 1 to err(1). 
If In-Date-Day not numeric move 1 to err(2). 
If In-Date-Year not numeric move 1 to err(3). 
If err( 1) = 1 or err(2) = 1 or err (3) = 1 go to End-Test. 

Check-values. 
If In-Date-Day > 0 

continue 
else 

move 1 to err(4). 
If In-Date-Year> 1992 

and In-Date-Year < 2015 
continue 

FIGURE 18-2 Reusable COBOL Module for Date Edit 

Methodology Design Effects 
In this section, we discuss the suitability of reusable 
libraries and program templates to the three classes 
of methodologies. Because of the encapsulation of 
data and function in object orientation, object meth­
ods are best suited to the large scale development of 
reusable modules. The other methodologies, process 
and data, can use program templates and reusable 
modules, but such modules are not identified as nat­
urally as with objects. 

Object methods are best suited to reusable com­
ponents because the design method results in small, 
single function modules automatically. The method 
assumes that only data needed for a function will be 
available to it when it is called. Thus, the entire 
method assumes and strives for modules that are 
potentially reusable. When a module is identified in 

object analysis as being invoked from multiple call­
ing objects, it is automatically targeted as potentially 
reusable. Further analysis determines if the function­
ality is identical for all users. If the functionality is 
the same, the module becomes locally reusable. 

The step from local reuse to organizational reuse 
is small, with the criteria being the number of other 
applications needing the function. Here too, object 
methods are more amenable to identifying reusable 
functionality at the analysis stage than the other 
methodologies. Think back to Chapter 11, in which 
we developed the table of actions (or functions) and 
the objects to which they were attached (see Table 
18-1). It is at this stage that reuse is identified. When 
an action has more than one object attached, they are 
examined to determine whether the same action is 
performed for each. If both objects use the action 
identically, they are labeled potentially reusable. 



Designing for Maintenance 739 

else 

move 1 to err(5). 
If In-Date-Month = 2 

If In-Date-Year = (1992 or 1996 or 2000 or 2004 or 2008 or 2012) 
If In-Date-Day < 30 

go to End-Test 
else move 1 to err(6) 

else 

else 
If In-Date-Day < 29 

go to End-Test 
else move 1 to err(7) 

If In-Date-Month = (4 or 6 or 9 or 11) 
If In-Date-Day < 31 

else 

go to End-Test 
else move 1 to err(8) 

If In-Date-Month = (1 or 3 or 5 or 7 or 10 or 12) 
If In-Date-Day < 32 

go to End-Test 
else move 1 to err(9) 

End-Test. 

else 
move 1 to err(1 0). 

Enter linkage. 
Return. 
Enter COBOL. 

FIGURE 18-2 Reusable COBOL Module for Date Edit (Continued) 

Then, the potentially reusable actions are used to 
search the reusable library to see if similar actions 
in reusable form already exist. When a match is 
found, the reusable module code is examined to 
determine its fit to the current need. Based on the 
closeness of fit, the designers choose to design their 
own module or use the reusable module. The 
reusable module can be used as it exists or can be 
customized to exactly fit the application. The point is 
that the analysis action is matched to a reusable 
action at the logical level. Only when the logical 
actions match, the physical implementation is 
then examined for its appropriateness. When many 
such logical level matches are found, the time sav­
ings in analysis, design, and implementation can 
be considerable. 

It has long been held that structured and modular 
design reduces maintenance effort by facilitating the 

definition of understandable chunks of analysis and 
designs. Modular design, in turn, is then applied to 
program modules. The designer uses his or her 
experience, applying the principles of information 
hiding, minimal coupling and maximal cohesion, to 
develop single function modules. In this manner, the 
nonobject methodologies are more brute force meth­
ods of developing modules with object-like proper­
ties. While the nonobject methodologies rely on 
personal designer knowledge, such knowledge 
also is more important in object methods than is 
commonly recognized at present. The results in 
nonobject methodologies, though, are less uni­
form and less likely to cause ready recognition of 
reusable components than object methods. There­
fore, reusable component libraries are most likely 
to be effective and widely used in object-oriented 
environments. 



740 CHAPTER 18 Change Management 

TABLE 18-1 Sample Actions with Related Objects 

Verb from Paragraph Space Process Name Objects-Action * 

is entered S EnterCustPhone Customer, Data entry (DE) 

Order (R) to create S CreateOrder 

are displayed S DisplayOrderVOO Order, VOO (D) 

VOO(DE) are entered S EnterBarCode 

are retrieved S Retrievelnventory Video Inventory (R) 

Videolnventory (D) 

Order (Process) 

Order (DE) 

are displayed S Displaylnventory 

computes S ComputeOrderTotal 

is entered S EnterPayAmt 

is computed S ComputeChange Order (P) 

* Actions are (R)ead, (W)rite, Data Entry (DE), (D)isplay (P)rocess in memory, (PR)int 

The opposite situation is true of program tem­
plates. The nonobject methods, because they are 
used mostly for COBOL applications, can take 
advantage of program template libraries easily and 
effectively. As much as 60-80% of all COBOL code 
is boilerplate, that is, code which does not vary from 
one program to another. The boilerplate can be stan­
dardized and provided as program templates. 

With object methods, the boilerplate in an object 
package is minimal but still can be standardized. The 
remaining code is either reused or customized. The 
types of COBOL template programs, for instance, a 
report with a sort, do not exist in the same form as 
objects. There might be a report object and there 
might be a sort object, and both might be reusable, 
but the code for using either object is most likely 
provided by custom developed code. 

Role of CASE 
Computer Aided Software Engineering (CASE) 
tools are critical to maintaining applications at the 
functional level rather than at the code level. The 
argument for CASE runs something like this. The 
40-20-40 rule applies to software engineering appli­
cation development. The rule states that 40% of the 
work is performed during feasibility, analysis, and 
design; 20% is during coding; and the remaining 
40% is during testing (see Figure 18-3). 

The 80-20 rule also applies (see Figure 18-3). 
According to this rule, 20% of the develop­
ment work is performed during the original applica­
tion development. The other 80% is performed 
during maintenance. This ratio holds because main­
tenance is a much longer period of an application's 
life. 

Putting these two rules together, to gain substan­
tive productivity increases we need to reduce time 
spent on coding, testing, and maintenance more than 
we need to reduce the time spent on analysis and 
design. CASE that covers analysis and design only 
reduces the time spent on documentation and main­
tenance of documents. CASE that includes database 
schema generation and code generation further 
reduces the coding, testing, and maintenance activi­
ties. Fully integrated CASE tools, I-CASE (see 
Chapter 3 and Automated Tools section of this chap­
ter), that interface with code generators, support all 
of these productivity improvements. With I -CASE 
tools, maintenance changes are reflected in the 
requirements for an application. The requirements 
are, in turn, used to regenerate the database schemas 
and code for the application. Thus, the changes take 
place at the logical level and are automatically gen­
erated by the CASE tool at the physical level. The 
capability to do all application maintenance in this 
way is not here yet but should be before the new 
century. 



Development 
Time-20% 

Application Change Management 741 

Maintenance 
Time-80% 

FIGURE 18-3 Application Life Cycle Time Distribution 

A more futuristic feature of CASE tools will be 
the ability of the tool to recognize reusable analysis 
and design fragments, rather than relying on humans 
to recognize reusable code fragments. Purchasable 
options of the CASE tools will include intelligent 
options to detect feature and function similarities 
across applications. The fragments would then be 
imported from the original library to the using 
application library (or repository). Very intelligent 
CASE will be able to recognize a design fragment, 
logically link to the base definition of the reused 
item, and use already operational code modules. 
This level of intelligent CASE that could manage the 
use of reusable code may surface in our lifetimes, 
but not soon. 

APPLICATION _____ _ 
CHANGE ___________ __ 

~ANAGEMENT ____ __ 

Importance 
Applications frequently undergo redesign. Three 
typical conditions for redesign are assignment of a 
new management team, a project that is chronically 

over budget, late, and full of bugs, and the loss of the 
user-owner confidence that the SEs understand their 
needs. Even without drastic redesign, reviews (e.g., 
for user agreement or quality assurance) frequently 
turn up items that were originally compromised or 
rethought several times before final version agree­
ment. The history of decisions and the reasoning 
about decisions is rarely kept as part of project notes. 
But, any project manager and SE can tell you that 
they frequently rehash the same arguments and 
reasonings over and over, even reaching the same 
conclusions. 

In a paper-based work environment, keeping 
track of the history of decisions is not practical; so 
much paper would be generated that finding any­
thing becomes impossible. In a CASE environment, 
or in an imaging environment, maintaining the his­
tory of application decisions electronically becomes 
a manageable, and sometimes desirable, activity. 
The ability to recall reasoning through a decision, 
whether it is logical or political, can save time and 
provide continuity between managers. 

Finally, changes in the business, legal require­
ments, or stakeholders in the application can all 
necessitate legitimate changes to application de­
signs. Knowing the history of decisions sometimes 
makes them more palatable and easier to convey to 



742 CHAPTER 18 Change Management 

staff. For instance, being able to relate a change of 
design to a developing business situation helps those 
who must cope with the change appreciate the busi­
ness of the application. If the change is to keep a val­
ued customer or increase competitiveness in a new 
area, the systems developers are more likely to be 
enthusiastic about shifting design. 

Changes can be to requirements, designs, pro­
grams, interfaces, hardware, or purchased software. 
Most changes are initiated from within the organi­
zation developing the application, but might be 
motivated by some outside event, such as a change 
in laws. Using change controls protects the devel­
opment team from user whims while allowing for 
action on legitimate requests. The idea that a speci­
fication is frozen, meaning not changeable after it is 
accepted as complete, motivates users to be as com­
plete in their thinking as possible. 

Designs do not stay frozen forever. Usually, once 
an application begins coding, no changes are imple­
mented until the application becomes operational. 
Then the project manager, SE, and user review the 
backlog of requests to develop priorities and plan the 
changes. Some changes may be so critical that the 
design is unfrozen to add the crucial functionality, 
regardless of the phase of development. 

Change Management 
Procedures 
Change control management is in effect from the 
time the work product is accepted as complete until 
the project is retired. First, baseline work products 
that are to be managed are identified. A baseline 
work product is a product that is considered com­
plete and that is the basis for other, current work by 
the project development team. A baseline document 
would be, for instance, the functional requirements 
specification after it is accepted by the user. 

A history of change request file actions for a func-
tional specification are listed here as an example. 

1. Create Open Request 
2. File Impact Statement 
3. File Approval of Schedule and Cost signed 

by User/Owner 

4. Complete Project Manager's Check List for 
the Change 

5. File Documentation relating to changes. 
If documentation or programs changed, 
identify date and items updates completed. 
If procedures or training changed, iden­
tify dates at which revisions were 
operationalized. 

6. File Close Request Form Approved by 
User/Owner 

7. Summarize Dates, Durations, and Costs 

First, the baseline document is frozen, then 
change requests are added, but no action is taken. 
The fourth request, for example, might be urgent and 
receive immediate attention. When the functional 
specification is updated to accommodate the change, 
it is again frozen and the work continues. The three 
previous requests might have been added to the 
application if they did not significantly alter it. They 
may just as likely be ignored until after the applica­
tion is implemented. 

Changes can be classified in several ways. First, 
they can be classified by type as eliminating defects, 
improving performance, or changing functionality. 
Second, changes can be classified as required or 
optional. Third, change can be classified by priority 
as emergency, mandatory with a required end date, 
mandatory with an open end date, or low priority. 
Usually, eliminating defects is a required emergency, 
while changing functionality is required mandatory 
maintenance, and improving performance is optional 
and might have any priority. 

Knowing the change request classification deter­
mines whether it is subject to change control or not. 
Emergency changes usually circumvent the change 
control procedures in that the activities might all be 
followed but they are documented after the change is 
complete. All other change types should be required 
to comply with change controls. 

For example, changes to functional requirements 
can occur at any time, but once the functional 
requirements specification is approved, it is frozen 
until the application is operational. Changes are sub­
ject to change control: they are added to a change 
request list for future consideration unless given an 
emergency designation. 



Application Change Management 743 

Project # _____________ _ 

Project Name ____________ _ 

CHANGE CONTROL REQUEST 

Inittiator _____________ _ 

Department ____________ _ 

Reason for Request 

Description of Change 

Documents Affected: 

Func. Spec. 

Interface 

Design 

Mod. Spec. 

Code 

Operations 

User Doc. 

Class of Change 

Emergency 

Mandated 

Enhancement 

Other 

Initiator 

Owner 

Date 

Date 

FIGURE 18-4 Sample Change Request Form 

A procedure for change control (listed below) 
requires that a formal request for a change is sub­
mitted by the user to the project manager (PM). 

1. User sends the project manager and owner (if 
different person) a Change Request form (see 
Figure 18-4). 

Date _____________ _ 

Request # ____________ _ 

Catego[¥ of Change 

A. Reqts. 

B. Design 

C. Code 

D. Interface 

E. Hardware 

F. Other 

Prroject Manager Date 

2. Project manager and SE develop an impact 
statement. At this time, the project manager's 
Check List is used to identify all work 
actions and changes relating to the request. 

3. The Change Request is discussed with the 
User/Owner to establish priority, schedule, 
and cost changes. 



744 CHAPTER 18 Change Management 

4. Agreement is formalized and User/Owner 
approval of schedule and cost changes is 
obtained. 

5. Using the impact statement, application and 
all related documentation are changed. 
Implement the change. As tasks are com­
plete, check off the task on the project man­
ager's Check List. 

6. User/Owner approval to close the request is 
obtained and the request is closed. 

The PM and SE define the schedule and cost 
impacts of the change (see Figure 18-5). The 
changes are then discussed with the user. Based on 
the negotiation with the user, the change is assigned 
a priority for action, and the cost and schedule are 
changed. 

The request, expected date of action, schedule 
change, and cost increments are added to a project 
history file. The changes may be monitored by a 
Change Control Clerk, a person charged with 
maintaining project history and change control 
records, and with issuing a monthly change control 
report. A Change Control File contains all requests, 
correspondence, and documentation about changes. 
An Open Change Request is created when the 
request is made and a change number is assigned. 
The open change request stays on file until the 
request is completed, closed, and reported. 

As the change is made, affected items are up­
dated, including the appropriate documentation, 
code, training, and so forth (see Figure 18-6). A proj­
ect manager's check list is used to check off required 
actions. The new documentation is filed with the 
Change Control Clerk who distributes it to all inter­
ested parties. 

The completion date for the change is entered in 
the Change Control File. The change is identified as 
closed in the next status report and the open request 
is removed from the Change Control File. 

Depending on the organization, the IS executive 
might want to track change requests for projects to 
identify success in meeting requests. Overall costs of 
changes for a year are used as one indicator that an 
application is a candidate for either retirement or 
reengineering. In such cases, both costs and volumes 
of change requests are tracked through the change 

control process. Summary reports by project of the 
changes over a given period, or comparing periods 
(e.g., a current period compared to the same period 
last year) can be developed. Three such reports are 
shown as Figures 18-7 through 18-9 for total cost 
by type, cost and schedule impacts, and change 
requests, respectively. 

Historical Decision Logging 
At the beginning of the project, the project manager 
and SE decide to use tools to store the decision 
process. This means that either electronic group 
meetings are used or that a written version of meet­
ings and decisions is maintained and stored in word 
processed form. With electronic meetings, the elec­
tronic transcripts are maintained. With manual 
recording, the old version is updated and renamed 
when a document changes. For instance, functional 
specifications for ABC might be named ABCFS­
mmddyy, where ABC is the company, FS abbreviates 
Functional Specification, and mmddyy is the date. 
The date portion of the name would change for every 
major change of the document. The change man­
agement procedure in the next section would be 
followed. 

Documentation Change 
Management 
Documentation changes should be identified by a 
change table of contents at the beginning of each 
document. The change table of contents includes the 
effective date, affected sections of the document, and 
a summary of the change (see Figure 18-10). The 
purpose of the change table of contents is to sum­
marize all changes for the reader. 

Changes should be redlined in the text to iden­
tify the changed portion. If the old information is 
important, it may be moved to a footnote, dated, and 
labeled as a previous version. An example of this 
type of documentation change is shown in Figure 
18-11. Keep in mind that you also keep the old ver­
sion of the document for history. 

(Text continues on page 749) 



Application Change Management 745 

Project # ______________ _ 

Project Name _____________ _ 

Impact of Change Request: 

Impact 

Type Cost 

A. 

B. 

C. 

D. 

E. 

F. 

Total 

Initiated Date 

Analysis Date 

Development Date 

Testing Date 

Implementation Date 

Comments: 

Initiator 

Owner 

Person 
Days 

Scheduled 
Completion 

Date 

Date 

CHANGE CONTROL IMPACT ASSESSMENT 

Business 
Days Budget Control 

Initiation Date 

Request # 

Amount 

Approval Date 

Actual 
Completion 

Prroject Manager 

FIGURE 18-5 Sample Change Request Impact Form 

Date _________ _ 

Request # ________ _ 

Date 



746 CHAPTER 18 Change Management 

Project # ______________ _ Date _________ _ 

Project Name _____________ _ Request # ________ _ 

PROJECT MANAGER CHANGE CONTROL CHECK LIST 

DEVELOPMENT 

Required Completion Date 

1. QAlDocumentation Review 

2. Update Source Document(s) 

3. Update Baseline Document(s) 

4. Update Program Specifications 

5. Revise Code 

6. Update User Documentation 

7. Update Operations Documentation 

8. Other: _______ _ 

IMPLEMENTATION 

Required Completion Date 

1. Baseline Documents Update 

2. Requirement Change 

3. Design Changes 

4. Programming Changes 

Pgm #'s __ , __ , __ 

5. Unit Testing 

6. System/Regression Testing 

7. Interface Changes 

8. Operations Changes 

9. Other: _______ _ 

Comments: 

Initiator Date 

Owner Date Prroject Manager Date 

FIGURE 18-6 Project Manager's Change Check List 



...... 
~ ...... 

CHANGE CONTROL ANALYSIS BY TYPE 

PROJECT-TO-DATE 

Number and Cost of Change by Type 

A B C D E 
Application Name: # Cost # Cost # Cost # Cost # Cost 

1. Branch Pilot 60 $45.6 $ 2.6 3 $40.7 

2. Securities Transfer 17 - 2 -

3. Settlements 16 36.0 11 18.6 

4. Float Allocation 3 6.0 16 $11.0 3 .4 

Total 93 $81.6 15 $27.2 18 $11.0 6 $41.1 

Change Type Legend 

A. Requirements/Design 
B. Application Programs/Testing 
C. Documentation 
D. Hardware 
E. Purchased Software 
F. Interfaces 
G. Application Support 

Notes: Costs in thousands 
Changes with no cost are planned maintenance. 

FIGURE 18-7 Summary Report of Change Costs 

Month of: May, 1994 

F G Total 
# Cost # Cost # Cost 

64 $ 88.9 

19 

2 .5 29 55.1 

$10.0 23 27.4 

3 $10.5 135 $171.4 



748 CHAPTER 18 Change Management 

CHANGE CONTROL COST/SCHEDULE IMPACT* 

Current Month 

Application Cost 

1. Branch Pilot 

2. Securities Transfer $ 15.0 

3. Settlements 111.0 

Total $126.0 

* All data based on change Submission Date 

Cost in thousands 

Schedule in business days 

Schedule 

8 

64 

72 

Year-to-Date 

Cost Schedule 

$ 48.8 24 

15.0 8 

111.0 64 

$174.8 96 

FIGURE 18-8 Summary Report of Cost and Schedule Impacts 

CHANGE CONTROL ACTIVITY 

Current Month Year-to-Date 

Project Name S P A D 0 C S P A D 0 C 

1. Branch Pilot - - - - - - 6 1 4 1 1 3 

2. Securities 
Transfer 3 1 2 - 1 1 22 1 18 3 6 12 

3. Settlements 16 9 7 - 3 4 16 9 7 - 3 4 

Total 19 10 9 - 4 5 42 11 29 4 10 19 

LEGEND: 

S Submitted 
P Pending 
A Approved 
D Disapproved/Cancelled 
o Open 
C Completed 

FIGURE 18-9 Summary of Change Requests 

Month of May, 1994 

Project-to-Date 

Cost Schedule 

$ 88.9 39 

25.0 14 

225.0 140 

$338.9 193 

Month of May, 1994 

Project-to-Date 

S P A D 0 C 

64 1 51 12 25 26 

22 1 18 3 6 12 

16 9 7 - 3 4 

102 11 76 15 34 42 



Software Management 749 

CHANGE PAGE 

Page No. Reason for/description of change Date 

1-48 Original issue 11/4/93 

All Audit review and Revisions 1/3/94 

1-2,22 Corrections and revisions to reflect organization changes 2/6/94 

6,9,37-44 Describe imaging interface 6/3/94 

FIGURE 18-10 Sample Document Change Table of Contents 

SOFTWARE ____________ _ 
~ANAGEMENT ________ __ 

Introduction 
Two of the roles of the SE in software management 
are to recommend what type of maintenance should 
be performed and to select code maintenance soft­
ware. These are discussed in this section. 

Types of Maintenance 
The types of maintenance are minor modifications, 
restructuring, reengineering, or rebuilding.1 Minor 

1 This discussion is based on Martin, 1990. 

modifications are changes to existing code and can 
be any of the project manager classifications dis­
cussed above. Restructuring is the redevelopment 
of a portion of an application with a bridge to the 
old application. Reengineering is the reverse analy­
sis of an old application to conform to a new 
methodology, usually Information Engineering or 
object orientation. Reengineering is also known as 
reverse engineering. Rebuilding is the retirement 
and redevelopment of an application. 

To select the appropriate type of maintenance, 
several questions are asked (see Figure 18-12). First, 
ask if the software works. If the answer is no, 
you retire the old application. Then you reengineer 
and rebuild it using a methodology. If the answer 
is yes, you continue to the next question: Does the 



750 CHAPTER 18 Change Management 

Functional Specification Settlements 1/15/94 
Page 22 

The settlements system uses relational database design techniques and fully normalized data entities.1 The database 
design is fully documented in Figure 2-1. The diagram shows the 17 entities used in settlements processing and the 
relationships between them. Each entity and its descriptive attributes are fully described in the data dictionary attached as 
Appendix 1; they are also available on-line through both IEF, the CASE tool being used for the application, and Project­
Notes, the on-line help tool. 

Prior to January, 1994, a non normalized, relational approach to the data was used. This resulted in a loss of data 
integrity that necessitated strict enforcement of relational theory to comply with audit requirements for the application. 

FIGURE 18-11 Sample Documentation Change with Old Contents 

Is the maintenance 
cost high? 

Does the 
software 
work? 

Reengineer 
and 
rebuild 

Restructure parts that do not 
work; reengineer the application 
as part of on-going maintenance. 

Revise existing code 

FIGURE 18-12 Decision Tree for Selecting the Maintenance Type 



application have a high maintenance cost? If the 
maintenance cost is low, the answer is no; then do a 
simple revision. If the answer is yes, immediately 
restructure the parts that do not work, and reengineer 
the entire application as part of on-going work. 

Reengineering 
Reengineering is the analysis and design of an 
existing application to bring it into conformance 
with a methodology. When the application conforms 
to a methodology, it is rebuilt. To reengineer pro­
gram code, the code first must be structured. Code 
restructuring can be done by automated tools. The 
restructured code from all programs in an applica­
tion is entered into a CASE tool with reverse engi­
neering capabilities. 

Code restructuring also can be done manually. If 
no CASE products are used, the code is analyzed and 
the underlying data and process structures are 
mapped into a methodology. If Information Engi­
neering is used, for instance, an entity relationship 
diagram (ERD) and a process data flow diagram 
(PDFD) are first developed for each program. Then, 
the diagrams are consolidated across programs to 
develop application ERDs and PDFDs. A data dic­
tionary to document diagram contents is developed. 
The ERD is normalized and compared to the auto­
mated data to determine the extent of deviation from 
the normalized state. If the denormalized state was 
for performance purposes (this is an example of the 
importance of a historical file of design decisions), 
then problems with data integrity resulting from the 
denormalization should be noted for correction. 
Finally, the detailed process diagrams are used to 
develop a process hierarchy diagram. The hierarchy 
diagram is matched to the real organizational func­
tions to determine the extent of application function 
redesign required. 

If the methodology is object-oriented, the code 
modules are classified by object type and function. 
If multiple objects call a function, it is classified 
as reusable and set aside for further analysis. After 
module classification, the extent to which the 
code matches a true object design is determined. 
Reusable modules are evaluated to ensure that they 
perform single functions, hide information, and use 

Configuration Management 751 

minimal coupling techniques. For minor deviation 
from the object method, individual modules or 
object types are reengineered to bring them into con­
formance with object tenets. For major deviation, the 
application is reengineered and redeveloped using 
object techniques. 

CONFIGURATION ____ _ 
~ANAGEMENT ____ _ 

Introduction 
In the mainframe world, one disk storage device can 
hold 10,000 or more different data files; large proj­
ects develop hundreds of program modules every 
year; and programmers may manage several differ­
ent versions of code modules at one time. To support 
multiple users across different platforms might 
require multiple operational versions and variations 
of code modules, and they all have to be maintained. 
Configuration management is the identification, 
organization, and control of modifications to soft­
ware built by a programming team. Code library 
management software provides a means to identify 
and manage the baseline for program code modules. 
The baseline is the official version of a code mod­
ule that is in production use at any time. Two types 
of code libraries and the application types they sup­
port are discussed in this section. Derivations, which 
identify each module's history, are included in the 
discussion. 

Configuration management addresses problems 
originally present in large COBOL applications but 
are equally useful for the more complex environ­
ments of object and distributed software. A pro­
grammer might keep several copies of a program 
and personally track which is in production at any 
one time. The problem with individual programmers 
maintaining their own copies is that eventually their 
multiple copies will diverge and knowing which is 
the most current can be a problem. Trusting individ­
uals to be good librarians is asking for errors. 

Assume next that one official version of programs 
exists. If several people are performing maintenance 
tasks on the one version of a program, a high prob­
ability exists that the changes of one person will 



752 CHAPTER 18 Change Management 

interfere with the changes of the other person. 
Either the changes of one will be cancelled by being 
overwritten by the other, or one person will have to 
wait while the other makes the changes. Both situa­
tions lead to delays and are error prone. 

In the complex world of distributed systems and 
multiple hardware/software platforms, different ver­
sions of the same software might be present. The 
only differences might be to accommodate platform 
idiosyncrasies, but such differences imply multiple 
versions of software that can cause maintenance 
problems. When a general change is made, somehow 
it must be verified as being made to all versions for 
all platforms. Specific changes for each platform 
must also be accommodated to allow fixing of bugs 
or changes that only affect one type of hardware. 

Configuration management that consists primar­
ily of code library management software plus man­
ual procedures supports both single and multiple 
versions of programs to control for different plat­
forms, evolving functionality, and debugging of soft­
ware changes. 

Types of Code Management 
The most common code management procedure is 
the creation of derivations. The two code manage­
ment types are for versions and variations. They can 
all be supported in the same software library or can 
be in separate libraries. Each type serves a differ­
ent purpose. 

Derivation 

A derivation is a list that identifies the specific ver­
sions of multiple modules that were linked to create 
a load module or joint memory resident work unit. 
The purpose of a derivation is to allow tracing of 
errors that might be due to vendor software. All soft­
ware used to create a load unit are specifically iden­
tified with vendor, version, and last installation date. 
The sample shown in Figure 18-13 identifies specific 
platform, operating system, compiler, for crea­
tion of a work unit, and the dates of the creation of 
each stage. If a problem were found, for example, a 

rounding error occurs in computing interest, the 
error is traced backward through the development 
software to find the problem. The program is 
checked first, then the compiler, then the operating 
system, and so on. Let's say, for instance, that a 
new version of the compiler was installed one 
week before this module's creation, and that, upon 
inspection, the rounding algorithm used only 
allowed four decimal places to real numbers. If more 
than four places are needed, a new compiler would 
be required. 

The difference between a load module and joint 
memory resident work unit is in the dynamism of the 
processes. A load module is a compiled version of 
one or more source code modules that have been 
compiled and link-edited together, forming the load 
module. Compilation translates a module from 
source code to object (assembler) code. Linkage 
editing resolves references to other modules by 
replacing Call references with relative memory 
addresses, thus joining related modules for process­
ing as a single work unit (see Figure 18-14). 

A joint memory resident work unit is a series of 
load modules that work together in a dynamic, real­
time environment. Linkage editing creates static 
modules that are fixed until the next linkage edit 
process. In real-time application environments, one 
goal of the procedures is to relieve the need to freeze 
specific module references until they are needed in 
operation. This liberates programmers from the link­
age editing process but can create chaos when an 
error occurs and must be traced. Both situations 
require maintenance of derivations. 

Recording of derivations requires precise identifi­
cation of the software, option, code inputs, respon­
sible person, and date that a load module was created 
(see Figure 18-15). The level of detail for derivations 
should match each process a module undergoes from 
source code to load unit. This means that if the trans­
lation is from source code to load unit, there are two 
derivations. If the translations are from source to 
object to load unit, there are three derivations. All 
software used in creating the derivation is recorded, 
including the compiler, linkage-editor, and so on, 
and their versions. Derivation maintenance provides 
an audit trail for software and is the only way that 
errors can be guaranteed to be traceable. 



Work Unit Name: 
Creation Date: 

Date Time Software Options 

2/1/93 2:53a Cob 88,2.1 Defaults 

2/1/93 2:54a Cob 88, 2.1 Defaults 

2/1/93 2:56a Cob 88, 2.1 Defaults 

2/1/93 2:58a Cob 88, 2.1 Defaults 

211/93 2:59a Cob 88,2.1 Defaults 

2/1/93 3:00a LinkEdit 88,3.7 Defaults 

Comments: 

FIGURE 18-13 Sample Derivation 

Delta Version 

Delta means difference. A delta file is a file of dif­
ferences between versions of a program. Versions 
are multiple copies of a single program that represent 
incremental changes. 

Configuration Management 753 

Code Module Person 

STL1001 A. Bryon 

STL 1002 A. Bryon 

STL 1003 A. Bryon 

STL1004 A. Bryon 

STL1005 A. Bryon 

STL 1001, A. Bryon 
STL1002, 
STL1003, 
STL1004, 
STL1005 
object 

When a delta version is kept, the main program 
logic is maintained once. Then, the delta version is 
applied to the main logic, with specific lines of code 
being replaced to derive the delta (see Figure 18-16). 
The advantage of using a delta strategy is that 
changes in functionality affect only the original 



754 CHAPTER 18 Change Management 

Program Source 
Code 

Module 2 

Compiler 
Software 

Object Code 
Module 1 

Object Code 
Module 2 

Object Code 
Module 3 

Load 
Module 

FIGURE 18-14 Compile and Link Edit 

code. The disadvantages are that loss or corruption 
of the original also affects all deltas, and that delta 
references based on code line numbers can lead to 
errors when the original changes. 

Many software librarians and operating system 
editors work on the delta version principle. For 
instance, the Unix editor maintains delta versions of 
changes to text files, which includes program code. 
Using line numbers as the reference point, the origi­
nal is stored. As changes are made, changed lines are 
kept plus new line numbers are appended in a delta 
file. When the file is referenced, the original is 
loaded into memory, then the deltas are applied 
until the memory version reflects all changes. 

When using a delta version, then, it is important 
to create a new file periodically to save storage and 
processing time for delta overlays. This minimizes 
the extent to which you are making changes to 

changes. To create the new file, you save the old file 
with a new name. Renaming modules is necessary to 
create a permanent version of the program with 
deltas incorporated into the saved version. Maintain­
ing many renamed versions can cause errors in 
remembering the most current version, too. 

Variation Storage 

Variations are alternative, interchangeable program 
modules created for multiple environments or pur­
poses. For instance, you might create an IBM PS/2 
version of a program and a Novell Netware 386 ver­
sion of a program. The functionality is the same, but 
specific modules are different to support the specific 
hardware/software platform. 

Variations in a COBOL environment, for in­
stance, might have a different interface for users in 



Item 

Date 

Time 

Software 

Options 

Code Module 

Person 

Hardware 

Installation 

Definition 

Date when the derivation was 
created 

Time of day when the derivation was 
created 

Specific software used to create the 
derivation 

Software options selected or defaults 

Name of input module(s) 

Person executing the derivation 
create 

Machine ID if there are multiple 
machines 

Location or other installation ID 
when there are multiples 

FIGURE 18-15 List of Requirements for 
Recording Derivations 

the United States and users in South America. Vari­
ations in an Ada environment, as another example, 
might be for performing the same process using 
integers or using real numbers. 

Variations are named rather than numbered 
because there is no meaningful relationship between 
variations (see Figure 18-17). The name of each 
variation should reflect what makes it different. For 
instance, the names PS2S0RT (for PS/2 sort routine) 
and N386S0RT (for Netware 386 sort routine), 
would be good variation names because they 
identify both the platform and the function of 
the variation. 

Configuration Management 
Procedures 
Strict configuration management requires that one 
person (or group) on each development and mainte­
nance project be assigned as the project librarian. 
The project librarian is the only person authorized 
to write into the baseline library for the project. The 
procedure is summarized below. 

Configuration Management 755 

1. File baseline code module. 
2. Allow checkout for read-only purposes to 

individuals needing access. For instance, test 
team needs access for testing. 

3. Allow chargeout for update to authorized 
programmers. 

4. Monitor that chargeout items are returned. 
5. Notify testers of chargein items for testing. 
6. Verify that the text preamble to code identi­

fies the change, date, programmer, and lines 
of code affected. 

7. Chargein the item, refiling the module. 
8. If derivations are used, file the derivation 

with project documentation. 

When a project is in the code and unit test stage, 
the project librarian establishes an application 
library. As each module is unit tested and moves into 
subsystem and integration testing, the programmer's 
final version is given to the project librarian for 
addition to the library. 

Error fixes, changes during testing, and mainte­
nance changes are all managed the same way. The 
programmer tells the librarian she or he is checking 
the module out for update, and the librarian keeps 
track of this fact. The code is copied out of the 
library and into the programmer's own workspace. 
The chariges are made and unit tested. Upon com­
pletion of the unit test, the programmer gives the 
module and documentation to the librarian for 
reentry to the library. 

The librarian checks that no other changes have 
been made during the time the programmer has the 
module out for update. If not, the module is rewritten 
into the library. 

Depending on the library software used, addi­
tional features allow the librarian to issue a charge­
out against a module. A charge-out causes a lock 
to be placed on the module such that no other char­
geouts for update may be performed until the lock 
is removed. When the changed version of the code 
module is reentered into the library, a charge-in 
occurs. A charge-in is the updating of a charge-out 
module to remove the lock. The more intelligent the 
software, the more actions taken during charge-in. 
For instance, some library software packages initiate 
a regression test when a chargein action is, taken. 



756 CHAPTER 18 Change Management 

Program 
Source 

Code ~ 

Edit session~ 
...---~---

Add line 23 
Change 123 /s/ses Delta 1 

Edit Session #2 1 

Delete 15-20 
Change 342/s/es/ 

Save 

FIGURE 18-16 Delta Version Development 

Save 

.. . 

The disadvantage to having a formal project 
librarian is that the librarian becomes indispensable. 
The risk is that the librarian might become a bottle­
neck to updating the production library. For instance, 
if one person is the librarian, he or she might be 
called for jury duty and be out of work for several 
weeks. During that time, unless another librarian is 
named, no updates can be performed. 

AUTOMATED TOOLS __ _ 
FOR CHANGE _____ _ 
~ANAGEMENT _____ __ 
There are different classes of automated tools for 
each type of change management. Each class of tools 
is discussed separately in this section. 

.. 

Delta 2 

Collaborative Work Tools 
Collaborative work tools support group decision 
making and facilitate the development and histori­
cal maintenance of project decisions. Collaborative 
tools have developed out of research programs in 
group decision making at the Universities of Arizona 
and Minnesota in collaboration with IBM. Relatively 
primitive software of the 1980s for facilitating meet­
ings has blossomed into a new industry for facilitat­
ing group work. Xerox Palo Alto Research Center 
(PARC) is a major contributor of new technology to 
this industry. 

The specific technologies involved range from 
the relatively familiar, like electronic mail, or 
e-mail, to the exotic, for instance, media space 
clear boards that change our concepts of being there 
(see Table 18-2). Many of the technologies are 
emerging, but the emergence is at such a rapid 



Automated Tools for Change Management 757 

Variation 1 Variation 2 

Common 
Program 

/ 

Source ~ 
Code r ~ , 

Compile/ 
LinkEdit 

Load Module 
Variation 1 

FIGURE 18-17 Variation Development 

rate that by the new century we will routinely 
use many of these technologies at work, if not at 
our homes. 

Media space technology allows several partici­
pants to sit on opposite sides of a clear glass board 
display that has electronics imbedded in it. The 
board can display computer images, text, and 
graphics as well as reflect hand-drawn notes and 
graphics of the meeting participants. The most 
effective use at the moment is between two people 
who both have clear access to the board. Clear 
boards allow people to see both the work and the 
co-worker, minimizing attention shift time. At the 
moment, the technology requires the people to be 
co-located, that is, in the same room; but the inten­
tion is to provide video conferencing capabilities 
using clear boards that are mirror images, thus sim­
ulating the face-to-face experience with the added 
electronic board interface. Thus, the user sees both 

Compile/ 
LinkEdit 

, 

Load Module 
Variation 2 

the face of the other participant( s) and the contents 
of the board simultaneously. By removing the limi­
tations of both time and geography our concept of 
being there is altered. By removing these limitations, 
clear board technology facilitates group work. This 
technology was developed, in this country, at Xerox 
PARCo 

A different type of product provides a text-based 
communication environment that supports group 
passing of messages with storage of reader com­
ments. Such a product, Notes,z provides an e-mail 
feature with the capability of user-built discussion 
forums and other data-sharing features. These prod­
ucts allow the development of decisions, history of 
the process, and easy sharing of information within 
and between work groups. 

2 Notes® is a product of Lotus Development Corp. 



758 CHAPTER 18 Change Management 

TABLE 18-2 Collaborative Work Tools 

Tool 

Cruiser®TM 

Greyboard 

Vendor 

Bellcore 
Morristown, NJ 

NeXT Computer 
Mountain View, CA 

Functions 

A video windowing system that 
allows the user to cruise offices visually 
and, perhaps, initiate a visit. Uses tele­
phone and video technologies. 

Multiuser drawing program 

Groupkit Dept. of Computer Science 
University of Calgary 
Calgary, Alberta, Canada 

Real-Time Conferencing Toolkit; 
requires Interviews Software, Unix 
running X-Windows 

Notes Lotus Development Corp. 
MA 

E-mail, group bulletin board, data sharing 

Oracle Mail, Alert, Toolkit, 
and Glue 

Oracle Corp. 
Redwood City, CA 

E-mail, application development, and 
application programming interfaces 
forLANs 

Timbuktu™ Farallon Computing, Inc. 
Berkeley, CA 

Sharing of single-user software among 
several users 

Video Whiteboard ACM SIGCHI Proceedings 
'91,pp.315-322 

Wall-mounted whiteboard that portrays 
shadow of the other user 

VideoDraw ACM SIGCHI Proceedings 
'90, pp. 313-320 

Multiuser drawing program 

Windows for Workgroups 

Documentation Tools 

Microsoft, Inc. 
Belleview, WA 

Word processing tools, such as WordPerfect, are 
rapidly being replaced with more sophisticated and 
intelligent products for document development and 
maintenance (see Table 18-3). 

In the old days of the 1980s, word processors 
became sophisticated enough to support such func­
tions as redlining, the identification of changes in 
documents by means of a vertical line drawn in the 
margin of the change area. Typical word processors 
that merely automate the document preparation, such 
as redlining, still require significant text manipula­
tion and creation of multiple documents with redun­
dant information. Newer tools are beginning to 
emerge in the workplace that will eventually become 
as important as word processing has been. 

LAN -based windows sharing 

One drawback of serial, word-processed text is 
that ideas that interrelate to many different topics 
either have to be replicated or cross-referenced in 
some way. Hypertext software eliminates that need 
by allowing any number of associative relationships 
to be defined for a given text item. Hypermedia 
extend hypertext to support audio, video, image, 
graphics, text, and data. In hypermedia, these multi­
ple technologies may all be interrelated and co­
resident in one environment. In addition, because 
these tools do not restrict the number of connections 
an item may have, and because they use mainstream 
computer technology, application documentation 
remains on-line and interactively available to all 
users. Of course, interactive availability also implies 
a need for hyperlibrary management to control 
changes to library contents. 



Summary 759 

TABLE 18-3 Documentation Maintenance Tools 

Tool 

Folio Views 

Hypertext™ 

MS/Word 

Word Perfect and 
Word Perfect Mac 
with Grammatik 

Vendor 

Folio 
Provo, UT 

Apple Computer 
Cupertino, CA 

Microsoft, Inc. 
Belleview, WA 

Word Perfect Corp. 
Orem, UT 

Functions 

Works with Word Perfect to provide 
multimedia support, highlighting and 
post-it type document annotation. 

Associative management of text and 
graphics 

Word processing 

Word processing plus grammar checking 

Words and Beyond Lundeen and Associates 
Alameda, CA 

Documentation production including 
text and graphics 

Tools for Reverse Engineering 
of Software 
Reverse engineering tools are rapidly becoming so­
phisticated enough that the needs for human inter­
vention and extensive training to understand them 
are diminishing. Several CASE products support 
reverse engineering through the analysis of code to 
determine data and process structures that underlie 
the code (see Table 18-4). Individual programs are 
analyzed at this point. By the next century, whole 
applications will be able to be analyzed with intelli­
gent functions pointing out inconsistencies and 
errors across the old 'spaghetti' code. All tools rep­
resented in this section are available in the market 
and are rated as usefully working products. 

Tools for Configuration 
Management 
Configuration management tools, commonly called 
software libraries or code libraries, have been around 
since the early 1970s (see Table 18-5). The more 
sophisticated, newer models make version and vari­
ation management simpler by supporting complex 
functions, such as conditional compilation. 

SUMMARY ________ ~ __ _ 
To increase productivity in the application life cycle 
and reduce time spent in the code, test and mainte­
nance phases are important. To reduce the effort in 
these phases, applications should use change control, 
design for maintenance, use reusable libraries, and 
use code templates. Object methods are best suited 
to reusable libraries; nonobject methods are best 
suited to program templates. 

I -CASE is critical in reducing coding and testing 
through automatic code generation. I -CASE is also 
required to build intelligence to support reusable 
designs. 

If managing application change, change control 
procedures and management are critical. Require­
ments, designs, programs, interfaces, hardware, or 
purchased software are all subject to change. Change 
management procedures track requests from initia­
tion through implementation and allow management 
reporting of cost, types, and impacts of changes. 

Logging and management of historical decisions 
can be useful in volatile environments in which 
applications are subject to redevelopment. A histor­
ical decision log keeps track of arguments, reason­
ing, and rationales for decisions as they are made. 

Mter an application enters operation, documenta­
tion is still subject to change to reflect the current 



760 CHAPTER 18 Change Management 

TABLE 18-4 Reverse Engineering Tools 

Tool 

ADW /Maintenance 
Workstation 

Bachman Series 

Design Recovery 

Ensemble 

Hindsight 

RE for IE 

Smartsystem 

Via/Renaissance 

Vendor 

Knowledge Ware, Inc. 
Atlanta, GA 

Bachman Information Systems, Inc. 
Burlington, MA 

Intersolv, Inc. 

Cadre Technologies, Inc. 
Providence, RI 

Advanced Software Automation, Inc. 
Santa Clara, CA 

Texas Instruments, Inc. with 
Price Waterhouse 
Dallas, TX 

Procase Corp. 
Santa Clara, CA 

Viasoft, Inc. 
Phoenix, AZ 

TABLE 18-5 Software Configuration Management Tools 

Tool 

Copylib 

Data Expeditor 

Librarian 

Panvalet 

Vendor 

IBM 
Armonk, NY 

Data Administration, Inc. 

Pansophic Systems 
Lisle,IL 

Pansophic Systems, Inc. 
Lisle,IL 

Functions 

Reverse engineering for information 
engineering: Entity-relationship 
diagrams 

Process data flow diagrams 

Reverse engineering of data structures 

Reverse engineering of program 
structure 

Reverse engineering charts, metrics, 
and design 

Reverse engineering of C-Ianguage 
code: documentation, structure charts, 
complexity analysis 

Reverse engineering for information 
engineering: Entity-relationship 
diagrams 
Process data flow diagrams 

Reverse engineering of C-Ianguage 
code: function call graphing, syntax 
and consistency checking 

Reverse engineering of data structures 

Functions 

Software code library for IBM and 
compatible mainframes 

Data management software-Allows 
viewing of file definitions from Librarian, 
Panvalet, and Copylibs, to locate occur­
rences and variations of data. 

Software code library for IBM and 
compatible mainframes 

Software code library for IBM and 
compatible mainframes 



state of the application. A document table of con­
tents summarizes all changes and the parts of the 
document affected by each change. Similarly, soft­
ware documentation is kept in derivations to sum­
marize the actual software and steps used to develop 
a load module or work unit. Configuration manage­
ment is the use of software code libraries to manage 
the official, operational code modules of an applica­
tion. Delta version and variation management are the 
principle techniques. 

REFERENCES __________ __ 
Babich, Wayne A., Software Configuration Management: 

Coordination for Team Productivity. Reading, MA: 
1986. 

Baecker, Ronald M., ed., Groupware and Computer­
Supported Cooperative Work: Assisting Human­
Human Collaboration. San Mateo, CA: Morgan Kauf­
mann Publishers, Inc., 1993. 

Collofello, James S., and Jeffrey J. Buck, "Software 
quality assurance for maintenance," IEEE Software, 
September, 1987, pp. 46-51. 

Figlar Consulting, Inc., "Automating the reengineering 
process," presented to New York City Data Adminis­
tration Management Association (DAMA), May 21, 
1992. 

Ingram, Ray, "Application reengineering for productivity, 
performance, and cost effectiveness," Course Hand­
out, Multi-Soft, December 10, 1991. 

Lientz, B. P. and E. B. Swanson, Software Maintenance 
Management: A Study of Maintenance of Computer 
Application Software in 487 Data Processing Organi­
zations. Reading, MA: Addison-Wesley, 1980. 

Martin, James, Information Engineering, Vol. 3: Design 
and Construction. Englewood Cliffs, NJ: Prentice­
Hall, 1990. 

Nash, Kim S., "Whipping worn-out code into new 
shape," Computerworld, August 17, 1992, p. 69. 

BIBLIOGRAPHY _______ _ 

Babich, Wayne A., Software Configuration Management: 
Coordination for Team Productivity. Reading, MA: 
1986. 
Babich is a recognized al!-thority on the use of 
different types of libraries for configuration 
management. 

Exercises 761 

Baecker, Ronald M., ed., Groupware and Computer­
Supported Cooperative Work: Assisting Human­
Human Collaboration. San Mateo, CA: Morgan Kauf­
mann Publishers, Inc., 1993. 
This book reprints groupware articles from periodi­
cals, proceedings, and edited texts that might not 
otherwise be accessible to a reader. 

Lientz, B. P. and E. B. Swanson, Software Maintenance 
Management: A Study of Maintenance of Computer 
Application Software in 487 Data Processing Organi­
zations. Reading, MA: Addison-Wesley, 1980. 
Identifies the applicability of the 80-20 rule in the 
application life cycle with this study of software 
maintenance in business organizations. 

Mantei, Marilyn, and Ronald M. Baecker, eds., Proceed­
ings of CSCW '92: Sharing Perspectives. NY: Associ­
ation for Computing Machinery, 1992. 
This annual conference discusses trends and research 
in computer-supported cooperative work (CSCW). 
The proceedings of the most recent conference iden­
tify many emerging technologies that will alter the 
way we work. 

KEy TERMS ________ _ 

baseline 
boilerplate 
change control clerk 
change control file 
changes 
charge-in 
charge-out 
code library 
compile 
configuration 

management 
delta 
delta file 
derivation 
frozen specification 
hypermedia 
hypertext 
librarian 
linkage edit 

load module 
media space technology 
memory resident 

work unit 
minor modifications 
open change request 
program template 
proj ect librarian 
read only module 
rebuilding 
redlining 
reengineering 
restructuring 
reusability 
reusable module library 
reusable module 
reverse engineering 
variations 
version 

EXERCISES ____________ _ 

1. Delta Insurance Company has a policyholder 
subsystem that is causing them fits. Over the 



762 CHAPTER 18 Change Management 

years, the application evolved from using fixed 
length, multirecord type files to using a hierar­
chic database to using relational database. The 
programs did not change much, but the data 
structures changed radically. Program code was 
patched to provide for the new data structure. 
The amount of people-time allocated to policy­
holder maintenance grew 15% per year over the 
last five years and is now costing as much per 
year as it did in 1980 to develop the original 
application. No one ever considered reevaluat­
ing the subsystem for redevelopment, but they 
would like to now. Upon inspection, the docu­
mentation was found to be up-to-date and 
includes flow charts and data flow diagrams. 
There are no current diagrams of the data struc­
ture. There are also no historical files of deci­
sions or of changes. What should the company 
do to get this application in order? What type( s) 
of maintenance should they consider for the next 
set of changes? 

2. Discuss the ethics of group work tools. If a his­
tory is kept, does it violate anyone's privacy? 
What issues are involved in privacy versus open 
access to information in group work? Is there a 
right solution to these issues? 

3. Discuss the implications of group work tools for 
global organizations. If you consider cultural 
differences in, for instance, comfortable distance 
between acquaintances, how might cultural dif­
ferences impact the use of group tools? How 
might companies and cultures need to change to 
avoid misunderstandings with new tools? 

STUDY QUESTIONS ____ _ 

1. Define the following terms: 
delta 
derivation 
frozen specification 
reengineering 
reverse engineering 

restructuring 
rebuilding 
variation 
version 

2. Why is designing for maintenance important? 
3. Describe how determining reusability of a 

module works. 

4. How can program templates reduce code 
created? 

5. Which methodologies are best suited for , 
reusable libraries and program templates? 
Why? 

6. What is the significance of I-CASE product 
recognition of design fragments? 

7. Discuss the change management procedure 
recommended for applications undergoing 
development. 

8. Why is it important to have a baseline product? 
What happens to a baseline when the product 
changes? 

9. Write a job description for a Change Control 
Clerk. 

10. Describe the life cycle of a change request. 
11. What types of reports are useful to managers in 

tracking maintenance requests? ' 
12. What is the purpose of renaming documents 

when major changes take place? 
13. List the four types of maintenance actions that 

can be taken. Discuss the reasoning process for 
deciding which action to take. 

14. How is reengineering done in a manual 
environment? 

15. What is a code library? What are the variations 
in how a code library works? 

16. When a delta management system is used, why 
do you periodically need to create a renamed 
copy of the code? 

17. Describe the contents of a derivation. Why is 
each item necessary? 

18. Compare code versions to variations. 
19. What is chargeout and why is it important? 
20. What is the purpose of collaborative work 

tools? 

* EXTRA-CREDIT QUESTIONS 

1. Research collaborative work tools and develop a 
15-minute presentation to the class about tools 
on the market, or tools that should be available 
in the next five years. 

2. Get a sample demonstration copy of some 
emerging software that can be used for configu-



ration management, group work, decision 
history tracking, and so on. Show the demon­
stration to the class and spend some time brain­
storming about how the product might change 
work practices. 

Study Questions 763 

3. Develop the pros and cons of keeping a decision 
history. What legal or governmental require­
ments might impact the decision to keep a his­
toricallog? What political and organizational 
issues impact the decision? 



C HAP T E R 19 
SOFTWARE 
ENGINEERING 
AS A CAREER ----------------------,. ........ .r--II 

INTRODUCTION ____ _ 

In every student's path lies a career they will pursue. 
Nowhere are there as many varied opportunities as 
in information technology related professions. This 
chapter examines possible career paths for achieving 
software engineer status, maintaining job skills, and 
planning for your next job. After you have identified 
your own job requirements, we show one way to 
determine the likelihood of your job search success 
and a way to determine when you need to broaden 
your job requirements. 

EMERGING ______ _ 
CAREERPATHS ____ __ 

Software engineering used to be thought of as the 
province of computer scientists. Over the years, 
computer scientists tended to migrate into scientific 
and defense programming, operating systems sup­
port, and software package development. In those 
areas, they applied engineering methods to design­
ing and developing efficient and effective software. 
In contrast, business organizations used the term 
systems analyst to describe the person who applied 
computer skills to the development of business 
transaction processing applications. Computer sci-

764 

entists tended to build one-of, real-time applications 
while information systems (IS) specialists tended to 
build batch business transaction applications. As IS 
moved to on-line applications, the technology gap 
that somewhat fueled the split between the disci­
plines got smaller. 

Computer science (CS) SEs increasingly study 
the same topics as IS SEs. The term systems analyst 
is giving way to the term software engineer as engi­
neering techniques increasingly are used in business 
application development. The differences between 
the two groups are mainly in the emphasis on tech­
nology for CS and on application of technology in 
business for IS. The CS majors still tend to work 
in the traditional CS industries-defense, scientific 
organizations, and software development firms. The 
IS majors still tend to work in finance, manufactur­
ing, government, and retail. 

As teaching emphasis moves away from the 'one 
right way' approach to an ever growing set of theo­
ries from which we choose the most appropriate, CS 
and IS will converge even more. The two groups 
probably will not be melded completely, however. 
There is a need for both types of training that will 
continue to grow throughout the 20th century. The 
goal of both programs is to teach theories and 
approaches to problem solving with ways to apply 
them that prepare you for continuous change in the 
IS body of knowledge. 



For the last decade, the radical changes in appli­
cations development coupled with changes in the 
types of applications businesses build are resulting 
in a split of duties in the development environment. 
The first type of career is more technical. This 
SE will build ever more complex state-of-the-art 
applications using new technologies. The second 
type of career is less technical. These SEs work as 
liaisons to user departments and act as chauffeurs for 
computer usage to assist users who are not inclined 
to become computer literate themselves. Within a 
generation, most business people will be computer 
literate, and these jobs will evolve to developing and 
managing DSS and EIS for managerial staff. 

The issue over whether to get a degree in CS or IS 
is not too important from an employability perspec­
tive. There are careers for both types. Both types are 
useful and valuable to adding to our store of knowl­
edge about how to build applications. In this chapter, 
first job levels and types of jobs available are 
defined. Then, an approach to defining a first job (or 
next job if you are already employed) is developed. 
Finally, means to maintaining your competence in 
the ever-changing world of IS and information tech­
nologies are presented. 

CAREERS IN _____ _ 
INFORMATION _____ _ 
SYSTEMS ______ __ 

Job opportunities in information systems can be 
classified by level and job type. Job levels are gen­
erally classified as junior, intermediate, senior, lead, 
technical specialist, and manager. Each level is 
defined in terms of how much supervision is pro­
vided at the level and how much information and 
expertise the individual is expected to possess. Job 
type identifies the nature of the work performed. 

Level of Experience 
In this section, we discuss the job levels to which 
you might aspire. The levels are junior, intermediate, 
senior, lead, technical specialist, and manager. When 
times in a level and starting years of experience are 

Careers in Information Systems 765 

mentioned in each section, they imply years of dif­
ferent, changing experiences. Many people simply 
do the same thing over and over; this is not gaining 
experience. 

Junior 

Ajunior staff member is directly supervised, but is 
expected to work on his or her own on some aspects 
of a job. This is an entry-level position. Juniors are 
expected to have basic skills and ability to find 
information to enhance skills. They are in a learn­
ing mode most of the time. The time you might 
expect to perform in a junior-level position is about 
two years. 

Intermediate 

An intermediate staff member works independently 
most of the time, requiring direction on some activ­
ities. A mid-level person possesses a range of skills 
and experience but is still in a learning mode much 
of the time. Starting intermediate people have two 
to four years of experience. The average time at the 
intermediate level is from two to five years. 

Senior 

Seniors work unsupervised most of the time; they 
possess a wide range of both job and technical 
experience that is used to train and aid others. 
Senior-level staff supervise others, depending on 
the size and complexity of the project. Frequently, 
senior-level jobs are generally a prerequisite to lead 
or specialist titles. 

A starting senior-level staff member has from five 
to seven years of experience. Expect to stay at this 
level at least three years. Many people end their 
careers at this level and stay on related projects 
throughout, becoming expert in both a technology 
and an application type. 

Lead 

A lead person works on his or her own, performing 
all levels of supervision. A lead person might also 
be called a project leader. Project leaders are a 
step above seniors and aspire to managerial posi­
tions. The lead skill levels are similar to seniors, 



766 CHAPTER 19 Software Engineering as a Career 

but a lead person has more managerial/supervisory 
responsibility. 

A lead person might end a career at this level, 
becoming totally responsible for small projects but 
never reaching a managerial level in charge of mul­
tiple projects. 

Technical Specialist 

A technical specialist is a person who has exten­
sive experience in a number of different areas. The 
integration skills needed to develop distributed data­
base networked applications exemplify the exper­
tise of such a person; the skills of an integration 
specialist include application development, network­
ing, database, and operating systems. The specialist 
is at the same level as a manager, having many of the 
same duties and capabilities without the personnel 
and budget responsibilities of a project manager. 
Specialists typically have been in IS positions for 
10 years or more and might remain at the specialist 
level until retirement. 

Manager 

Managers work independently, performing person­
nel evaluation, budgeting, progress reporting, and 
managing projects. Managers mayor may not be 
technical in orientation; they have a wide range of 
job experience and mostly managerial responsibility. 
For technical managers the distinguishing features of 
their jobs are the planning, budgeting, monitoring, 
personnel management, and liaison activities dis­
cussed in Chapter 3. 

The levels are shown with logical career moves 
from junior through manager in Figure 19-1. As the 
figure shows, there is little choice in level movement 
for junior through senior positions. Once someone 
is fully knowledgeable about several types of jobs, 
they can choose to remain technical and become a 
technical specialist, or to move into management, 
usually becoming a project leader, then manager. 
Keep in mind that this career ladder identifies only 
level of expertise, not area. Movement between job 
types is possible at all levels and often is required to 

FIGURE 19-1 Career Path for Different Levels of Jobs 



Application Development 

Programmer 
Software Engineer (Includes Analyst 

and Designer) 
Knowledge Engineer 

Application Support 

Application Specialist 
Data Admininstrator 
Database Administrator 
AI Engineer 
Consultant 

Technical Specialist 

Communications Analyst 
Communications Engineer 
LAN Specialist 

Staff 

Other 

Systems Programmer 
Software Support Specialist 

Security Specialist 
EDP Auditor 
Trainer 
Standards Developer 
Technical Writing 
Quality Assurance Specialist 
Technology Planner 

Product Support 
Product Marketing 
End User Specialist 

FIGURE 19-2 Summary of IS Jobs 

move to specialist and lead positions. Job type defi­
nitions are in the next section. 

Job Type 
Within a given level of experience, job type identi­
fies the job content and nature. Job types are dis­
cussed in terms of the areas of specialization: 
application development, application support, tech­
nical specialties, staff positions, and others. The jobs 
are summarized in Figure 19-2. Keep in mind 
that these are representative of the specialities in 
large organizations; the smaller the organization, the 
more likely multiple skills are required of individ­
ual staff members. 

Careers in Information Systems 767 

Application Development 

The main application development jobs are pro­
grammer, software engineer, and knowledge engi­
neer. Keep in mind that there are entry-level 
positions all the way through technical specialist 
positions in many of these jobs. There is great 
variety across development jobs depending on the 
hardware and software environments. Hardware 
platforms include personal computers, workstations, 
and mainframes as well as equipment for communi­
cations, robotics, process control, office automation, 
imaging, and microforms. In addition, application 
environments are increasingly diverse. The software 
environment might include database, communica­
tions, programming language, hypermedia manage­
ment, computer-aided software engineering (CASE), 
fourth generation languages, and expert system 
shells, just to name a few. With this diversity in 
mind, we discuss application development jobs. 

PROGRAMMER. Programmers translate design 
specifications into code modules that they design 
and unit test themselves. Programmers might rotate 
duties between development and maintenance 
applications. 

Senior programmers perform other duties besides 
programming. For instance, they participate in 
analysis, design, or testing activities for the entire 
application. 

Beginning programmers specialize in one lan­
guage, while more senior programmers are conver­
sant and experienced in multiple languages. The 
main generations of languages that apply here 
include 

2GL-Assembler 
3GL-COBOL, Fortran, Pascal, Ada, C, C++ 
4GL-Focus, Lotus, Paradox, dBase, Oracle, 

SQL 
5GL-Lisp, PROLOG. 

SOFTWARE ENGINEER. An SE performs the 
functions of analysts, designers, and programmers. 
Analysts define and document functional require­
ments of applications. Senior analysts also par­
ticipate in organizational-level IS planning and 
feasibility studies. Designers translate functional 



768 CHAPTER 19 Software Engineering as a Career 

requirements into physical requirements of appli­
cations. These traditional titles still exist and 
frequently are combined in the title analyst. Pro­
grammers develop and test code modules as dis­
cussed above. SEs may do all three-analysis, 
design, and programming-as well as acting as proj­
ect leader or project manager, as needed. The differ­
ences are in job emphases. A junior SE would spend 
most of the time programming, while a senior SE 
would concentrate more on planning, feasibility, 
analysis, and design. 

KNOWLEDGE ENGINEER. Knowledge engi­
neers elicit thinking patterns from experts for 
building expert and artificial intelligence systems. 
Knowledge engineers are similar in status to SEs, 
but have specialized skills applying to AI problems. 
Developing models and programs of knowledge 
structures requires observation, protocol analysis, 
in-depth interviewing skills, the ability to abstract 
in areas that are not areas of personal expertise to 
make sense of reasoning and information needs, and 
the capability to develop uncertainty predictions 
about the information and its accuracy with experts. 

Application Support 

Application developers require expertise from a 
number of different specialties in developing even 
the most routine applications. The jobs that most 
often support application development include 
application specialist, data administration, database 
administrator, artificial intelligence engineer, and 
consultant. These jobs are not all distinct and may 
overlap with each other in many organizations; the 
areas of overlap are most noticeable for consultants 
who may do all of these specialties. This overlap is 
ignored for the moment for purposes of defining the 
essential skills of these support functions. 

APPLICATION SPECIALIST. Application spe­
cialists have the problem domain expertise that 
allows them to consult to project teams for specific 
types of applications. For instance, a senior analyst 
in real-time money transfer might split time between 
domestic and international money transfer projects, 
overseeing compliance with all the rules and regu-

lations of the Federal Reserve Bank as well as the 
various money transfer organizations, (e.g., Bank­
Wire, Swift, NYCHA, etc.) 

Frequently applications specialists are members 
of external standards setting organizations. In this 
capacity, the specialist is a liaison between his or 
her company and other companies in the industry. 
Standards are set by consensus development of what 
should be done and how to do it. The standards get 
highly detailed, for instance, specifying the number 
of characters in a header of a bank wire message and 
the meaning of each character. The major skills 
needed for this type job are communications­
oriented diplomacy, technical application, and prob­
lem domain knowledge. 

DATA ADMINISTRATION. Data administra­
tors (DA) manage information as a corporate re­
source. In this capacity, data administrators help 
users define all data used in the company, identifying 
the data that are critical to the company's function­
ing. DAs establish and maintain standards and 
dictionaries for corporate data. These on-line dic­
tionaries, or repositories, are used by on-line 'help' 
software to provide users with data definitions as 
they are using a computer. 

Once data are defined, a DA works to define and 
structure subject databases for use by applications. 
They also track application use of data. For new 
project development, DAs work with the applica­
tion developers to locate data that is already auto­
mated, and with DBA staff to provide the application 
group easy access to automated databases. 

DATABASE ADMINISTRATOR. Database ad­
ministrators (DBA) manage the physical data 
environment of an organization. DBAs analyze, 
design, build, and maintain databases and the soft­
ware database environment. Working with DA defi­
nitions of data, DBAs define physical databases and 
load actual information into them. 

A DBA works with application development 
teams to provide access to already automated data, 
and to define the specific database needs for infor­
mation to be automated. 



ARTIFICIAL INTELLIGENCE ENGINEER. Ar­
tificial Intelligence (AI) engineers work as consul­
tants to project teams to define, design, and 
implement intelligence in applications. At present, 
AI is in its infancy and its use in applications is 
sparse. Most AI work takes place as part of an expert 
system development. AI engineers work with 
knowledge engineers to translate and test problem 
domain data and reasoning information in a specific 
AI language, such as Lisp. As AI matures and its 
use increases, this position may move from a support 
location to application development location in 
organizations. 

AI engineers have attained a higher level of 
expertise than KEs. As AI experts, they participate in 
software and hardware surveillance, evaluation, 
planning, and implementation on a company-wide 
basis. As experts, they are usually involved in hir­
ing decisions for other AI experts and KEs. 

CONSULTANT. Consultants are jacks-of-all­
trades and practitioners of all. The higher the number 
of years experience, the greater the knowledge 
is expected to be. The areas of expertise would 
likely include several of the job types discussed in 
this section. 

Consultants are hired most often to supplement 
staff or to provide exotic skills not available in­
house. When hired because of exotic skills, they fre­
quently train the in-house staff during the work 
engagement. Consultants are expected to have 
specifically identified skills when they are hired, and 
to apply those skills in performing the consulting 
engagement. 

Consultants are sometimes preferred to perma­
nent hires because they get no benefits and do not 
require raises from the hiring organization; they 
already have the desired skills and need no career 
path planning; they have their own managers 
and require less personnel-type managetnent. Con­
sultants are easier to hire and fire than full-time 
staff, too. 

Technical Specialists 

Other technical specialties are common in organiza­
tions but do not always interact with application 

Careers in Information Systems 769 

developers on a regular basis. Some of these special­
ties include communications analysts and engineers, 
LAN specialists, systems programmers, and soft­
ware support specialists. 

COMMUNICATIONS ANALYSTS AND ENGI­
NEERS. Communications analysts and engi­
neers analyze, design, negotiate, and/or install 
communications-related equipment and software. 
They are required to be fully conversant with com­
niunications technologies and may work on main­
frame or PC-based communication networks. 

Integration of voice, data, graphic, and video sig­
nals via telecommunications networks is growing in 
importance to every organization. Certainly, integra­
tion of data and voice is commonplace. As the inte­
gration levels of infotmation delivery increase, this 
specialty becomes crucial to organizational success. 

To start in comrimnications at an entry-level 
position, educational backgtound might be in 
electronics, engineering, applications, computer 
science, or telecommunications. To transfer into a 
communications-related position requires intelligent 
positioning and career planning once you are within 
the company. 

LAN SPECIALISTS. Local Area Network 
(LAN) specialists plan, oversee installation, man­
age, and maintain local area network capabilities. 
There is no essential difference between a LAN spe­
cialist and a communications specialist except scale. 
A communications specialist works with multiple 
networks including mainframes; a LAN specialist 
works on geographically limited networks that are 
comprised of personal computers (PCs). 

The educational background can be in IS or CS 
with a concentration in telecommunications. In addi­
tion, many LAN specialists have certification by a 
vendor, such as Novell, which certifies its engineers 
as having basic knowledge as a Certified Novell 
Engineer (CNE).l 

LAN administrator is an entry-level position in 
many companies. A LAN administrator creates new 

2 Certified Novell EngineerTM is a trademark of the Novell Cor­
poration, Provo, Utah. 



770 CHAPTER 19 Software Engineering as a Career 

users, implements or changes security levels and 
codes, installs new versions of the LAN operating 
software, installs new versions of database or other 
LAN -based software, oversees the resources pro­
vided through the LAN, provides backup and recov­
ery capabilities to the LAN, and manages the LAN 
configuration. Troubleshooting the LAN when prob­
lems arise is a valuable skill that frequently quali­
fies the individual for increasing responsibility 
beyond an entry level position. 

SYSTEMS PROGRAMMER. Systems pro­
grammers install and maintain operating system 
and application support software used in mainframe 
installations. For instance, an IBM 309x class main­
frame machine contains several million lines of code 
in its operating system (OS). At any given time, 
50-100 'bugs' might be outstanding and need to be 
fixed. 'Fixes' are 'patched' into the operating system 
software until a new level of the operating system is 
released. If no problems occur in your installation, 
the fixes are not needed. Evaluating the new features 
and whether they are necessary at the time is a skill 
system programmers develop. Monitoring all of the 
hundreds of applications to determine whether their 
problems relate to OS problems is a major task. In 
addition, applying a fix might cause another prob­
lem, so the systems programmer needs to be fully 
conversant with normal operations to determine any 
ripple effects. 

SOFTWARE SUPPORT SPECIALIST. Applica­
tion software support is a similar, but different, type 
of system programming. Software support special­
ists install and maintain software packages used by 
both applications developers and by users. Database, 
query language, backup and recovery, spreadsheet, 
disk space management, telecommunications inter­
face, and any other nonoperating system software 
are in this category. 

Application software support programmers and 
specialists work with application developers and 
with technology surveillance staff to define the needs 
of the organization. Then, they work with vendors 
to obtain and install the product. Finally, they main­
tain the product on an on-going basis, providing the 

application development staff with usage support for 
the product. 

System software support (SSS) programmers 
and specialists work with systems programmers to 
maintain the software provided as a shared resource 
for others in the company to use. For instance, in a 
LAN environment, an SQL Server might be used. 
The SQL Server software is supported by an SSS 
person, while the network operating system (NOS) is 
supported by a systems programmer. 

Staff Positions 

Most organizations have one or more persons 
performing these functions, even if they do not 
have a title to go along with the duties. The tasks 
that are most often given titles include security 
specialist, EDP audit, training, standards and tech­
nical writing, quality assurance, and technology 
planning. 

SECURITY SPECIALIST. A security specialist 
is responsible for security and for disaster recovery 
readiness. For security, a specialist establishes stan­
dards for data security, assists project teams in deter­
mining their security requirements, and establishes 
standards for data center security. Similarly, for dis­
aster recovery, the security specialist assists man­
agers and project teams in identifying critical data 
needs of the organization. Then, the specialist assists 
data centers and project teams in developing and 
testing disaster recovery plans. This is a valuable 
specialization that is most often found in large orga­
nizations but is needed in all companies. 

Research by IBM and others has shown that com­
panies without any backup and recovery plan will go 
out of business in event of a disaster. The studies 
looked at different geographic areas, different types 
of disasters, and spanned several years. The result 
was always the same. If a company could not recre­
ate the data critical to its continuing in business, it 
could not survive a disaster. 

Most disasters are from weather (tornados, hurri­
canes, and earthquakes), but they can also include 
acts of terrorism, fires, and other nonweather means 
of losing a data center. In addition to loss of a data 
center, security specialists plan for less severe losses, 



such as loss of disk drives or malicious tampering 
with data. 

EDP AUDIT. EDP auditors perform accountabil­
ity audits on application designs. Any application 
that maintains legal obligations, fiduciary responsi­
bilities, or books of the company, must be able to 
recreate any transaction and trace its processing. 
EDP auditors ensure that company exposure to 
losses or law suits is minimized through good appli­
cation design. The design aspects evaluated by 
auditors are audit trails, recoverability, and security. 

TRAINING. A technical trainer learns new tech­
nologies, vendor products, new language features, 
and so on, then teaches their use to others in the 
organization. Training might be done within a com­
pany, or in a specialized training company, or as a 
consultant in a short-term assignment. 

Training is often considered a temporary or rota­
tional assignment for people whose career path or 
job assignments allow them to perform a staff func­
tion for some period. The thinking is that training is 
more easily related to current job assignments in an 
organization when it is done by someone who is 
holding, or has recently held, such an assignment. 
Teaching forces the trainer to organize thoughts, 
make presentations, answer questions, and develop 
good communication skills. Therefore, training 
assignments are one way to allow someone who is a 
valued employee, but who lacks good communica­
tion skills, to develop and practice those skills in a 
work setting that is not too threatening. 

STANDARDS AND TECHNICAL WRITER. 
Standards developers work with managers to 
define what aspects of work they want to standard­
ize, and to formalize the requirements into standard 
policies and procedures for the organization. The 
most important skills for standards developers are 
verbal and written communications. 

Company standards vary in level of detail and 
breadth of activities covered. Some companies stan­
dardize their complete methodology, providing 
minute detail on all of the steps to developing a proj­
ect, guidelines on the tasks performed, required sig­
natures and approvals for project work, detailed lists 

Careers in Information Systems 771 

of liaison departments that must be consulted, and so 
on. Other companies provide loose guidelines with 
checklists to be consulted to ensure that all needed 
tasks are considered for inclusion in the project's 
work plan. Both types require the ability to run meet­
ings, obtain the standards' requirements, negotiate 
between managers, and write accurate descriptions 
of desired rules. 

Standards development and technical writing are 
related activities. A technical writer takes informa­
tion about software products, applications, or other 
information technology products and develops doc­
umentation to describe their features, functions, and 
use. A technical writer needs to have good technical 
and nontechnical communication skills. The writer 
uses the technical communication skills in talking 
with and developing an understanding of the product 
being documented. He or she uses the nontechnical 
communication skills in writing about the products 
for a user audience. 

QUALITY ASSURANCE. Quality assurance is 
an IS function that performs quality audits on appli­
cation feasibility, analyses, designs, programs, test 
plans, documentation, and implementations. QA is 
usually functionally separate from the development 
groups it is auditing; however, in a small company, 
QA may be an analyst's, or SE's, temporary assign­
ment. 

The form of the audit differs by the product 
being reviewed. A QA analyst is assigned to a 
development project as it is initiated. He or she has 
little involvement until the first work products from 
the development team are available. Then, as docu­
ments become available, the QA analyst reviews 
them for consistency, completeness, accuracy, and 
feasibility. Any problems found during the review 
are documented in a memo to the project manager. 
The problems must be responded to by either 
explaining why the issue is not a problem or by cor­
recting the erroneous item. 

As you can see from the description of this task, 
QA is a natural adversary to application developers 
since the QA analyst's job is to find fault with the 
work of the project team. QA work is usually 
assigned to senior staff who are respected enough to 
be listened to and tactful enough not to cause revolts 



772 CHAPTER 19 Software Engineering as a Career 

by the project teams. QA analysts need senior tech­
nical, communication, and problem domain skills to 
perform a quality review. They need experience in 
all aspects of project development in order to know 
how it should be done and where problems might 
arise. At the same time, tact and skill at identifying 
only critical issues is important. No one likes to be 
told publicly they have made a mistake, even though 
they might know intellectually that the project work 
will benefit from the criticism. The QA analyst needs 
to be sensitive to both the politics and the problems 
identified. 

TECHNOLOGY PLANNING. Technology sur­
veillance specialists monitor technology develop­
ments to identify trends, select technologies that are 
appropriate for experimentation in their organization 
and, eventually, champion the implementation of 
new technologies in the organization. These senior 
staff are liaisons to the outside world and vendor 
community for the company. Junior-level staff in 
technology planning might work with a senior per­
son who guides the work, while the junior person 
does some coordination and technology monitoring. 

Other 

Numerous other positions relating to ITs and IS 
development are available for students of IS. Some 
of these include product support, product market­
ing, and end-user specialist. 

PRODUCT SUPPORT. Product support staff 
work for an end-user group or vendor to provide 
product-related technical expertise or other "hot­
line" support. In addition to technical knowledge 
about the product( s) supported, the individuals 
in this job require excellent phone skills and must 
be able to talk nonjargon language to users with 
problems. 

PRODUCT MARKETING. Marketing support 
staff work for vendors to provide technical 
information to sales representatives in marketing sit­
uations. This type of job requires excellent commu­
nication and people skills, with some knowledge of 
marketing tactics, such as narrowing focus of con-

versation and closing techniques, to effectively work 
with a sales representative. All software, hardware, 
and consulting companies have people to perform 
these functions. Usually, this job is for senior-level 
people, but if you have a particular area of expertise 
and support in that area is needed, then you might 
qualify for such a job without being a senior staff 
person. 

END-USER SPECIALIST. End-user specialists 
translate user requirements into technical language 
for developers to use. In some companies this is the 
function of the systems analyst or SE. In other com­
panies, there are end-user liaisons in the user depart­
ments to perform this function. 

In summary, every company needs many differ­
ent combinations of job characteristics in all depart­
ments of the organization. The challenge to 
graduates is to decide which aspect of the work fas­
cinates you most. The career is there for the mak­
ing. To further your chances of a successful entry 
into the job market, your undergraduate courses 
should concentrate on core knowledge of application 
development, programming, database, and telecom­
munications. Then concentrate elective courses in 
one or more specialties from the above array of jobs. 

PLANNING ______ _ 
A CAREER ______ _ 

Defining your next job is the first step to determining 
what to ask for when you talk to personnel recruiters. 
You must have a goal that is fairly well defined yet 
realistic for the job market you wish to enter. Once 
you begin work, you need to know how to plan the 
next job, and so on. Also, one degree and job in IS 
does not qualify as a 'career.' Rather, continued 
growth and development in depth and in breadth of 
knowledge is required. In this section, we discuss 
how to plan your first job and extrapolate from that 
to plan your career. In the next section, we discuss 
how you keep current to continue to grow as a pro­
fessional SE. As you read through this section, as­
sess your job wants. The more honest you are about 
your skills and desires, the more useful you will find 
this exercise. 



Decide on Your Objective 
The first activity is to decide on an objective or goal. 
Where do you want to be in five years? Try to be as 
specific as possible. Do you want to be making 
$60,000 a year? Do you want to have a title of Proj­
ect Manager? Do you want to be a specialist in 
software engineering? Your objective might be 
money-related, title-related, or job content-related, 
or all three, or something else. 

Make sure your objective relates to job criteria. 
For instance, if your objective is to own a house, 
decide how much you anticipate spending, then 
translate that into a salary. Once you have identified 
an objective, use the following sections to determine 
the company and job characteristics that are most 
likely to help you meet your goal. Try to translate the 
money into a position and title, working backward to 
identify a starting job. If your goal is title- or job­
related, use the following sections to identify the 
most likely tasks, job characteristics, and compa­
nies to help you meet your goal. 

Define Duties You Like 
to Perform 
Once you have a tentative goal, begin to think about 
how to reach that goal through one or more jobs dur­
ing the five-year period. What are likely starting 
jobs? How do those starting jobs relate to you? In 
performing this evaluation, you need to do an hon­
est assessment of duties you like to perform. Evalu­
ate the list below, making your own list of tasks and 
placing a percentage next to each item you are in­
terested in doing in your next job. Make sure that 
all of the percentages add to 100%. 

• Programming (i.e., new development and 
maintenance) 

• Analysis 
• Testing, Quality Assurance 
• Technology Surveillance 
• Consulting 
• User or Technical Training 
• User, Help Line, or Product Support 
• Standards Development 

Planning a Career 773 

• Technical Writing 
• DBA or other specialized technical position, 

and so on 

Keep in mind that, while this exercise is to find 
your ideal next job, the work tasks should also be 
realistic. About 50-70% of newly minted under­
graduates begin as programmers. Another 10-15% 
begin as LAN managers, with an equal percentage 
beginning as programmer-analysts or SEs. A few 
begin as technical writers, help line support, and 
trainers. 

Define Features of the Job 
After job tasks are identified, evaluate the external 
features of jobs you prefer. There are two types of 
job features you should define: technical and non­
technical. The technical features are what this text 
is all about. Choose from the following list those 
characteristics that appeal to you. 

Project type-Maintenance, development, or a 
mix 

Technology type-Mature, or state of the art, or 
experimental, leading edge 

Type position-Project, staff, operations, sales, 
support, or other 

Phases of project work-Planning, feasibility 
analysis, design, maintenance, programming, 
or all 

Methodology-Process, data, object, semantic 
Hardware platform-Mainframe, micro, work­

station 
Technologies-DBMS, language( s), package( s), 

CASE tools, LAN 

Be as specific as you can in defining each of these 
job components. This information is used to select 
target-specific jobs for your job search. Be equally 
specific about job functions you do not want to learn, 
if there are any. The nice thing about defining the 
ideal job for yourself is that there is no wrong 
answer, only ones that fit you better than others. 

Next, assess the type of duties you want to per­
form. Do you want narrowly-defined, specific as­
signments, or broadly-scoped and less well-defined 



774 CHAPTER 19 Software Engineering as a Career 

assignments? In general, the larger the company, the 
more esoteric and specific your requirements can be, 
but there is no standard. Also, in general, the smaller 
the company, the more casual and broader the 
assignments. This means that a person defined as a 
programmer might have entirely different time allo­
cations depending on the size of the company. In a 
large company, a programmer will spend 40-60% 
of his or her time coding and unit testing program 
specifications developed by an SE or designer. 
Remaining time is spent in nonproject work such as 
reading manuals, attending meetings, learning, and 
communicating about the work. In a small company, 
a programmer is likely to spend 20-40% of his or 
her time developing the specifications with the ana­
lyst or SE, 20-40% programming and unit testing, 
and the remaining time in other activities. Which 
scenario do you prefer? The larger the company, the 
more specialized and the narrower the job. Also, the 
larger the company, the more likely you will be 
paired with a senior mentor who is responsible for 
monitoring your progress. 

Think about how you like to learn new things. Do 
you like to be given a book and an assignment for 
completion? Or do you prefer to attend classes and 
have someone to answer your questions? The first 
learning approach is one used most by consulting 
and smaller companies. The classroom approach is 
used more by large companies. 

Next, evaluate nontechnical features of a job, 
including title, salary, working hours, autonomy, and 
travel. Title is a more important issue in some 
industries than others. For instance, in manufactur­
ing institutions, being an 'officer' of the company is 
significant. But in a bank, about 25% of the staff will 
be officers. Of this 25%, 60% will be assistant trea­
surers, or the lowest level officer; 25% will be sec­
ond vice presidents; 10% will be some level of vice 
president; and the remaining 5 % are executive vice 
presidents or higher. The titles are more for external 
prestige and to compensate for low pay than any­
thing else. If title is important, then, financial ser­
vices and consulting are the most status-conscious of 
the industries listed. In contrast, a private con­
sulting company might have two to five principals 
and 200-300 consultants, and those are the only 
two titles. 

What salary would you like to be making in five 
years? Target the five-year time frame because your 
first salary is relatively inelastic if you are not 
already working in IS. By inelastic, we mean that the 
salary range for new, inexperienced hires is rela­
tively narrow: $28,000-$34,000 for undergraduate 
IS degrees, and $30,000-$38,000 for graduate IS 
degrees, in 1994; and the salaries are relatively 
invariant across industries. 

Take the midpoint of the range that describes your 
situation and assess the ideal raises you might 
receive to derive your salary in five years. If you 
expect to double your salary in five years, you need 
a compounded growth of about 15% annually to 
meet that goal. You might get 15% raises in consult­
ing, but it is unlikely anywhere else. Realistically, 
companies give regular raises that keep a third of all 
salaries even with inflation. If you are in the top 
third, you might qualify for merit increases which 
might be 2-4% over the inflation rate. If you want 
a six-figure income within five years, then you 
are either thinking of your own company, or are a 
genius, or are unrealistic. It is nice to dream, but 
thinking of salaries requires hard reality. 

The next nontechnical issue is the number of 
hours you want to work. This is an ideal that you 
might never actually reach, but each industry has dif­
ferent intrinsic demands about hours of work that 
should be considered. The normal work week is 
40 hours in the United States. This time is spent from 
Monday to Friday with few organizations requiring 
weekend work. 

In addition to the number of hours, which hours 
might also be important. There are two issues here: 
flextime and shift work. Can you get up and maintain 
a schedule that requires you to be in an office at a 
fixed time every day? What if the hours are 7 A.M. 
to 4 P.M.? How about 9 A.M. to 6 P.M.? If a company 
has flextime, you choose the time of your arrival, 
within limits, and work a regular seven- to eight­
hour day once you are at work. Most companies in 
large metropolitan areas use flextime to cope with 
the vagaries of traffic and transportation problems. 

You might consider a job in an industry that 
works at night. Do you mind shift work? Can you 
cope with a schedule that requires you to sleep dur­
ing the day? Keep in mind that you might be a night 



owl at college, but all of your friends will probably 
get day jobs. Will night work shut you off from your 
social life ? How important is that to you? 

The last time issue is overtime. Do you mind 
overtime? How often is overtime acceptable? Could 
you work for a company that expected a 60-hour 
week even though the advertised required number of 
hours is 40? Can you deal with midnight phone calls 
when you are 'on call' for application problems? 
Some companies will tell you that you are expected 
to work until the job is done, and if that means over­
time, then you work overtime. Can you live with 
such an agreement? If not, what are your time 
requirements for work? If you cannot deal with any 
overtime, you need to search for a low pressure, staff 
job or a maintenance job that requires little or no 
overtime. If you can deal with overtime, then all jobs 
are open for you. The longest hours are usually in 
consulting, but most development projects in most 
companies end up requiring some overtime work. 

Next, consider the extent to which you want to 
work autonomously. As an entry-level person, you 
most likely will be coupled with a senior person who 
would be responsible for helping you with problems, 
bugs, or other issues you are not sure how to deal 
with. But each company has its own levels of auton­
omy that its employees are allowed. Do you want 
leeway in figuring out your own answers or do you 
want close supervision, at least for a while? In gen­
eral, the smaller the company, the more autonomy 
you will be given, and the greater the breadth of the 
jobs you will be assigned. If you like working alone, 
then select a smaller company. 

Finally, consider the amount of travel you want as 
part of your job. Be realistic. Travel is demanding, 
rewarding, and wearing. It requires extreme organi­
zation because once the plane leaves you cannot 
return to the office for that forgotten piece of paper. 
It also demands family and personal sacrifices 
because you are frequently on a plane during birth­
days and holidays. You may find that you want to 
travel for awhile and cut back after a few years. 
After all, someone else is paying the bills. That is 
also an acceptable scenario, just be prepared for the 
action when it arises. Several industries, especially 
consulting, require significant travel and frequent 
temporary relocation for project work. You might 

Planning a Career 775 

need to leave for months at one or two days' notice 
in this environment. The rewards are commensurate 
with the sacrifices: The pay in consulting is the high­
est after successful entrepreneurship. 

Define Features of 
the Organization 
Even though this section is for defining features of 
the organization, you are still assessing your needs in 
ajob. In this section, you assess how 'hard' you want 
to work, how 'smart' you want to work, and how 
much ambiguity and stress you can cope with. To 
some extent you have already answered some of 
these questions; they have not been phrased in just 
this way. 

When you define how many hours a week, and 
what type of work you desire, you are, to some 
extent, answering the 'hard' and 'smart' questions. 
Several different hierarchies of organizations can be 
developed for you to position yourself in different 
industries and different company types. The first 
hierarchy is based on industry. Based on several dif­
ferent salary surveys over the last 10 years, a hierar­
chy of industries in average salary order is shown in 
Figure 19-3. This hierarchy shows that you are most 
likely to make the most money owning your own 
company, and are most likely to make the least 
money working in academia or nonprofit organiza­
tions. This hierarchy also translates into a 'hard' 
work hierarchy. The amount of time and personal 
sacrifice expected of employees is directly propor­
tional to the amount of money paid. That is, the com­
panies that pay the best expect the most. If you 
cannot stand stress and long work days, then remove 
ownership and consulting from your list. If you want 
the least possible stress and least possible work, tar­
get your search in nonprofit, retail, government, and 
academic organizations. 

Keep in mind that these are general rules of 
thumb at work here. All companies have positions of 
all types. The generalizations drawn here identify the 
majority of positions. 

A second hierarchy can be developed based 
on the position of a given company within its in­
dustry. Figure 19-4 shows one industry, soft drink 



776 CHAPTER 19 Software Engineering as a Career 

H ighest-to-Lowest 
Salary Industries** 

Your own company 

Consulting 

Big 4 Accounting Firm 

Large IS Consulting 

Internal Consulting in 
Large Company 

Private Consulting 
Company 

Vendors 

Conglomerate Headquarters 

Financial Services and 
Insurance 

Government, Transportation, 
Utilities 

Manufacturing 

Retail, Publishing, Medical 

Nonprofit, Small business 
of any type 

Education 

Example 

Ernst & Young, 
Arthur Anderson 

Cap Gemini (CGA) 

Novell, Microsoft, 
ATT, Pacific Bell, Bell 
Labs 

Boeing, Mobil 

American Express, 
Citibank, Prudential 

U.S. Department of 
Agriculture, American 
Airlines, Brooklyn 
Union Gas 

Whirlpool, Babcock & 
Wilcox 

Macy's, Any large 
metropolitan hospital 

United Way 

School Districts, High 
Schools, Colleges, 
Universities 

**Based on numerous articles in Computerworld, Data­
mation, Wall Street Journal, Dallas Morning News and 
The New York Times. 

FIGURE 19-3 Salary-Based Hierarchy of 
Industries 

manufacturing, with the major contenders. As the 
figure shows, Coca-Cola is closely followed by 
PepsiCo, Dr. Pepper/7-Up, and all others. This in­
dustry is fiercely competitive and marketing driven. 
To be in this industry is to be competitive. Therefore, 
when you select an industry, try to think of a char-

Largest to Smallest Industry Position: 

Coca-Cola 
PepsiCo 

Dr. Pepper/7-Up 
Shasta 

Snapple 
Others 

FIGURE 19-4 Industry Position for Soft 
Drink Companies 

acterization for the industry and how it fits your 
personality. 

Next, try to match your personality to the com­
pany style. Do you want to work for the leading 
company and be the one to beat? Or do you want to 
work harder at #2 which is trying to become #1? Or 
are you more comfortable being at some other level 
company with less stress? There is nothing wrong 
with working at any of the levels. The idea is to 
choose the one that fits you best. 

Keep in mind that all of these statements about 
companies are generalizations. Many companies are 
not even close to the top of their industries but are 
in a turnaround position that requires maximum 
effort from everyone. Such turnaround companies 
are sometimes the best of places to work and some­
times are the worst of places to work. Similarly, a 
large, longtime company that is first in its industry 
might be ready to take a fall. IBM, in 1990-1994 
was not a fun place to work. 

We identify industry leaders because they are 
generally more innovative than other companies and 
have more money to spend (and spend it) on new 
technologies. Not all is positive for large industry 
leaders. In some cases, the larger and more leading 
the company, the slower to promote people to new 
positions and the more likely to be results-oriented 
without being people-oriented. Also, not all compa­
nies, regardless of industry position, recognize the 
importance of information technologies to meeting 
their mission. Ideally, you want to find a company 
that has a culture that is compatible with your per­
sonality, that is as people-oriented as you need, that 
recognizes the importance of information technolo-



gies, and that will help you reach your personal 
goals. 

Finally, if you have prior experience in some 
industry, try to leverage that knowledge. Problem 
domain expertise takes two to four years to learn. If 
you already have experience and can target IS jobs in 
your old field, your starting salary should be 5-10% 
higher than new employees in the same industry. 

Define Geographic Location 
Next, consider the ideal geographic location for you. 
You may want to stay near where you are from. That 
is perfectly reasonable. If you want to live some­
where else because of weather, life-style, or some 
other criteria, now is the time to choose where you 
want to live and work. 

In the United States, there has been a 30-year 
migration toward the southern half of the country, 
but the jobs have not always followed. According 
to salary surveys covering 1992-1993, the best pay­
ing and highest number of jobs are in Alaska. Both 
New York City and California, traditionally high 
growth, high-income areas, follow Alaska. Other 
large, diversified-industry, metropolitan areas also 
top the list (see Figure 19-5). 

The lowest paying and lowest number of posi­
tions are in the South and Southeast, particularly 
Florida.2 The center of the country has not faired so 
well either. In 1992, St. Louis and Philadelphia 
graced the bottom of the salary list. 3 

Define Future-Oriented Job 
Components 
The last job-related components relate to job secu­
rity, benefits, and speed of advancement. You won't 
use these until you are interviewing, but it is a good 
idea to have some goals in mind for these job com­
ponents when selecting companies and industries. 
Also, if you are looking for security in a volatile 

2 Based on Robert Half 1992 Salary Guide, and 1993 Salary 
Guide, San Francisco, CA: Robert Half International, Inc. 

3 Computerworld publishes an "Industry Snapshot" highlight­
ing hiring trends in a specific industry in each weekly issue. 

Planning a Career 777 

Highest Salary Locations: 

Alaska, New York metro area, California, 
Dallas-Fort Worth, Minneapolis-St. Paul 
Chicago, Denver 
Boston 

Lowest Salary Locations: 

St. Louis 
Last: Southeast and South 

Based on Robert Half, International 1992 and 1993 Salary 
guides and articles in Datamation, Computerworld and 
The New York Times 

FIGURE 19-5 IS Salary by Location in the 
United States 

industry, like stock brokerage finance, then you need 
to reassess your requirements to align more closely 
with reality. 

Security relates to the stability of the industry. For 
over 50 years, the United States had relative stability 
in industry, with only companies that had fallen on 
hard times resorting to layoffs. Many companies 
(e.g., Chase Manhattan Bank and IBM) used to brag 
that they had never had a layoff in the company's 
history. The late 1980s and early 1990s changed all 
that. The recession during the early 1990s was 
deeper and longer than many since the Great De­
pression of 1929, and had the added problem of 
being worldwide in scope. Virtually every company 
over $100 million in sales went through some 
reassessment of company structure and size, laying 
off and eliminating millions of jobs. As we slowly 
recover from that period, stability is an issue on 
which we all share concern. 

Financial success is one indicator of likely sta­
bility. Companies that have higher percentages of net 
income and profits compared to competitors are 
more likely to be stable. But, at the moment, there 
are no guarantees. If security is very important to 
you, target companies that are successful relative to 
their competition, regardless of the industry, and tar­
get companies in relatively inflation-proof indus­
tries, such as office products. 

Benefits include vacation, retirement, medical 
support, dental support, child support, aging parent 



778 CHAPTER 19 Software Engineering as a Career 

support, and so on. The average starting benefits 
include two weeks' vacation after one year, with 
some medical and dental support. Retirement bene­
fits are in a state of flux. In 1993, most large compa­
nies still offer retirement benefits, but the vesting 
period (that is, the time at which the money becomes 
legally yours), varies considerably. If you plan to 
stay with a company a long time, vesting periods are 
moot. If you foresee some movement between com­
panies in your future, the vesting period becomes 
important to your consideration of how long you 
might be tied to a specific company. 

The more progressive and larger the company, the 
more likely they are to also have programs providing 
some type of support for child or parent care. Decide 
how important these benefits are to you and keep 
this information in mind when you are evaluating 
companies. When you begin interviewing, use your 
ideal benefits and security needs as one criteria to 
separate the companies you are interested in from 
those you are not. 

Speed of advancement may be an important fac­
tor to you. Do you expect to be promoted every year, 
assuming that you have exceeded all job require­
ments? Some companies have average time in grade 
figures that they might share with you during the 
interviewing process. In general, consulting compa­
nies have the most career mobility; they are also 
organizations in which you either succeed or you 
are out. Following this generalization, the industries 
that pay more, expect more and reward more. 

Search for Companies That Fit 
Your Profile 
The next step in targeting companies for jobs is to 
map the geographic, job, and salary requirements 
with your intended market area. For the target city or 
location, map your industry and company charac­
teristics with those of specific organizations in the 
area. This step requires library searching of busi­
ness reference guides, Business Week, Forbes, For­
tune, Money and other business magazines that 
publish annual reviews of companies by industry. 

Look for the geographic region that matches 
yours, then research the industries in that region. All 

of this can be done at a global level in an ency­
clopedia. Next, look at an annual review (e.g., For­
tune's '500'), and locate companies in your indus­
try(s) and geographic area. If the headquarters are 
not in the area, you will need further research. Read 
company annual reports to locate subsidiaries and 
their locations. Research companies and industries in 
each of your target states and metropolitan areas 
by contacting Better Business Bureaus or Chambers 
of Commerce. Read reference materials from trade 
associations and the government to find target 
companies. 

The major warning in this search is to be realistic. 
If you target, for instance, the chemical and phar­
maceutical industries to take advantage of your sum­
mer jobs in a small chemical company, the ideal 
geographic area is the state of New Jersey. Every 
major pharmaceutical company in the world main­
tains some sort of facility in New Jersey or New 
York City. At least four major pharmaceutical com­
panies have regional or worldwide headquarters in 
the area (i.e., Merck, Pfizer, Hoffman-LaRoche, 
Warner-Lambert). If you target that industry and 
begin looking in, for instance, Mississippi and 
Louisiana, you will find only small companies and 
less than a handful of large ones. 

Assess the Reality of Your Ideal 
Job and Adjust 
When you have found the population of companies 
from which you expect to have a job, evaluate how 
realistic your chances are. The realism of your prob­
able job is a function of industry turnover and the 
number of jobs of the type you want in the area in 
which you want to live. The IS profession has, on 
average, 15% turnover per year. This means that 
15% of the people in IS professions change jobs 
every year. 

In addition, software engineering is the hottest 
growing job classification in the 1990s.4 In the same 
book, Krantz rates computer systems analyst as sec-

4 The growth of software engineering is documented in Les 
Krantz' The Jobs RatedAlmanac, 2nd ed., NY: Pharos Pub­
lishing, 1992. 



ond; computer service technician as fifth; computer 
programmer as 25th; and technical writer as 147th 
[Krantz, 1992, p. 218]. 

If you are choosing an analyst, programmer, or 
SE position, and you are targeting a geographic area 
with a large number of target companies, you prob­
ably do not need to go through this exercise. If you 
choose any nonmainstream job, or a limited geo­
graphical area, then this exercise might help you 
assess the reality of your goals. The steps to assess­
ing the reality of your ideal job are: 

1. Estimate the number of entry-level jobs 
available. 

2. Estimate the number of people competing for 
the jobs. 

3. Assess the ratio of available jobs to job 
applicants and adjust your expectations as 
needed. 

Estimate Number of Entry-Level Jobs 

First, in assessing the number of potentially avail­
able positions, the items of interest are the number of 
people in IS jobs in an area, the percent of jobs of the 
type that you want, the average turnover in IS posi­
tions' and the percent of entry-level positions. The 
number of people in IS jobs is one which you must 
unearth through library and other research. Figure 
19-6 shows the major IS job types and estimated per­
centages of people with that title. Average IS turn­
over is historically between 15% and 18%. The 
average number of entry-level positions varies from 
2% to 5% per year. When in doubt, use the conserv­
ative numbers for your calculations. 

The formula for computing the number of likely 
jobs is as follows: 

Number of IS jobs in area 
x Percent jobs for your ideal 
x Average IS turnover 
x Percent of entry level positions 

= Number of available jobs 

Let's look at an example. If you target the phar­
maceutical industry in the New Jersey/New York 
area, there are approximately 8000 IS jobs. Using 
the target jobs of programmer or DBA, the total 
number of likely jobs is 2000 (i.e., (.20 x 8000) 

Planning a Career 779 

Estimated 
Percentage 

Position of Staff 

Administration 1 % per company 

Application Programmer 15-20% 

Technical Support, 
Systems Programming, 
System Software Support 3-5% 

Data Base Administrator 3-5% 

Analysts/Designers/ 
Software Engineers 10-15% 

Project Managers 5-10% 

Operations 25-35% 

EDP Audit 3-5% 

Consulting 3-5% 

PC/User Support, 
Help Desk, 
Information Center 3-5% 

Telecommunications 8-10% 

Data Administration 3-5% 

Other 3-5% 

FIGURE 19-6 Estimated Percentage of Major 
IS Jobs 

+ (.05 x 8000)). Multiply this by the 2% to 5% 
entry-level positions, and you have approximately 
40 to 100 programmer and DBA entry-level posi­
tions in the pharmaceutical industry in the New Jer­
sey-New York area available in anyone year. 

Estimate the Number of Competitors 

N ext, evaluate your competition. The competition 
is all graduating IS majors from local colleges and 
universities. The number of people moving into and 
out of the area are not considered here. According 
to Computerworld, the average number of computer­
related majors is approximately 2.5% of entering 
freshman classes.s For our purpose, we will use this 

5 See Computerworld, Vol. 27, #17, April 26, 1993, p. 105. 



780 CHAPTER 19 Software Engineering as a Career 

percentage to extrapolate to graduates. The formula 
used is: 

Total number of graduates from four-year 
institutions 

x Percent of IS graduates 
= Number of competitors for IS jobs 

For our example, the average number of gradu­
ates per year in the New Jersey-New York area is 
about 16,000. Multiply this by .025 and you find 
there are about 400 other entry level people against 
whom you will compete. Since pharmaceuticals 
employs less than 30% of the IS people in the met­
ropolitan area, your competition should be (400 x .3) 
or about 120. 

Assess Ratio 

After computing the number of likely jobs and likely 
competition, compare the two. If the ratio of jobs to 
applicants is high, begin your job search. If the ratio 
of jobs to applicants is low (i.e., less than 1:10), you 
need to reassess the realism of your goals. In the 
example, there are 40 to 100 jobs in the industry and 
job desired. There are about 400 total competitors 
for all jobs and, on average, about 120 competitors 
for the same jobs desired. In a growing economy, 
there is a reasonable likelihood (about 83% proba­
bility) of your getting the job you defined. In a weak 
or falling economy, fewer jobs will be available and 
the probability of success would be less. 

Adjust your Expectations for an 
Unfavorable Ratio . 

If you reassess, decide how realistic this job is. You 
might broaden the geographic area or job description 
you are searching to greatly increase your likelihood 
of success. If the absolute number of jobs is very low 
(i.e., under ten per year), then you may need to 
broaden your view of jobs you are willing to per­
form. If you want a really specialized job, such as 
computer game designer, then there might not be 
many full-time opportunities, but there may be other 
alternatives and issues to assess. For instance, what 
is the likelihood of part-time work? What are hir­
ing practices in this industry? Are they different 

in any way that you can exploit to your advantage? 
How willing are you to look until you find exactly 
this job? 

If there are only a few jobs, but you have your 
heart set on one of them, plan your job campaign 
carefully. Why should a company hire you? List the 
skills and attributes that make you one of the top two 
candidates out of a field of hundreds. What unique 
skills or personality characteristics do you possess 
that you could exploit in this position? Make sure 
your resume highlights all of your attributes and suc­
cinctly summarizes all of your capabilities enough to 
make a personnel representative want to bring you in 
for interviews. 

Keep in mind that companies are looking for pro­
fessionals who know how to work, team players who 
can get along in groups, and self-motivated, domain 
specialists who know how to find information when 
they need it. 6 What sells you to a company is your 
potential and attitude about work. If you present a 
professional demeanor and appear competent, your 
probability of success increases. 

This section summarizes an approach to locating 
the ideal job by defining your ideal, then matching 
it to realistic estimates of the number of likely jobs 
available in your target geographic area. Keep in 
mind that the percentages of industry representation 
for jobs is constantly in a state of change and that 
you need to do some research to have accurate fig­
ures. Fifteen years ago there were no PC-support 
groups, PC software developers, or LAN managers. 
Now, those and related jobs are the fastest growing 
segments of IS professions, just as software engi­
neering is the largest growth position in IS. 

MAINTAINING _____ _ 
PROFESSIONAL ____ _ 
STATUS _______ _ 
Above we mentioned that continuous learning is a 
requirement for a career in IS. With over 1,000 prod-

6 These traits have been discussed numerous times in The 
New York Times, Computerworld, Datamation, and other 
trade periodicals over the last ten years. 



uct announcements and introductions a week, the 
field is everchanging and is changing at an ever­
increasing rate. Change is a way of life. You, as a 
professional SE, must also change and grow to con­
tinue to be a valued employee of a company. In this 
section, we discuss how to develop as a professional 
through educational, professional, and other types of 
organizations. Eventually, you need to develop a 
'spiral' approach to your knowledge in which you 
are constantly building on what you have already 
learned to both reinforce and fix old knowledge 
more strongly in your mind, and to add nuances and 
new information that broaden the scope of your 
knowledge. 

Education 
As a novice in IS, an undergraduate degree is suffi­
cient for most entry-level positions. If you aspire to 
managerial or technical specialist positions, how­
ever, you should consider obtaining an MS or MBA 
in either computer science or IS, depending on how 
technical you wish to be. 

The undergraduate degree gives you basic knowl­
edge about the field and a quick survey of theory in 
developing applications and programs. The empha­
sis in undergraduate programs is on providing both 
a skill set to get you a job and a theoretical basis for 
continued learning in the field. The graduate pro­
gram emphasizes decision making, problem analysis 
and solution, and theory of information systems 
more. The entry-level positions of people with 
advanced degrees is somewhat higher than that of 
entry-level undergraduates. The normal masters 
entry-level position is at an analyst or a first line 
manager level. 

Graduation from a degree program is not suffi­
cient to maintain your growth in the ever-changing 
field of information systems work. New technolo­
gies, new ways of working, new methodologies, 
and new organizations all demand that you main­
tain some currency in the field. Many politicians 
and educators are calling for a learning-for-life 
approach. Using this approach, you take formal 
degrees and supplement them with continuous edu­
cation throughout your life. The learning-for-life 
approach is appropriate to any job in information 

Maintaining Professional Status 781 

systems, especially jobs of software engineers. You 
are the expert in the deployment of new technologies 
for your company. As the expert, you must learn 
where and how to find information about any subject 
required. As the expert, you must try to develop 
some level of expertise in many fields that are 
not your specialization. In short, you should try 
to become a jack-of-all-trades and an expert of 
several. 

Professional Organizations 
One method to provide you continuous learning 
experiences while having fun at the same time is to 
participate in professional organizations. Every 
organization has conferences or conventions at least 
annually if not more often. Every specialty has its 
own organizations or special interest groups (SIGs) 
as part of a larger, general group. You should seek 
to be on panels, present papers, or simply partici­
pate in at least one conference or convention each 
year. Many companies pay for their employees to 
attend such conventions because it is in their inter­
est to have you remain current, too. 

Professional organizations are good for a variety 
of personal goals: keeping current, knowing what 
other companies are doing, and developing a net­
work of friends for future job possibilities. It is not 
necessary to belong to every organization; rather, 
you should pick the one that maps to your goals most 
closely, provides the literature you most want to 
keep current with, and is most active in your geo­
graphic area. Each organization is discussed in terms 
of their membership profiles, types of professional 
activities sponsored, and chances for involvement 
of industry professionals. Some of these organiza­
tions are profiled in this section. 

General Technical Organizations 

There are many worthy professional organizations 
in which SEs can participate. Two of the oldest 
and largest are featured here: ACM and IEEE Com­
puter Society. The addresses for these and other 
organizations are included in Figure 19-7 for your 
convenience in contacting them for membership 
information. 



782 CHAPTER 19 Software Engineering as a Career 

ACM 
New York, NY 

American Society for Information Science (ASIS) 
Washington, DC 

Association for Systems Management (ASM) 
Cleveland, OH 

Computing Professionals for Social Responsibility 
(CPSR) 
Washington, D.C. 

Data Processing Management Association (DPMA) 
Park Ridge, IL 

Graphic Communications Computer Association 
(GCCA) 
Arlington, VA 

IEEE 
Washington, DC 

The Institute for Management Sciences (TIMS) 
Providence, RI 

SOciety for Information Management (SIM) 
Chicago,IL 

Women in Computing (WIG) 
New York, NY 

FIGURE 19-7 Professional IS Organizations 

The Association for Computing Machinery 
(ACM) is the oldest and largest organization specif­
ically for IS professionals. The ACM was founded in 
1947 and has grown to over 81,000 members. The 
membership ranges from beginning IS students to 
experienced professionals in industry, education, 
government, and research. ACM publishes 12 ma­
jor periodicals with Communications of the ACM 
(CACM) included in the price of membership. 
CACM is generally recognized by academic re­
searchers as the premier journal in computing. 

Over 30 special interest groups (SIGs) whose 
specialties span the computing field also have their 
own newsletters, conferences, and symposia. The 
SIGs are active organizations that are constantly 
looking for infusions of new ideas, welcoming new 
members. Many of the conferences represent both 
industry and academic members with hundreds of 
active participants. A representative sample of SIGs 

includes SIGCHI--computer and human interaction, 
SIGOIS-office information systems, SIGMOD­
management of data, SIGSOFT-software engi­
neering, SIGPLAN-programming languages, 
SI GG RAPH-graphics, SI G BIT -business infor­
mation technology, and SIGCAS-computers and 
society. 

Opportunities for involvement include initiating 
local chapters of SIGs or ACM, participating in one 
or more of the 30-50 conferences sponsored by 
ACM each year, participating in any of the SIGs' or 
ACM's management. Almost all of the work done 
for ACM is voluntary and requires a time commit­
ment, but the professional recognition and personal 
benefits are worth the effort. 

Another organization, the Institute of Electrical 
and Electronics Engineers (IEEE), is a 300,000 
member organization, of which about one third are 
members of the Computer Society. The original 
organization, the American Institute of Electrical 
Engineers, was founded in 1884 by Thomas A. 
Edison, Alexander Graham Bell, and Charles P. 
Steinmetz to foster the development of the engineer­
ing profession. Over the years the organization's 
name changed several times before becoming the 
IEEE in 1963. In the 1940s, the IEEE established a 
Committee on Computing Devices that evolved into 
the Computer Society. 

The IEEE is active in all phases of engineering 
and computing for new and established technologies. 
Over 30 conferences each year are sponsored by the 
organization. IEEE Computer Society is known for 
its quality publications which include tutorials on 
every major technological development in recent 
years. The tutorials are compilations of articles 
exploring the issues, research directions, and likely 
market outcomes for new technologies and tech­
niques (e.g., object orientation). 

IEEE publications are both technically and non­
technically oriented. IEEE Computer and Software 
are specifically oriented to professionals working in 
industry who are trying to maintain current knowl­
edge in the field. Other more technical publications 
are special interest publications with two of special 
interest to SEs: IEEE Transactions on Software 
Engineering (TSE) and IEEE Transactions on 
Knowledge and Data Engineering (KDE). The TSE 



provides basic research papers on specification, 
design, development, maintenance, measurement, 
and documentation of applications. TSE is one of the 
best publications for early discussion of emerging 
techniques. Its research orientation may make it 'too 
technical' for some readers. KDE is a similar publi­
cation aimed at applications' methodologies, storage 
techniques, AI modeling, and development. 

IEEE is subdivided into technical committees 
(TCs) which participate in industry standards devel­
opment, conferences, and publications. There are 
over 20 hardware, software, and interdisciplinary 
TCs. The software TCs, for instance, include soft­
ware engineering, computer languages, data engi­
neering, operating systems, real-time systems, and 
security and privacy. 

Conferences are a major TC activity with each 
group sponsoring one or more major conferences 
each year. The TC on software engineering coordi­
nates the International Conference on Software 
Engineering (ICSE), which attracts about 1,500 
worldwide participants annually. The major topic 
areas of ICSE include design, modeling, analysis, 
and application of software and software systems. 
The conference usually includes a 'tools fair' which 
provides vendors an opportunity to feature proto­
typing languages, CASE environments, language 
generators, and other software development sup­
port tools. 

IEEE is more actively involved in standards 
development than most other organizations. For 
instance, the 802 committee is the sponsor of many 
LAN standards in this country. Subcommittees 
define, for example, the 802.3 ethernet standard. Par­
ticipants in the technical standards committees are 
volunteers who are sponsored by their business 
organizations to participate in the intensive and time­
consuming, but personally rewarding, standards def­
inition activities. 

Like all of the professional organizations, 
IEEE strives to involve all of its members in activi­
ties. Almost all of the work is voluntary and 
might include local chapter participation, or par­
ticipation in national conferences, publications, 
or organizations. 

There are many other equally rewarding organi­
zations listed in Figure 19-7 that are too numerous to 

Maintaining Professional Status 783 

detail here. There is significant overlap between the 
interests of all of the organizations, and there is room 
for you in one or more of them. Keep in mind that it 
is not necessary to join all of the organizations, but 
one or two help you maintain current knowledge of 
IS developments. 

User Organizations 
In addition to industry organizations, there are many 
professional user organizations that are sponsored by 
vendors for their users, or by interested individuals 
who share common interests. 

Hardware User Organizations 

Hardware user organizations are vendor-sponsored 
groups that are convened for users to share their use 
of the hardware, develop solutions to problems, and 
to provide guidance and requests to the vendors for 
future services or capabilities. The organizations are 
all very active and use volunteers from using orga­
nizations whose participation is sponsored by their 
companies. All major vendors sponsor user groups, 
including IBM, DEC, Unisys, CDC, Honeywell, 
AT&T, Sun, Apple, and so on. 

IBM, for instance, has two such user organiza­
tions: GUIDE and SHARE. GUIDE is an organiza­
tion of several thousand business and government 
installations whose use of computers is primarily 
for business applications, such as transaction pro­
cessing or decision support applications. SHARE 
was founded by scientific businesses to support their 
special needs. Over the years, the missions of the 
two organizations have come to be similar, but the 
two organizations remain distinct. Each organization 
sponsors conferences and workshops several times 
each year. The conventions are like any professional 
convention, composed of general sessions in which 
presentations on topics of interest are made, and 
working sessions where commitments to work on 
projects or to present at future meetings are made. 
The working groups are completely voluntary and 
first time participants are recommended to attend the 
meetings of many working groups to get a feel for 
what they do. 



784 CHAPTER 19 Software Engineering as a Career 

Working group areas include hardware, operating 
systems, telecommunications, applications, CASE, 
database, data management, language (e.g., 
COBOL), security, audit control, and disaster recov­
ery, to name a few. 

Software User Organizations 

Similar to hardware vendors, major software ven­
dors provide user group support for their users. All 
user participation is voluntary and at the expense of 
the user's company. Software vendors include, for 
instance, Information Builders, Inc. for its 4GL 
FOCUS, Novell for its network operating system, 
and all major database vendors, such as Software 
AG for its Adabas. Each vendor schedules an 
annual meeting of its user group, providing the facil­
ity. Presentations by users center around using the 
product in their organizations and discussing innova­
tive product use or problems and how they are over­
come. The vendors also make presentations at these 
meetings, including tutorials about using their prod­
uct and new feature announcements. 

Birds-of-a-Feather Groups 

Birds-of-a-feather groups are semiformal groups of 
IS and nonIS professionals who share an interest in 
some area. The topic matter might be technically 
specific. For instance, the Data Administration Man­
agement Association (DAMA) is a support group for 
people who are interested in or perform the functions 
of data administration in business organizations. 
Similar groups exist for the insurance industry, spon­
sored through the Life Operations Management 
Association (LOMA). 

For some groups, the topic matter is less spe­
cific. For instance, the Boston PC Users Group 
which number about 15,000 members, is inter­
ested in supporting and networking PC users in the 
Boston metro area. Every metro area has its own 
user groups that are loosely organized by the type 
of computer or operating software they own-PC, 
Macintosh, Pick operating system, Unix operating 
system, and so on. 

Professional Educational 
Organizations 

Another approach to keeping current is to attend 
seminars that are organized and presented through 
professional education organizations. There are 
many noted speakers who reach their audiences 
in this way, for instance, James Martin, Carma 
McClure, and Grady Booch, just to name a few. 
Most such training is company sponsored because of 
the expense. Expect to pay $600+ per day for these 
courses. 

When attending professionally sponsored train­
ing, several important issues should be monitored. 
Only choose seminars that specifically address your 
concerns. If you choose, for instance, object-oriented 
analysis, hoping to hear information about object­
oriented languages, you might be disappointed. 

Also, beware of the instructor. Review the entire 
outline of a multi day seminar to make sure that the 
'name' person who is to speak actually speaks for a 
good portion of the time. Review the credentials of 
all speakers and instructors to ensure that they are 
qualified to teach the course. If you cannot tell from 
the brochure, call for more information about the 
person and the class. 

Review outlines of courses for content to ensure 
that you are attending the course you think you are 
attending. Sometimes the names and the content 
are not congruous. Stay away from courses that are 
programming without any hands-on. If hands-on 
sessions are planned, assistants (or the instructor) 
should be present during the session, each student 
should have a PC, and there should be additional 
time available at night. 

Finally, ask questions about seminar size and 
maximum number of participants to get a sense of 
your ability to interact with the instructor. Avoid ses­
sions that have no maximum or minimum or that 
have maximums over 30 participants except for 
high-level topic introductions. You know from your 
own classes that class sizes over 30 are presented 
differently and have less intimacy between instructor 
and class. Similarly, less than ten people is not con­
ducive to sharing either. In small groups, it is easier 
for one individual to monopolize discussion times, 



making the instructor's job one of personality man­
agement rather than class interaction. 

Research and Academic Organizations 

The last type of organization in which you might 
participate focuses on research and teaching of IS­
related subjects. Academics have their own conven­
tions that may serve as a forum for debate and pre­
sentation of the latest techniques and research on 
emerging areas of interest. They also provide an out­
let for research presentations on a wide variety 
of topics. 

The largest such conference is the International 
Conference on Information Systems (lCIS) which 
is held annually in early December. The location of 
the conference rotates around the world with the 
majority of conferences currently held in North 
America. The conference locations for the next 
several years include Vancouver, British Colum­
bia-1994; The Netherlands-1995; Cleveland, 
Ohio--1996; and Atlanta, GA-1997. 

Topics of interest at recent ICIS conferences 
include globalization of IS, object orientation, ethics 
and IS professionals, use of ITs in business organi­
zations, CASE, and computer-supported diversity 
of organizations. Although about 90% of attendees 
at ICIS are academics, the remaining 10% of pro­
fessionals is increasing. Panel sessions frequently 
include practitioners from industry. Key note 
addresses are mostly by local CEOs or CIOs who 
discuss the future of IS from their perspective. 

ICIS is not a conference that all practitioners need 
to attend regularly. Rather, if the theme of the con­
ference matches an interest in your organization, 
ICIS is a good place to hear about the latest research 
in the area, and to meet the people doing the re­
search. Occasional attendance at a conference such 
as ICIS once every three to five years is probably 
enough to maintain contact with academia. 

Accreditation 
Professional organizations help you keep current in 
the field with new developments in new areas and 
with updates on areas you already know. Accredita-

Maintaining Professional Status 785 

tion is one method to prove to the world that you 
indeed are expert in some area. You take an exam 
which is given once or twice each year, and, if you 
pass, you obtain a certificate that you know a partic­
ular technical area. The major proponents of gen­
eral IS accreditation are professional organizations, 
such as DPMA, which sponsors the exams for Cer­
tified Data Processor (CDP), Certified Systems Pro­
fessional (CSP) and others. 

A different type of accreditation is managed and 
provided through vendors to certify the knowledge 
base of people who support their products. Novell's 
Certified Netware Engineer (CNE), for instance, 
requires the passing of an exam that follows com­
pletion of a networking and telecommunications 
course. The courses may be intensive one to two 
week events that are sponsored by the vendor, or 
they may be offered through a continuing education 
program at a local university and span several 
months of part-time study. 

The motivation for accreditation is simple: Many 
people profess to be IS professionals, few really are. 
Those few should be rewarded by having the recog­
nition of their knowledge and expertise. Then, when, 
for instance, consultants advertise their ability to 
perform a job, the credentials they offer have some 
instant credibility when they include accreditation 
ratings. The word some is emphasized here because 
passing an exam is still not the same as performing 
on a job. The point of accreditation is to separate 
those who have detailed knowledge about the field 
from those who do not. Having accreditation is no 
guarantee of work performance. 

Read the Literature 
Reading is fundamental to maintaining currency in 
methodologies, technologies, and industry with 
changes that take place as rapidly as in the informa­
tion systems field. When selecting periodicals, news­
papers, and/or books for keeping current, you should 
have a clear idea of why you are spending your hard­
earned money on each purchase. For each type of lit­
erature, this section discusses what you should try 
to keep current on, why you should be current, the 
general tone and content of articles and/or chapters 



786 CHAPTER 19 Software Engineering as a Career 

for the type of literature, and what you should get 
from reading this type of writing. The three general 
types of literature discussed are practitioner jour­
nals and newspapers, books, and academic research 
journals. 

Practitioner journals/papers allow you to main­
tain awareness of the market place and vendors. 
When reading journals and newspapers, always keep 
in mind how applicable the products might be to 
your organization. These periodicals are good for 
finding out the latest announcements and about prod­
ucts that are already on the market. They provide 
the following: 

• product introductions 
• product comparisons 
• case studies or descriptions of other organiza­

tions' product use 

Some periodicals that are in this category include 
Computerworld, Datamation, CIO, CASE Trends, 
PC Week, PC World, MacUser, MacWorld, Info­
World, Byte, PC, LAN, LAN Week, and so on. 

Books are the next type of reading material you 
should maintain and read. Books provide summaries 
of what is currently known on a subject. Read books 
to increase your knowledge, learn new techniques, 
find out about a new area, or get ideas to try in your 
own company. Begin to build a library of reference 
materials you can use throughout your career. To 
do this requires careful selection of topics and au­
thors. Seek books that provide information on the 
following topics as well as others of your interest 
and read them! 

• New methodologies (e.g., object orientation 
such as Peter Coad & Ed Yourdon, Object 
Oriented Analysis, second edition) 

• New techniques (e.g., normalization or entity­
relationship diagramming such as Peter Chen, 
Entity Modeling Techniques) 

• Intellectual development of one person's 
research (e.g., artificial intelligence such as 
Roger Schank, Tell Me a Story) 

• Interesting approaches to solving a problem 
(e.g., a 37(/ mistake in a Unix LAN billing 
report led to a spy ring in Germany in Clifford 
Stoll's, The Cuckoo's Egg) 

• New ways of combining disparate technolo­
gies that will change future ways of comput­
ing (e.g., how to combine database, object 
orientation, and artificial intelligence in 
Parsaye et al.'s, Intelligent Database Systems) 

• Well-written and comprehensive text books on 
all IS topics (e.g., costing, estimating, and 
Co CoMo use by Barry W. Boehm Software 
Engineering Economics) 

• Classics that describe the intellectual growth 
of IS professions (e.g., Ed Yourdon, Writings 
from the Revolution, or ACM, Turing Award 
Lectures 1966-1985) 

Finally, research journals discuss the latest theo­
ries about technology use and how it impacts orga­
nizations. Many studies are empirical, that is, using 
a large enough sample to apply statistical tech­
niques in analyzing the theorized behavior. You may 
not understand all of the statistics in such research, 
but you should be able to evaluate the quality 
of the research and assess its applicability to your 
organization. 

Sample journals you might read periodically 
include IEEE Transactions on Software Engineer­
ing, Computer, Software, Communication of the 
ACM, TOOlS, MIS Quarterly, Information Systems 
Research, and the IBM Systems Journal. 

AUTOMATED _____ _ 

SUPPORT TOOLS ____ _ 
FOR JOB SEARCH ___ _ 

Two types of automated tools for job search are 
available and growing in use. First, universities are 
going on-line in their support of jobs databases that 
are accessible to students. Gone are the days of 
leafing through volumes and volumes of randomly 
organized paper job notices. Instead, the jobs are cat­
egorized by seniority, location, salary, job classifi­
cation, and other demographics. You use a query 
system to narrow the search and find leads for jobs in 
which you are interested. 

Second, computer bulletin boards for jobs are 
available in a number of local markets and on the 



Summary 787 

TABLE 19-1 Automated and Other Support Tools for IS Career Definition 

Title Author/Source Content 

Looking for Work: An Interactive 
Guide to Marketing Yourself 

Frank L. Greenagel, 
InterDigital Inc. 

Under $30, provides worksheets 
and tips to finding the right job 
for you. 25 Water St. 

Lebanon, NJ 08833 
(908) 832-2463 

No Specific Shareware Title Software Labs Many diskettes available at 
under $4 each that offer tips on 
IS jobs. 

100 Corporate Point 
Suite 195 
Culver City, CA 90231 
(800) 569-7900 

Bootstrappin' Entrepreneur: 
The Newsletter for Individuals With 
Great Ideas and a Little Bit of Cash 

Kimberly Stansell 
Suite B261 

A free booklet of tips for 
beginner entrepreneurs. 

8726 S. Sepulveda Blvd. 
Los Angeles, CA 90045 

Internet. Internet is a network of networks that links 
academic, government, and business org~nizations 
worldwide. At last count, there ,were. over one mil­
lion nodes on the network and many millions of 
users. Internet and local bulietin Hoards provide 
local, almost free access to information about a wide 
range of subjects. Those relating to job search offer 
applicants seeking to work in small companies a 
means to find a company with minor effort. The use 
of bulletin boards, automated search systems, and 
other freely available information (e.g., via Inter­
net) will grow considerably in the future. 

In addition to automated advertising, tools and 
booklets are available to help you set your job search 
course. Several recent publications are listed in 
Table 19-1. 

SUMMARY _________ ~ __ _ 
In this chapter we discussed emerging career paths 
for software engineers. Computer science and infor­
mation systems education are converging due to 
increasing overlap on areas of emphasis to both 
groups. While IS SEs will still predominate in busi­
ness enterprises, and CS SEs will continue to be 
more technically oriented, both will apply systematic 

engineering skills and methods to the development 
of applications. 

Next, careers in IS are classified by level and 
type. The levels of experience are junior, intermedi­
ate, senior, lead, technical specialist, and manager. 
Job types differ depending on area of specialization, 
including application development, application sup­
port, technical specialization, staff positions, and 
other positions. 

Application development includes programmer, 
software engineer, and knowledge engineer. Appli­
cation support positions include application special­
ists, data administration, database administration, 
artificial intelligence engineering, and consult­
ing. Technical specializations are communications, 
LAN s, systems programming, and software support. 
Staff positions include security, EDP audit, training, 
standards and technical writing, quality assurance, 
and technology planning. The other positions 
include product support, marketing, and end-user 
specialists. 

Next, one approach to career planning was 
described. The steps in obtaining your next job 
are to decide your objective, search companies that 
fit your profile, assess the likelihood of your attain­
ing the ideal job and, if necessary, adjust your 
expectations. 



788 CHAPTER 19 Software Engineering as a Career 

Keeping current is important to continued growth 
as an IS professional. Several methods of maintain­
ing currency were discussed. First, continuous 
education is important to IS which undergoes con­
tinuous change. Professional organization member­
ship and active participation are also useful to 
maintaining current knowledge of IS developments. 
Establisping your credentials through accreditation 
can help you attain credibility with potential em­
ployers. Continuous reading of books, periodicals, 
and research journals can help you continue to grow 
as a professional software engineer. 

REFERENCES ______ _ 

"Computerworld 1992 salary survey," Computerworld, 
Vol. 26, May, 1992. 

Kennedy, Joyce Lain, "Getting a fair share: Shareware 
that can help you find a job," Dallas Morning News, 
Sunday, April 18, 1993, Section D, page 1. 

Krantz, Les, The Jobs Rated Almanac, 2nd ed. NY: 
Pharos Publishing, 1992. 

Robert Half International, Inc., 1992 Salary Guide. 
San Francisco, CA: Robert Half International, Inc., 
1991. 

Robert Half International, Inc., 1993 Salary Guide. 
San Francisco, CA: Robert Half International, Inc., 
1992. 

KEY TERMS ---------analyst 
application specialist 
artificial intelligence (AI) 

engineer 
communications analyst 
consultant 
data administrator (DA) 
database administrator 

(DBA) 
designer 
EDP auditor 
end-user specialist 
junior staff member 
intermediate staff 

member 
knowledge engineer 

lead staff member 
local area network (LAN) 

specialist 
manager 
marketing support staff 
product support staff 
programmers 
quality assurance 
security specialist 
senior staff member 
software engineer (SE) 
software support specialist 
standards developer 
system software support 

specialist 
systems programmer 

technical specialist 
technical trainer 
technical writer 

EXERCISES 

technology surveillance 
specialist 

1. Plan your job search. Identify the type of job, 
the kind of company, location, and benefits you 
want. Do research to locate specific companies 
and to determine your competition. Then, com­
pute the likelihood of getting your ideal job. 
Discuss your plan with the class or in small 
groups to assess how realistic your plan is. 

2. Research the professional and user organizations 
that you might join and define a rationale for 
yourself to choose one or two in which you are 
interested. Join those organizations. 

3. Select one or two periodicals that are of interest 
to you and further your professional goals. Sub­
scribe to them if you do not already. 

4. When you have decided your career goal, go to 
the library and perform a book search to identify 
potential books for your personal library. Scan 
five of the books, then share your information 
with the class, identifying the one or two of the 
books you intend to buy. Go buy the books and 
begin to build your library. 

5. Choose four technologies for which you would 
like to become expert. Map a strategy for jobs, 
reading, and professional group involvement 
that will help you become an expert within five 
to ten years. Discuss your strategy in class or 
in small groups to assess how realistic it is and 
to obtain suggestions for other ways to reach 
your goal. 

STUDY QUESTIONS ___ _ 

1. Define the following terms: 
analyst software engineer 
DA technology surveillance 
DBA specialist 
programmer 

2. How do computer science majors and informa­
tion systems majors differ in the approaches 



taken by their academic programs? How do 
they complement each other? 

3. What are the levels of experience generally 
used in titles to separate different levels of 
expertise? 

4. How do the duties of a lead person differ from 
those of a manager? 

5. How do the duties of a lead person differ from 
those of a technical specialist? 

6. In application development, the job types are 
programmer, software engineer, and knowl­
edge engineer. Define each job and describe 
how their job content differs. 

7. How do the functions of a DA and DBA dif­
fer? How do they complement each other? 

8. Why and how do companies use consultants? 
What are companies' expectations of consul­
tants' knowledge? 

9. How does an AI specialist differ from a knowl­
edge engineer? 

Study Questions 789 

10. What are the duties of a system5 programmer? 
11. Why are security specialists needed in 

organizations? 
12. Why is quality assurance in an adversarial role 

with application development project teams? 
13. In what types of companies do product and 

market support people work? 
14. Define the steps to planning a career. 
15. Why is it important to have an objective when 

looking for a job? 
16. How do you compute your chances of getting 

the job you desire in the type of company you 
want? 

17. What are the types of organizations you might 
join to continue growth as an SE professional? 
Which type appeals the most to you? 

18. Why is continued growth of both knowledge 
and experience important to a professional SE? 
What happens if you do not continue to learn? 



APPEND 

CASES 
FOR ________________________ ~~ 

ASSIGNMENTS _________ ~ 

ABACUS PRINTING ___ _ 
COMPANY ____________ _ 
This case describes a currently manual process. Your 
job is to automate the order processing, scheduling, 
and customer service functions. Make sure you list 
any assumption you make during analysis and 
design. 

Abacus Printing Company is a $20-million busi­
ness owned and operated by three longtime friends. 
They are automating their order processing for the 
first time. Abacus Printing is located in Atlanta, 
Georgia and employs 20 people full-time. 

The owners are the sales force. The company 
is set up so that each owner sells for a differ­
ent, wholly-owned subsidiary (A Sub, B Sub, and 
C Sub) to separate commissions and expenses for 
tax purposes. Below is a description of the work to 
be automated. 

Three clerks do order entry and customer service. 
An order is given to one of the three clerks to be en­
tered into the order entry part of the system. Orders 
are batched by subsidiary for processing in the sys­
tem. There is at least one batch per clerk per day. 
When a batch is complete, orders are printed. After 
orders are printed, the system should maintain indi­
vidual orders for processing (i.e., the integrity of 
the batch is no longer needed). 

790 

Orders are printed and become internal job tickets 
which are used to schedule and monitor work 
progress. All order/job tickets go to the scheduler 
who sorts and prioritizes them to develop a produc­
tion schedule. Each Monday, he gives the first person 
in the work chain (there are three possible sequences 
of processing) the job tickets for completion that 
week. As the week progresses, he adds to or changes 
the schedule by altering the order and adding new 
tickets to the stack of each person beginning a work 
chain. Each job goes through the same basic steps: 

Step 1. Perform requested manufacturing (i.e., 
the engraving or printing work) accord­
ing to the job ticket instructions. 

Step 2. Verify quality of printed items and count 
output, that is, actual printed sheets of 
paper or envelopes. Write the actual 
count of items to be shipped on the job 
ticket. 

Step 3. Update the order/job ticket with actual 
shipment information; print shipping 
papers and invoices which reflect actual 
shipments. 

Step 4. Bundle, wrap, and ship the order. 

The updating of the order with actual shipment 
information may be done by either the shipping clerk 
or by the same person who entered the order. The 



second printing 'closes' the order from any other 
changes and results in a multipart form being 
printed. Two of the parts are copies of the invoices, 
showing all prices and other charges with a total 
amount due. One invoice copy is sent to the cus­
tomer; the other is filed for further processing by 
accounts receivable. The third part of the set of 
forms is the bill of lading, or shipping papers, that 
shows all information except money amounts. The 
fourth part of the form is filed numerically by 
invoice number in a sequential history file. The fifth 
part is filed in a customer file which is kept in 
alphabetic sequence. 

The system must allow order numbering by sub­
sidiary company, and must be able to print different 
subsidiary name headers on the forms. The clerks 
batch orders so that only orders from one subsidiary 
are in each batch. Order types include recurring 
orders, blanket orders (which cover the year with 
shipments spaced out over the period), and orders 
with multiple ship-to addresses that differ from the 
sold-to addresses. 

When customers call to change or determine the 
status of an order, the clerk taking the call first 
checks the customer file to see if the order is com­
plete. Then, he or she checks with the scheduler to 
see if the order is in the current day's manufacturing 
mix. If the order is not complete or scheduled, he or 
she manually searches current orders to find the 
paperwork. About 15% of customer calls are 
answered while the customer is on the phone. About 
80% require research and are answered with a call 
back within 30 minutes. The remaining 5% require 
tracking, which results in identifying an order taken 
verbally by a partner and never written down. Cus­
tomers have been complaining of the lost orders and 
threatening to go elsewhere with their business. 

The current computer system is a smart type­
writer and storage facility. The owner wants to pro­
vide personal computer access via a local area 
network for the three partners, three clerks, two 
shipping staff, and one scheduler. He would like to 
eliminate the numerical and alphabetical paper filing 
systems but wants to maintain the information 
on-line indefinitely for customer service queries. 

The managers want ad hoc reporting access to the 
information at all times. The senior clerk is also the 

AOS Tracking System 791 

accounting manager and, along with the owner, 
should be allowed access to an override function to 
correct errors in the system. The other clerks should 
be allowed to perform data entry for order process­
ing and actual goods shipped, and to print invoices/ 
shipping papers. The shipping clerk should be al­
lowed to perform order updates with actual goods 
shipped and to generate shipping papers with a final 
invoice. The scheduler should be allowed access to 
all outstanding orders to alter and schedule work for 
the manufacturing processes. No one else in the 
company should be allowed access to the system or 
to the data. 

AOS TRACKING ___ _ 
SYSTEM ______________ _ 

The AOS case is a logical description of a desired 
application that also includes manual problems to 
be corrected. 

The manager of Administrative Office Services 
(AOS) wants to develop an automated application 
to track work through its departments. The depart­
ments and services provided include: word process­
ing and proofing, graphic design, copying, and 
mailing. Work can come into any of the departments, 
and any number of services might be combined. For 
instance, word processing and proofing can be the 
only service. Word processing, proofing, and graphic 
design might be combined. Another job might 
include all of the services. 

The current situation is difficult because each 
manager has some knowledge of the work in his or 
her own area, but not where work is once it leaves 
their area. Overall coordination for completing jobs 
using multiple services requires the AOS manager to 
give each department a deadline. Then, the AOS 
manager must track the jobs to ensure that they are 
completed and moved along properly. 

The basic work in each department is to receive 
a job, check staff availability based on work load and 
skills, assign staff, priority, and due date, and up­
date job information (for instance, if the work is 
reassigned). Jobs are identified by a unique control 
number that is assigned to each job. Other job 
information maintained includes: requestor name, 



792 APPENDIX Cases for Assignments 

requestor phone, requestor budget code, manner of 
receipt (either fax, paper, or phone dictation), man­
ner of delivery (either fax, paper, or phone dictation), 
and dates and times work is received, due, com­
pleted, canceled, notified, and returned to requestor. 

A job consists of requests for one or more types 
of service. For each type of service, information 
must also be kept. Services include word processing 
and proofing, copying, graphic design, and mailing. 

Information kept for word processing and proof­
ing services includes a description of the job, type 
of request (letter, memo, statistics, legal document, 
special project, chart, manual, labels, etc.), other ser­
vices included with this request (i.e., copying, 
graphic design, mailing), software to be used (Word­
Perfect, Harvard Graphics, Lotus, Bar Coding, 
Other), type of paper (logo, plain bond, user pro­
vided, envelope, other), color of paper (white, pink, 
blue, green, buff, yellow, other), paper size (8.5" x 
11 ", 8.5" x 14", other), special characteristics 
(2-hole punch, 3-hole punch, other), type of enve­
lope (letter, legal, letter window, legal window, bill, 
kraft 9" x 12", kraft 10" x 13", supplied by requestor, 
other), number of copies requested, user control 
number, dates/times required, started, completed, 
reassigned, proof started, proof completed, revisions 
started, and revisions completed. 

Information kept for copying includes the above 
except software and dates/times relating to proofing 
and revisions. In addition, keep requirements for col­
lating, stapling, one-side or two-side, special formats 
(e.g., reduced 60% and put side-by-side in book 
format). 

Information kept for graphic design and mailing 
includes that for word processing, except type of 
envelope. The code schemes for type of request, 
paper, software, and special characteristics are dif­
ferent from those used for word processing. For 
instance, paper for graphics refers to type of output 
media which might actually include slide, trans­
parency, paper, envelope, video still, photograph, 
moving video, and so on. The type of request must 
be expanded to include the number of colors, spe­
cific color selections, intended usage (intracompany, 
external, advertising, public relations, other) and 
level of creativity (i.e., user provides graphic and 
this department automates the design; user provides 

concept and this department provides several alter­
native designs, etc.). 

Information kept for mailing includes requested 
completion date, and the dates and times requests 
were received, completed, and acknowledged back 
to requestor as complete. Other information includes 
whether or not address labels were provided, mailing 
list to be used (choice of four), number of pieces, 
method of mailing (e.g., zip+four, carrier route code, 
bar code, bulk, regular, special delivery, etc.), ma­
chinery required (e.g., mail inserter, mail sorter, 
etc.), and source of mailing (e.g. word processing in 
AOS, user, other). 

As a department's staff gets an incoming job, it 
should be logged into the system, assigned a log 
number, and the job information should be entered 
into the system. In addition, the receiving depart­
ment completes their service-specific information 
(e.g., typing) and identifies the sequence of depart­
ments which will work on the job. As the individual 
departments get their task information, they com­
plete the service-specific fields. 

Each department manager assigns a person to the 
task based on skills and availability. First, informa­
tion matching service requests to staff skills should 
be done. Then, the staff with required skills should 
be ordered by their earliest availability date for 
assignment to the task. The system should allow 
tracking (and retrieval) of a task by job, department/ 
task, person doing the work, date of receipt, due 
date, or user. 

The manager of AOS would like to receive a 
monthly listing of all comments received (usually 
they are complaints) and be able to query details of 
the job history to determine the need for remedial ac­
tion. Comments should be linked to a job, service, 
user, and staff member. 

THE CENTER _____ _ 
FOR CHILD ______ _ 
DEVELOPMENT _____ _ 

This case describes a currently manual process. The 
analysis and design task is to develop a new work 



TABLE 1 Client Card File Information 

Last Name 
First Name 
Middle Initial 

Fiscal Year 
Medicaid Number 

Family Identifier 
Line/Person Identifier 
Sex 
Year of Birth 
Diagnosis Code (NA) 
Issue Date 

Dates of Visits 
Fees per Week 
Amount Paid 
Balance Due (Updated Monthly) 

flow and automated system for as much of the Medi­
caid payment process as possible. 

The Center for Child Development (CCD) is a 
not-for-profit agency that provides psychiatric coun­
seling to children, serving approximately 600 clients 
per year. Each client has at least one visit to CCD per 
week when they are in therapy. Most often, the client 
has multiple visits to the center and to other agencies 
in one day (e.g., to CCD and, say, to a hospital). 
Medicaid reimburses expenses for only one such 
visit per day. This means that multiple appointments 
at CCD for a given day will have one appointment 
reimbursed; multiple claims on the same Medicaid 
number for the same day are paid on a first-in, first­
paid basis by Medicaid. The current claims process­
ing takes place monthly; for CCD to remain 
competitive, Medicaid processing must be done 
daily. To provide daily Medicaid processing, au­
tomation of the process is required. The Medicaid 
Administration has arranged with personal computer 
owners to take claims in automated form on disk­
ettes, provided that they conform to the information 
and format requirements of paper forms. 

To develop Medicaid claims, the business office 
clerk reviews the client card file to obtain Medicaid 
number and visit information for each client (see 
Table 1 for Client Card File Information and Table 
2 for Visit Card File Information recorded). Based 

The Center for Child Development 793 

on the card file information, Medicaid forms are 
completed: one per client with up to four visits listed 
on each form (see Table 3 for Medicaid information 
required). Most clients have multiple forms pro­
duced because they have more than four visits to the 
center per month. Each form must be completed in 
its entirety (i.e., top and bottom) for Medicaid to 
process them (the forms cannot be batched by client 
with only variable visit information supplied). 

, One copy of each form is kept and filed in a 
Medicaid-Pending Claims File. The other copies 
of the forms (or disks) are mailed to Medicaid for 
processing. 

About four to six weeks after submission of 
claims, Medicaid sends an initial determination 
report on each claim. The response media is either 
diskette or paper. Reconciliation of all paid amounts 
is done by manually matching the Medicaid report 
information with that from the original claim. If 
automated, report entries are in subscriber (i.e., CCD 
client) sequence. The paid claims are then filed in a 
Medicaid-Paid Claims File. 

Claims that are disputed by Medicaid (almost 
90% are pending on the initial report; of pending 
claims, 10-20% are ultimately denied) are re­
searched and followed up with more information as 
required. Electronic reconciliation in other compa­
nies reduces the 90%-pending to as few as 10%, thus 
speeding the reimbursement process. CCD has a 
contact at Medicaid with whom they work closely 
to resolve any problems. 

TABLE 2 Visit Information 

Day 
Date 
Type Appointment (i.e., Intake, Regular) 
Client Name 
Time of Appointment 
Single/Group Visit 
Amount Paid 
Amount Owed 
Insurance Company 
Medicaid (YIN) 
Last Date Seen 
Therapist 



794 APPENDIX Cases for Assignments 

TABLE 3 Medicaid Claim Form Information 

Permanently Assigned Fields 

Company Name (CCD) 

Invoice Number (Assigned by Medicaid, preprinted 
on the forms) 

Group ID Number (Not Applicable, i.e., NA) 

Location Code (03) 

Clinic (827) 

Category (0160) 

Number of Attachments (NA) 

Office Number (NA) 

Place of Service (NA) 

Social Worker Type (NA) 

Coding Method (6) 

Emergency (N, i.e., No) 

Handicapped (N) 

Disability (N) 

Family Planning (N) 

Accident Code (0) 

Patient Status (0) 

Referral Code (0) 

Abort/Sterile Code (0) 

Prior Approval Number (NA) 

Ignore Dental Insurance (Y) 

Information Completed by CCD 

Billing Date (must be within 90 days of service) 

Recipient ID Number (Client Medicaid Number) 

Year of Birth 

Sex 

Recipient (Client) Name 

Social Worker License Number 

Name of Social Worker 

Primary/secondary diagnosis (Table look-up, 120 entries) 
Date of Service 

Procedure Code (This is a two-line entry to identify first 
the treatment payment on the first line and the treatment 
code on the second line.) 

Procedure Description 

Times Performed 

Amount 

Name of person completing the form 

Date 

(Information in parentheses is the permanent value of that field for CCD) 

COURSE ____________ __ 
REGISTRATION _______ _ 
SYSTEM ______________ _ 

This case is a logical description of the desired 
application. Your task is to analyze and design the 
data and processes to develop an automated appli­
cation to perform course registration. 

A student completes a registration request form 
and mails or delivers it to the registrar's office. A 
clerk enters the request into the system. First, the 

Accounts Receivable subsystem is checked to ensure 
that no fees are owed from the previous quarter. 
Next, for each course, the student transcript is 
checked to ensure that the course prerequisites are 
completed. Then, class position availability is 
checked; If all checks are successful, the student's 
social security number is added to the class list. 

The acknowledgment back to the student shows 
the result of registration processing as follows: If 
fees are owing, a bill is sent to the student; no regis­
tration is done and the acknowledgment contains the 
amount due. If prerequisites for a course are not 



filled, the acknowledgment lists prerequisites not 
met and that course is not registered. If the class is 
full, the student acknowledgment is marked with 
'course closed.' If a student is accepted into a class, 
the day, time, and room are printed next to the course 
number. Total tuition owed is computed and printed 
on the acknowledgment. Student fee information is 
interfaced to the Accounts Receivable subsystem. 

Course enrollment reports are prepared for the 
instructors. 

DR. PATEL'S _____ _ 

DENTAL PRACTICE ___ _ 
SYSTEM _______ _ 

The dental practice uses a manual patient and billing 
system to serve approximately 1,100 patients. The 
primary components of the manual system are 
scheduling patient appointments, maintaining 
patient dental records, and recording financial infor­
mation. Due to increased competitive pressure, 
Dr. Patel desires to automate his customer records 
and billing. 

New patients must complete the patient history 
form. The data elements are listed in Table 1. Then, 
at the first visit, the dentist evaluates the patient and 
completes the second half of the patient history in­
formation with standard dental codes (there are 
2,000 codes) to record recommended treatments. 
The data elements completed by the dentist are listed 
as Table 2. The patient history form is filed in a 
manila folder, with the name of the patient as iden­
tification, along with any other documents from sub­
sequent visits. 

A calendar of appointments is kept by the secre­
tary, who schedules follow-up visits before the 
patient leaves the office. The calendar data elements 
are shown as Table 3. Also, before the patient leaves, 
any bills, insurance forms, and amounts due are 
computed. The client may pay at that time, or may 
opt for a monthly summary bill. The secretary main­
tains bill, insurance, and payment information with 
the patient history. Financial data elements are 
shown in Table 4. Every week, the secretary types 
mailing labels that are attached to appointment 

Dr. Patel's Dental Practice System 795 

TABLE 1 Patient History Information 

Patient name 
Address 
City 
State 
Zip 
Home telephone 
Date of birth 
Sex 
Parent's name (if under 21) or emergency contact 

Address 
City, state, zip 
Telephone number 

Known dental problems (room for 1-3) 
Known physical problems (room for 1-3) 
Known drug/medication allergies (room for 1-3) 

Place of work name 
Address 
City 
State 
Zip 
Telephone number 

Insurance carrier 
City, state, zip 
Policy number 

Last dentist name 
Address 
City, state, zip 

Physician name 
City, state, zip 

TABLE 2 Dentist Prognosis Information 

Dentist performing evluation 
Date of evaluation 
Time of evaluation 
Recommended treatment (room for 1-10 diagnoses 

and treatments) 
Procedure code 
Date performed (completed when performed) 
Fee (completed when performed) 

reminder cards and mailed. Once per month, the sec­
retary types and sends bills to clients with outstand­
ing balances. 



----------------------------------------------~-

796 APPENDIX Cases for Assignments 

TABLE 3 Appointment Calendar 

Patient name 
Horne telephone number 
Work telephone number 
Date of last service 
Date of appointment 
Time of appointment 
Type of treatment planned 

TABLE 4 Patient Financial Information 

Patient name 
Address 
City, state, zip 
Home telephone number 
Work telephone number 
Date of service 
Fee 
Payment received 
Date of payment 
Adjustment 
Date of adjustment 
Outstanding balance 
Date bill sent 
Date overdue notice sent 

THEEAGLE __________ __ 
ROCK GOLF _________ _ 
LEAGUE ________ _ 

This is a logical description of a desired application. 
The task is to analyze and design the data and pro­
cesses required to track golfers and rounds of golf, 
including computation of match rankings. 

The members of the Eagle Rock Golf League reg­
ularly compete in matches to determine their com­
parative ability. A match is played between two 
golfers; each match either has a winner and a loser, 
or is declared a tie. Each match consists of a round of 
18 holes with a score kept for each hole. The person 
with the lowest gross score (gross score = sum of 
all hole scores) is declared the winner. If not a tie, the 

outcome of a match is used to update the ranking 
of players in the league: The winner is declared bet­
ter than the loser and any golfers previously beaten 
by the loser. Other comparative rankings are left 
unchanged. 

The application should keep the following infor­
mation about each golfer: name, club ID, address, 
home phone, work phone, handicap, date of last golf 
round, date of last golf match, and current match 
ranking. 

Each round of golf should also be tracked includ­
ing golfer'S club ID, name, scores for all 18 holes, 
total for the round, match indicator (i.e., Yes/No), 
match opponent ID (if indicator = Y), winner of the 
match, and date of the match. The application should 
allow golfers to input their own scores and allow any 
legal user to query any information in the system. 
Only the system should be allowed to change rank­
ings. Errors in data entry for winters or losers should 
be corrected only by a club employee. 

GEORGIA BANK _______ _ 
AUTOMATED TELLER ____ __ 
MACHINE SYSTEM _____ _ 

Georgia Bank describes an application to be devel­
oped. The functional requirements are described at 
a high level of abstraction and the task is to do more 
detailed analysis or to begin design. 

The Georgia Bank is automating an automated 
teller machine (ATM) network to maintain its com­
petitive position in the market. The bank currently 
processes all deposit and withdrawal transactions 
manually and has no capability to give up-to-the­
minute balance information. The bank has 200,000 
demand-deposit account (DDA, e.g., checking ac­
count) customers ahd 100,000 time deposit (e.g., 
savings account) customers. All customers have the 
same account prefix with a two-digit account type 
identifier as the suffix. 

The ATM system should provide for up to three 
transactions per customer. Transactions may be 
processed via ATM machines to be installed in each 
of the 50 branches and via the AVAILTM network of 



Georgia banks. The system should accept an ATM 
identification card and read the ATM card number. 
The ATM card number is used to retrieve account in­
formation including a personal ID number (PIN) and 
balances for each DDA and time account. The sys­
tem should prompt for entry of the PIN and verify its 
correctness. Then the system should prompt for type 
of transaction and verify its correctness. 

For DDA transactions, the system prompts for 
amount of money to be withdrawn. The amount 
is verified as available, and if valid, the system 
instructs the machine to dispense the proper amount 
which is deducted from the account balance. If the 
machine responds that the quantity of money 
required is not available, the transaction is aborted. 
A transaction acknowledgment (customer receipt) 
is created. If the amount is not available or is over 
the allowable limit of $250 per day per account, an 
error message is sent back to the machine with 
instructions to reenter the amount or to cancel the 
transaction. 

For time deposit transactions, the system prompts 
for amount of money to be deposited and accepts an 
envelope containing the transaction. The amount is 
added to the account balance in transit. A transaction 
acknowledgment is created. 

For account balances, the system prompts for 
type of account-DDA or time-and creates a report 
of the amount. At the end of all transactions, or at the 
end of the third transaction, the system prints the 
transaction acknowledgment at the ATM and cre­
ates an entry in a transaction log for all transactions. 
All other processing of account transactions will 
remain the same as that used in the current DDA and 
time deposit systems. 

The customer file entries currently include cus­
tomer ID, name(s), address, social security number, 
day phone, and for each account: account ID, date 
opened, current balance, link to transaction file 
(record of most recent transaction). The transaction 
file contains: account ID, date, transaction type, 
amount, source of transaction (i.e., ATM, teller ini­
tials) and link to next most recent transaction record. 
The customer file must be modified to include the 
ATM ID and password. The transaction log file con­
tains ATM ID, account ID, date, time, location, 
transaction type, account type, and amount. . 

Summer's Inc. Sales Tracking System 797 

SUMMER'S INC. ____ _ 
SALES TRACKING ___ _ 
SYSTEM _______ _ 

This case describes a manual system for sales track­
ing. Your design should include work procedures 
and responsibilities for all affected users. 

Summer's Inc. is a family-owned, retail office­
product store in Ohio. Recently, the matriarch of the 
family sold her interest to her youngest son who is 
automating as much of their processing as possible. 
Since accounting and inventory management were 
automated two years ago, the next area of major 
paper reduction is to automate retail sales to floor 
processing. 

The sales floor has four salespersons who to­
gether serve an average of 100 customers per day. 
There are over 15,000 items for sale, each available 
from as many as four vendors. The system should 
keep track of all sales, decrease inventory for each 
item sold, and provide an interface to the NR system 
for credit sales. 

A sale proceeds as follows. A customer selects 
items from those on display and may request order­
ing of items that are not currently available. For 
those items currently selected, a sales slip is created 
containing at least the item name, manufacturer's 
item number (this is not the same as the vendor's 
number), retail unit price, number of units, type of 
units (e.g. each, dozen, gross, ream, etc.), extended 
price, sales tax (or sales exemption number), and 
sale total. For credit customers, the customer name, 
ID number, and purchaser signature are also 
included. The sales total is entered into a cash regis­
ter for cash sales and the money is placed into the 
register. A copy of the sales slip is given to the cus­
tomer as a receipt, and a copy is kept for Summer's 
records. For orders or credit sales, the information 
kept includes customer name, ID number, sale date, 
salesman initials, and all details of each sales slip. 
For credit sales, a copy of credit sale information 
should be in an electronic interface to the accounting 
system where invoices are created. 

In the automated system, both cash and credit 
sales must be accommodated, including the provi­
sion of paper copy receipts for the client and for 



798 APPENDIX Cases for Assignments 

Summer's. The inventory database should be up­
dated by subtracting quantity sold from units on 
hand for that unit type, and the total sales amount for 
the year-to-date sales of the item should be increased 
by the amount of the sale. The contents of the 
inventory database are shown in Table 1. 

TABLE 1 Summer's Inc. Inventory 
Database 

General Item Information 

Item Name (e.g. Flair Marker, Fine-Point Blue; Flair 
Marker, Wide-Point Blue, etc.) 

Item Manufacturer 
Date began carrying item 

Units information* 
Unit type (e.g., each, dozen, gross, etc.) 
Retail unit cost 
Units on order 
Units on hand 
Total units sold in 1993 

Vendor-Item Information* 
Vendor ID 
Vendor item ID 

Vendor-units information* 
Unit type (e.g., each, dozen, gross, etc.) 
Last order date 
Discount schedule 
Wholesale unit cost 

Vendor General Information 

VendorID 
Vendor name 
Vendor address 
Terms 
Ship method 
Delivery lead time 

Item-Information 
Vendor item ID 
Unit type (e.g., each, dozen, gross, etc.) 
Last order date 
Discount schedule 
Wholesale unit cost 

(Note: Primary keys are underlined; repeating groups are identi­
fied with a boldface name and an asterisk.) 

TECHNICAL _____ _ 
CONTRACTING, ____ _ 
INC. ________ _ 

Technical Contracting, Inc. (TCI) describes a man­
ual process to be automated. The data and processes 
are approximately equally complex; both require 
some analysis and design before the automated 
application can be designed. First, decide what 
information in the problem description is relevant 
to an automated application for client-contractor 
matching, then proceed with the assignment. 

TCI is a rapidly expanding business that contracts 
IS personnel to organizations that require specific 
technical skills in Dallas, TX. Since this business is 
becoming more competitive, Dave Lopez, the 
owner, wants to automate the processing of person­
nel placement and resume maintenance. 

The files of applicant resumes and skills are 
coded according to a predefined set of skills. About 
10 new applicant resumes arrive each week. A clerk 
checks the suitability of the resume for the services 
TCI provides and returns unsuitable resumes with a 
letter to the applicant. The applicant is invited to 
reapply when they have acquired skills that are in 
high demand, several of which are listed in the letter. 
High-demand jobs are determined by counting the 
type of requests that have been received in the last 
month. Resumes of applicants are added to the file 
with skills coded from a table. There are currently 
200 resumes on file that are updated every six 
months with address, phone, skills, and project 
experience for the latest period. Most of the resume 
information is coded. There is one section per proj­
ect for a text description. This section is free-form 
text and allows up to 2,500 characters of description. 

Client companies send their requests for special­
ized personnel to TCI either by mail, phone, or per­
sonal delivery. For new clients, one of TCl's clerks 
records client details such as name, ID, address, 
phone, and billing information. For each require­
ment, the details of the job are recorded, including 
skill requirements (e.g., operating system, language, 
analysis skills, design skills, knowledge of file struc­
tures, knowledge of DBMS, teieprocessing knowl­
edge, etc.), duration of the task, supervisor name, 



supervisor level, decision authority name, level of 
difficulty, level of supervision required, and hourly 
rate. For established clients, changes are made as 
required. 

Once a day, applicant skills are matched to client 
requirements. Then Dave reviews the resumes and, 
based on his knowledge of the personalities in­
volved, selects applicants for interviewing by the 
client company. When Dave selects an applicant, the 
resume is printed and sent with a cover letter. Dave 
follows up tht~ letter with a phone call three days 
later. If the client decides to interview the appli­
cant( s), Dave first prepares them with a sample 
interview, then they are interviewed by the client. 

Upon acceptance of an applicant, two sets of con­
tracts are drawn up. A contract between Tel and the 
client company is developed to describe the terms 
of the engagement. These contracts can be compli­
cated because they might include descriptions of dis­
counts in billings that apply when multiple people 
are placed on the contract, or might include 
longevity discounts when contractors are engaged 
over a negotiated period of time. A contract between 
Tel and the applicant is developed to describe the 
terms of participation in the engagement. Basically, 
the applicant becomes an employee of Dave's orga­
nization for the duration of the contract. 

Tel keeps information on demand for each type 
of skill, whether they provide people with the skill or 
not. Dave also monitors Tel performance in filling 
requests for each skill and evaluating lost contracts 
due to nonavailability of applicants (to raise his fees 
for those services, and to advertise for those skills). 
Tel advertises for applicants with specific skills 
when client demand for new skills reaches three re­
quests in anyone month, or when demand for skills 
already on fik increases to such an extent that the 
company is losing more than three jobs per month. 

XV University Medical Tracking System 799 

XY UNIVERSITY ____ _ 
MEDICAL ______ _ 
TRAC~NG ______ _ 
SYSTEM ______ _ 

The XY University case is a brief logical description 
of a simple tracking system with a complex data 
structure. The key to a good design is to analyze and 
define the data and services properly. 

XY University student medical center serves a 
student population of 60,000 students and faculty in 
a large metropolitan area. Over 300 patients receive 
one or more medical services each day. The univer­
sity has a new president who wishes to overhaul the 
existing medical support structure and modernize the 
facilities to improve the services. In order to plan 
for these changes, more information on which ser­
vices are in fact used is required. The university 
wishes to develop a patient tracking system that 
traces each patient throughout their stay in school for 
each visit to the facility. 

Students and faculty are identified by their identi­
fication numbers. They should be logged into the 
system (i.e., date, time, and ID) when they enter the 
facility. They mayor may not have appointments. 
Then, some means of recording and entering infor­
mation into the computer system must be provided 
for each of the following: station visited, medical 
contact person, type of contact (i.e., consultation, 
treatment, follow-up check, routine checkup, emer­
gency, etc.), length of contact, diagnosis, treatment, 
medicine prescribed (i.e., name, brand, amount, 
dosage), and follow-up advised (yes/no). All infor­
mation must be available for query processing and 
all queries must be displayed either at terminals or 
on printers. 





GLOSSARY __________________ --

abstract data type In object orientation, the user­
defined data type that encapsulates definitions of object 
data plus legal processes for that data. 

action diagram In information engineering, a graphical 
representation of procedural structure and processing 
details suitable for automated code generation. 

activity In information engineering, some procedure 
within a business function that can be identified by its 
input data and output data which differ. 

afferent flows In structured design, the input-oriented 
processes which read data and prepare it for pro­
cessing. 

affinity Attraction or closeness. 
affinity analysis In information engineering, a cluster­

ing of business processes by the closeness of their func­
tions on data entities they share in common. 

analysis The act of defining what an application will do. 
application The set of programs that automate some 

business task. 
application characteristic Descriptive information that 

is common to all applications and includes data, pro­
cesses, constraints, and interfaces. 

application complexity Fundamental application diffi­
culty which comes from several sources, including man­
agement of the number of elements in the application, 
the degree and types of interactions, support, novelty, 
and ambiguity. 

application type The business orientation of the appli­
cation as transactional, query, decision, or intelligent. 

architecture A snapshot of some aspect of an organiza­
tion, e.g., data, business processes, technology, or com­
munications network. 

associative data relationships Irregular entity relation­
ships, dictated by data content rather than abstractions 
such as normalization. 

atomic process A system process that cannot be further 
decomposed without losing its system-like qualities. 

attribute In object orientation, a named field or property 
that describes a class/object or a process. 

audit control Application design components that prove 
transaction processing in compliance with legal, fidu­
ciary, or stakeholder responsibilities. 

backup The process of making extra copies of data to 
ensure recoverability. 

baseline A product that is considered complete and 

which is the basis for other current work by the project 
development team. 

batch applications Computer applications in which 
transactions are processed in groups. 

benchmark A comparison test used to identify differ­
ences between hardware or software products. 

benefit Some improvement in the work product or pro­
cess that results from a specific alternative. 

bid The financial response to an RFP. Bid types for 
hardware are lease, lease with option to buy, or pur­
chase. For software, bid types are time and materials 
(T&M) , T&M with a ceiling, or fixed price. 

binding In object orientation, the process of integrating 
the code of communicating objects. Binding of objects 
to operations may be static, pseudo-dynamic, or 
dynamic. 

black box A testing strategy that determines correct­
ness of functioning by creating input data is designed 
to generate variations of outputs without regard as to 
how the logic actually functions. Black-box strategies 
include equivalence partitioning, boundary value analy­
sis, and error guessing. 

body of screen The large middle part of a screen con­
taining application-specific variable information. 

boilerplate Code that is invariant from one program to 
another, regardless of program function. 

Booch diagram In object orientation, a graphical repre­
sentation of all objects and their processes in the appli­
cation, including both service and problem domain 
objects. 

bottom-up testing A testing strategy that tests complete 
modules, assuming that the lower the number of incre­
mental changes in modules, the lower the error rate. 

bracket In information engineering, a graphical struc­
ture on an action diagram. 

business activity In information engineering, some high 
level set of procedures within a business function. 

business area analysis In information engineering, a 
tabular clustering of processes which share data creation 
authority for an entity. 

business function In information engineering, a group 
of activities that accomplish some complete job that is 
within the mission of the enterprise. 

business process Details of an activity, fully defining 
the steps taken to accomplish the activity. 

801 



802 Glossary 

cardinality The number of an entity relationship; can be 
one-to-one, one-to-many, or many-to-many. 

CASE integration The absence of barriers between one 
graphical or text form and others. . 

central transform In structured design, processes hav­
ing as their major function the change of information 
from its incoming state to some other state. 

champion A manager who actively supports and sells 
the goals of the application to others in the organization. 

change control Project management techniques for 
dealing with changes to specifications, application func­
tions, documentation, etc. 

class In object orientation, like objects that have exactly 
the same properties, attributes, and processes. 

class hierarchy In object orientation, the basic hierarchy 
of relationships between classes of objects that also 
accommodates lattice-like network relationships. 

class/object In object orientation, a set of items which 
share the same attributes and processes, and manage 
the instances of the collection. 

client object In object orientation, an object that re­
quests a process from a supplier object. 

code The low-level program elements of the software 
product created from design documentation; procedural 
computer instructions. 

code generator A program that reads specifications and 
creates code in some target language, such as Cobol 
ore. 

coding The stage of application development during 
which computer code is generated. 

cohesion A measure of internal strength of a module 
with the notion that maximal or functional coh~sion is 
the goal. 

command language High-level programming lan­
guages that communicate with software to direct its 
execution. 

composite cost model (CoCoMo) A combination of 
estimating techniques based on thousands of delivered 
source instructions. 

compromise of requirements A change to application 
functions to rescope, manipulate, drop, or otherwise 
change them to fit the environment's limitations. 

computer-aided software engineering (CASE) A 
computer application that automates the development of 
graphics and documentation of application design. 
CASE can be intelligent and inClude verification capa­
bilities to ensure syntactic correcmess of information 
entered. 

concurrent processes In object orientation, processes 
that operate at the same time and can be dependent or 
independent. 

configuration management Management of software 
code libraries. 

constraint Limitations on the behavior and/or process­
ing of entities, including prerequisite, postrequisite, 
time, structure, control, or inferential. 

context A setting or environment. 
context diagram A graphic developed during structured 

analysis to define the interactions of the application with 
the external world. 

contingency planning The identification of tasks de­
signed to prevent risky events and tasks to deal with 
the events if they should occur. 

control point A location (logical or physical) in a proce­
dure (automated or manual) where the possibility of 
errors exists. 

controlled redundancy The deliberate duplication of 
data for control purposes. 

conversion The placing of a computer application into 
production use; includes direct cutover, functional, geo­
graphic methods. 

cost The amount of money or other payment for obtain­
ing some benefit. 

cost/benefit analysis The comparison of the financial 
gains and payments that would result from selection of 
some alternative. 

coupling A measure of intermodule connection with 
minimal coupling of the goal (i.e., less is best). 

critical path The sequence of interrelated tasks during 
application development that takes the most time to 
develop. 

critical success factor Some business activity or func­
tion that is crucial to the organization's success. 

CRUD matrix See entity/process matrix. 
cutover A method of conversion such that, on a set day, 

the old way of work is abandoned and the new way 
begins to be used. 

data The elements in raw material-numbers and let­
ters-that relate to each other to form fields (or attri­
butes) which define entities. 

data administration (DA) The management of data to 
support and foster data sharing across multiple divi­
sions, and to facilitate the development of database 
applications. 

data characteristics Descriptive information about data 
including ambiguity, completeness, semantics, struc­
ture, time-orientation, and volume. 

data collection techniques Methods of obtaining infor­
mation and application requirements, including inter­
views, meeting, observation, questionnaires, temporary 
job assignment, document review, and external source 
review. 



data dictionary In structured analysis, a compilation of 
detailed definitions for each element in a DFD. 

data distribution choices In data distribution analysis, 
possible designs include data centralizing, repli­
cating, vertical partitioning, subset partitioning, or 
federating. 

data flow diagram In structured analysis, a graphic rep­
resentation of the application's component parts. 

data methodology Those development methods that 
begin defining functional requirements by first evaluat­
ing data and their relationships to determine the under­
lying data architecture. 

data model A conceptual description of the major data 
entities of interest in an organization for reengi­
neering, or in an application for subject area database 
definition. 

data self-sufficiency A property of application target 
organizations such that 70% (or more) of data used in 
performing the business functions originates within the 
subject organizations. 

data type A language-fixed definition of data, e.g., 
integers. 

data warehouse The means to store unlimited, continu­
ously growing databases. 

data-oriented methodology Approaches to developing 
applications that assume data are fundamentally more 
stable than processes and should, therefore, be the focus 
of activities. 

database administration (DBA) An organization cre­
ated to maintain and monitor DBMS use, including re­
sponsibility for physiCal DB design, disk space alloca­
tion, and day-to-day operations support for the actual 
database. 

denormalization The process of designing storage 
items of data to achieve performance efficiency. 

decision support applications (DSS) Applications 
whose purpose is to seek to identify and solve problems. 

depth of hierarchy In structured design, the number of 
levels in the diagram. 

derived field Fields/attributes for which the application 
is the source, i.e., computed fields. 

design The act of defining how the requirements defined 
during analysis will be implemented in a specific hard­
ware/software environment. 

developmental tests Testing conducted by the project 
development team, including unit, subsystem, integra­
tion, and system tests. 

dialogue In object orientation and information engineer­
ing, ,interactive communication that takes place be­
tween the user and the application, usually via a termi­
nal' to accomplish some work. 

Glossary 803 

dialogue flow diagram In information engineering, a 
diagram summarizing allowable movement between 
entries on a menu structure diagram. 

direct manipulation Screen interactions during which 
the user performs 'in action directly on some display 
object. 

display The screen portion of a computer. 
distributed computing A situation in which multiple 

processors share responsibility for managing pieces of 
an application. 

divide and conquer The principle in structured analy­
sis by which a complex application problem is divided 
into its parts for individual analysis. A technique to sim­
plify management of application complexity. 

document A general analysis and design task that is per­
formed to create useful documents from graphics and 
supporting text either manually or with computer-based 
tools. 

domain A conceptual area of interest. In organizational 
reengineering the domains are data, process, network, 
and technology; in database, a domain is the set of 
allowable values for an individual attribute. 

downsizing The shifting of processing and data from 
mainframes to some other, less expensive environment, 
usually to a multiuser midsize machine, such as an IBM 
AS400, or to a LAN of PCs. 

efferent flows In structured design, the output-oriented 
processes which write, display, and print data. 

elaboration A general analysis and design task that is 
performed to define the details of each thing identified. 

elementary process See atomic process. 
encapsulation In object orientation, a property of pro­

grams that describes the complete integration of data 
with legal processes relating to the data. 

entity In information engineering, some person, object, 
concept, application, or event from the real world about 
wh~h we want to maintain data; includes attributive, 
associative, and fundamental entity types. 

entity relationship diagram In information engineer­
ing, a graphical representation of the normalized data 
environment and data scope of the application. 

entity/process matrix (CRUD) A two-dimensional 
table of entities and business processes that identifies 
the functions each process is allowed to perform on 
data, including create, retrieve, update and delete (e.g., 
CRUD). 

equifinality Many paths lead to the same goal. 
estimating Use of expertise to define project work 

effort, including use of algorithms, models, delphi tech­
niques, expert opinion, function points, top-down, and 
bottom-up techniques. 



804 Glossary 

ethical dilemma Any situation in which a decision 
results in unpleasant consequences requiring moral 
reasoning. 

ethics The branch of philosophy that studies moraljudg­
ment and reasoning. 

exception handling The extent to which programs can 
be coded to intercept and handle program errors without 
abending a program. 

executable units In structured design for non-real-time 
languages an execute unit is a link -edited load module. 
For real-time languages, an execute unit identifies mod­
ules that can reside in memory at the same time and are 
related, usually by mutual communication. 

executive information system (EIS) A spinoff from 
DSS. EIS applications support executive decision mak­
ing and provide automated environmental scanning 
capabilities. 

expert systems (ES) application Computer applications 
that automate the knowledge and reasoning capabilities 
of one or more experts in a specific domain. 

external entity In structured analysis, a person, place 
or thing with which the application interacts. 

facilitator A specially trained individual who runs JAD, 
fast-track, JRP, or walk-through sessions. 

factoring In structured design, the process during which 
net outputs from a DFD are used to determine the 
initial structure of the structure chart. 

fast track A different name for JAD. 
feasibility The analysis of risks, costs, and benefits 

relating to technology, economics, and using orga­
nizations. 

field format The characteristics of individual fields or 
values of fields on a screen display, including size, font, 
style, color, and blink for individual field values, and 
coding options for field labels. 

flash rate Blinking speed for a screen display item. 
flicker fusion A physical phenomenon that causes us to 

see constant light when the flash rate is very high. 
footer The lower portion of a screen. 
form follows function A principle from architecture 

which, when applied to structured analysis, defines 
application functions that transform data as the defin­
ing characteristic of applications. 

frozen specification A specification that cannot be 
changed without specific user/sponsor approval with 
accompanying modification of budget and cost. 

function A small program that is self-contained and per­
forms a well-defined, limited procedure. 

function key A programmable computer keyboard key 
used to provide a shortcut command. 

function point analysis A method of defining the com-

plexity of an application by systematic definition of 
global application characteristics. 

functional decomposition The division of processes 
into modules. 

functional screen A screen at which the application pro­
cesses are performed. 

generalization class In object orientation, defines a 
group of similar objects. 

global data Data variables and constants that are acces­
sible to any module in the application. 

globalization The movement of otherwise local busi­
nesses into world markets. 

goals of software engineering To build a quality prod­
uct through a quality process. 

group decision support systems (GDSS) A special 
type of DSS applications. GDSS provide an historical 
memory of the decision process in support of groups 
of decision makers who might be geographically 
dispersed. 

hardware installation plan A plan identifying work 
required, environmental changes (e.g., air conditioning), 
work responsibilities, timing of materials and labor, and 
scheduling of tasks as they relate to the installation of 
computer and other information technology equipment. 

hierarchical structure chart In structured design, a 
graphical input-process-output view of the application 
that reflects the DFD partitioning. 

human interface The means by which an application 
communicates to its human users. 

Humphrey's maturity framework A framework 
adapted to compare methodologies as having reached 
initial, repeatable, managed, defined, or optimizing lev­
els of sophistication. 

hypermedia Software that allows any number of asso­
ciative relationships to be defined for a given item; sup­
ports audio, video, image, graphics, text and data. 

I/O bound In structured design, a structure chart in 
which the skew is equally balanced between input and 
output, but processing is a small part of the application. 

identification A general analysis and design task that is 
performed to find the focal things that belong in analy­
sis and how logical requirements will work in the target 
computer environment in design. 

implementation The period of time during which a soft­
ware product is integrated into its operational environ­
ment and is phased into production use. Implementation 
includes the completion of data conversion, installation, 
and training. 

information engineering (IE) A data-oriented method­
ology that borrows from both practice and theoretical 
research to support the development of enterprise level 



plans through to individual project developments. IE 
concentrates on business understanding, assumes user 
involvement, and covers more phases of the SPLC than 
most other methodologies. 

information hiding A program design principle by 
which only data needed to perform a function is made 
available to that function. 

information systems architecture framework (lSA) 
Zachman's method of defining distinct architectures 
relating business context to application context at pro­
gressively more detailed levels. 

information systems methodology framework A stan­
dard for comparing methodologies based on their rep­
resentation forms and types of information supported. 

information systems plan (ISP) An enterprise level 
analysis of data, processes, and technology that includes 
manual or automated work to capture a snapshot of the 
enterprise in order to define and prioritize applications 
for development. 

inheritance In object orientation, a property that allows 
the generic description of objects which are then reused 
by related objects. 

input-bound In structured design, a structure chart in 
which the skew is on the input side. 

instance In information engineering, a specific occur­
rence of an entity, e.g., entity = customer, instance 
= Sam Jones. 

integration test Tests that verify the logic and process­
ing for suites of modules that perform some activity, 
verifying communications between them. 

interdependence A way of describing the interrelation­
ships between organizations; includes pooled, sequen­
tial, and reciprocal relationships. 

interface Some person, application, or organization with 
which an application must communicate. 

iterative project life cycle A cyclic repetition of analy­
sis, design, and implementation activities. 

joint application development/design (JAD) A special 
form of structured meeting during which user represen­
tatives, application developers, and a facilitator meet 
continuously over several days to define the functional 
requirements of an application. 

language constructs Features of computer languages 
that determine what and how operations on data are car­
ried out. 

learn-as-you-go project life cycle An approach to the 
development life cycle that assumes every project is so 
unique that it has no prior precedent upon which to base 
activities. 

legacy data Data used by outdated applications that are 
required to be maintained for business records. 

Glossary 805 

legacy systems Applications that are in a maintenance 
phase but are not ready for retirement. 

leveled set of DFDs Verified balanced set of entities, 
data flows and processes within a hierarchic DFD dia­
gram set. 

leverage point Some business or application activity 
from which a competitive advantage can be gained. 

librarian A person working with an application devel­
opment or maintenance team to provide librarian ser­
vices relating to maintenance of documentation, code 
objects, reusable modules, etc. 

local data Data variables and constants that are used 
only within a given module. 

logical data model An abstract definition of data 
in an organization that describes the way a user views 
data 

maintenance The changes made to the logic of the sys­
tem and programs to fix errors (perfective), provide for 
business changes (adaptive), or make the software more 
efficient. 

make/buy decision The tradeoff between building the 
item in-house or purchasing it elsewhere. 

memory management The ability of a program to allo­
cate more computer random-access memory (RAM) as 
required. 

menu Lists of options on a screen from which a selec­
tion is made. 

menu structure In information engineering, a diagram 
translating process alternatives into a hierarchy of menu 
selection options for an application. 

message In object orientation, the unit of communica­
tion between two objects. 

meta-class In object orientation, classes whose instances 
are other classes. 

meta-data Data about data that gives meaning to 
data and is information about data, e.g., data type= 
integer. 

meta-meta-data Information about the meta-data that 
describes its allowable use to the application, e.g., 
type=hardware. 

methodology Procedures, policies, and processes used 
to direct the activities of each phase of a software life 
cycle, including process, data, object, semantic, or none. 

model A conceptual definition of something, e.g., logi­
cal data, physical data, business processes, etc. 

modularity The structured design principle that calls for 
design of small, self-contained units that should lead to 
maintainability. 

module See program package. 
morphology Form or shape. In structured design, mor­

phology refers to the shape of a structure chart. 



806 Glossary 

multimedia A term that describes the integration of 
object orientation, data base, and storage technologies 
in one environment. 

multitasking In object orientation, the simultaneous 
execution of sets of processes. 

multitasking objects In object orientation, objects that 
track and control the execution of multiple threads of 
control. 

multiple inheritance In object orientation, the ability 
to share attributes and processes from multiple class/ 
objects. 

net present value (NPV) A mathematical method of 
comparing multiperiod projects that equalizes the cost 
estimates by accounting for the time value of money. 

normalization The refinement of data relationships to 
remove repeating information, partial key dependen­
cies, and nonkey dependencies. 

object In object orientation, an instance of the class 
definition. 

object-based A design that is based on object thinking, 
but is not object-oriented in its implementation. 

object-oriented analysis A methodology for analyzing 
data objects and their allowable processes as encapsu­
lated and having inheritable properties. 

object-oriented methodology An approach to system 
life cycle development that takes a top-down, encapsu­
lated view of data objects, their allowable actions, and 
the underlying communication requirement to define 
an application architecture. 

off-site storage A location usually 200+ miles away 
from the main computing site used to store backup 
copies of databases, software, etc. 

on-line application Applications that provide interac­
tive processing to the user with or without immediate 
file update. 

operations The daily processing of a computer appli­
cation. 

option selection The choice for application navigation 
from among menus, command languages, and windows 
used to get to a functional screen. 

organizational reengineering An evaluation of an orga­
nization's data, processes, technologies, and communi­
cations needs to ensure that its goals as stated in its mis­
sion statement are met. 

out-of-the-box thinking Examining a problem or issue 
without respect to the current context to determine 
novel approaches to resolving the issue. 

output-bound In structured design, a structure chart in 
which the skew is on the output side. 

package specification In object orientation, defines the 
public interface for both data and processes for each 

object, and the private implementations and language to 
be used. Similar to a program specification in non­
object methodologies. 

packages In object orientation, a set of modules re­
lating to an object which might be modularized for 
execution. 

part class In object orientation, defines a component of 
a whole class. 

partitioning The basic activity of dividing processes 
into modules. 

peer-to-peer networking A computer communications 
network in which intelligent sharing of resources and 
data across multiple processors is taking place. 

persistent object An object that is maintained over time, 
a database item. 

physical data model The physical definition of data, 
describing its layout for a particular hardware device. 

physical database design The actions required to map a 
logical database to storage devices in a specific DBMS 
implementation environment. 

physical input and output The movement of data be­
tween external computer (e.g., disk) storage and ran­
dom-access memory (RAM). I/O statements (e.g., 
read/write) may be record-oriented, set-oriented, or 
array-oriented. 

polymorphism In object orientation, the ability to have 
the same process take different forms when associated 
with different objects. 

presentation format The method chosen for summa­
rizing information for screen display, including analog, 
digital, binary graphic, bar chart, column chart, point 
plot, pattern display, mimic display, text, and text forms. 

primary key A unique set of values comprised of one or 
more attributes identifying an entity, an object, or a 
database item, depending on the context. 

private part (of a class/object) In object orientation, 
defines local, object-only data and the specific proce­
dures each action takes. 

problem space In object orientation, identifies objects/ 
processes that are required to describe the problem, but 
are not required to describe the solution. 

problem-domain objects In object orientation, the 
class/objects and objects defined during analysis and de­
scribing the application functions. 

process The sequence of instructions or conjunction of 
events that operate on data. 

process data flow diagram (PDFD) In information 
engineering, a graphical representation of processes and 
the data and event triggers that initiate processing. The 
PDFD is the basis for action diagrams in IE design. 

process dependency diagram In information engineer-



ing, a graphical representation of the sequence and types 
of relationships among processes. 

process diagram In object orientation, graphical repre­
sentation of the hardware environment showing process 
assignments to hardware. 

process model A conceptual description of the business 
processes of an organization. 

process-oriented analysis A method of analyzing appli­
cation transformation processing as the defining charac­
teristic of applications. 

process-oriented methodology Methodologies that take 
a structured, top-down approach to evaluating problem 
processes and the data flows with which they are 
connected. 

process/location matrix In data distribution analysis, a 
table containing processes and, for each location under 
analysis, the major and minor involvement in perform­
ing each process. 

program package In structured design, one or more 
called modules, and functions, and in-line code that will 
be an execute unit to perform some atomic process. 
Also called a program unit. 

program specification A description of a program's 
purpose, process requirements, the logical and physical 
data definitions, input and output formats, screen lay­
outs, constraints, and special processing considerations 
that might complicate the program. 

program template Standard code that performs a sim­
ple function. 

program unit See program package. 
programming The process of designing and describing 

an algorithm to solve a class of problems. 
project life cycle The breakdown of work for initiation, 

development, maintenance, and retirement of an appli­
cation. 

project manager (PM) The person with primary re­
sponsibility for organization liaison, project staff man­
agement, and project monitoring and control. The PM 
also performs activities with the SE including project 
planning, assigning staff to tasks, and selecting from 
among application approaches. 

project plan A summary of the project planning effort 
that identifies the work breakdown tasks, their interrela­
tionships, and the estimated time to complete each task. 

prototyping The building of a subset of an application 
to assist in requirements definition, to test a proof of 
concept, or to provide a partial solution to a particular 
problem. 

pseudo-code Specification of processing using the syn­
tax from a programming language in abbreviated form 
for easy translation. 

Glossary 807 

public part (of a class/object) In object orientation, 
defines what data are available in the object and the 
allowable actions of the object. 

quality assurance (QA) Any review of an application 
development work product by a person who is not a 
member of the project team to determine whether or 
not the analysis requirements are satisfied. 

quality assurance (QA) test A test by an outside agent 
to determine that functional requirements are satisfied. 
The outside agent can be a user or a user represen­
tative. 

query application Another term for data analysis 
applications. 

question Words phrasing an asking sentence that can 
be open-ended, without a specific answer, or closed­
ended and requesting a yes/no or very short specific 
answer. 

reentrant A property of a module that allows it to be 
shared by several tasks concurrently. 

real-time application Applications that process transac­
tions and/or events during the actual time that the 
related physical (real-world) process takes place. 

recovery The process of restoring a previous version of 
data (or software) from a backup copy to active use fol­
lowing some damage to, or loss of, the previously active 
copy. 

recursive A property of modules such that they call 
themselves or call another module that, in turn, calls 
them. 

regression test Customized tests to check that changes 
to an application have not caused it to regress to some 
state of unacceptable quality. 

relationship In entity-relationship diagrams, mutual 
association between two or more entities. It is shown 
as a line connecting the entities; includes one-to-one, 
one-to-many, and many-to-many relationship cardi­
nalities. 

repository A data dictionary in a CASE environment 
that contains not only data, file, process, entity, and data 
flow definitions, but also contains definitions of all 
graphical forms, their contents, and allowable defini­
tions (e.g., entity-relationship diagram, process decom­
position, etc.) 

request for information (RFI) A formal request for 
information on some product that usually precedes the 
RFP process. 

request for proposal (RFP) A written request for bids 
on some product, providing formal requirements, 
ground rules for responses, and, usually, a standard for­
mat for the proposal responses .• 

request for quotation (RFQ) See request for proposal. 



808 Glossary 

responsiveness The underlying time orientation of the 
application as batch, on-line, or real-time. 

retirement The period of time in the software life cycle 
during which support for a software product is termi­
nated. 

reusability Also called serial reusability, a property of 
a module such that many tasks, in sequence, can use 
the module without its having to be reloaded into mem­
ory for each use. 

reusable components Programs, functions, or program 
fragments that are specially designed for use in more 
than one program. 

reusable module A small, single function, well-defined, 
and standardized program module that can be used as a 
called routine or as a copy book in COBOL. 

reverse engineering See software reengineering. 
review A general analysis and design task that is to ana­

lyze quality of the reviewed product. 
risk Events that would prevent the completion of, in this 

case, an application development alternative in the man­
ner or time desired. 

risk assessment A method of determining possible 
sources of events that might jeopardize completion of 
the application. 

round-trip gestalt In object orientation, an iterative 
approach to detailed design in which prototypes are 
built in an incremental development life cycle. 

scaffolding Extra code to support the stubs, partial mod­
ules, and other pieces of the application, usually cre­
ated to support top-down testing. 

scheduling In object orientation, the process of assign-­
ing execution times to a list of processes. 

scheduling objects In object orientation, objects that de­
fine sequential, concurrent-asynchronous (i.e., indepen­
dent), or concurrent-synchronous (i.e., dependent) 
processes. 

scope Definition of the boundaries of the project: what is 
in the project and what is outside of the project. 

scope of effect In structured design, the collection of 
modules that are conditionally processed based on 
decisions by the module under review. 

screen formats The general layout of a screen display 
including definition of the menu/selection format, the 
presentation format, and individual field formats. 

security plan A plan identifying the physical, data, and 
application means used to protect corporate information 
and technology assets. 

semantic methodology Methodologies used in the 
automation of artificial intelligence (AI) applications, 
including recognizing, reasoning, and learning appli­
cations. 

sequential development life cycle (SDLC) A subcycle 
of the SPLC, including phases for analysis, conceptual 
design, design, implementation, testing, installation and 
checkout, and ending with delivery of an operational 
application. 

sequential project life cycle (SPLC) The period of time 
from inception to retirement of a computer application. 
Phases in SPLC include: initiation, problem definition, 
feasibility, requirements analysis, conceptual design, 
design, code/unit test, testing, installation/checkout, 
operations and maintenance, and retirement. 

server object In object orientation, an object that per­
forms a requested process (i.e., client/server pro­
cessing). 

service objects In object orientation, manage applica­
tion operations, including synchronizing, scheduling or 
multitasking objects, as required. 

skew In structured design, a term to describe the lopsid­
edness of a program structure chart. 

social methodology An approach to SDLC that attends 
to social and job-related needs of individuals who sup­
ply or receive or use data from the application being 
built. 

software engineer Skilled professionals who have a 
variety of skills that they apply using engineering-like 
techniques to the definition, design, and implementation 
of computer applications. 

software engineering Systematic development, opera­
tion, maintenance, and retirement of software. 

software reengineering The reverse analysis of an 
old application to conform to a new methodol­
ogy, usually information engineering or object ori­
entation. 

solution space In object orientation, identifies objects/ 
processes that are required both to describe the problem, 
and to develop a solution. 

specialization class In object orientation, a subclass that 
reflects an is-a relationship, defining a more detailed 
description of the gen class. 

sponsor A manager who pays for the project and acts 
as its champion. 

stakeholders People and organizations affected by an 
application. 

state In object orientation, a specific configuration of 
attribute values of an object. 

state transition diagram In object orientation, defines 
allowable changes for data objects. 

structure chart In structured design, a hierarchic, input­
process-output view of the application that reflects the 
DFD partitioning. 

structured decomposition A technique for coping with 



application complexity through the principle of "divide 
and conquer." 

structured design The art of designing system com­
ponents and the interrelationships among those 
components in the best possible way to solve some 
well-specified problem. 

structured English Language-independent specification 
of processing using a restricted subset of English. 

structured systems analysis A process-oriented analy­
sis methodology that defines a top-down method of 
defining and graphically documenting procedural 
aspects of applications. 

subsystem design Subphase of the design phase dur­
ing which the application is divided into relatively inde­
pendent chunks for detailed specification. 

subsystem test See integration test. 
subdomain In object orientation, application design is 

seen as taking place in four distinct domains: human, 
hardware, software, and data. Encapsulated class/ 
objects (or a subset of them) are assigned to one of the 
subdomains during design. 

subject area data base In information engineering, a 
database that supports one or more business functions. 

supplier object In object orientation, an object that per­
forms a requested process. 

synchronizing The coordination of simultaneous events. 
synchronizing objects In object orientation, objects that 

provide a rendezvous for two or more processes to come 
together after concurrent operations. 

synthesis A general analysis and design task that is per­
formed to build a unified view of the application, rec­
onciling any parts that do not fit, and representing 
requirements in graphic form. 

system test A test to verify that the functional specifi­
cations are met, that the human interface operates as 
desired, and that the application works in the intended 
operational environment within its constraints. 

systems theory A theory defining inputs as fed into 
processes to produce outputs with feedback providing 
a check on the process. 

task profile A description of the job(s) to be performed 
using a computer application. 

technology transfer The large-scale introduction of a 
new technology to some previously nontechnical envi­
ronment. 

test case Individual transactions or data records that 
cause logic to be tested. 

test plan Documents the strategy, type, cases, and 
scripts for testing some component of an application. 
All of the plans together comprise the test plan for the 
application. 

Glossary 809 

test script Documents the interactive dialogue that takes 
place between user and application, and the changes that 
result from the dialogue for on-line and real-time 
applications. 

test strategy The overall approach to testing at some 
level, used to guide the tester in developing test cases. 
Test strategies are white-box, black-box, bottom-up or 
top-down. They are not mutually exclusive and are usu­
ally used in combination. 

testing A phase of the SDLC during which the ap­
plication is exercised for the purpose of finding 
errors. 

thread of control In object orientation, a set of poten­
tially concurrent processes. Usually, a single thread of 
control relates to a single user or a single application­
level transaction. 

time events In object orientation, the business, system, 
or application occurrences that cause processes to be 
activated. 

time-event diagram In object orientation, a diagram 
depicting the relationships among processes that are 
triggered by related events or have constraints on pro­
cessing time. 

top-down A perspective that begins the activity (e.g., 
analysis or design) at an abstract level and proceeds to 
more detailed sublevels. 

top-down development A way of thinking about prob­
lems that begins at a high level of abstraction and works 
through successively more detailed levels. 

top-down testing A testing strategy that assumes that 
critical control code and functions will be developed 
and tested first and followed by secondary functions and 
supporting functions. 

transaction analysis In structured design, a method of 
analyzing generic activities by transaction type to 
develop structure charts of processing. 

transaction processing application (TPA) Applica­
tions that support the day-to-day operations of a busi­
ness, e.g., order processing. 

transaction volume matrix In data distribution analy­
sis, a table summarizing volume of transaction traffic by 
location. 

transform analysis In structured design, a method of 
identifying the central transform through analysis of 
afferent and efferent flows. 

trigger In information engineering, some data or event 
that causes a business process to execute. 

type 1 error Defines code that does not do what it is 
supposed to do; errors of omission. 

type 2 errors Defines code that does something it is not 
supposed to do; errors of commission. 



810 Glossary 

type checking The extent to which a language enforces 
matching of specific data definitions in mathematical 
and logical operations; includes typeless, mixed-mode, 
pseudo-strong, and strong. 

unit test Tests performed by the author on each of the 
code units. 

user-managed application development The overall 
management of application development by the user/ 
sponsor of the project to foster a business partner rela­
tionship with IS staff and to improve the quality of the 
finished product. 

user profile A description of the user(s) of a computer 
application. 

utility object See service object. 
validation A review to establish the fitness or quality 

of a software product for its operational purpose. 
vendor response A proposal in response to an RFP. 
verification A review to establish the correctness of cor­

respondence between a software product and its speci-
fication. 

walk-through A formal, structured meeting held to 
review work products and find problems. 

white box A testing strategy that use~ logic specifica­
tions to generate variations of processing and to predict 
the resulting outputs. White-box strategies look at spe­
cific logic to verify how it works, including various lev­
els of logic tests, mathematical proofs, and cleanroom 
testing. 

whole class In object orientation, defines a composed 
object type. 

windows A form of direct manipulation of the environ­
ment that combines full screen, icon symbols, menGS, 
and point-and-pick devices to simplify the human 
interface by making it represent a metaphorical desk 
environment. 

work around A rethinking of an application design 
caused by limitations of the language, package, or target 
environment. 

working s~t The minimal, real random-access memory 
(RAM) required by software when it is running. 



INDEX ________________ ~ ____ ~~ 

3NF,480 
3x5 approach, 524 
4GL,540 
40-20-40 rule, 185,224,740 
80-20 rule, 115,699,740 

Abacus Printing Company, 790 
ABC Video Rental Processing case, 45, 

50-54 
abstraction, 281 
acceptance criteria, 672 
acceptance test, 691 
access, 116,312,413,415,420,422 
ACM Code of Ethics, 103 
action diagram, 392, 396,401-402,424, 

429-432 
action type, 527, 529 
activity, 333, 356, 362 
Ada, 653-655, 659, 660, 661, 662 
adaptive maintenance, 27 
Administrative Office Services (AOS) 

tracking system, 791 
advantages and disadvantages of 

estimating techniques, 174 
ADW, 134, 387 
afferent flows, 280 
affinity analysis, 133,336,381,383 
algorithmic estimating, 173 
ambiguity, data, 86 
analog display, 605 
analogy, 48,188,179 
analysis, 25-26, 42,199,631 
analysis and design, general activities 

summary, 41, 206 
analysis and design, summary, 225 
analysis domain, 47 
analysis phase activities, 200-201 
application alternative approaches, 49 
application boundary, 234 
application change management, 741 
application characteristics, 5 
application configuration requirements, 

446 
application conversion, 626, 627 
application development as a translation 

activity, 202, 205 
application error recovery, 723 
application generator, 632, 633 
application leverage point, 148 
application life cycle time distribution, 

741 
application maintenance, 749 
application reengineering, 752 
application responsiveness, 13 

application support, 768 
application technologies, comparison of, 

15 
application training, 422 
application type, 23, 663 
application type and decision type, 22 
architecture, 115, 133, 150,328 
arrays and tables, 643 
artificial intelligence (AI) applications, 

37,565,605,769 
artificial intelligence (AI) in CASE, 565 
artificial intelligence engineer, 769 
artificial intelligence research, 46 
assertion processing, 729-730 
assigning staff to tasks, 62 
Association for Computing Machinery 

(ACM), 103, 780 
associative data relationship, 570 
associative entity, 330, 339, 344, 348 
atomic process, 292 
attribute(s), 268, 331,348,373,479, 

485,489,533,627 
attribute, status, 484 
attributive entity, 330, 339, 349 
audit controls, 392, 398,401,410,415 
audit trail, 423 
automated interface, 12 
automated support tools, 6, 79-80, 

144-145,270,275,497,498,534, 
632,635,662,687,729-731, 
759-760,786-787 

BAA. See business area analysis 
backup, 311,401,413-415,421 
bar chart display, 607 
baseline, 742, 751,755 
BASIC, 651-653, 656, 662 
batch, 14,707 
batch test simulator (BTS), 726, 732 
benchmark, 670 
benefits, 149, 153, 171, 188, 194 
binary display, 606 
binary message, 505 
binding, 507,508 
black-box testing, 691,694,696, 704, 

709-711,714,718,721 
body of form, 610 
body of screen, 590 
boilerplate, 740 
Booch, Grady, 459, 487,501,509,524, 

555,560,564,565 
Booch diagram, 504, 506, 521-523, 

525,532,534,547,550,696 
bottom-up analysis, 243 

bottom-up estimating, 180, 182 
bottom-up testing, 692, 695, 702, 706, 

709,716 
boundary value analysis, 696 
business and technology trends, impact 

on application development, 569 
business area analysis (BAA), 328-330, 

338,356,358,362,387 
business event, 557 
business function, 213, 332, 356, 452 
business function decomposition, rules 

for, 356 
business leverage point, 148 
business partners, 39 
business process, 334 

C,653-655, 657,661, 662 
C++, 539, 540, 542, 547, 550, 662 
called object, 526 
calling object, 526, 528 
candidate for template definition, 398 
cardinality, 343, 486, 
career path planning, 72, 764 
CASE. See computer-aided software 

engineering 
CASE architecture, 223 
CASE comparison, 565 
CASE repository, 223, 348 
case statements, 643 
case-based reasoning, 48 
caseworkers, 114, 115, 117 
cause-effect graphing, 696 
Center for Child Development (CCD), 

792 
central transform, 280 
centralization/distribution, 407 
champion, 67, 120, 172 
change control, 742-744 
change management, summary, 759 
change management procedures, 742 
characteristics of languages, 640 
charge-in-charge-out,755 
Chen, Peter, 343 
chunking,613 
class, 6, 47,64,468,486,487,494,521, 

539,540,659 
class analysis, rules for, 486 
class/object, 462, 468, 483, 486, 487, 

489,494,507,528,533 
classroom instruction, 588 
cleanroom development and testing, 699 
client/server, 569, 571 
clock-driven, 513 
closed-ended question, 90, 96 

811 



812 Index 

Coad, Peter & Yourdon, Edward, 459, 
487,490,501,509,555,564 

COBOL, 651-653, 656, 662 
CoCoMo. See Composite Cost Model 
code analyzers, 729 
code and unit test, 27 
code fragments, 741 
code generator, 398 
code library, 751, 752 
code management, 735, 752 
cognitive psychology, 46 
cohesion, 246, 280, 281, 286, 292 
collaborative work, 735, 756, 758 
color spectrum, 624 
column chart display, 607 
command language, 590,602,604 
command manager, 547, 550 
command object, 543, 545 
common class/object, 489 
communications analyst, 769 
company requirements, 667 
comparison of languages, 650-655 
compilation, 752 
compiler efficiency, 650 
completeness checking, 247 
complexity management, 559, 560 
Composite Cost Model (CoCoMo), 173, 

175, 176, 181, 182 
compromise of requirements, 209 
computer-aided software engineering 

(CASE), 2, 6, 113, 142-145, 185, 
194-195,210,214,222,268,270, 
275,319,322-323,387,450,489, 
508,534,554,565,567,568,569, 
632,640,650,656,657,662-663, 
687, 729-731, 740, 751, 756, 
758-760, 767, 786-787 

computer-based training (CBT), 420, 
588 

conceptual design, 26 
conceptual foundations of object-

oriented analysis, 459 
conceptual levels of architectures, 126 
concurrency decisions, 542 
concurrent process(es), 425, 503 
condition bracket, 425 
condition logic test, 698 
conditional statements, 643 
confidentiality, 103 
configuration, 446, 452 
configuration management, 28, 751-755 
Confucius, 50 
conservatism, 49 
consistency checking, 247 
Constantine, Larry, 279 
constraint(s),9, 11-12,213,483,484, 

512,513,542,557,559,573,701 
consultant, 769 
context diagram, 228, 233-235, 240 
contingency planning, 149 
control couple, 282, 284, 307, 308 
control language constructs, 643 

control logic, 714 
control point, 415 
control structure, 710 
controlled redundancy, 415 
conversion, 391, 392, 625-633 
corrective maintenance, 27 
correctness checking, 247 
correspondence between project life-

cycle phases and testing, 691 
cost-benefit analysis, 140, 149, 172, 

187, 188 
coupling, 279, 246, 281, 286, 288, 293, 

310 
Course Registration System, 794 
courtesy, 105 
coverage analysis, 729 
critical applications, 415, 584 
critical data, 218 
critical modules, 709 
critical path method (CPM), 60, 183, 

185,672 
critical success factor (CSF), 113, 124 
CRUD matrix. See entity/process matrix 
cutover, 627 

data, 5, 115, 503 
data administration (DA), 218, 

221-222,235,328,768 
data analysis, 329, 392 
data analysis applications, 19 
data architecture, 115, 131, 150,218, 

397 
data authorization, 423 
data collection technique, 87, 88,98-99, 

101 
data collection techniques summary, 88, 

107-108 
data completeness, 86, 422 
data conversion, 453, 626-627, 632 
data couple, 282, 284, 305, 308, 315 
data dictionary, 230, 232, 234, 260--268, 

582, 627. See also repository 
data distribution, 402, 403 
data flow, 228, 234-237, 239, 240, 245, 

258,306,373,375 
data flow diagram (DFD), 1, 152,228, 

231,240,241,244,260,270 
data flow diagram, rules for, 241 
data location, 626 
data management, 519, 542, 545, 546 
data methodologies, 34-35, 555, 559, 

564, 739-740 
data modeling, 329. See also data-

oriented analysis 
data object, 548 
data retrieval, 5 
data scrubbing, 183 
data security, 392, 400 
data self-sufficiency, 122, 123 
data semantics, 86 
data source, 579 

data storage, 5 
data stores, 228, 244 
data structure, 281 
data subdomain, 540, 546 
data trigger, 335, 373 
data type and application type, 99-100 
data type checking, 641-642 
data types, 86, 640-642 
data usage analysis, 401 
data usage by location, 404 
data volume, 86 
data warehouse, 20, 570 
data-oriented analysis, 328-390 
data-oriented design, 391-455 
datallocation matrix, 392 
database administration (DBA), 310, 

311,318,401,453,626,693,709, 
768 

database design, 126, 311, 392, 557, 
560 

database management software 
(DBMS), 414, 419, 420, 452, 508, 
509,510,519,549,561,569,571, 
660 

DBA. See database administration 
DBMS. See database management 

software 
decision history, 741, 744 
decision logic test, 698 
decision support applications (DSS), 20, 

100--101,604,605 
decision tables, 313 
decision trees, 313 
decision type, 23 
declarative knowledge, 43 
declarative language, 19 
decomposition, 254, 375, 442 
deep structures,49, 308 
delta file/version configuration 

management, 753 
DeMarco, Tom, 227,230, 244, 555, 568 
denormalization, 392, 548 
depth of a hierarchy, 284 
derivation, 754 
derived class, 539 
design, 26, 197 
design change, 742 
design decisions, historical file, 751 
design fragments, 741 
design phase activities, 203-204 
desired CASE features and functions, 

566 
development life cycle (DLC), 182 
developmental tests, 691 
device, 532 
DFD. See data flow diagram 
DFD Semantic Rules and Heuristics, 

257 
DFD syntax rules, 244 
dialogue, 502 
dialogue flow, 401, 438, 439, 440, 445 
dialogue flow diagram, 396, 442 



dictionary, 270 
digital and binary data, guidelines, 607 
digital display, 606 
direct identification, 242 
direct manipulation, 601, 604 
direct normalization, 331, 344 
directed lines, 494 
disaster recovery, 420, 723 
distributed applications, 573 
distributed computing, 556 
distributed environment, 532 
distribution analysis, 401 
distribution ratio formulae, 409 
divide and conquer principle, 279 
document, 204,209, 735 
document review, 89,97, 100--101, 151 
documentation change, 743 
domain, 127 
downsizing, 571 
Dr. Patel's Dental Practice System, 795 
DSS. See decision support systems 

Eagle Rock Golf League, 796 
ease of data conversion, 628 
economic feasibility, 25 
edit and validate criteria, 627 
EDP auditor, 771 
efferent, 280 
elaboration, 204, 206 
elementary components, 228 
elementary process, 334 
embedded systems, 22, 174 
embedded-system rules for drawing a 

time-event diagram, 510 
encapsulated objects, 501 
encapsulation, 459, 463 
end-user specialist, 772 
enlarged jobs, 114 
enterprise analysis, 143 
enterprise architecture, 115, 151 
enterprise level planning, 109, 113 
entity, 5, 136,344,347,374,381,382, 

397,582 
entity attribute, 339 
entity structure analysis, 331 
entity type, 330 
entity-relationship diagram (ERD), 115, 

122,129-131,151,329,339-343, 
348,356,362,373,374,381,397, 
486, 751 

entity/process (CRUD) matrix, 122, 
134,336,381,383,387,392,402, 
527,546 

entity/technology matrix, 142 
equifinality, 573 
equivalence partitioning, 695, 696 
equivalent sets of processes, 721 
error correction cost, 84 
error guessing, 696 
essential system analysis, 202 
estimating techniques, 162, 172 

ethics and software engineering, 39, 
103-109, 408 

event diagram, 520, 557 
eventtrigge~335,373 
event-driven, 513 
exception handling, 646 
execute unit, 292 
executive information system (ElS), 20, 

100,102 
expert, 48,49, 128,604,605 
expert judgment, 176, 178 
expert systems applications (ES), 20, 

100,102,104,606,607 
expert/novice differences in problem 

solving, 48-49 
explanation subsystem, 21 
external entities, 228, 234, 235, 238, 

258,261 
external event, 372, 373 

facilitator, 210, 218 
factoring, 281, 296 
fan-in, 285, 308 
fan-out, 286, 308 
Fast-Track, 210 
feasibility, 25, 150-151, 172, 193 
feasibility activities, 150 
feasibility analysis, 24, 25, 235 
feasibility analysis and planning 

summary, 195-196 
feasibility study, 109, 148-151,234 
federation, 393 
field format characteristics, 616, 620, 

621,623,624,718 
file, 228, 244, 373 
financial feasibility, 187 
financial requirements, 667 
firmware, 511 
fixed message type, 540 
fixed price bid, 674 
flexibility, 161,680 
flicker fusion, 624 
flowchart symbols for structured 

constructs, 291 
Focus, 651-653,656,660,662 
footer, 592, 610, 625 
forgotten analysis and design activities, 

summary of, 633 
form-filling screen, 601, 609 
form screen sections, 612 
formula for determining schedule time, 

61 
Fortran, 650,651-653,657 
friend function, 540 
frozen specifications, 742 
full backup, 414 
function, 5, 228, 292, 313, 539 
function point (FP), 180, 181, 182, 184, 

563,564 
functional decomposition, 129-131, 

279,288,329,333,356 

Index 813 

functional requirements, 199,375,724 
functional screen design, 395, 601-602 
fundamental entity, 330, 339 

Gane, Chris, 565 
Gantt chart, 185 
GDSS. See group decision support 

systems 
generalization, 48 
generalization class, 462 
generalization-specialization, 487 
generic life cycle, 33 
generic message, 547, 550 
generic module, 540 
Georgia Bank Automated Teller 

Machine System, 796 
global data, 315, 645 
globalization, 572, 573 
goals of a software engineer, 3 
goals of structured design, 279 
graphics user interfaces (GUI), 13 
group decision support systems 

(GDSS), 21, 100, 102, 103 
group meetings, 88 

hardware and software purchasing 
summary, 687 

hardware change, 742 
hardware configuration, 529 
hardware plan, 401 
hardware planning, 392 
hardware subdomain, 502, 546 
hardware/software installation plan, 

guidelines for, 445 
header, 590,609, 625 
help packages, 633 
heuristics, 63 
hierarchic input -process-output 

diagrams (HIPO), 289 
hierarchic logical data models, 6 
hierarchic, lattice-like relationships, 462 
horizontal pull-down menus, 598 
human interface, 12,392,442,510,511, 

562,579,580,701,723 
human interface subdomain, 502, 546 
Humphrey, Watts, 554, 563, 564 
Humphrey's maturity framework, 562 
hypermedia, 758 
hypertext, 758 

I-CASE, 452, 740 
I/O bound, 286, 308 
I/O manager, 519, 550 
I/O. See input/output 
icons used in state transition diagrams, 

495 
IE. See Information Engingeering 
lEE See Information Engineering 

Facility 



814 Index 

imaging technology, 152 
implementation, 27, 41 
implementation environment, 65 
implementation language choice, 

summary of, 662 
implementation plan, 64, 140, 142, 172 
implementation strategy selection, 64 
in-line code, 292, 313 
incremental backup, 414 
incremental development, 501 
informal procurement, 670 
Information Engineering (IE), 328, 343, 

356,387,391,392,401,438,486, 
554,555,557,560,561,564,566, 
567,568,569 

Information Engineering Facility (IEF), 
387,569 

information gathering, 150 
information hiding, 279, 281 
information systems (IS) experience 

levels, 765-766 
information systems methodology 

framework, 555 
information systems plan (ISP), 109, 

113,555,557 
information technology, 115 
information technology plan, 142 
information, structure, 84 
infrastructure, 573 
inheritance,459,463,487,489 
initial level, 562 
initiation, 25 
input, 5 
inputbound,286,308 
input message, 526, 528 
input/output (110), 542, 545, 645 
input-process-output (IPO) model, 279 
installation, 446, 450, 452 
Institute of Electrical and Electronic 

Engineers (IEEE), 13, 778-779 
integration test, 691, 701, 703, 709-721 
intellectual property, 104 
interactive processing, 14 
interdependence, 141 
interface, 60, 293, 590, 604, 742 
interleaving, 251 
internal rate of return (IRR), 150, 193 
interobject interface, 525 
interview(s), 87, 88-92, 102, 151 
interview behaviors and interviewer 

response, 93 
IS jobs, summary of, 767 
IS management, 69 
IS-managed applications, 217 
iterative development, 29-31, 391, 702 
iterative testing, 692 

JAD. See joint application development 
job design, 136, 140 
job management, 518 
job types, 767 

joint application design /development 
(JAD),39,92,93,182,210,214 

joint IS-user team and responsibilities, 
211 

joint requirements planning (JRP), 118, 
210 

joint structured process, 213 
JRP. See joint requirements planning 

keyword message, 505 
knowledge-based systems, 21 
knowledge development stages, 46 
knowledge elicitation, 102 
knowledge engineer, 768 
knowledge engineering, 102 
Knowledgeware, 391 

language characteristics, 647 
language matched to application type, 

660 
language matched to methodology, 661 
learn-as-you-go project life cycle 

(LAYG),31-34 
learning, 46 
learning application development, 

summary of, 54 
lease options, 673 
legacy, 570 
legacy data, 570 
legacy systems, 570 
level 0 DFD, 244, 229, 245, 247 
level 1 DFD, 229 
level of effort, 118 
leveled set of DFDs, 230 
leverage points, 152 
liaison, 67 
librarian, 736, 754, 755, 756 
license fee, 674 
life cycle, 65, 562 
linkage editing, 752 
live-data testing, 704 
load module, 752 
local area network (LAN), 571 
local area network (LAN) specialist, 

769 
local data, 645 
local mental model, 48 
location/process matrix, 403 
logic test, 697 
logical data model, 6 
logical database design, 312 
logical description, 126 
logical design, 126, 312 
logical process flow, 529 
long-term memory (LTM), 613 
Lotus-style horizontal pop-up menu, 599 

main 0, 539 
maintaining professional status, 780-786 

maintenance, 2, 745-750 
maintenance type, decision tree for 

selecting, 750 
make-buy analysis, 149, 193,666,668 
manual interfaces, 12 
many-to-many relationship, 342, 344 
marketing support, 772 
Martin, James, 109,343,391,565 
mathematical proof test, 699 
mathematical verification, 699 
McClure, Carma, 565 
McMenamin, Stephen, 227 
Mealy model, 492 
mean time between failures (MTBF), 

417,419 
media space technology, 757 
meeting, 92, 102 
memory, 542, 545 
memory management, 545, 645, 646 
memory resident work unit, 752 
mental model, 49 
menu design, 438, 590, 592, 595, 600 
menu structure, 393, 395,401,438, 

442 
message definition, rules for, 525 
message design, 462, 504, 522-525, 

529,532,547,550 
meta-class(es), 462, 487, 489 
meta-data, 224 
methodology, use of no, 34-39, 66 
methodology and project life cycle, 65, 

66 
methodology comparisons, 554, 556, 

558,561,564 
methodology design effects, 738 
milestone, 60 
mimic display, 609 
mission statement, 124, 129 
modularity, 279, 281, 645 
module, 292, 313 
module designation format, 425 
module structure diagram, 521 
Moore, Gary, 233 
Moore model, 492 
morphology, 283 
motivating, 72 
multicondition test, 698 
multimedia, 572, 573, 574 
multiple inheritance, 460 
multiple-thread management, 519 
multitasking, 504, 520, 522, 542 
multiuser CASE, 566 
multiuser support, 567, 646 
Murphy's Laws, 162, 163,563 

Nassi, I., 290 
Nassi-Schneiderman diagrams, 289 
navigation choices, 592 
net inflows and outflows, 245 
net present value (NPV), 149, 192, 194, 

685 



network architecture, 116, 129-130, 
131, 132, 137, 140 

no methodology, 38-39 
normalization, 332, 339, 344,345-346, 

392,560 
novice, 48,49, 240, 420,440,441,492, 

568,595 

object attribute definition, 479 
object-based, 508 
object-oriented analysis (OOA), 

456-500 
object-oriented analysis documentation, 

464 
object-oriented design (OOD), 501-553 
object-oriented logical data models, 6 
object-oriented methodology, 35-37 
observation, 88,94, 101-102, 151 
off-site storage, 413 
Olle, et al. framework, 554, 556 
on-line applications, 14, 707 
on-the-job training (OJT), 588 
one-to-many relationships, 342 
one-to-one relationship, 342 
OOA. See object-oriented analysis 
OOD. See object-oriented design 
00DBMS,509 
open change request, 744 
open system interface (OSI), 13 
open-ended question, 90, 95, 96 
operating characteristics, 680 
operational environment, 678 
operations, 2, 24, 27, 69, 723 
operations and maintenance, 27 
operator precedence, 643 
optimizing level, 563 
optional relationship, 343 
organic project, 172 
organizational feasibility, 25, 171 
organizational reengineering, 113 
organizational reengineering 

methodology, 118-123 
out-of-the-box thinking, 209 
output, 5 
output-bound, 286, 308 
output comparators, 729, 732 
output message(s), 527, 529 
overlapping window system, 598 
overloading, 540 
owner, 743 
ownership, 104 

package purchase, 674 
package resources, 679 
package specification, 504, 506, 533, 

534,550 
package testing, 707 
Palmer, Iah, 227 
parallel execution, 627 
Parkinson's Law, 179 

part class, 462 
partitioning, 280 
Pascal, 653-655, 657, 660, 661, 662 
pattern display, 608 
payback period analysis, 150, 193 
PDFD. See process data flow diagram 
peer-to-peer networking, 572 
percentage of reengineering effort by 

task, 122 
perfective maintenance, 27 
performance, 678, 680 
persistent object, 510, 659 
personal manner and responsibility, 105 
personnel management, 70-72 
Pert chart, 672 
phases of application development, 

24-28 
physical database, 312, 391 
physical database design, 290, 310 
physical data model, 7 
physical security, 400 
plan implementation, 142, 172 
planned data redundancy, 221 
planning a career, 772-780 
point plot display, 607 
politics, 104 
polymorphism, 462, 463, 506, 508, 534, 

540 
portability, 161 
precision requirements, 581 
presentation format design alternatives, 

605 
Pressman, Roger, 565 
price-to-win, 179 
primary key, 339,479,480 
primitive level, 229 
privacy, 104, 106 
private interface, 504 
private package part, 457, 531, 537 
problem domain, 48, 505, 524 
problem-solving strategies, 49 
problem space, 469 
procedural template, 397 
process, 9,46, 136,228,244,258,260, 

356,358,362,373,374,375,382, 
462,473,483,486,489,494,511, 
533,539 

process allocation to subdomain, 511 
process analysis and design 

methodologies, strengths and 
weaknesses, 322 

process architecture, 115, 130 
process attribute(s), 483. 484 
process control, 605 
process database, 563 
process data flow diagram (PDFD), 151, 

152,330,334,335,372,375,381, 
396,432,438,696,751 

process decomposition, 150,362,381 
process dependency, 330, 364 
process dependency diagram (PDD), 

334,363,372,373 

Index 815 

process diagram, 506, 529, 532, 534, 
751 

process hierarchy diagram, 122, 132, 
143,395,432,438,439,751 

process identification rules, 479 
process relationship, 334 
process-bound, 286, 308 
process-object assignment, 487, 520 
process-oriented analysis, 227-278 
process-oriented design, 279-327 
process/data analysis. See entity/process 

analysis, 136 
process/data interaction mapping and 

analysis, 330 
process/entity matrix, 142 
process!location matrix, 392 
processor, 532 
production database, 311 
professionalism, 102-103 
program change, 742 
program morphology, 281 
program package, 290, 312-313 
program specifications, 279, 293, 317 
program stub, 695 
program template, 736, 738, 740 
program unit, 290 
programmer, 767 
project assumptions, 62 
project control, 74 
project initiation, 40, 109 
project librarian, 755 
project life cycle, 23, 40 
project management, summary of, 

80-81 
project manager (PM), 57, 59, 743, 744 
project mode, 174 
project monitoring and reporting, 74, 

76-79 
project plan, 58, 149, 181, 194 
project sponsor, 120 
PROLOG, 650, 653-655, 658, 660, 661 
proposal evaluation, 668-670 
protected part, 539 
protocol, 94 
prototype, 29, 279, 312, 445, 501, 511, 

548, 702 
pseudo-code, 264, 315,534 
public interface, 506 
public part, 459, 533, 539 
purchase, 673 
purchased software change, 742 
purchasing process, 666 

Q&A. See question and answer 
QA. See quality assurance 
QA report, 726 
QA test, 691, 724, 726 
QA/acceptance test, sample errors, 725 
quality assurance (QA), 27, 563, 691, 

723, 771 
query applications, 19, 100, 101,605 



816 Index 

query language, 625 
question and answer (Q&A), 602, 604, 

605 
questionnaire, 89, 95, 96, 101, 102, 151, 

170 
queues, 540 

range of artificial intelligence 
applications, 37 

Rayleigh curve of staffing estimates, 
178 

real-time, 17, 707 
recovery, 392, 398,400,401,410,413, 

421 
recursiveness, 646 
redline, 744, 758 
reengineering, 109, 113, 114,115,116, 

128, 129, 131, 134, 136, 143-144, 
328, 749, 751 

reengineering architectures, summary 
of,125 

reengineering assumptions, 116 
reengineering levels and architecture 

domains, 127 
reengineering project planning, 117 
reengineering staff assignments, 121 
reengineering targets, 114 
reentrancy, 646 
regression test, 691, 726 
relational database, 329, 391 
relational logical data models, 6 
relationship, 331, 339, 342, 348, 486 
relationship entity, 331 
relationship types and cardinality for 

object class diagram, 489 
reliability, 95, 161 
repetition bracket, 425 
replication, 393 
report design, 625 
repository, 222, 570 
request for information (RFI), 668 
request for proposal (RFP), 70, 666-683 
request for quotation (RFQ), 667 
required/optional ERD relationship, 343 
requirements change, 742 
research on analysis, design and 

methodologies, 568 
research on learning and software 

engineering, 45 
residual price, 673 
resource usage, 730 
responsiveness, 5, 14 
restart, 723 
restructuring, 749 
retirement, 2, 27 
return object, 527 
reusability, 398, 429, 436, 520, 523, 

613,646,735,736,738,739,751 
reusable analysis, 741 
reverse engineering, 735, 749 
RFP. See request for proposal 

risk, 162 
risk, sources of, 163 
risk assessment, 140, 149, 163, 171, 

194,414 
round trip gestalt, 501 
Rumbaugh, et aI., 459 

Sanden, Bo, 568 
satisficing, 49 
scaffolding, 695, 699, 709 
scheduling, 504, 522, 542 
scheduling service object, 504, 520, 525 
Schneiderman, B., 290 
scope, 126,228,234,238 
scope of effect, 286 
screen control structure, 721 
screen design, 502, 579-623, 701, 723 
screen dialogue, 391-392 
scrolling element, 597 
SE. See software engineer 
SE product, 3 
SE responsibility, 59 
SE skill, 560, 563, 569 
security, 106,312,398,400,401,410, 

411,413,420,439 
security, recovery, and audit control 

planning, guidelines for, 410 
security specialist, 770 
selection bracket, 425 
semantic methodologies, 37 
semantics, 86 
semidetached project, 174 
sensitivity analysis, 681 
sequence bracket, 424 
sequential project life cycle (SPLC), 

23-29 
service object(s), 503-504, 507, 517, 

520,522,542,546,548,533,534 
service object requirements, decision 

table, 520 
shutdown, 542, 546 
simple sequence bracket format, 424 
simple-to-complex testing, 710 
skew, 285, 308 
Smalltalk, 653-655, 659-661 
socio-technical systems (STS), 39 
Software Development Life Cycle 

(SDLC),25 
software engineer (SE), 1,57,58,59, 

743, 744, 764, 767 
software engineering, 1, 3, 40, 98, 706, 

764 
software engineering careers, summary 

of,787 
software engineering overview, 41-42 
software engineering process, 3 
software failures, 420 
software librarian, 754 
software management, 749 
software plan, 401 
software reengineering, 747 

software review, 88 
software subdomain, 503, 546 
software support specialist, 770 
solution space, 469 
sophistication in explicit design 

decisions, 560-561 
sources of complexity, 557 
span of control, 284 
specialization, 462, 489 
specification, frozen, 742 
sponsor, 67 
SQL, 312, 315,419,452,453,508,525, 

540,542,547,550,643,650, 
651-653,660,662,709,714,720, 
721 

stack, 519, 540 
stakeholder, 25, 78, 106, 113, 124, 129, 

412, 741 
standard contract terms, 677 
standards developer, 771 
startup, 542, 546, 
state transition diagram, 231, 492, 493, 

495,696 
static function, 540 
stepwise refinement, 282 
structure chart, 279, 281, 303, 305, 306 
structured analysis, 566, 567, 568 
structured decomposition, 229 
structured design, 280 
structured English, 264 
structured interview, 90-91 
structured problem, 20 
structured programming constructs, 315 
stub logic, 700 
subclass, 348, 460 
subdomain, 509, 540, 546 
subject area database, 136,338,391, 

402 
subset partitioning, 393 
subsystem design, 26 
subsystem test, 692 
Sullivan, Louis, 227 
summary paragraph, 464, 483 
Summer's Inc. Sales Tracking System, 

797 
superset class, 486 
supplier object, 462 
surface features, 49 
symbolic executor, 730 
synchronizing object, 503, 520, 522, 

542 
systems analysis, design, and 

methodologies, future of, 574 
systems architecture (ISA), 125 
systems model, 227 
systems programmer, 770 
system testing, 691, 701, 703, 723-726 
system theory, 227 

T&M with ceiling, 674 
tabular normalization, 331, 344 



task dependency diagram, 60 
task management, 518 
task profile, 580-582 
technical alternatives, 159-160 
Technical Contracting Inc., 798 
technical feasibility, 25 
technical specialists, 769 
technical staff, 69 
technical trainer, 771 
technical writer, 771 
technology architecture, 116, 130, 133, 

140, 150 
technology/network diagram, 129 
technology/process matrix, 142 
technology surveillance, 772 
technology transfer, 573 
temporary job assignment, 90, 95, 101, 

102, 151 
test case, 692, 702, 711, 713, 720, 724 
test coordinator, 693 
test data, 311, 702 
test data generator (TDG), 729-731 
test design, 693, 725 
test driver, 729, 732 
test level and test strategy, 705-707 
test plan, 401, 692 
test script, 692, 696, 718 
test strategy, 692, 704, 706, 708 
test strategy design heuristics, 708 
test strategy objectives and problems, 

704 
test team, 693 
testing, 27, 690-732 
testing and QA, summary of, 732 
testing information flow, 695 
testing strategy, 694-695, 707, 716 
Texas Instruments, 391, 569 
text screen display, 609, 622 
thousands of delivered source 

instructions (KDSI), 173 
thread of control, 504, 542, 543 
tiled window system, 598 
time and materials bid (T&M), 674 
time-event diagram, 503, 504, 512-514, 

520 
time orientation of data, 84 
top-down analysis, 232, 242 
top-down estimates, 179, 180 
top-down plan, 182 

top-down testing, 692, 695, 699, 701, 
702, 706, 707, 716, 721 

top-down testing strategy, 709-710 
trade-off analysis, 172 
training, 72 
transaction analysis, 281, 294 
transaction logic, 311 
transaction object, 543 
transaction-oriented applications, 17, 

281 
transaction processing systems (TPS), 

17,100,101,605 
transaction simulator, 732 
transaction volume matrix, 393 
transform analysis, 280, 295 
transform-centered applications, 281 
transition, 492, 494 
triangulation, 87, 92 
trigger, 334,373,374,512,557 
type 1 error, 690 
type 2 error, 691 

unary message, 505 
undirected search, 48 
unit testing, 27, 691, 693, 701, 703, 

710-721 
universal activities, 28 
unstructured interview, 90-91 
unstructured problems, 20 
user, 67, 122,217,631,744 
user acceptance test, 724 
user documentation, 631-634 
user involvement in application 

development, 39-40 
user liaison, 222 
user object, 546 
user profile, 583-585 
user views, 311 
user-managed application development, 

216,217 
uses for prototyping, 29 
utility objects, 503 

validation, 28 
validity, 95 
variation management, 754-755 
variation storage, 754 

Index 817 

vendor,59,668,669 
vendor response outline, 670, 675 
verification, 28 
version management, 753 
vertical partitioning, 393 
vertical pop-up menu, 599 
Vessey, Iris & Conger, Sue, 568 
Vessey, Iris, Jarvenpaa, Sirka, & 

Tractinsky, Noam, 270 
Vienna development method (VDM), 

699 
virtual function, 540 
volume test, 701 

walk-through, 217, 233, 247, 258, 275, 
311,693,699 

Ward, Paul, 568 
Ward, Paul & Mellor, Stephan, 567 
Warnier diagram, 289 
Warnier, J. D., 290 
weighted average cost formula, 674 
what we know and don't know from 

OOA and OOD, 534 
white-box testing, 692, 694, 697, 704, 

710,711,714,718,721 
whole class, 462 
whole-part, 489 
width of the hierarchy, 284 
window(s), 590-598, 602, 604, 605 
work around, 209 
work breakdown, 183 
work flow management, 152, 153 
work unit, 752 

XY University Medical Tracking 
System, 799 

Yourdon, Edward, 227, 231, 244, 267, 
279,459,557,560 

Yourdon, Edward, & Constantine, 
Larry, 555, 567 

Zachman, John, 125, 126, 127 


