DATA-

CHAPT E|R

ORIENTED

DESIGN

INTRODUCTION

Data-oriented design uses data as the basis for clus-
tering processes, building databases, and identify-
ing potential distribution of the application. In this
chapter, we conlinue the discussion of Informa-
tion Engineering as the example of data-oriented
methodology. Since IE has several “incarnations’
that differ slightly, it is important to note that IE in
this chapter is consistent with the Martin [1992],
Texas Instruments [1988], and Knowledgeware ™
versions.

CONCEPTUAL

FOUNDATIONS

Intormation Engineering is the closest to a complete
methodology of the methods in common use. It bor-
rows from research and practice to build a complete
view of the application and its environment. Struc-
tured programming tenets describe the importance of
limiting program structure, as much as possible, to
selection, iteration, and instruction sequence compo-
nents, ‘Go to” statements should be minimized.
Modules should have one entry and one exit. In IE

1 Knowledgeware™ is a product of Knowledgeware, Ing.,
Atlanta, Ga.

design, these tenets are practiced in structuring the
application as well as the program modules.

Subject area database design is based on theories
of relational database and practice of data design.
Data should be clustered with processes which cre-
ate the data. Those processes detetmine “subject
areas’ of data. Subject databases are stored in the
same database environment and their processes are
in integrated applications. These topics were dis-
cussed in Chapter 5 and are not repeated here. Dut-
ing analysis, the data entities are nermalized and
relations are identified {Chapter 9). Normalized data
is the starting point for physical database design.
Physical database design may automate the normal-
ized relations directly or may denormalize for per-
formance purposes. Also, in organizations with
many using locations and potential for distribution
of data and processes, a strategy for distribution is
defined. These two activities, potential denormaliza-
tion and distribution, arc based on practical guide-
lines rather than theory,

From practice, we know that there is more to
implementing an application than designing program
specifications and a database. We need to design
screens, a screen dialogue, provide for unauthorized
and unwanted damage to the data, provide for con-
version from the old to the new method of data stor-
age, design and plan application implementation,
install hardware, design and plan application fests,

391

392 CHAPTER 10 Data-Oriented Design

and develop training programs for users. While all of
these tasks are discusscd in some books on [E, these
activities are done regardless of methodology, and to
discuss them as pertaining only to IE wonld be mis-
leading. For this reason, the topics in this chapter
include screen dialogue design, hardware planning,
and providing for data security, recovery, and audit
controls, in addition to procedure and database
design. Human interface design, conversion, and
training are discussed in Chapter 14; testing is the
subject of Chapter 17.

IDEFINITION OF

INFORMATION

ENGINEERING

DESIGN TERMS

A full list of the activitics in IE design is given here;
included are references to chapters in which some
topics are discussed.

1. Design security, recoverability, and audit
controls
2. Design human interface siructure

» Develop menu structure
» Define screen dialogue flow

3. Data analysis

» Reconfirm subject area database
definition

= Denormalize to create physical databasc
design

= Conduct distribution analysis and recom-
mend production data distribution strategy

4, Develop an action diagram and conduct
reusability analysis
. Plan hardware and software installation and
testing
6. Design conversion from the old to the new
method of data storage (Chapter 14)
7. Design and plan application tests (Chap-
ter 17)
8. Dcsign and plan implementation (Chap-
ter 14)

LA

9. Develop, schedule, and conduct training pro-
grams for users (Chapter 14)

The topics in this chapter are design of data usage,
action diagrams (which are program specs), screen
dialogues, security, recovery, audit controls, and
installation planning. They are discussed in this sec-
tion in the order above, by the amount of work
involved, and their importance to the application.

The first activity in IE design is to confirm design
of the database and determine the optimal data loca-
tion. Invariably, when the details of processing urc
mapped 1o specifications, data usage changes from
that originally envisioned. To confirm database
design, the data is mapped to application processes
in an entity/process {CRUD) matrix and the matrix is
reanalyzed. (See Chapter 9 for a more complete dis-
cussion of entity/process matrices.) The entity/
procecss matrix (see Figure 10-1) clusters data
together based on processes with data creation
authority. The subject area databases defined by the
clusters are stored in the same database environment.

The second step of database design is to deter-
mine a need to denormalize the data. Recall that nor-
malization is the process of removing anomalies
that would cause unwanted data corruption. Denor-
malizing is the process of designing storage items of
data to achieve performance efficiency (see Figure
10-2). Having normalized the data, you know where
the anomalies are and can design mcasures to pre-
vent the problems.

The next activity in data analysis is to determine
the location of data when choices are present. A
series of objective matrices are developed and ana-
lyzed. The matrices identity process by location and
data by location and transaction volume. Thesc are
used to develop potential designs for distribution of
dala. The application processes and data arc both
mapped to focations. Cells of the process/location
matrix contain responsibility information, identify-
ing locations with major and minor involvement {see
Figure 10-3). This information is vscd to determine
which software would also be required to be distrib-
uted, if distribution 1% selected.

Two data/location matrices are developed. The
first data/location matrix identifies data function as
either update (i.e., add, chunge, or delete) or retrieval

Definltion of Information Engineering Design Terms

393

Entities = Purchase PO ltam Vendor- inventory Vendor
Crder Itern Item

Processes

Create & Mail Order CRUD CRUD CRU R R

Call Vendor &

Inquire on Order RU RU RU R R

Verify Receipts

against Order RU RU RU R

Send Invoices

to Accountant RD RD

File Order Copy

by Yendor R R

Idantify Late &

Problem Crders R R R R RU

Identify Items

& Vendors R R CRU

Call Vendor to

Verify Avail/Price RU RU

FIGURE 101

by location (see Figure 10-4a). The second defines
options for data in each location (Figure 10-4b).
Together these matrices identify eptions for distrib-
uting data. The options for distributed data are repli-
cation, partitioning, subset partitioning, or federation
(see Figure 10-3). Replication is the copying of the
entire database in two or more locations. Vertical
partitioning is the storage of all data for a subset of
the tuples {or records) of a database. Subset parti-
tioning is the storage of a partial set of attributes for
the entire database. Federation is the storage of dif-
ferent types of data in each location, some of which
might be accessible to network users. The selection
of distribution type is determined by the usage of
data at each location,

Then, a transaction volume matrix is developed
to identify volume of transaction traffic by location.
Cells of this matrix contain average number of trans-
actions for each data relation/process per day (sec
Figure 10-6). In an active application, hourly or peak
activity period estimates of volume might be pro-
vided. During matrix analysis, the data and pro-

Example of Entity/Process Matrix

cesses are clustered to minimize transmission traffic.
Then formulae are applied to the information to
determine whether the traffic warrants further con-
sideration of distribution.

Finally, subjective reasons for centralizing or for
distributing the application are developed. The sub-
jective arguments ensure that political, organiza-
tional, and nonobjective issues are identified and
considered. Examples of subjective motivations for
centralization/distribution relating to Figures 10-4,
10-5, and 10-6 are in Table 10-1. Recommendations
on what, how, and why to distribute (or centralize)
data are then developed from the matrices and sub-
jective analysis. The recommendations and reason-
ing are presented to user and IS managers to accept
or modify.

After data are desighed, the design of the human
interface can begin with a definition of interface
requircments. The hierarchy diagram is used to
determine the structure of selections needed by the
application. A menw structure is a structured dia-
gram translating process aliernatives into a hierarchy

394 CHAPTER 10 Data-Oriented Design

Unnormalized First Normal Form Second Normal Form Third Normal Form DeRelation
Order Number Order Number rder r Order
Order Date Order Date Order Date
Order Ship Terms Order Ship Terms Order Ship Terms
Order Payment Order Payment Order Payment
Terms Terms Terms
Customer Number Customer Number —_— Customer Number
Customer Name Customer Name
Customer Address Customer Address Customer
Customer Number
*Hem Number Customer Name
ltern Description Customer Address
Itern Quantity Order Number Qrder Number Ohrder Item
ltern Price ltermn Number Jtem Number
Itern Extended Price Item Description Jtem Description -
Itern Quantity Itern Quantity
ltem Price ltlem Extended Price X
Item Extended Price
ltem Number r— inv. ltem
Descriplion
Price

ORDER

Qrder ltem

Denormalized Design for Order

Order Number
QOrder Date
Order Ship Terms

Order Paymeant Terms

Customer Number
Customer Name
Customer Address

Qrder Number

Item Number
Custamer Number
Customer Name
ltem Description
Hem Cluantity

liem Frice

lern Extended Price

FIGURE 10-2 Example of Denormalized Data for an Order

Definition of Information Engineering Design Terms 395

Function Location A Location B Location G Lacation D Location E
Purchasing 4 X

Marketing X X \

Customer Service x 4

Sales X b

Product Development X ! \

Research & Dev. X X i
Manufacturing 4 X

Legend:
X—Major Involvement

‘—Mingr Involvement

FIGURE 10-3 Example of Process/Location Matrix

of options for the automated apyplication (see Figure
10-7). In general, we plan one menu entry for cach
process hierarchy diagram entry between the top and
bottom levels. One level of menus corresponds to
one level in the process hierarchy diagram. At the

lowest level of the process hierarchy, a process cor-
responds to either a program or module. Screens at
the lowest level are determined by estimating exe-
cute units. These functional screens may not be
final in menu structure definition because execute

Data Usage by Location Matrix

Subject Data Location A Location B Location C Lacation D Location E

Prospects All—UR All—UR

Customer All—UR Al—UR

Custemer Orders All—UR Subset—Own All—R Al—R
Products—-UR

Customer Order Al—R Al—R Al--R Al—R

History

Manufacturing Subset— Subset— Subset— Al—UR

Plans own products— R own producis—~ own site—UR

Manufacturing Subset— Subset-- Subset— Al—UR

Goods in Process own products— R own products—R own site—UR

Manufacturing Subset— Subset— All—R Subset— All—UR

Inventory own products—H own products—R own site—UR

U = Updale, A = Aetiieva

FIGURE 10-4c

Example of Data Matrices by Location

396 CHAPTER 10 Data-Oriented Design

Distribution Alternatives by Location

Subject Data Location A Location B Location C Location D Location E
Prospects Replicate— Replicate
Central Copy
Customer Raplicate— Feplicate
Central Copy
Customer Crders Central Copy— Venical Access Access
A data Partition by central copy central copy
Product with delay with delay
Customer Order Aeplicate Replicate Access
History Central Copy ar access central copy
central copy with delay
with delay
Manufacturing Replicate Replicate Subset— Subset—
Plans OF ACCBSS Of ACCRSS own site own site
central copies central copies witlh delayed
with delay with delay access to D
Manufacturing Access D Access D Subset— Subset—
Goods in Process and E and E own site own site
Databases Databases with delayad
access to D
Manufacturing Access D Access D Subset— Subsel—
Inventory and E and £ own site own sile
Databases Databases with delayed
access to D

FIGURE 1G-42 Example of Data Matrices hy Location

unit design is usually a later activity. Once the menu
structure is defined, it is given to the human inter-
face designer(s) for use during screen design (Chap-
ter 14).

The strueture is then analyzed further to deter-
mine the allowable movement between the options
on the menu structure. The dialogue flow diagram
documents allowable movement between entries on
the menu structure diagram (see Figure 10-8). On the
diagram, rows corrcspond to screens and columns
cerrespond to allowable movements. For instance, in
the menu structure example (Figure 10-7), Customer
Maintenance has four subprocesses. A dialoguc flow
diagram shows how Customer Maintenance is acti-
vated from the main menu (or elsewhere) and the

options for movement from that level. From the Cus-
tomer Maintenance menu, the options are to move to
the main menu or to one of the four subprocesses.
The dialogue flow diagram is used by the designers
in developing program specifications, by the human
interface designer(s) in defining screens, and by
testers in developing interactive test dialogues.
Next, procedure design begins with analysis of
the process hierarchy and process data flow dia-
grams developed during IE analysis (Chapter 9).
Remember, in analysis, we developed one process
data flow diagram (PDFD) for each activity. Now
cach PDFD is converted into an action diagram. An
action diagram shows procedural structure and pro-
cessing details suitable for automated code genera-

Definition of Information Engineering Design Terms

397

Replication of Data—Dalta are copied in mors than ons location,

Locaton A

Lacation B

Vertical Data Partitioning—Complete ‘records' or tuptes of data are stored with different

data in myre than one location.

Location A

Location B

Horizontal {or Subsst) Data Partitioning—Partial 'records’ or tuples of data are stored

in more than ane location.

Localion A

Location B

Data Federation—Different data are completely stored in more than ene locatian.
Some data may be actessed by remote sites.

Location A

AGCDF

B - lacal only,
E - local only

Lacation B

QRS T

lJ - local anly,
V - local only

FIGURE 10-5 Data Distribution Alternatives

tion. An action diagram is drawn with different types
of bracket slructures to show the hierarchy, rela-
tionships, and structured code components of all

processes.

The first-cut action diagram translates the PDFD
into gross pracedural structures (see Figure 10-9).
Then, using detailed knowledge obtained during the
information gathering process, the details of each
procedure are added to the diagram to devclop pro-
gram specifications (see Figure 10-10). These pro-

gram specifications may then be packaged into mod-
ules that perform one function. Data entities are
added to the diagram at the level they are accessed
(see Figure 10-11). Progressively more detail about
data usage is provided about daia attributes. Arrows
are attached to show reading and writing of data (see
Figure 10-12).

When the details are completely specified, the
action diagram is mapped to procedural templates
to determine the extent to which reusable modules

398 CHAPTER 10 Dato-Criented Design

Subject Database

Customer Customer Miftg. itg. Mitg.
Location/Function Prospect Customer Order History Plan WIP Inven.
A
Customer Service 100R 250R 5R 2R 2R
20U 400U
Sales 50 R s0R 150 R 50 R 2R 2R 18R
20U 30U 50U
Marksting 15R 5R 10R 50R 2R 1R
B
Customer Service 250R 250 R 50R 250 R 250 R 250 R
sou 400G U
Sales 25R 25R 10R JO0R 2R 2R 15A
20U 5U 100U
Marketing 20R 10R 10R 50R 2R 5R
D
tManufacturing 50 R SCR SO0 R
5L 250U 2,000U
E
Manufacluring 100 R 200R 500 H
15U 2,500U 25,000 U

Legend: U = Create, Update or Deiete; R = Retrieve

FIGURE 10-6 ECxample of Transaction Volume Matrix

can be used in the application, and the changes to the
action diagrams required to define modules for
reuse. A procedural ternplate is a general, fill-in-
the-blanks guide for completing a frequently per-
formed process, For instance, error processing and
screen processing can be defined as reusable tem-
plates (sce Figure 10-13). A data template is a partial
definition of an ERD or database that is consistent
within a user community. For example, the insurance
industry has common data requirements for policy
holders, third party insurance carriers, and policy
information; most companies have similar account-
ing data needs, and so on. To be a candidate for
template definition, a process must do exactly the
same actions whenever it is invoked, and data must
be consistent across users.

After reusability analysis, the action diagram sct
is finalized and used to generale code. If the appli-

cation is speeified manually, the action diagrams are
given as program specifications to programmers who
begin coding. If the application uses a CASE tool,
automatic code generation is possible. A code gen-
erator is a program that reads specifications and cre-
ates code in some target language, such as Cobol or
C. If the application uses a code generator, the action
diagram contains the symbaols and procedural detail
specific to the code generation software. If the appli-
cation uses a 4GL, the action diagram might con-
tain actual code. If manual programming uses a 3GL
or lower, the action diagram contains pseudo-code
consisting of structured programming constructs.
The next activity in IE design is to develop
security plans, recovery procedures, and audit con-
trols for the application. Each of these designs re-
strict the application to performing its activitics in
prescribed ways. The goal of security plans is to

Definition of Information Engineering Design Terms 399

TABLE 10-1 Example of Subjective Reasons for Centralization and Distribution

General
Measure—Argument

n Geographic distribution by function by product makes centralization difficult

D Centralized mainframe in a sixth localion is not close 1o distributed sites, nor interested in serving their
needs

d Eitlle product overlap between sites A and B

Location A

Measure—Argument

d General Manager in Location A—smallest needs

d GM wants “what is best” for division

C Little technical expertise in the location; would increase travel expense required (o support hardware/
software

Location B

Measure—Argument

C Customer service needs fast response lo fullill corporate objectives (90% of requests serviced within onc
phone call, less than three minules)

C Most application experlise in division is localed here

C IS manager, locaied here, wanls the applications and dala under his contrel

Location C

Measure—Argument

d Actions mostly independent of other sites
d Delays in retrieval of information could be tolerated
Location D

Measure—Argument

d Historically, loeation controls its own hardwarc/software

d Hardwarc/softwarc not currently compatible with A, B, or C

Location E

Measure—Argument

d Historically, location controls its own hardware/softwarc

d Historically, sofrwarc has becn suceessfully developed/bought as joint activity with IS group in Site B
Legend:

D/C = Strong arguinent Lor Distribution/Centralization
dfc =Weak argument for distribution/centralization

400 CHAPTER 10 Data-Oriented Design

1. Order Fulfilimenl
1. Order Entry
2. Order Change
3. Order Delate
4. QOrder inquiry

2. Inventory Allocation
1. Create Allocation
2. Change Allocation

Customer 3. Inguire on Allocation

Service)
3. Customer Mainlenance

1. Customer Create
2. Customer Change
3. Customer Delete
4, Customer [ngquiry

. Management Reports
1. Customer Reports
2. Inventory Reparts

3. Orders by Customer
4. Volume by Customer
8. Multifile Inquiry
6. SOL Inguiry

FIGURE 10-7 Menu Structure Example

protect corporate IT assets against corruption, illegal
or unwanted access, damage, or thefl, Security plans
can address physical plant, data, or application
assets, all by restricting access in some way. Physi-
cal security deals with access to computers, LAN
servers, PCs, disk drives, cables, and other compo-

—— Purchasing Application

Analyze Business

Create Purchase Crder

Manitor Purchase Qrder

—— End Purchasing

FIGURE 10-2 Action Diagram Example

nents of the network tying computer devices to-
gether, Data security restricts access to and func-
tions against data (e.g., read, write, or read/write).
Application security restricts program code from
access and modification by unauthorized users.
Examples of the results of security precautions are
locking of equipment, requirement of user pass-
words, or assignment of a software librarian for pro-
gram changes.

Recovery procedures define the method of
resloring prior versions of a database or application
software after a problem has destroyed some or all of

Main Menu — _

Customer Service

Marketing

Order Fulfillmam

Create Order

Change Order

Delete QOrder

Order Inquiey . . _ . _ _ _ _ _ _ _ L _ _ _

FIGURE 10-8 Dialegue Flow Diagram Example

Purchasing

— | Analyze Business

—— Create Purchase Order

[Do Until Alf ltems Are Identified
Idantify ltem and Vendor

C EndDo
Sort by Vendor, lhem
[Do While Thare Arg Items to Be Processed

— IF First-Record
Set Last-Vendar = Vandor
— ELSE IF Vendor = Last-Vendor
. Gat Price
— ELSE
Create Order
Mail Order

File by Vendor

— ENDIF

__ ENDDO

End Purchasing
Monitar Purchase Order

FIGURE 10-10 Action Diagram with Create
Purchase Order Process Detail

it. Recovery is from a copy of the item. Backup is
the process of making extra copies of data to ensure
recoverability. Disasters considered in the plan in-
clude user error, hacker change, software failure,
DBMS failure, hardware failure, and location fail-
ure. Recovery is the process of restoring a previous
version of data (or software) from a backup copy to
active use following some damage to, or loss of, the
previously active copy. The backup/tecovery strat-
egy should be designed to provide for the six types
of etrors above. Several backup options add require-

Information Engineering Design 401

ments to program design that need to be accom-
modated.

Next, audit controls are designed to prove trans-
action processing in compliance with legal, fidu-
ciary, or stakehclder responsibilities. Audit controls
usually entail the recording of day, time, person, and
function for all access and modification to data in the
application. In addition, special {otals, transaction
traces, or other special requirements might be
applied to provide process audit controls.

Last, hardware installation is planned and imple-
mented, if required for the application. Again, there
is no theory or research about hardware installation,
but long practice has given us guidelines on the
activities and their timing,.

INFORMATION
ENGINEERING
DESIGN

In this section, we discuss each activity in IE design
in detail, and relale them to the ABC Video rental
application. IE design topics in this sectton, in order
of their occurrence in the application development
process, include development of the following:

data use and distribution analysis

security, recovery, and audit controls

action diagrams

menu structure and dialogue flow

hardware and software installation and testing
plans

Analyze Data Use and
Distribution

Guidelines for Data Use and Distribution
Analysis

The two activities in this section precede physical
database design which is assumed to be performed
by a DBA. First, data usage analysis is per-
formed to confirm the logical database design. Then
the potential for distributing data throughout
the organization is analyzed. The resull is a strategy

402 CHAPTER 1C¢ Data-Oriented Design

Furchasing

——| Analyze Buginess

—— Greate Purchase Order
Do Until All tems Are Identified

|dentify Item and Yendor

EndDo

New Releases
Vendor
Purchase Order

Saort by Vendor, ltem

r— IF First-Record
Set Last-Vendor = Vendor

— ELSE IF Vendor= Last-Vendor
Gat Price

— ELSE

Create Order

Mail Order

File by Vendor

—ENDIF

— EnDDOD

[~ Do While There Are ltems to Be Processed

L (Monitor Purchase Ordea

End Purchasing

FIGURE 10-11 Action Diagram with Entities

for data and software location that best fits user
needs.

The entity/process (CRUD} matrix from IE
analysis is reanalyzed and mapped to the completed
action diagram. Each process is identified on the
action diagram with its associated data items and
the related entity. Recall that the clustering of entities
and processes on the matrix is primarily based on
which processes have create responsibility for the
data. The entities and processes are arranged into a

new entity/process matrix which is compared to
the one developed during analysis. If the definition
of subject area databases does not change, the distri-
bution analysis can begin. If the definition of sub-
Jject area databases does change, the logical definition
of the databases is redone as discussed in Chapter 9.

The second step to data analysis is to determine
the potential for data distribution, Distribution analy-
sis uses three matrices as the objective basis for
determining whether data should be distributed.

Information Engineering Design 403

Purchasing

Analyze Business

— Create Purchase Crder

Mew Releases
Vendor Name
Video Name

New Releases

[Do Until All ilems Are Identified
Identify ltem and Vendor

L EndDo

" Yendor
|—- Purchase Order

Sort by Vendor, ltern

IF First-Record

Set Last-Vendor = Vendor
— ELSE IF Vendor = Last-Vendor
Get Price

- ELSE

Mail Order

|: ENDDO

[Do While There Are ltems o Be Procassed

/

— Create Order 4————

File bji" Vendor \
L ENDIF Purchase Order

Vendor ID
ltem ID

Vendor ID

Vendor ID
liem ID
Item Price

Wendor ID
Vendor Name
Vendor Address
Order Terms
[tern 1D

[tern Gty

Itern Description
Item Price

—— | Maonitor Purchasea Order)

End Purchasing

FIGURE 10-12 Action Diagram with Data Detail

First, a location/process matrix is developed to iden-
tify major and minor performance of processes in the
application (see Figure 10-14). This location/process
matrix determines which software is needed at each
location to support the functions. The informa-
tion needed to complete the matrix is provided by
the users.

Next, a data distribution by location matrix is
developed to show creation and retrieval needs by
focation (see Figure 10-15). This dataflocation ma-

trix is used to determine the potential age of data
required by each location. For instance, retrieval data
might be down-loaded from a centralized location
each day at the close of business, rather than main-
tained at the remote sites. Created data must be
available for creation, and therefore, up-to-date at
the creating sites. The information needed to com-
plete the matrix is provided partly from the entity/
pracess matrix from the first data analysis, and partly
by the users.

404 CHAPIER 10 Data-Orented Design

Call ErrMsg ErrorFieidiD

NP

ErrorFieidID.

1f Blink, Blink ErtarFiald.
If ColorChange,
Got NewColor

Get User ErrorResponse.

Using ErrorFieldiD from Sender,
Locate ErrorMessageActions using

If Highlight, Highlight ErorField.

Change ErrorField to MewColor,
Display EmoriMessags in line 24,

Reset ErrorField to MormalColor,
Lowlntensity, and NonBlink.
Return ErrorResponse to Sender.

Return ErrorResponse

FIGURE 10-13 Procedure Template for Error Message Processing

The next matrix shows data usage by location
(see Figure 10-16}. Recall from above that data can
be centralized, vertically or horizontally partitioned,
or federated. For instance, a bank branch might
create data about customers, but it only accesses
information about its own customers on a regular

basis. So, for most processing, a vertical partitien
of the customer database, the branch’s customers,
could be accessible locally in the branch to speed
processing.

The last objective matrix summarizes transaction
volume by process by location (from the process/

Function Lagation A Location B Location C Location D Location E
Purchasing A\ X

Marketing X x i\

Gustomer Service X b

Sales X it

Product Development X Y Y

Research & Dev. X X b
Manufacturing ! X

Legend:
X—Major Involvement

\—Minor involvement

FIGURE 10-14 Process by Location Matrix Example

Information Engineering Design

405

Subject Data Location A Location B Location C Location D Location E

Prospects All—UR Al-UR

Customer All—UR All—UR

Custormer Orders All—LR Subset—COwn AlR All—R
Product=—UR

Customer Order All—R All—R Al—R AR

Histary

Manufacturing Subset— Subset— Subset— All—UR

Plans own products—BR own products—R own site—UR

Manufacturing Subset— Subset— Subser— All—UR

Goods in Frogess own products—R own products—A own site—UR

Manufacturing Subset— Subset— All—R Subset— All—UR

Inventory own products—R own products—R own site—UR

U = Update, R = Retrieve

FIGURE 10-15 Data Usage by Location Matrix Example

iocation tablc) against each subject database from
the data analysis. Two daily transaction volume
estimates for each process and location are devel-
oped (see Figure 10-17). The first estimate is for
transactions that create or update the database. The
second estimate is for read-only retrieval processing.
Also notice that if no database access is performed
by a process, no entry is made. This increases the
readability of each matrix.

The analysis of Lhis data is to first identify the
location with the highest toal transaction count for
each database. The example shows a thick box
around each such location (see Figure 1{-18). If the
application were distributed, with centralization ol
subject databases in one location, the boxes would
identify the most likely location for each datubase.
All other transactions, outside the hoxes, represent
transmission traffic. When the transmission traffic is
a high percentage of the total traffic, say over 40%,
different types of replication, federation, and parti-
tioning arc tricd. To analyze the data, first box the
transaction numbers for the site(s) representing 50%
or more of the total processing. It there is one site
boxed in a column, that identifies a centralized data-
base at the location corresponding to the box, We
have two of these in the example (Figure 10-18)—

the Work in Process and Inventory databases at loca-
tion £. The initial recommendation would be to
centralize this data at £. Even though D’s volume
is significantly less than E's, the data usage table
shows that each site accesses only its own data, so
the option 1o vertically partition data and provide
‘home ownership’ could be used to support the busi-
ness needs.

The other databases all have access competition
from two sites (Figure 10-18). Two locations, A and
B, have fairly cven usage of the Prospect and Cus-
tomer, Cusiomer Order, and Customer History data.
The options from the Data Usage table show that
Replication would be the distributed recommenda-
tion since the sites both access all data. Customer
History processing differs from the other databases
in that it is all read-only and it has a much lower vol-
ume than the others. Therefore, it could be central-
ized at either site with an access delay at the other
site for retrievals. This option might be chosen if
there are hardware configuration differences that
favor centralization.

Locations B and £ compete for the Manufactir-
ing Plan data {Figure 10-18). Location B only
retrieves the data, while the location £ volume
of updates is Jow. The database could either be

406 CHAPTER 10 Data-Oriented Design

Subject Data Location A Location B Location G Location D Location E
Prospects Replicate or Replicate
Central Copy
Customer Replicate or Replicate
Central Copy
Customer Ordars Replicate or Horizontal Acress Access
Central Copy Partition by central copy central copy
Product with delay with delay
Customer Order Replicate or Replicate Access
Histary Central Copy OF access central copy
central copy with defay
with delay
Manufacturing Replicate Replicate Subset— Centraf Copy
Plans of access OF ALCESS own site or Subset—
central copies central copies own site
with delay with delay with delayed
accessto D
Manufacturing Access Access D Subset— Subset—
Goods in Process and E and E own site own site
Databases Catabases with delayed
acoess to D
Manufacturing Access D Access D Subset— Subset—
Invantory and E and E own site own site
Databases Catabases with delayed
accessto D

FIGURE 10-16 Data Distribution by Location Matrix

centralized at B to provide fast query access, with
delayed access by £, or, if politics are involved, the
data could be centralized at site E, the owner, with
delayed retrieval by B.

The second part of the analysis is to compute the
ratio of data retrieval transactions {Dg) to data
update transactions (Dy). If the ratio is greater than
one {ess than the number of locations (L) (or nodes
in the network), distribution should be considered
{see Table 10-2). In the example, the ratio clearly
favors centralization of data (Table 10-2}. Keep in
mind that centralization here means that each data-
base is stored at one location. It does not mean that
the databases are all at the same location.

If a delay can be introduced for retrieval process-
ing, then the ratio changes. It becomes much casier

to argue for distribution. Distribution should be con-
sidered when retrieval volume is less than the ratio
of locations to the delay (I¥). The delay is for update
transactions which are now transmitted in bulk once
per period to each other location. In the example,
with even a 15-minute delay, the numbers over-
whelmingly favor distribution. The rationale for
these ratios is given in Table 10-3.

This discussion about distribution is important
because it highlights an ethical problem in software
engineering. The numbers can be made to argue for
distribution regardless of transaction activity. If the
transaction ratio of retrievals to updates is large, then
the no-delay argument is more likely to favor distri-
bution. If the retrieval 1o update ratio is less than one,
the delay argument is likely to favor centralization.

Infarmation Enginsearing Design 407

As an ethical person, you are bound to tell the client MNeeds/does not need specific DBMS
about all computations and how the formulae can Requires/does not require larger machine than
make either argument. local sites have
Last, a subjective list of reasons for and against Data ownership isfis not an issue
centralization and distribution is developed for Data replication needed in one/many locations
the organization. The exact topic headings for Unique data/application in one location
this list are tailored to the company and application Data affects/does not affect central corperate
environment. management
Fast responsc time important/not important
Critical data should be managed centrally High availability important/not important
Data is/is not critical to corporation/business Local staff skilled/unskilled with computers
unit Application/data security is/is not vital to
Most data can/cannot be stored locally/ organization/business unit
centratly Centralized operations is/is not at capacity
Subject Database
Custorner Custorner Mitg. Mfig. Mftg.
Lecation/Function Prospect Custorner Order History Plan WwiIP Inven.
A
Customer Service 100R 250 R 5R 2R 2R
20U 400U
Sales 50 R 50 R 150 R 50 R 2R 2R 18R
20U 30U 50U
Marketing 15R 5R 10R 50 R 2R 1R
B
Customer Service 250 R 250 R 50R 250 R 250 R 250 R
50U 400U
Sales 25R 25 A 10R 70R 2R 2R 15R
20U 5U 100U
Marketing 20R 10R 10A 50 R 2R 5R
D
Manutacturing 50 R 50R 500 A
5U 250U 2,000 U
E
Manufacturing 100 R 200R 500 R
15U 2500U 25,000V
Legend:
U = Create, Update or Delete
R = Retrieve

FIGURE 10-17 Summary Transaction Volume Matrix

408 CHAPTER 10 Data-Criented Design

Subject Database
Customer Cusiomer Mftg. Mitg. Mftg.
Location/Function Prospect Customer Order History Plan WIF inven.
A
Customer Service 100 R 250 R 5R 2R 2R
20U 400 U
Sales 50R 50 R 150 R 50 R 2R 2R 15R
200 30U 50U
Marketing 15 R 5R 10AR 50 R 2R iR
B
Customer Service 250R 250 R 50R 260 R 260R 250R
50U 400 U
Sales 25 R 25R 10R TOR 2R 2R 15 R
200 5U 1aou
Marketing 20R 10R 10R 50R 2R SR
B
Manufacturing 50 R 50 R 500 R
54 250U 2,000V
E
Manufacturing 100 R 200 R 500 R
15U 2500 U 25,000 U
Legend:
U = Create, Update, or Delete
| R = Retrieve

FIGURE 10-18 Analysis of Summary Transaction Volume Matrix

Down-loading of yesterday’s data would/would Each reason is rated as weak or strong justification of

not work in local sites its position. The purpose of list creation is (o sur-
Updates with delay would/would not work in face and attempt to objectify objections and argu-
this application environment ments from cach stakchelder viewpoint regarding
Partiticning of data would/would not work in distribution of data in the application. An easy analy-
supporling this application sis is Lo count the capital and small letters of each
Replication of data would/would not work in type, and compare them. A more elaborate analysis
supporting this application might entail giving a weighl to each item and devel-
Data integrity 15/is not paramount to the oping a weighted ranking of the central/distributed
applicalion positions. If the results of this analysis support the
Disaster recovery protection is/is not vital to the objeclive measures and results, a compelling justifi-
application cation for the result can be developed and presented

Operators are/are not at remotc sitcs to user management for approval. If the subjective

TABLE 10-2 Distribution Ratio Formulae

The breakeven point for distribution accurs when
DR"DU *>N-1.

If the transaction ratio 15 greater than N — 1, distribute
data,

An alternative is to allow a time delay for update transac-
tions with all data replicated at all locations in a network.
Then only updates generate network traffic, The break-

even point for distribution occurs with this scenario when

Dy < N/TimeDelay or Dy * TimeDelay <N

If the number of changes is less than the number of nodes
divided by the time delay, distribution is favored.

Legend:
Dy = Number of data retrieval transactions
Dy; = Number of data update transacticns
N = Number of network nedes
D = Total number of data transactions (D + Dy)

Adapted from Martin {1990), p. 360.

analysis contradicts the objective measures, the user
manager/champion might have to do some political
maneuvering to obtain the desired result. Of course,
if the champion is against the recommendation,
the numbers in the traffic table still are useful in
determining the size and speed of the machine and
telecommunications lines required to service the
application’s daia needs.

ABC Video Example Data Use
Distribution and Analysis

ABC’s one location simplifies the choices for this
analysis. Centralization of data and processes is the
only possible choice. For the record, a table of trans-
action volumes is presented in Figure 10-19.

A secondary issue, if not already decided, is hard-
ware selection. ABC could use a multiuser mini-
computer or a LAN. This apalysis, too, is simple
because ABCis a small company without a high vol-
ume of processing. A LAN is cheaper, more easily

information Engineering Design 409

maintained, more easily staffed, and less costly for
incremental upgrades. Therefore, a LAN is the
choice. Most multiuser mini-computers allow eight
units without major expenditures for an additional
1/0 controller board. Mini-computers tend to have
proprietary operating systems and use packages
that tie the user to a given vendor. The strength of

TABLE 10-3 Rationale for Distribution
Ratios

If T is the number of traffic units per hour (Le., transac-
tions), and if all data is centralized at one location (not
necessarily the same), then the total traffic units per hours
is

Tcemlalim:l = (DR + DU) * (N - 1}fN
Then, if all data is decentralized (i.e., fully replicated at
all user tocations), only update transactions generate net-
work traffic, and

T gistribates = Dy * (N =1}
Fully replicated, decentralized data penerates less traffic
than centralization if

Teentratized # Tdistributed, OF

(Dg+ Dy * (N = 1N > Dy * (N~ 1)

This reduces to Dy / Dy > N — 1. This formula means that
when the ratio of retrievals 1o changes (D /Dy =N -1)
is greater than N ~ 1, favor distribution. When the ratio is
equal to N — 1, either choice is acceptable from a network
point of view. When the ratio is less than N - 1, favor
centralization.

If changes can be applied with a delay, the equations
change. Then the breakeven point occurs when

Dy < N/TimeDelay

The greater the delay, the more desirable a distributed
strategy can be made to appear.

Legend:
Dy = Numnber of data retrieval transactions
Dy; = Number of data update transactions
N = Number of network nodes

D = Tetal number of data transactions (Dy + D)

Adapted from Martin (1950). pp. 360361,

410 CHAPTER 10 Data-Criented Design

Subject Database
Customer Video

Location/Function Customer Video ltem Histary History EQD Archive
Dunwoody Village
Rent/Return 500 R 500 R 250 R 500 R 500 R

15U 5U 400U 500U 500 U
Video 20R 150 R
Maintenance 5U 50U
Customer 5R
Maintenance - sy
(ther 15,000 U/ 1,000 U 15,000 U/

OnceMo OnceMo

FIGURE 10-19¢ ABC Transaction Volume Matrix

multiuser minis is in their added horsepower that
allows them to support applications with a high vol-
ume of transactions (in the millions per day), A
multiuser mini is not recommencded here because, for
the money, it would be analogous to buying a new
Porsche 911 Targa when a used Hyundai would do
just fine. To discuss configuration of the LAN, we
move to the next section on hardware and software
installation.

Define Security, Recovery, and
Audit Controls

Guidelines for Security, Recovery, and
Audit Control Planning

The three issues in this section—security, recovery,
and contrels—all are increasingly important in soft-
ware engineeting. The threat of data compromise
from casual, illegal acts, such as viruses, are real and
growing. These topics each address a different per-
spective of data integrity to provide a total solution
for a given application. Security is preventive,
recovery is curative, and controls prove the other
two. Having one set of plans, say for security, with-
out the other two is not sufficient to guard against

compromise of data or programs. Trusting individu-
als® ethical senses to guide them in net hurting your
company's applications simply ignores the reality
of today's world. Morally, not having planned for
attempts to compromise data and programs, you, the
SE, are guilty of ethical passivity that implicitly war-
rants the compromiser’s actions. Therefore, design
of security, recovery, and controls should become
an integral activity of the design of any application.

The major argument against security, recovery,
and audit controls is cost, which factors in all deci-
sions about these issues. The constant trade-off is
between the probability of an event and the cost of
minimizing its probability. With unlimited funds,
most computer systems, wherever they are located,
can be made reasonably secure. However, most com-
panies do not have, nor do they want to spend,
unlimited money on probabilities. The trade-off
becomes one of proactive security and prevention
versus reactive recovery and audit controls. Audit
conirols, if developed as part of analysis and design,
have a minimal cost. Recoverability has on-going
costs of making copies and of off-gite storage. Each
type of security has a cost associated with it. Keep
the cost issues in mind during this discussion, and try
to weigh how you might balance the three methods
of providing for ABC’s application integrity.

Security plans define guidelines for who should
have access to what data and for what purpose.
Access can be restricted to hardware, software, and
data. There are few specific guidelines for limiting
access since each application and its context are dif-
ferent. Those guidelines are listed here:

1. Determine the vulnerability of the physical
facility to fire. Review combustibility of con-
struction. Determine adjacent, overhead, and
underfloor fire hazards. Determine the status
of current fire detection devices, alarms, sup-
pression equipment, emergency power
switches, extinguishers, sprinklers, and
smoke detectors. Determine the extent of
fire-related training,. If the facility is shared,
evatuate the risk of fire from other tenants.

Plan for fire prevention and minimize fire
threats by using overhead sprinklers, COz, or
halen. Develop fire drills and fire contin-
gency plans. If no emergency fire plans exist,
develop one, revicwing it with the local fire
department, and practicing the procedures.

2. Consider electrical/power facilities. Review
electrical routing and distribution of power.
Review the means of measuring voltage and
frequency on a steady-state or transient basis.
Determine whether operators know how to
measure electrical power and can determine
both normal and abnormal states. Define
clectrical and power requirements for the
new application hardware and software.
Determine power sufficiency for the comput-
ing environment envisioned.

Correct any deficiencies before any equip-
ment is delivered. For instance, install a
universal power supply (UPS) if warranted
by frequent power fluctuations or other
vulnerabilities.

3. Review air-conditioning systems and deter-
mine environmental monitoring and control
mechanisms, Evaluate the ‘housckeeping’
functions of the maintenance staff,

Correct any deficiencies before any equip-
ment is delivered. For instance, make sure
the mainfenance staff cleans stairwells and
closets, uses fireproof waste containers, and

Information Engineering Design 411

does not use chemicals near computer
equipment.

. Determine the capability of the facility to

withstand natural hazards such as earth-
quakes, high winds, and storms, Evaluate
the facility s water damage protection
and the facility’s bomb threat reaction
procedures.

Design the facility without extcmal win-
dows and with construction to withstand
most threats. To minimize bomb and terrorist
threats, remove identifying signs, place
equipment in rooms without windows, and
do not share facilities. To minimize possible
storm damage, do not place the facility in a
flood zone or on a fault line.

. Evaluate exéernal perimeter access controls

in terms of varied requirements for different
times of day, week, and year. Determine
controls over incoming and outgoing materi-
als. Evaluate access authorization rules,
identification criteria, and physical access
controls.

Plan the security system to include
perimeter lights, authorization cards, physical
security access, etc. as required to minimize
the potential from these threats. Establish
procedures for accepting, shipping, and dis-
posing of goods and materials. For instance,
shred confidential reports before disposal.
Only accept goods for which a purchase
order is available.

. Evaluate the reliability and potential damage

from everyday use of terminals and remote
equipment from unauthorized employees.

Plan physical locking of equipment,
backup copies of data, reports, etc. to mini-
mize potential threats. Design remote equip-
ment o minimize the threat of down-loaded
data from the central database except by
authorized uscrs. Usually this is dene by hav-
ing PCs without any disk drives as terminal
devices.

. Evaluate the potential damage from unautho-

rized access to data and programs.
Protect programs and data against unau-
thorized altcration and access,

412

CHAPTER 10 Data-Oriented Design

&. Evaluate the potential damage to the data-

base from unwitting errors of authorized
employees.

Design the application to minimize acci-
dental errors and to be fault tolerant (i.e.,
recovers from any casual errors).

In generul, we consider internal and external physi-
cal environment, plus adequacy of data and program
access controls. Security evaluation is 4 common
enough event in many organizations that check-
lists of itcms for security review are available.?
An exampie of general topics in such checklists
follows:

Physical Environment

Fire fighting procedures

Housekeeping and construction

Emergency exits

Portable fire extinguisher location and
accessibility

Smoke detectors located above, under, and in
middle of floer areas

Automatic fite suppression system

Electrical Power

Power adequacy and monitoring
Inspection, maintenance, safety
Redundaney and backup
Uninterruptible power supply
Personnel training

Environment

Air-conditioning and humidity control
systems

Lighting

Monitoring and control

Housckeeping

Computer Facility Protection

Building construction and location

Water damage exposure

Protection from damage or tampering with
building suppert facilities

Building aperture protection

Bomb threat and civil disorder

3 Two IBM-user organizations, GUIDE and SHARE, bath have
active disaster recovery and security control groups that issue
guidelines, checklists, and tutorials on the topic.

Physical Access
Asset vulnerability
Controls addressing accessibility
Perimeter
Building
Sensitive offices
Media storage
Computer area
Computer terminal cquipment
Computer and telecommunications
cable

An example of a detailed checklist for building
access is provided next.

Facility type: Mainframe, LAN, PC, RJE,
Remote, Communications

1. Are enitrances controlled by
locking devices

guard force

automated card-key system
anti-intrusion devices
sign-in/out logs

photo badge system

closed circuit TV

other

aRARRR

2. Are controls in effect 24 hours per day? If
not, why?

3. Are unguarded doors
kept locked (Geod)
key-controlled {Better with above)
alarmed (Best with both of above)
4. If guard foree, is it
trained (Good)
exercised (Better)
armed
5. Are visitors required to
sign in and out
be escorted
wear distinctive badges
undergo package inspection
6. If building is shared, has security been
discussed (Good)
coordinated (Better)
formalized (Best)
7. Scnsitive office areas, media storage, and
cnmputer areas

Daoes access authority for each area
require management review?
Is access controlled by
locking devices
guard force
avtomated card-key svstem
anti-intrusion devices
sign-infout logs
photo badge system
closed circuit TV
other
Are unique badges required?
Do employees challenge unidentified
strangers?
8. Control Mechanisms
Do signs designate control/restricted
arcas?
If locks are used
is key issuance controlled?
arc keys changed periodically?
9. Administration
Does management insist on strict
adherence to access procedures?
Are individnals designated responsibility
for

access control at various control
points

authorizing visitor entry
establishing and maintaining policy,
procedures, and authorization lists
compliance auditing

follow-up on violations

The probability of total hardware and software
loss is low in a normal environment. In fact, the
probability of occurrence of a destructive event is
inversely related to the magnitude of the event. That
is, the threat from terrorist attack might be miniscule,
but the damage from one might be total. Each type of
threat shoutd be considered and assigned a current
probability of occurrence. High probability threats
are used to define a plan to mimimize the probabil-
ity. If the company business is vulnerable to boemb
threats, for instance, buildings without external glass
and without company signs are More anonymous
and less vulnerable. Having all facilities locked at all
times, with a specific security system for authorizing

information Engineering Design 413

employees and screening visitors, reduces vulnera-
bility even further.

The major vulnerability is not related to the phys-
ical plant in most cases; it is from connections to
computer networks. The only guaranteed security
against telecommunications invasion is to have all
computers as stand-alone or as a closed network
with no outside access cupability. As soon as any
computer, or network, allows external access, it is
vulnerable to invasion. There are no exceptions, con-
trary to what the local press might have you believe.
Data and program access security protection reduce
the risk of a casual break-in to an application. Mon-
itoring all accesses by date, time, and person further
reduces the risk because it enables detection of
iniruders. Encrypting password files, data files, and
program code files further reduces the risks; it also
makes authorized user access more complex and
takes valuable CPU cycles.

The most common security in an application is
to protect against unwanted data and program
access. Data access can be limited to an entire phys-
ical file, logical records, or even individual data
items. Possible functions against data are read only,
read/write, or write only. Users and IS developers
consider each function and the data being manipu-
lated to define classes of users and their allowable
actions. Allowable actions are to create, update,
delete, and retrieve data. A hierarchy of access rights
is built to identify, by data item, which actions are al-
lowed by which class of users. A scheme for imple-
menting the access restrictions is designed for the
application,

Backup and recovery go hand-in-hand o provide
correction of errors becanse of security inadequa-
cies. A backup 1s an extra copy of some or all of the
data and software, made specifically to provide
recovery in event of some disaster. Recovery is the
process of restoring a previous version of data or
application software to active wse following some
damage or loss of the previously active copy.

Research by IBM and others has shown that com-
panies go out of business within six months of a dis-
aster when no backup copies of computer data and
programs are kept. In providing for major disasters,
such as tornados, off-site storage, the storing of
backup copies at a distant site, is an integral part of

414 CHAPTER 10 Data-Criented Design

guaranteeing recoverability. Off-site storage is usu-
ally 200+ miles away from the computer site, far
cnough to minimize the possibility of the off-site
facility also being damaged. Old salt mines and other
clean, underground, environmentally stable facilities
are frequently used for off-site storage.

The disasters of concem in recovery design are
user error, unanthorized change of data, software
bugs, DBMS failure, hardware failure, or loss of
facility. All these problems compromise the integrity
of the data. The most difficult aspect of recovery
from the first three errors is error detection, If a data
change is wrong but contains legal characters, such
as $10,000 instead of $1,000 as a deposit, the only
detection will come from audit controls. If a data
change is wrong because it contains illegal charac-
ters, the application must be programmed to detect
the error and allow the user to fix it. Some types of
errors, such as alteration of a deposit to a bank ac-
count or alteration of a payment to a cusiomer,
should also have some special printout or supervi-
sory approval required as part of the application
design to assist the user in detecting problems and
in monitoring the correction process. DBMS soft-
ware frequently allows transaction logging, logging
of before and after images of database changes and
assisted recovery from the logs for derected errors.

DBMS failure should be detected by the DBMS
and the bad transaction should antomaticatly be
‘rolled-back’ to the original state. If a DBMS does
not have a ‘commit/roll-back’ capability, it should
net be used for any critical applications or applica-
tions that provide legal, fiduciary, or financial pro-
cessing compliance. Commit management scftware
monitors the execution of all database actions relat-
ing 10 a user transaction. If the database actions are
all successful, the transaction is ‘committed* and
considered complete. If the database actions are not
all successful, the commit manager issues a roli-
back request which restores the database to its previ-
ous state before the transaction began, and the
transaction is aborted. Without commit and roll-back
capabilities, partial transactions might compromise
database integrity.

Other data and software backup procedures are
either full or incremental. A full backup is a copy of

the entire database or software library. An incre-
mental backup is a copy of only changed portions
of the database or library. A week’s worth of back-
ups are maintained and rotated into reuse after, for
example, the fifth day. To minimize the time and
money allocated to backup, incremental procedures
are most cormmon. A full backup is taken once each
week with incremental backups taken daily. An
active database would be completely backed-up
daily with one copy on-site for immediate use in
event of a problem. Regardless of backup strategy,
an extra copy of the database is created at least once
a week for off-site storage.

The extensiveness of backup (and recoverabil-
ity} is determined by assessing the risk of not hav-
ing the data or software for different periods (see
Table 10-4). The less the tolerance for loss of access,
the more money and more ¢laborate the design of the
backup procedures should be. The severity of lost
access time varies, depending on the availability of
human experts to do work manually and the criti-
cality of the application. In general, the longer a
work area has been automated, the less likely manual
procedures can be used to replace an application, and
the less time the azpplication can be lost without

TABLE 10-4 Backup Design Guidelines
for Different Periods of Loss

Type of

Length of Loss Backup

Weekly Full with
Off-site storage

Above + Daily
Encremental/Full

Above + 1 or more
types of DBMS
Logging

Abaove + All DBMS
Logging Capabilities:
Transaction, Pre-Update
and Post-Update Logs

1 Week or longer

1 Day

1 Hour

15 Minutes or less

severe consequences. The less important an appli-
cation is to the continuance of an organization as an
on-going business, the less critical the application is
for recovery design. An application for ordering
food for a cafeteria, for instance, is not critical if the
company is an oil company but is critical if the com-
pany is a restaurant.

To define backup requirements, then, you first
define the criticality of the application to the organi-
zation, and the length of time before lost access
becomes intolerable. Based on those estimates, a
backup strategy is selected. If the delay until recov-
ery can be a week or more, only weekly full back-
ups with off-site storage are required. If the delay
until recovery can be one day or less, then, in addi-
tion to weekly backups, daily backups should be
done. If the recovery delay can be only an hour,
the two previous methods shouid be supplemented
with one or more types of DBMS logging scheme.
Finally, if a 15-minute recovery delay is desired, all
types of DBMS logging, plus daily and weekly back-
ups should be done,

Last, we consider audit controls which provide a
record of access and modification, and prove trans-
action processing for legal, fiduciary responsibility,
or stakeholder responsibility reasons. Audit controls
allow detection and correction of error conditions for
data or processing. As new technologies, greater
dependence on ITs, and interrelated systems that are
vulnerable to telecommunications attacks all in-
crease, business emphasis on controls also increases.
In manual systems of work, control points are eas-
ily identified; procedures are observable, errors can
be reconstructed, and controls applied by humans. In
auntomated applications, the application is the solu-
tion, nothing is directly observable, and complexity
of functions makes identification of control points
increasingly complex.

A control point is a location (logical or physi-
cal) in a procedure (automated or manual) where the
possibility of errors exists. Errors might be lack of
proper authorization, misrecording of a transaction,
illegal access 1o assets, or differences between actual
and recorded data. Control points are identified dur-
ing design because the entire application’s require-
ments should be known in order to define the maost

Information Engineering Design 415

appropriate control points. Controls are specified by
designers in the form of requirements for program
validation. For instance, controls for the validity of
expense checks might be as follows:

1. Only valid, preauthorized checks can be
written.

2. Check amounts may not exceed authorized
dollar amounts.

3. Checks may not exceed the expense report
total amount,

Application audit controls address the complete-
ness of data, accuracy of data, authorization of data,
and adequacy of the audit trail. Detection of pro-
cessing errors is either through edit and validation
checks in programs, or through processing of redun-
dant data. Examples of controlled redundancy of
data include double entry bookkeeping, cross footing
totals and numbers, dual departmental custody of
replicated critical data, transaction numbering, and
primary key verification. Edit and validation rules
are designed to identify all logical inconsistencies
as early in the process as possible, before they are
entered into the database.

ABC Video Example Security, Backup/
Recovery, and Audit Plans

To design ABC’s security, we first review the physi-
cal plant and recommend changes to the planned
computer site to provide security. The six threats are
considered, but the byword from Vic in discussing
the possibility of changes is “be reasonable.” So, if
there is a ‘reasonable’ chance that a problem will
occur, we will recommend a reasonable, and low
cost, sclution to the problem.

Moving from most to least sericus, we consider
the six types of threats to application security: loca-
tion failure, hardware failure, DBMS failure, soft-
ware failure, hacker change, and user error. For each
threat, we consider the potential of occurrence for
ABC, then devise a plan 10 minimize the potential
damage, All threats and responses are summarized in
Figure 10-21.

416 CHAPTER 10 Data-Criented Design
Ra-Dan »
a0
Fira |
Exit || Drama Herror Files
O
[=]
&
5l g1 1*®
e
— &
y, g
iFi Sci Fi =
sar | NP
JIHIE []
& in 7]
Cheap's
Drugs | Music | | Cormnedy l
o
Action i 2
w
| Cheack-out Desk
Current Releases ’

Ny

Front Door

~— Window Wall

FIGURE 10-20 ABC Current Physical Plant

First, we review the physical plant and relate it
to location and hardware failures. ABC Video is
located in suburban Atlanta, Georgia, 300 miles
from the ocean and 25 miles from the nearest large
lake. The company is located in a mall, the Dun-
woody Village, a clustering of small shops and
officcs in open-square buildings conlaining a plaza
in the middle of the square. The company occupics
3200 square feet of 80 x 4{¥ space in the southeast
corner of Building A. The adjoining spaces are oc-
cupied by Cheap’s Drugs and Ra-Idan Hair Salon.
A schematic of the space is shown in Figure 10-20.

The northeast corner of the area (abutting Ra-Dan’s)
contains a 12' x 16' office which contains two desks,
one supply closet, and a bathroom. The office has
no windows and can be locked, although it is frc-
quently empty and unlocked. The supply closet has
double doors which do not currentiy have a lock.

The clerk’s checkout counter is near the customer
doors on the south side of the building in the western
corner. The counter is an ‘L’ shape with the entry on
the short side. A fire door, equipped with an alarm
bar, is located in the northwest corner of the area and
opens on a short alley behind the building.

Location failure usually results from violent
wcather, terrorist attacks. or government takeover,
The chance of violent weather is the only potential
major problem in the area. Tornadoes occur in the
area regularly. The expectation is that there is a 20%
chance of tornado damage some time in the next
10 years (sce Figure 10-21). Tornadoes also imply
strong thunderstorms which are common to the area.
The chance of damage from a storm is about 30%
wilhin five years to the windows, and about 65%
within two years for lightning to cause electrical
spikes.

The response to location threats is to provide off-
site backup of all information, with the site far
enough away that it is unlikely to be affected by the
same storm (see Figure 10-21). Vic should investi-
gate the possibility of closing in the window wall in
the southeast side of the building o minimize storm
damage. He can also install lightning rods on the
roof of the building to dissipate lightning when
it hits.

The next category of problems relate to the hard-
ware selected for the rental/rcturn application.
Vendor-cited reliability is 99 years mean time be-
tween failure (MTBF) for individual components.
When the components are considered as a whole, the
probability of component failure is once in two years
(see Figurc 10-21). The current plan is to have an
extra PC in the office that could be moved to the
front desk if needed. A hardware service contract
with a local company to provide response within
24 hours is tecommended.

The planned scrver location is near the bathroom
in the northeast corner of the area. The toilet has a
history of overflows during wet spring months. Be-
cause of the way the officc was constructed, the
waler is confined to a small area but almost always
runs into the supply closct and has been as high as
one foot. The probability of component failure to file
server and/or disks from water due to toilet over-
fiow 1s 50% in two years. The answer to this problem
is simple, but expensive: Build a new area, specifi-
cally for the computer, away from the toilet area to
reduce this probability to near zero. [deally, if the
windows ar¢ closed in, the office could be moved to
the front of the building and the old office removed.
A new enclosure for the toilet facilities could be

iInformation Engineering Design 417

added or the teilet could also be rebuilt in the new
location with whatever precautions are needed to
preclude the spring overruns.

There is another problem with the planned server
location. The planned location—the supply closet—
has no ventilation. If the closet doors are open, ven-
tilation for the office is sufficient for the planned
equipment, but, ideally, the server closet doors
should be locked. If the doors were locked, the prob-
ability of server failure due to lack of ventilation is
50% in two years. The solutions possible are to build
a new area for the server equipment, or to add ven-
tifation to the planned area to reduce this probabil-
ity to near zero. Both solutions should be presented
to Vic for his decision.

Less serious problems stem from the building
location. Glass windows that run atong 60' of exter-
nal front wall and the drop ceiling are accessible
from neighboring companics. Theft and break-ins
are somewhat common in the area, but the probabil-
ity of a break-in is 50% in 10 years. Most burglars
are looking for money, but some mighl maliciously
tamper with the computer equipment. Therefore, the
probability of computer damage during 2 break-in
is 60% according to police cstimates.

The recommendations to minimize theft have o
address the easy access to the company through win-
dows and ceiling. If the office remains in its current
location, a security system with movement sensors
in the ceiling and glass-breakage sensors on all win-
dows should be added (whether or not the computer
is instalied). Long-term, Vic should investigate the
possibility of closing-in some or all windows to
improve security of the company.

Next, because of the location of the checkout
desk at the front of the building, the ability of clerks
to monitor approaches to the office 15 low due to lim-
ited visibility. Further, theft of tapes is possible
because clerks cannot sce down all aisles without
moving away from the desk area. For application
security, we are concerned with office access; but, as
professionals, we can make recommendations that
will improve Vic's ability to reduce general theft as
well. An casy, but somewhat expensive solution is to
move the checkout desk to the center of the floor and
assign surveillance duties to clerks. Even if the desk
is not moved, mirrors installed in the corners of the

418 CHAPTER 10 Data-Oriented Design

Finding

Recommendation

Location failure—Probability of tornadoas 10% in

10 years. Probability of strong storms causing damage
to windows is about 15% within two years. Probability
of lightning causing electrical spikes is 15% within

two years.

Hardware failure—Vendor-cited reliability is 99 years
MTBF for each cormponent. The probability of com-
ponent failure is once in two years far some network
component.

Hardware failure from external reasons—Planned
server location is near bathroorn with history of
periodic overflows. Probability of component failure to
file server andfor disk is 50% in two years.

Hardware failure frorm external reasons—FPlanned
server location is a closet in the office area without
any ventilation. Probability of sarver failure is 50% in
1wo years.

Hardware failure from external reasons—Current
location has glass windows along 600 of external
front wall and a drop ceiling accessible from
neighbaring companies. Probability of break-in is
30% in 10 years; probability of computer damage
during a break-in is 60%.

Physical location vulnerabilities—Ability of clerks 10
monitor approaches to the office is low because of
desk location and limited visibility.

DBMS failure—Vendor-stated reliability is two years
MTBF. This is che of the best on the market, but each
new releass is unstabie for at least six months.,

DBMS failure—Other reasons {e.g., electrical spike).
Probability is 100% that electrical surges will ocour,
since thgy are commen in the summer months.

Probability of brownouts with reduced power are
30% in two years.

Select off-sile storage facility no closer than 200 miles.

Investigate closing in the front windows, at least the contigu-
ous 40 feet of windows on the southeast corner.

Install lightning rods on the roof.

Mave the extra PC in the office 1o the front desk if needed. A
hardware service contract with a local company to provide
response within 24 hours is recommendad.

Build a new area to reduce this probability to near zero.

Build a new area or add ventilation to the planned areg to
reduce this probability to near zera.

If the office remains in its current location, add security
system with movement sensors in the ceiling and glass-
breakage sensors on all windows.

Long-term, investigate the possibility of closing-in some or
all windows, maving the office to the frant of the building
{away from plumbing}.

Move the clerks’ desk to the center of the floor and assign
surveillance duties to clerks.

Install mirrors in corners of room to allow monitoning of
customers' actions.

Do not install latest releases until thoroughly tested using
regression test package.

Nageotiate with vender for data access software in event of
DBMS failure. Include this software access in the vendor
cantract.

Ingtall & surge protector on the entire ABC slectrical
system to accommeodate spikes {cost is aboul $100),

Install surge protectors on each individual outlet used by
computer equipment to further protect the equipment since
whole system proteciors do not guarantee integrated chip
safety in any devices.

Install & limited, inexpensive, UPS to provide emergency
power in svent of electrical failure and for limited use during
brownouts {cost about $1,000).

FIGURE 10-27

Security Review Findings and Recommendations

Informiation Engineering Design 419

Finding

Recommendation

Software failure—Application failure due to sofiware
defacts should ba less than once in 15 years atter the
first three months. During the first three manths of
operation, the probability of application failure is about
75%; no more than one is expected,

Hacker change—Qutside user access to the system
should be zero since no telecommunications capabilities
are planned. However, the untended server and occa-
sional lack of clerks at the desk area may provide a local
hacker enough lime to access and modify the system.

User errar—The use of computer novices as clerks
guarantees user error. Probability is 100% within one
week of systern operation,

The: application is designed far 13-minute recavery of all
data and programs. Loss of transactions in process will al-
ways occur with any failure; they will have to be reentered.

Program problams will be fixed within one business day.
Any lost transactions will be reentered free of charge by
Software Engineers Unlimited.

Install security precautions listed above: security mirrors,
move desk, assign clerks rmonitoring responsibility.

Always lock office door; afways lock file server door.

Restrict data and process access to those required to per-
form each job.

Design application to withstand any casual errar—hitting
any key an keyboard, scanning any bar code type, etc. A
report of such errors can be created and printed on demand
by Vic to allow retraining (or other action) for repeated
Irors by ong user.

Application design alsa includes validation of all fields such
that only valid data can be in the database. On-demand
reports of new customer and video entries will allow Vic to
monitar the typing skills of employees.

MNew-hire orientation and new-hire mentors should be used
to stress the importance of data accuracy.

FIGURE 10-21

room would allow clerks to monitor customers’
actions. Both recommendations are made with the
understanding that the mirrors should be installed
whether or not the desk is moved.

After physical issues are evaluated, we next look
at software security and reliability. Vendor-stated
reliability for the planned DBMS is two years
MTBE. This SQL software 1s one of the best on the
market, but each new release is unstable for at least
six months, and those instability figures are not in
the MTBF estimates. The company routinely dis-
claims any responsibility for new release errors and
loss of data or processing to using companies. The
DBMS does stabilize and is usually reliable after a
six-month trial period for each new release. The

Security Review Findings and Recommendations {Continued)

simple solution 1o this problem is that unless a fea-
ture of a new release is needed, no change from the
current stable version should be made. In addition,
no software, whether vendor package or customer
designed, should be allowed into production use
until it is thoroughly tested using the application
regression test package that will accompany the
system.

A secondary problem with DBMS errors is that, if
the DBMS fails, there is no other way to access the
data. Part of the contract negotiation should include
discussion of such software for the vendor to provide
in event of DBMS failure. Other companies have
successfully received such commitments from this
vendor, although it is not volunteered. Such data

420 CHAPTER 10 Data-Oriented Design

access software should be included in the vendor
contract.

Additional probletns that might cause DBMS
failure are electrical surges and brownouts due to
uneven service in the area. Surges generally occur
during the summer months when equiprment comes
on-line to service air-conditioning in the arca. The
probability of surges is 100% based on local electri-
cal company history. The probability of brownouts
with reduced power is 30% within two years, also
using electrical history as the basis for the estimate.
Problems from both causes can be minimized by a
surge protector on the entire ABC electrical system
which shuts down power if a particularly large surge
is experienced. In addition, one surge protector for
each outlet should be installed to further protect the
equipment since whole system protectors do not
guarantee integrated chip safety. Finally, a limited,
inexpensive, uninterrupted power supply {(UPS)
should be installed to provide emergency power in
the event of electrical failure and for limited wse dur-
ing brownouts to supplement reduced electricity
from the local provider.

We consider application software failures next.
Failure due to software defects should be less than
once in 15 years after the first three months of oper-
ational use. During the first three months of opera-
tton, the probability of application failure is about
73%:; no more than one is expected. The application
is designed for 15-minute recovery of all data and
programs. Loss of partial transactions will always
occur with any failure; they will have to be reen-
tered. Program problems will be fixed within one
business duay. Any lost transactions will be reentered
free of charge by Software Engineers Unlimited
(Mary’s company}.

Outside user access to the system should be
zero since no telecommunications capabilities are
planned. However, the untended server and occa-
sional lack of clerks at the desk area may provide a
local hacker enough time to access and maodify the
system. If the physical security precautions recom-
mended above are provided, such hacker break-ins
would be nearly impossible. Therefore, at a mini-
mum the precautions for security mirrors, assigning
clerks monitoring responsibility, and locking the of -

fice and file server doors should be implemented (see
Figure 1G-21).

Finally, the use of computer novices us clerks
guarantees user errors. The probability of user
errors is 100% within one week of system opera-
tion. To prevent any application or DBMS damage
from user errors {inadvertent or otherwise), the first
line of defense is to restrict what users may do and
the data they may access as @ way to prevent errors.
Each job should be defined and a security access
scheme developed to allow access to all processes
and data required for the job, and nothing more.

Second, the application should withstand any
casual error—hitting any key on keyboard, scanning
any bar code type. and so on. If required, a report of
such errors can be created and printed on demand
by Vic to allow retraining (or other action) for
repeated errors by one user. Application design also
includes validation of all fields such that only valid
data can be in the database. Such checks are not pos-
sible for alphanumeric data, however, so on-demand
reports of mew customer and video entries will
allow Vic to monitor the typing skills of employees.

Application training will use computer-based
training {CBT) in entering application data. The
CBT will use simulated rransactions and should min-
imize the user errors if taken seriously by clerks.
New-hire orientation should include discussion of -
the importance of accuracy of work, especially with
the computer. Further, new hires should bc assigned
a more senior ‘mentor’ for learning the application
afier training.

After disaster recovery is planned, application
security must be developed. From the recovery plan,
we know that cach job should be evaluated to deter-
mine the data and processing requirements of the
position. ABC jobs evaluated include clerks, owner,
and accountant. The owner should be allowed to do
any functions on the application and system that he
desires. However, many owners do not wani to
become the chief user of the computer. When asked,
Vic's reaction is, “Does this mean I can never take a
vacation? Do I have to be here in the morning and
at night? If so, define a new position that can do most
of my functions, just not delete data!” So the posi-
tion of chief clerk is also considered.

Informeation Engineering Design 421

Clerk and accountant each have
different subsets of chief clerk
rights.

Cwner
Chief clerk has a subset of
Chief ownar rights.
Clek
Clerk Accaunant

FIGURE 10-22

The owner should be the lead person and still be
allowed to perform all functions, access all data, and
provide security password changes, and so on (see
Figure 10-22). The chief clerk, according to Vic's
wishes, has all of those funciions except deleling
information (see Table 10-5). If there were scnsitive
data in the system, more discussion of the chiefl
clerk’s duties and access rights might take place. The
clerks have access rights to rent and return videos,
and to create and update customers and videos.
Finally, the accountant has limited read-only access
to several files.

Backup and recovery are considered next, First
we decide the maximum tolerable time loss for a
computer outage, then select the backup scheme that
best fits the time loss maximum, The rental/return
application is critical to ABC’s ability to conduct
business. Vic knows that when he moves all produc-
tion work to the computer that the clerks will quickly
forget the manual way of conducting business. Also,
we know that if the databases arc nol kept up to date,
the system is next to useless because the clerks won't
know whether to look at manual or automated files
for returns, fecs, and so on. Therefore, the maximum
outage should be less than 15 minutes with recov-
ery of all fully complete transactions. Even at

ABC Data Security Hierarchy of Access Rights

15 minutcs, if an outage were 1o occur during a peak
time, as many as four transactions could need to be
reentered and as many as 15-20 transactions would
be queued for entry upon system return to produc-
tion. Ideally, the system should be functional during
all business hours.

The recovery requircments imply the most
backup protection possible. From Table 10-4, a
15-minute recovery requirement means the use of
weekly full backups with off-site storage, daily
backups, and logging for transactions, preupdate
data items and postupdatc data items. Therefore,
these are the backup and recovery requirements.

Requircments: Application and system availabil-
ity during all store open hours, with no more
than 15 minutes of down-time from failures
of any type.

Backups: Transaction, preupdate, and post-
update logs

Transaction logs maintained one week until
weekly backups arc verified. Pre- and
postupdate logs maintained for 72 hours.

Daily complete database backups with on-
site copy plus off-sitc storage at owner’s
home.

422 CHAPTER 10 Data-Oriented Design

TABLE 9-5 ABC User Classes and Access Rights

File/Function Owner Chief Clerk Clerk Accountant

Customer
Create
Retrieve
Update
Delete

Video
Creatc
Retricve
Updatc
Delete

L
b e
b

>

B S
o

Open Rentals
Creatc
Retrieve
Update
Delete

PO L0
oo
o

>

Video History
Create
Retrieve
Update

e

Customer History
Create
Retrieve
Update

Startup

I
Mo R

Shutdown

End OFf Day
Create
Retrieve
Delcte

g
o
B

Initiale End of
Muonth Process X X

Paper copy of transactions maintained for one If ABC’s application processed millions of trans-
calendar vear in accountant’s office. actions each day, we would do further analysis of
Weekly complete disk backups with on-site copy the cost of backup and recovery, but here that is
plus off-site storage at owner’s home and a not necessary.
third copy at Finally, we need to decide about audit controls

. . as summatized hete:
Disaster Prevention Storage

321 Maple Ave. Data accuracy and completenass—All edit
Somewhere, OK checks possible will be used as data are
{618) 123-1234 entered to prevent errors from entering the

system, Sight verification by clerks and cus-
tomers will be used to verify alphanumeric
information,

Rental transaction accuracy can be veri-
fied by customers’ signing for all monetary
transactions. In case of discrepancy, ransac-
tion logs and historical paper copies of trans-
actions can be consulted.

Data authorization—Security controls will pro-
vide sufficient authorization for data process-
ng, Only the owner is authorized to perform
any delete functions on customer, video, and
open rental data. No delete functions for his-
tory records are provided.

User ID, date, and time of user to last
change data will be maintained in Customer,
Video, and Open Rental databases.

Audit trail—A paper trail of receipts should be
maintained by the accountant for each
calendar year. This is a sufficient trail
since ABC is a cash business without any
accruals,

Information Engineesring Deasign 423

Nonmonetary transactions {¢.g., return
of on-time tapes), have no paper audit trail.
If a question about a tape return arises,
the database can be checked to verify the
information.

All edit checks possible should be used as data are
entered to prevent errors from entering the system,
To ensure complete editing, we review the data dic-
tionary to check that all nonalphanumeric fields have
edit and validation criteria.

On names, addresses, and other alphanumeric
fields, liitle verification can be performed automati-
cally. What cannot be done automatically should be
done manually. Procedures for operators should be
developed to document clerical ‘sight verification’
and customer verification standards. An example of
such a procedure that would be part of the user man-
ual is shown as Figure 10-23. Sight verification
means that the person entering information into the
computer reads the monitor te verify the accuracy
of the information he or she entered. The user, then,

These paragraphs wauld be part of the user procedures,

Customer Maintenance

When customars are being added to the system, the clerk should read back all information as shown on the screen fo
verify its accuracy, as the computer cannot verify mixed alphabetic and numeric information.

Video Maintenance

When videos are being added to the system, the clerk should compare ail informatien shown on the screen with the origi-
nal printed infarmation to verify its accuracy, as the computer cannot verify mixed alphabetic and numeric information.

Rent/Return Processing

Users should be encouraged to check the infermation on the printed rental before they sign it to verify that it is correct.

FIGURE 10-23 User Sight Verification Procedure

424 CHAPTER 10 Data-Oriented Design

is responsible for data integrity of items that cannot
be computer verified.

Rental transaction accuracy will be verified by
customers’ signing for all monetary transactions. In
case of discrepancy, transaction logs and historical
paper copies of transactions can be consulted. If
many discrepancies persist (more than one per
week), a special history file of transactions can be
added to the application to speed the transaction
look-up process.

Security controls can be designed to provide suf-
ficient authorization for data processing. The secu-
rity scheme should be developed to serve two goals:
to provide data access and to provide function access
to those who need it. To require several layers of
security checking for a simple application does not
make sense and wastes clerical time. So, once again
the KISS {Keep It Simple, Stupid) method of one
security access scheme is best. User 1D, date, and
time of user to last change data will be maintained
in Customer, Video, and Open Rental databases.
These attributes are added to affected database
refations.

To minimize the extent to which damage can be
done to data, only ABC’s owner should be autho-
rized to perform any delete functions on customer,
video, and open rental data. No automated delete
functions for history records are provided without
circumventing the application completely. Changes
to files will always be somewhat traceable because
the historical record will reflect activity, If unautho-
rized file changes are thought to be a problem, Vic
can always request a browsing capability for any of
the transaction logs to check on problems.

A manual audit trail should be used for ABC
to conserve computer resources. All monetary trans-
actions can be reconstructed through a paper trail
of receipts maintained by the accountant. The receipt
form is a two-ply preprinted form on which all
monetary transactions are printed. For rentals,
customers sign the form as proof of rental responsi-
bility. Paper records should be maintained for one
calendar year in the accountant’s office; this is suffi-
cient since ABC is a cash business without any
accruals. If a tape audit trail were to be necessary
at some time in the future, it can be added to the sys-
tern easily,

Nonmonetary transactions e.g., return of on-time
tapes), have no paper audit trail. If a question about a
tape return arises, the user ID, date, and time of the
return will be on the database and can be checked to
verify the information.

Develop Action Diagram

Guidelines for Developing an Action
Diagram

An action diagram is a diagram that shows proce-
dural structure and processing detaiis for an appli-
cation. It is built from the process hierarchy and
process data flow diagram developed during IE
analysis (see Figure 9-45 for ABC’s PDFD). The
diagram uvses only structured programming con-
structs to convert the PDFD into a hierarchy of
processes that can be divided into programs and
modules. First we discuss the compeonents of the
diagram, then we discuss how to build an action
diagram from the process hierarchy and PDFD,

Action diagrams use different bracket structures
to depict the code elements in an application. Basic
structured programming tenets—iteration, selection,
and sequence—are all accommodated with several
variations provided. As Figure 10-24 shows, a
sequence bracket is a simple bracket. It is option-
ally identified with a process name and ended with
the term ENDPROC to represent a program module
consisting of a sequence of instructions.

When a module is designed and detailed in
another document or diagram, a rounded rectangle
containing the module name is drawn between the
brackets (see Figure 10-25). When the module is not
yet defined in detail, a rounded rectangle with ques-
tion marks down the right side is shown. Reusable

PROC Process Name
The sequence of
instructions is enterad

within the sequential
brackets.

ENDPROC

FIGURE 10-24 Simple Sequence Bracket
Format

Module Name

Seguential
instructions.

Embedded, defined

module nama,

Moduls Name

— Module Name
7
(Embedded, undefined 4

module name. v

. Moduls Name

Reused Module
Name

Adapted from Martin {1890}, p. 543.

FIGURE 10-25 Module Designation Format

modules are drawn with a vertical bar to repre-
sent reuse.

Selection of modules from the PDFD is shown by
a selection bracket (also called a condition
bracket) which begins with an [F condition and
ends with the term ENDJF (see Figure 10-26a). If the
conditional statement has multiple conditions, two
other options are allowed. The condition can be
stated as an IF statement with one or more ELSE
coenditions (see Figure 10-26b), or a condition can be
stated as a mutuwally exclusive selection list as in Fig-
ure 10-26c; this selection list is eventually translated
into an IF statement.

Repetition is shown with a double bracketed fig-
ure. The repetition bracket name begins with either
DO or DO WHILE + condition (see Figure 10-27).
The bracket ends with either an UNTIL + condition

Information Engineering Design 425

(Figure 10-27a), or ENDDQ (Figure 10-27b). DO
WHILE implies that the condition is checked before
the conditional statements are executed. Do while
processing may occur zero times. Conversely, DO
UNTIL implies that the condition is checked after
the lower statements are executed. Do until pro-
cesses occur at least once.

Miscellaneous items include goto, exit, and con-
currency identification. A goto is shown by an atrow
leaving one level and pointing to the line for the des-
tination level with a goto statement and destination
at the right of the arrow (Figure 28a).

An exit is shown as an arrow leaving one level
and pointing to the line for the destination level with
the word exit at the right of the arrow (Figure 28b).
Unless an exit destination is named with the exit,
exit always means that the calling module is the exit
destination. For example, if Rent/Return calls Cus-
tomerAdd, the exit from CustomerAdd returns to
Rent/Return. Further, if CustomerMaint calls Cus-
tomerAdd, the exit from CustomerAdd returns to
CustomerMaint. That is, the calling module, regard-
less of what it is, is the returmn module.

Processes can be sequential or concurrent. Con-
current processes execute at the same time. There
are two types of concurrent processes: independent
and dependent. Independent concurrent processes
are those which execute at the same time but do not
synchronize their process completion. For example,
when Process Payment and Compute Change is
complete in ABC’s application, printing and file
updates of several types could all be concurrent. If
there is no checking on the success of their comple-
tions with subsequent action for any failures, these
processes are independent. Independent concurrency
is shown on the diagram by an arc which connects
the module brackets (Figure 10-28). Dependent
concurrent processes are those which must be syn-
chronized to coordinate further application actions.
Dependent concurrency is shown on the diagram by
an asterisk {or some other special character) on the
arc connecting the modules (Figure 10-28d). Depen-
dent concurrent processes require the development
of a synchronization module, if not already ia the
application, to ensure complete, accurate processing.

Now that you know the bracket symbols used to
define action diagrams, we move to discuss the steps

CHAPTER 10 Data-Criented Design

a. Simple IF Condition

IF condition
action

sequence of
instructions

ENDIF

b. Multiple IF Conditions

IF condition

ENDIF

condition 2
condition 3

condition n
ENDIF

IF condition 1

else |IF condition

alse IF condition

¢. Multiple IF Conditions using case logic

[FAs

| — A=2

A=3
" A=4
A=5
ENDIF

FIGURE 10-26 Conditional Bracket Design Formats

to developing one. The steps to define an action dia-
gram are 10 translate processes into levels of action
using structured constructs, design modules, perform
reusability analysis, decide module timing, add data
to the diagram, and optionally, add screens to the
diagram.

The first step is to translate processes into levels
of action, The first-level diagram is developed from
the process hierarchy diagram to identify the major
activities being performed by the application. The
activities themselves are added to the diagram as
they are written on the hierarchy diagram. The struc-
tured constructs should identify sequence and any
selection or conditional processing relating to the
activities. Most often, when the diagram is begun at

the activity level, the altemative processes are mu-
tually exclusive. When the diagram starts at the
process level (Figure 10-29), any construct might
apply. The example shows a mutually exclusive
selection from among the three alternatives.

Now we shift to the process data flow diagram
(Figure 10-30) to add process details to the action
diagram. Remember that the processes on the PDFD
must match exactly the processes on the hierarchic
decomposition diagram. We use the PDFD to trans-
late the structural relationships between the pro-
cesses correctly. The structural relationships are
on the PDFD and not on the decomposition; they
refer to the sequential, conditional, and repetitive
relationships between processes,

a. Perorm acticns zero to n limes based on condifion.

DO WHILE condition

ENDDO

b. Pedorm actions ane to i times based on condition.

——— DOUNTIL

|— condition
L—— ENDDO

Informatien Engineering Design 427

The diagram is cotrect in interpreting the PDFD,
but it is incomplete as a program specification. First
we need to deal with the First Vendor. The First Ven-
dor will not equal Last Vendor, and to file an order
for a nonexistent vendor is wrong. Second, think
about what an order kooks like (Figure 10-34). There
are one-time Vendor information and variable lines
of Item information, Where the PDFD says Create
Order, it really means Add ftem to Order. When the
Vendor changes and an order is complete, we want to
format Vendor information for the new order. Fig-
ure 10-335 reflects these details and is ready for the
next step. The purpose of this example is to show

FIGURE 10-27 Repetition Bracket Design
Formats

In developing the second-level action diagram,
we first add the processes, in sequence, from the
PDFD. Then the brackets are drawn to reflect the
sequential, conditional, and repetitive structural rela-
tionships. In the example (Figure 10-31), the main
processes are Identify ftem and Vendor, Sort by Ven-
dor and Item, Get Price, Create Order, and Mail
Order. Between these processes, there are two repet-
itive blocks: one based on New Releases, and the
other based on Vendors (see Fi gure 10-32). We iden-
tify the repetitive blocks by looking at the circular
loops and the conditions for repeating the pro-
cess(es). Notice that the Sort is not included in
either loop.

Next, evaluate each process grouping. fdentify
Jtem is alone within its loop. Sort is also alone. The
last three processes are together and are analyzed.
The processes are sequential but according to the
PDFD, they are not all processed in sequence. If the
vendor has not changed from the previous item, we
Get Price and Create Order. When the Vendor
changes, we File and Mail the order. These state-
ments from the PDFD translate into the IF condi-
tional statement in the action diagram as shown in
Figure 10-33.

a. GOTO bracket format

E}OTO Main Menu

b. Exit bracket format

- Exit to Error Routine

(S

Exit to CALLing Module

J._ Exit

c. Concurren! processes bracket format

FIGURE 10-28 Miscellaneous Bracket
Design Formats

428 CHAPIER 10 Date-Oriented Design

Process Hievarchy
{Purchasing)

(Analyze Businass) @reate Purchase OrdeD @onitor Purchase Ordea

First Level Action Diagram

il

{dentify Hem & Vendor

Sort by Vendor, ltem

Get Frice

— Create Order !

Mait Orger

File Order by Vendor

i

——— Purchasing Application

—v Analyze Busingss

—— Create Purchase Order

—— Moniter Purchase Qrder

L—— END Purchasing Procedure

FIGURE 10-2¢ Process Hierarchy and First-Level Action Diagram

how a comect PDFD may need elaboration o trans-
late into program specifications.

Using the action diagram, modules are defined.
There are few guidelines on this aspect of Informa-
tion Engineering. In general, you should try to define
modules that perform one well-defined process and
nothing else. The guidelines presented in Chapter 8
for module definition can be applied here, For the
example in Figure 10-35, the IF . . . ELSE IF , .,
ELSE processing is the module’s control flow,

Within the control flow we have stand-alone pro-
cesses that conveniently define modules. Figure
10-36 shows the module names. each enclosed in its
own rounded rectangular box to indicate that there
are more details for each module. The submodules
are each further diagrammed or, if fully documented
in a data dictionary, refer to the dictionary entry in
the module box.

For Create Purchase Order processing, then, we
have a main module and submeodules for Create Ven-

dor Info, Get Price, Create Order [tem, File Order,
and Mail Order. Notice that Create Vendor Info is
used twice.

Next, the action diagram modules are compared
to templates already in use t0 detérmine whether
reuse of existing modules is possible, As reusable
modules are identified, the process details are
removed from the action diagram and replaced with
a call statement. The called module name should
indicate whether the reused module is customized
for this application or not. The conventional way to
identify customized reused modules is by a prefix
or suffix on the name. For example, a date compare

Infarrmation Engineerng Deslgn 429

routine might be used to determine lateness. If not
modified, the name of the routine might be Dare-
Compare. If customized, the name of the routine
might be RentDateCompare or LateReturnDate-
Compare. In the example in Figure 10-36, Sort uses
a utility program, a special class of reusable mod-
ule. The Sort statement is removed from the diagram
and replaced with a call statement (Figure 10-37).
No other modules in this example are general
enough for reuse.

When reusability analysis is complete, the action
diagram should show the mainline logic of the
application with modules for the processes and

More = Yes

Vandor £ Last-Vendor

Identify tern & Vendor

F Maore=No
[Sort by Vendor, kem

. a{ Create Order }
b
| Mail Order)

?r
File Qrder by Vendor

Vendor
! Vendar = Last-Vendor
% last=No
Opan Crders

FIGURE 10-30

Sample Process Data Flow Diagram

430 CHAPTER 10 Data-Oriented Design

Purchasing

|-—— | Analyze Business

Crezta Purchase Order

Identity [tem and Yendar

Sort by Vendor, Item
Get Price

Create Order

Mail Crder

File by Vendor

— [Monitor Purchase Order]

— END Purchasing Procedure

sequential modules are evaluated at first. Then the
groups themselves are evaluated for possible con-
currency. In Figure 10-36, two groups of two or
more modules are present. The first is Gef Price with
Create Order ftem. The second group is File Order,
Mail Order, and Create Vendor Information on
Order. Working backwatd, we ask if the modules are
dependent on each other. Could we create an order
itern without knowing the price? In this case, the
answer is no, we must know the price, Therefore, the
modules are dependent and cannot be concurrent. In
the second group, we might perform File and Mail

FIGURE 10-31
Diagram

Second-Level Action

subprocesses. At this point, timing of processes is
decided and added to the diagram. Recall that pro-
cesses can be sequential or concurrent, and that con-
current processes can be either independent or
dependent. Frequently, user requirements will iden-
tify required concurrency. If no user requirements
identify concurrent operations, a design decision to
ofter or not offer concurrency is made by the SEs.
Concurrency is expensive and adds a level of main-
tenance complexity to the application that the user
might not want,

Optional concurrency is determined by evaluat-
ing module interrelationships again. Only groups of

—— Purchasing

Analyze Business

——Create Purchase Order
[Do Until all itermns are identified

ldentify ltem and Vendor

C EndDo
Sort by Vendor, ltem

[Do While there are ltems to be processed
Gat Price

Create Order

Mail Order

File by Yendar

[— ENDDO

—(Monilor Purchase Order)

L END Purghasing Procedurg

FIGURE 10-32 Repetitive Blocks on Second-
Level Action Diagram

information Engineering Design 431

’_ Purchasing

Create Purchase Ordar
[Do Until all items are identitied

Identify tem and Vender

[EndDo
Son by Vendor, ltem
[~ Do While there are ltems to be processed

— |F Vendor= Last-Vendor
Get Prica
Creale Order
— ELSE
Mail Grder
Fite by Vendor

Set Last-Vendor = Vendor

i— ENDIF

[ENCDO

——[Monitor Purchase Order)

END Purchasing Procedure

ABC Video, Inc.
123 Dunwoody Village
Dunwoody, GA 30392

Purchase Order
TO: Paramount Yideo Entertainment 1/11/34

1947 Ave. of Americas

New York, NY 10021

Terms: Net 30 Days
[tem Qty Description Frice
019421 50 Aladdin 1495
019427 10 A Few Good Men 14.95
012487 1 Mon Amour C'est Soir 5.45

FIGURE 10-33 Conditional Statements on
Second-Level Action Diagram

Oreer at the same time, IE success of the file opera-
tion is not an issue. Create Vendor cannot be done
until the last order is fully processed. To decide on
concurrency, we need to know the details of error
handling. In this case, we find that errors are checked
and handled in the module in which they can occur.
If a fatal error occurs, the application does no other
processing on this order. This process definition
implies sequence to the processes. If the processes
were concurrent and a fatal error occurred, some
undesired processing would occur. Therefore, in this
example, concurrency is not an option,

FIGURE 10-34 Order Example

Next, the entities and data elements used by the
processes are added to the diagram(s). By the timne
this action i3 complete, every attribute of every
relation must, at least, have been identified for cre-
ation and deletion (Figure 10-37). Any attributes not
included in the processing should be reconsidered
for elimination from the application. These process
definitions should include attributes added to the
relations as a result of design activities.

If the action diagrams are developed manually,
screen identifiers can be added to the diagram with
entities and attributes linked to screens (see Figure
10-38). The diagram then links data sources and des-
tinations to both processes and screens. This type of
diagram does manually what linkages in a CASE
tool automate.

ABC Video Example Action Diagram

The steps to developing the action diagram are to de-
velop the levels of action using structured constructs,
perform reusabitity analysis, design modules, decide
module timing, add data to the diagram, and option-
ally, add screeas to the diagram (refer to p. 434).
Only the first-level action diagram includes all of the
processes, The lower-level diagrams consider Rent/
Return processing and Video Maintenance only. The
other pracesses are left as an exercise.

432 CHAPTER 10 Dota-Criented Design

Purchasing

Analyze Business

— Crgate Purchase Order

[Do Uniil all items are identified
|dentify ltsm and Vendar

[— EndDo
Sort by Vendor, ltem
B Do While there are tems to be processed

[~ IF First-Record
Set Last-Vendor = Vendor
— ELSE IF Vendor = Last-Vendor
Get Price
Create Order
- ELSE
Mail Order
File by Vendor

Set Last Vendor = Vendor

— ENDIF

—

ENDDO

‘(Mon itor Purchase Ordea

END Purchasing Procedure

The subprocesses for Video Maintenance are for
create, retrieval, update, and delete processing.
These processes are all mutually exclusive, so the di-
agram 15 simple (Figure 10-42), At the lowest Jevel,
we identify modules that refer to the dictionary for
process details.

Rent/Return has all of the complexity in the
application. Each cluster of modules is discussed
separately. First, Ger Request is always executed
whenever Rent/Return is invoked (Figure 10-43).

FIGURE 10-35 Order Format Details on
Action Diagram

The first-level action diagram is based on the
process hierarchy (Figure 10-39), First we draw the
general bracket and add the module names, indicat-
ing the structural relationships between the modules
by the bracket type (Figure 10-40). Int the ABC dia-
gram, the processes are all mutually exclusive.

Then, using the PDFD as reference (Figure
10-41), we develop the next level of procedural
detail. The subprocess names are added to the dia-
gram as shown in the PDFD (and process hierarchy).
For each subprocess, the structural brackets indicat-
ing modular control are added.

—— Purchasing

Anzlyze Business

—— Create Purchgze Order
Do Until al} items are identified

(|dentify item and Vsndor)

EndDo
(Sort by Vender, ltem)

[Do While there are ltems to be processed

[~ IF First-Record
Set Last-Vendor = Vendor

Create Vendor Info

- ELSE IF Vendor = Lasi-Vendar

Get Price

Cregte Order

— ELSE

Mazil Order

File Order

Set Last-Vendor = Vendor

Create Vendor Info

L_ENDIF
[— ENDDOQ

—(Monitor Purchase Order)

L—— END Purchasing Procedure

FIGURE 10-36 Meodute Boxes on Action
Diagram

Information Englineering Design 433

___ New Releases

Create Purchase Order

Do Until all items are identified

(Identify ltem and Vendor)

EndDo

L— Wendor Name
| Video Name

Vendor {D

(Sont by Vendor, ltem)

|‘ \F First-Record

Set Lasi-Vendor = Vendor

(Create Vender Info

t— ELSE IF Vendor = Last-Vendor

(Gst Price)

(Create Order

—ELSE
(Mail Order)
(File Order

Set Last-Vendor = Vendor

(Create Vandor Info)

L ENDIF
— ENDDO

[— Do While there are Items to be processed

—

—

Item (D

Yendor 1D
Vendor Name
Vendor
Address
Crder Terms
endor 1D
ltem 12
ltem City
Item Description
Itern Price

Vendor ID
Vendor Name
Vandor Address
Order Temms

Purchase Order

—— END Create Purchase Order Procedurs

FIGURE 10-37 Data Addition to High-Level Action Diagram

Then the conditional statement for determining the
type of request is added (Figure 10-43). The two
options are If Customer and If Video 1D, and each
has its own processes.

Next, Open Rentals are read and displayed until
all Open Rentals for this customer are in memory
(Figure 10-44). The Open Rental loop is a simple Do
While process.

Then video returms are processed using a repeti-
tion with a conditional structure (Figure 10-45). Late
fees are checked in a repetitive loop for all Open
Rentals (Figure 10-46). New rental Viden 1Ds are
entered for all new rentals (Figure 10-47). Pro-
cess Payment and Make Change is a stand-alone
module. Then, for all open and new rentals, the Open
Rentals file is updated; for all of today’s returns, his-
tory is updated; and if payment is made or a user

requests, a receipt is printed (Figure 10-48). The
consolidated action diagram is shewn in Figure
10-49.

Next, evaluate the diagram to identify program
modules. As in the example above, we have natu-
rally identified modules as part of process definition.
For instance, Get Valid Customer is a small, self-
contained module that does one thing only. The
module uses 2 Customer ID to access the Customer
relation. If the entry is present, the credit is checked.
The name, address, and credit status are returned.
The remaining modules, that we originally defined
as business processes doing one thing, should each
be reviewed to ensure that they are, in fact, single
purpose. This is left as a class activity.

In addition, we can now resolve the issue held
over from analysis about whether to keep separate or

434 CHAPTER 10 Data-Criented Design

New Releases

Create Purchase Order

Qdentify ltern and Vendor)

Da Until all itams are identified T% "

=
i

Vendor Name
Video Name

-

EndDo
(Sort by Vendor, hem)

[IF First-Record

Set Last-Vendor = Vendor

(Create Vendor info)

(Get Price)

C Create Order

— ELSE

L Mail Order)
L File Qrder

Set Lasi-Vendor = Vendor

(Create Vendor Info)

L ENDIF
[— ENDDO

[C Do While there ara ltems to be processed

—

L ELSE IF Vendor = Last- VendV

I~

Vendor 1D]
ftem 10 |

Vendor ID
Vandor Name
Vendor
Address
Order Terms
endor ID
lkem ID
Hem Qty |
Itern Description
Itern Price

Vendor D /
Vendor Name
Vendor Address
Order Terms

Purchage Order

—-— END Create Purchase Order Pracedurs

FIGURE 10-38 Optional Screen Processing on Action Diagram

consolidate (ref Open Rentals, Add Returr Date and
Check for Late Fees. Individually, each of these
processes is singular (i.e., does one thing). If they are
consolidated, they would remain singular but be
placed within the same repetition loop. The issue
here, then, is which method is easier to program and
implement in the intended language, and which pro-
vides the better user interfacc. We need to visual-
ize the user interface and memory processing for
each alternative,

If the modules are kept separate, all Open Rentals
are read first and displayed. Then the clerk can be

prompted for new videos or for returns. If we prompt
for returns every time, many wasted entries to deny
return processing will be made. If we prompt for
either new or return Video fDs, we need a method
of knowing which is entered. Assuming we figure
that cut, we then get all returns and enter today’s
date for returned videos. Then all entries on the
screen are scanned to delermine new late fees.

If the modules are consolidated, as each Open
Rental is read, Late Fees are computed for tapes with
return dates and no late fees (see Figure 10-50).
There are two options for this process. Either we

Information Engineering Design 435

ABC Video Company

Personnel/
Payroll

[Purchasing) [Flentalmeturn) [Aocounting) [

] |

R (- N
Get Gustomer ID - Create) [Create) H Quey)
Gel Yalid Customer

Get Valid Video —(_Delete) | Delte) ~{_EndotDay)
Get Return ID

Add Return Date _(Jpcate) -(odare) *—(End = Monlh)
Get Open Rentals m -(Tew')

Check Late Fees

Pracess Payment
& Make Change

reate Qpen Hznal
Update Open Rentai
Update/Create History

el

Print Receipt

FIGURE 10-3¢ ABC Video Process Hierarchy Diagram

assume there are no more returns or the clerk must
respond to each Open Rental. With the first option,
the clerk would have a selectable option for more
return processing. When chosen, each return Video
ID is entered and Lare Fees are computed for that
video.

Notice that both alternatives have problems. The
separation alternative has a problem in dealing with
returns, and there will be a slight delay for Lute Fee
processing. The consolidation option actually modi-
fies the processes from the PDFD somewhat for Lare
Fee processing.

Data storage for a rental in memory is the same
for both alternatives. We need a location for cus-
tomer information, a table for open rentals, a table
for new rentals, and locations for payment informa-
tion. We will have threc iterations through the table
for Open Rentals in the separate alternative, and one,
or two if returns are present, iteration(s) in the con-
solidated altemnative.

The alternatives are approximately the same in
implementation complexity, although three iterations
are more likely to contain bugs than one. The
hurnan interface design is the same for both alterna-

436 CHAPIER 10 Data-Oriented Design

Rent/Return

— Customer Maintenance

——Video Maintenance

—— Periodic Processing

FIGURE 10-40 ABC First-Level Action
Diagram

tives, The difference in the human interfaces is the
speed and timing for data to appear on the Open
Rentals lines. [n this case the conselidated alterna-
tive is slightly faster, The difference in memory pro-
cessing is the number of iterations through Open
Rental data. Again, the consolidated alternative is
preferred somewhat because it is less likely to con-
tain bugs. With no overwhelming evidence for or
against either alternative, this amounts 1o a judgment
call. We will choase the consolidated alternative 1o
minirnize the probability of errors and the number of
iteratiens through the data. The action diagram,
reflecting consclidated open rental processing, is in
Figure 10-50.

The next activity is reusability analysis. ABC
has no library of reusable meodules to consider
since it currently has no computer processing. The
types of modules the consuliants are likely to have
might be relevant to error processing or to screen
interactions. For our purposes. we assume no
reusable modules,

To assess module timing, we analyze the module
clusters. The only modules that could be concur-
rent are those in the last cluster 1o update files and
print a receipt. Before deciding concurrency, we
must decide the details of history processing that
were deferred from analysis. We have two types of
history files: Customer and Video. Customer His-

tory is a separate file that contains the Customer 1D
and all Video IDs rented by that customer. No counts,
dates, or copy information are anticipated. This de-
scription complies with the case requirements in
Chapter 2.

Video History contains Video ID, Copy ID, Year,
Month, Number of Rentals, and Days of Rental for
each entry. This data description also complies with
the case requirements in Chapter 2. The issue to be
decided is whether or not Video History is main-
tained during on-line processing, or if the current
month’s activity is kept with Copy information. If
the second alternative is chosen, we need a monthly
process to update the Video History and reinitialize
the counts in the Copy relation. If the first alternative
is chosen, we have two more alternatives, First, we
might need update and create processing because,
for any one copy. we would not know in advance
whether it has a historical entry or not. This alter-
native requires bug-prone processing that is more
complex than keeping counts in the current Copy
relation. Second, we could create an empty entry for
every tape at the beginning of every month. This
alternative is not aftractive because it generates
many empty records on history, Both of these alter-
natives would require history to be on-line. Keeping
carrent counts with Copy relations does not require
history to be on-line. The final argument for keep-
ing the counts in Copy information is that, to main-
tain status of a given tape, Copy information must be
updated wpon video return anyway. As long as the
tuple is being read, updating it with count informa-
tion requires adding lines of code rather than a new
module. From this discussion, it should be clear that
keeping current counts in the Copy relation is the
preferred alternative. We document this and the
other changes in the Data Dictionary.

Now we can discuss madule timing for the last
group of medules. In this group we create and/or up-
date Open Rentals, update Copy, and Print Receipt.
Recall from analysis that Vic does not want file
update success to be known to the customers. The
receipt should be printed regardless of updating suc-
¢ess. This implies that printing could be concurrent
with the file processes. The file updates cannot be
concurrent because they will all be on the same
device. Since there is already contention for the file

Information Engineering Design 437

Request

(GotRequest) r cust i

<

It Video 1D

Get Opan Rentals)
Until Mo If First | Customes
More Open
Rentals If Returns
! Open Rental
Video/Capy ID Get Return 1D

&

Gt Valid Video

Process Paymani
& Make Change

{ Get Valid Customer
i

Add Return Date

Until No
More
Returns

Until No
Mere Open
Rentals

Video, Copy
Until Ng
More Valid
Videos

(Create Ope’uqe"ta') (Update Open Rental) (Update/Create History) { Print Receipt)

Open Rental

C > Until No Until No
More New More Open
Rentals Rentals

Videc History

|Custamer History

FIGURE 10-41 ABC Video Process Dependency Diagram

among the users, it is unlikely that we would want
to increase contention by having the updates concur-
rent. If printing is the only concurrent process, it is
not warth the cost to provide concurrency. There-
fore, the processes will be made sequential for pro-
duction operation. Figure 10-50 is not changed at
this point.

The entities and data attributes are added to
the diagram next to show input and output process-
ing, Two entities, EOD and Rental Archive, are

still undefined, having been deferred in analy-
sis. These are left as an exercise. The entities refer-
enced in Rental/Return processing, Customer, Open
Rental, Video, Copy, Customer History, and EQD
are all shown in Figure 10-51. When an action dia-
gram arrow is from an entity to a process, it means
that the entire tuple is accessed. The final action is to
add screenms to the action diagram, but they are not
yet defined, so this activity will be left as a future
exercise.

438 CHAPTER 10 Dato-Orented Design

——— Rent’'Retum

Customer Maintenance

— Video Maintenance
Create Videc
Lipdate Video
Delete Video
Query Video

—— Periodic Pracessing

processing. Using simple bracket structures to trans-
late from the top to the bottom of the hierarchy, we
first define the options for the first level menu (see
Figure 10-33). Next, the menu options for the first
process level of the hierarchy are shown in Figure
10-54. Finally, the remaining detailed processes are
added to the diagram (see Figure 10-55).

If, for any reason, the hierarchy or lower-level
processes ate in doobt, review the proposed menu
structure with the users before proceeding. If the

FIGURE 10-42 ABC Video Maintenance
Second-Level Action Diagram

Define Menu Structure and
Dialogue Flow

Guidelines for Defining the Menu
Structure and Dialogue Flow

The interface structure includes design of a menu
structure and design of dialogue flow within the
menu structure. Both designs are based on the PDFD
and process hierarchy diagram developed during IE
analysis,

First, the menu structure is developed. Recall that
the menu structure is a structured diagram translat-
ing process alternatives into a hierarchy of options
for the automated application. The task hierarchy is
analyzed to define the individual processing screens
required to perform whole activities, and to identify
the other processes and activities in the hierarchy
which must be selected to get to the processing
screens.

Let’s walk through the development of the sam-
ple menu structure shown in Figure 10-7. The related
process hierarchy diagram is shown as Figure 10-52
with the individual processing screens, selection
alternatives, and hierarchy levels identified. For each
level in the hierarchy, we identify a level of menu

Rent/Relurn Procedure

Get Request
[IF Customer Phone
Get Valid Customer
— ELSE IF Video ID

Set O, IDType 1o Video

ol GOTO Open Rentals

— ENDIF

L END Rent/Retum Procedure

FIGURE 10-43 Request Processing Action
Diagram Constructs

Information Engineering Design 439

—— Reént/Return Procedure

[— Do While More Open Rentals tor this Customer

Get Open Rentals (using 10, IDType}

IF First
Set 1D, IDType to Customer
Get Valid Customer

ENDIF
— ENDDO

END Rent/Return Procedure

Rent/Return Procedure

IF Returns
DG Until no more returns
Get Return ID
Add Return Date
ENDDO

— ENDIF

| END Renb/Return Procedure

FIGURE 10-44 Open Rental Action Diagram
Constructs

process hierarchy diagram is accepted as correctly
mirroring the desired functions in the application,
proceed to the next step, defining the movements
between menu items.

Traditionally, applications were constrained to
moving top-to-bottom-to-top with no deviation.
Anyone who uses such an interface for long knows it
is irritating to wait for some menu that is vowanted
and to enter choices purely for system design rea-
sons. The decisions should relate to application
requirements as much as possible. For instance,
security access control requirements can be partially

FIGURE 10-45% Video Returns Action
Diagram Constructs

met by restricting movement to functions as part of
dialogue flow. The decisions about legal movement
should be made by the users based on recommenda-
tions by the designers; although frequently, dialogue
flow decisions are made by the SEs, In general, if the
users are functional experts, an open design that
allows free movement should be used. If users are
novices or not computer literate, a more restrictive
design should be used to minimize the amount of
their potential confusion,

Figure 10-56 shows types of arrows used to de-
pict movement between levels of a menu structure.

440 CHAPTER 10 Data-Oriented Design

Rent’Return Procadure

DO Until No more Open Rentals

Check for Late Foes

ENDDO

L END Rent‘Return Procadure

Rent/Return Frocedure

DO Until no more new videa rentals

Get Valid Video

ENDLO

... END Rent'‘Return Procedure

FIGURE 10-46 Late Fee Action Diagram
Constructs

In a small diagram, with less than ten screens, only
single-headed arrows are used, and at least two
arrows are drawn for each entry: one entering and
one leaving {Figure 10-56a). In a large diagram, with
over ten screens, the triple-headed arrows can be
added to the diagrams to depict call-return process-
ing (Figures 10-56b and 10-56¢).

An example of restricted screen movement that
might be designed for novice users is shown in Fig-
ure 10-57a. In the diagram, all movement is to or
from a menu. The diagram in Figure 10-57b shows
that any level of upper menu might be reached from

FIGURE 10-47
Constructs

New Renials Action Diagram

the lower levels. This speeds processing through
menus and is preferred to the design shown in Figure
10-57a which only allows a process to return to the
menu level from which it was activated. Restrictive
dialogue flow (Figure 10-57a) is the type of design
that is most likely to waste user time and become
annoying,

Experts and frequent users usually are provided
more alternatives for interscreen movement because
they become proficient with the application. Unre-
stricted screen movement is desirable for these users.
An example of unrestricted movement in screen

Ren¥'Return Procedure

Process Paymeant and Make Change

[~ DO Urtil all Rentals in memery are processed
[~ IF Relurn Date = Today's Date

Update History

— ELSE IF Return-Date NOT = spaces
Updata Open Rental

— ELSE IF Return-Dale = spaces

Create Open Rental

| ENDIF
= Enppo

|IF Payment > zero or Receipt Requested

Print Receipt

L ENDIF

END Rent’'Retum Procedure

Information Engineering Design 4141

control structure that must accompany an open
movemeni design. The added errors are from a need
lo provide a specific location on the screen for
entry of the expert’s direct screen requests. Each
request must be checked for access control and
legality, plus the current context (i.e., screen and
memoty information) might need to be saved for
return processing.

FIGURE 10-48 Payments, File Update and
Printing Action Diagram Constructs

design is shown in Figure 10-57¢. In the example,
the user begins at the main menu and may move
down the hierarchy in the same manner as a novice,
or may move directly to a process screen, at the
user’s option, Unresiricted movement requires the
design and implementation of a command language
or sophisticated menu selection structure that is con-
sistent with the basic novice menu selections, but
adds the expert mode.

Unrestricted movement can be costly and errot-
prone, which are the main reasons why it is not
prevalent. The added cost is due to increased access

Rent'Return Procedure
Get Heguest
[~ IF Gustomear Phonge

Get Valid Customer
— ELSE IF Videc IO
Set D, IDType to Video
e GOTO Open Rentals
- ENDIF

[0O Until NO Mare Open Rentals for this Custemar
Get Open Rendals {using ID, IDType)
IF First
Set LD, IDType to Customer
Get Valid Customer
ENDIF
__ ENCDO

[IF Returns

DO Until no more retums
Get Return ID
Add Return Date

ENCDO

— ENDIF

[DO Lintil No more Open Renlals

Check for Late Fees
[ENDDCQ

[DO Until na more new videa rentals
Get Valid Video

[~ ENDDC

Process Payment and Make Change

[— DO Until ail Ranals in memory are processad

IF Return Date = Today's Date
Updale History

ELSE IF Relurn-Date NOT = spaces
Updats Open Rental

ELSE IF Return-Date = spaces
Create Open Rental

ENDIF

C ENDDO

[~ IF Payment » zero or Receipt Requested

Print Receipt

L ENDIF

L—— END Rent'Refum Procedure

FIGURE 10-49
Diagram

ABC Consolidated Action

442 CHAPTER 10 Data-Oriented Design

Rent/Return Frocedure
Get Requsest

[IF Customer ID

Get Vaiid Custemer

— ELSE IF Videc ID

Set ID, IDType to Video
- GOTO Cpen Aentals
L ENDIF

[_ DO Until NO More Open Rentals for this Customer

Get Open Rantals {using !D, IDType)

IF First
Sel ID, IDType to Gustomer
Gel Valid Customer

ENCIF

IF Returned
[Get Return 1D
Add Return Date
ENDIF
Check for Late Fees

[ENDDO

[— DO Until no more new video rentals
Get Valid Video

[ENDDO

Process Paymant and Make Change
[C 2O Until all Rentals in memory are processed
IF Return Date = Today's Date
Update History
ELSE IF Retum-Date NOT = spaces
Update Open Rentat
ELSE IF Asturn-Date = spaces
Create Open Rental
ENDIF
[ENDDO

[~ IF Payment > zero or Recaipt Requested
Print Regceipt
L ENDiF

END Rent/Return Procedure

FIGURE 10-60 ABC Action Diagram with
Consolidated Open Rental Processing

Upon completion, the menu structure and dia-
logue flow diagrams arc given to the human inter-
face designers to usc in developing the screen
interface (see Chapter 14), The dialoguc flow dia-
gram is also uscd by designers in developing pro-
gram specifications. Before we move on, note that
even though the menu structure is identified, the
human interface may or may oot be structured
exactly as defined in the menu structure diagram.
The human interface designers use the menu struc-

ture information to understand the dependencies and
relationships between business functions, entities,
and processes; they may alter the structure to fit the
actual human inlerface technique used. If 4 tradi-
tional menu interface is designed, it could follow
the menu structure diagram.

ABC Video Example Menu Structure and
Dialogue Flow

The menu structure is derived from the process
hierarchy diagram in Figure 10-58 (reprint of Figure
9-28a). First, the activities from the decomposition
form the main menu options (see Figure 10-59). The
processes are used o develop submenu options.
Then, the lowest level of processing completes the
simple structure (Figure 10-60).

Notice that all Rent/Return processing is ex-
pressed in the first menu option cven though we have
many subprocesses in the hierarchy. Rental/return
has many subprocesses performed as part of the
hierarchy diagram. Unlike the other subprocesses,
rental/retnrn does net have individuat menus and
screens tor cach subprocess. Rather, rental/return
requires a complex, multifunction sereen with data
from several relations and processing that varies by
portion of the screen. The subprocesses for rental/
return, then, describe actions on portions of the
screen. You cannot tell from the decomposition dia-
gram that rental/retarn has this requirement; rather,
you know from application requircments (and cxpe-
rience) what type of screen(s) are needed. An incor-
rect rendering of the menu structure, such as the one
in Figure 10-61, would look weird and should make
you feel uncomfortable about its correctness.

Sccond, netice that we do not indicate acecess
rights for any of the processing options on the dia-
gram. The securily access definition is superimposed
on the menu structure by the interface designers to
double-check the design thinking of the process
designers. If there is an inconsistency, the two
groups reconcile the problems.

Next we develop a dialogue flow dizggram from
the menu structure diagram. The rows of the dia-
logue flow diagram cerrespond to the entries in the
menu structure (Figure 10-62). Rows are entered by
level of the hierarchy by convention.

Information Engineering Design 443

Rent/Relurn Procedure

Get Requast Custormat
|IF Customer Phone
Get Valid Customer usl Prone
Name
ELSE IF Video ID Addrass
Set ID, iDType to Vidso redit Status
GOTO Cpen Renfals
__ENDIF
— DO Untii NO More Open Rentals for this Custamar| Open Rentals
open |y,
(Get Open Rentals (using ID, {DType)}#— Rental g'g:;
IF First Customer
Set D, IDType to Customer ”51 ID
(Get Valid Customer)
NI Address
redit Status
IF Returned
Add Return Date
ENDIF
Check for Late Fees
T enpDO
[DO Until no more new videa rentals __ Video
Get Valid Videq Copy
[ENDDO
(Process Payment and Make Change }———————— EOD
[DO Until all Rentals in memory are processed — Cust History
Number Days Open Rental
IF_ Beturn Date = Today's Date|{ numbear Renls pt
Cust History Py
ELSE IF Return-Date NO 5
m‘p-ate Open Hertal) Gopy
Refurn-Uats = spaces Stalus
ENDIF Open
ENDDO Rental

[~ IF Payment » zero or Receipt Requested
|
L ERNDIF !

END Rent/Return Procedure

FIGURE 10-51

We need to decide how much flexibility to give
users, keeping in mind the security access require-
ments and the nusers’ computer and functional skills.
Users are mostly novices with little computer expe-
rience. The average job tenure is less than six
months. Data and function access for clerks are
unrestricted for customer, video, and open rentals
add, change, and retrieve functions. Other options
are more restricled in terms of which user class can
perform each funciion.

ABC Action Diagram with Data Entities and Attributes

First we define the options. We could define fiex-
ible movement between those options only, and
restrict moverment to other options through the hier-
archy. Top-down hierarchic access is possible. We
could allow hierarchic access combined with flexible
‘expert’ mode movement throughout the hierarchy,
constrained by access restrictions.

For each option, ask the following ques-
tions. Does Vic have a preference? Which best
fits the user profile? Which is the cleanest

444 CHAPTER 10 Data-Oriented Design

Speciat Praducts Div.

Cust. Service

Order Fulfiliment

nventory Allocation

Cuslomer Maintenance

Sales

v}

B1006580

Customer Maintenance

Karketing

Qfuery}

OCrder Fulfilment Orders

- O Mg, Plan
Inventory Inguiry

Prospect Maintenance

G Cuslomar

Q Prospects

FIGURE 10-52 Example of Process Hierarchy Diagram

implementation, least likely to cause testing and user
problems?

Vic, in this case, has no preference. Having never
used computers, he has no background that allows
him (o muke a decision. He says, “Do whatever is
best for us. lct that up to you, But I would like to
see whatever you decide before it is [inal.” This
statement implies interface prototyping, which
should always bc donc to allow users to see the
screens while they are easily changed.

Most of Vic's employees work there for 14 years
and have little or no computer experience. There-
fore, screen processing that is least confusing to new
users should be preferred. Usually, novices prefer
higrarchic menus, providing the number of levels
do not become a sowrce of confusion, Alse, the sim-
plest implementation is always preferred; that is, the
hierarchic menu option,

Based on the answers to the questions, we should
design a restrictive, hierarchic ftow, As Figure 10-63

1. Customer Service

Main
Menu

2. Sales

3. Marketing

FGURE 10-53 First-Level Menu Structure

shows, this design is simple and easy to understand.
The dialogue flow and screens should be prototyped
and reviewed with Vic at the earliest possible time
to check that he does not want an expert mode of
operation.

You might question whether the movement from
rent/retumn to customer add and video add should be
on the dialogue flow diagram. This is a reasonable
concern since the process of rent/return does allow
adding of both customers and videos within its
process. The issue is resolved by local custom, In
general, given the option, such flexibility shouid be
shown on the diagram for clanty and completeness,
Sometimes, local convention or a specific CASE tool
requirement do not allow such completeness,

information Engineering Design 445

Plan Hardware and Software
Installation and Testing

Guidelines for Hardware/Software
Installation Plan

The guidelines for hardware and software installa-
tion planning are developed from practice and iden-
tify what work is required, environmental planning
issues, responsibility for the work, timing of materi-
als and labor, and scheduling of tasks.

Installation requirements should always be de-
fired as far in advance of the needs as possible and
documented in a hardware installation plan. In-
stallation planning tasks are:

1. Define required work

Define hardware/software/network
configuration

Assess physical environment needs
Identify all iterns to be obtained
Order all equipment, software, and services
Define installation and testing tasks

2, Assign respensibility for each task

3, Create a schedule of work

If the SE team has no experience with configuring
installations, their work definition should always be
checked by someone who has experience. In general,

Main
Menu

S R

o

Customer Sarvice

1
2
3

. Orger Fulfillmem
. Invertory Allocalion
. Custemer Maintenancs

Sales

1

. Query Customers

. Order Fulfillment
2.
a
4.

Inyentary inguiry
Customer Maintenance
Prospect Mainlenance

. Marketing
. Query Ordsr

Query Manufacturing Plans

. Query Goeds in Procass

Query Inventary

FIGURE 10-524 Second-Level Menu Structure

446 CHAPTER 10 Data-Oriented Design

—— 1. Gustomer Service

1. Order Fulfiilment
_ 1. Create Order
2. Change Order
3. Delele Drder
4. Order Inquiry

2. Inventory Allecation
[— 1. Creata Allocation
2. Change Allocation

3. Calete Allogation

| 4. Allocation Inquiry

3. Customer Maintenance
. Create Customer

. Change Custemer

. Dalete Customer

. Customer Inquiry

LN =

—— 2. Sales

1. Qrder Fulfidment
r— 1. Grder Create
2. Order Change
3. Order Delete
— 4, Order inquiry

Main
Menu

|: 2. Inventory inguiry

3. Customer Maintenance
— 1. Create Customer
2. Change Cusicmer
3. Delete Customer
—— 4. Customer Inquiry

4. Prospect Mainlenance
— 1. Creata Frospsct
2. Change Prospsct
3. Deilete Prospect
. 4. Prospect Inquiry

—— 3. Marketing

[1. Query Order

2. Query Manufacturing Plans
2. Query Goods in Process
4.
a.

Query Customers
Query Prospects

FIGURE 10-55 Final Menu Structurce

you define the complete hardware, software, and net-
work configuration needed, match the application
configuration requirements to the current installa-
tion, get approval for all incremental expenditures,
order all equipment and software, and install and test
all equipment and software. Tn & mainflrame caviron-
ment, this task is simplified because the first step,
configuration definition, can be abbrevialed and
done with help from an operations support group.

The operations support group also would install and
test hardware and install software.

When the configuration is defined, it is matched
to the current installation to determine what ilems
need to be purchased. In new installations, the phys-
ical installation environment is as important as the
equipment. Building, cooling, heating, humidity
control, ventilation, electrical cable, and communi-
cations cabie needs should all be assessed. If yon
have no experience performing these analyses, hire
someone who does. Do not guess. You only do the
client a disservice, and chances of making a costly
mistake are high.

Once needed items are identified, they should be
ordered with delivery dates requested on the orders.
The delivery dates should conform to the expected
instailation schedule which is discussed below. The
goal is to have all equipment and parts when they are
needed and not before. For capital expenditures, this
delays the cxpense until it is nceded. Planning for
large capital expenditures should be done with the
client and accountant to stagger charges that might
be a financial burden.

As items to be installed are identified and or-
dered, responsibility for installation and testing
should be identified. The alternatives for who should
do hardware and software installation are varied.
Choices include consultants, unions, contractors,
subcontractors, or current personnel. In many cases,
there are three types of installations being made:
software, hardware, and the network, and each has
its own installation responsibility.

Sofrware should be installed by system program-
mers in an operations support group in a mainframe
installation, and by the software builders for a PC
installation. Contracts, whether formal or informal,
should state what work is to be done, timing of work,
penalties for failure to meet the time requirements,
and price. Other items such as number of hours and
dates of access to the site might also be included.

Hardware, in 2 mainframe environment, is man-
aged, ordered, and installed through an operations
department, You, as an SE needing equipmeni, must
know what you need, but must trust the operations
department to obtain, install, and test the equipment.
Most PC computer equipment is simplified enough
that special assislance is nol usually required. If

Information Engineering Design A47

Row = Screen
Column = Movement

o a. Screan movamnen o directed arrow screan.

or b. Screen movement to ong of several possible screens.

¢. Movement is down the arrow with retum to calling screen.

o Movement is down the arrow with further selection
al called screen, no necessary return.

FIGURE 10-5¢ Dialogue Flow Movement Alternatives

MainMenuw — . _ _ _ _ _ _ _ _ _ _ _ _ _ e = =

Customer Service _3_ & mm ==

Marketing — _ _ _ _ _ _|—o|—- — — _ 1 1 — — — - —
Order Fulfilment _ _ _ _ _¥_¥_ _ _ _ 1 { _ _ _ _ _
CreateOrder _ _ _ _ _ _ _ 3 _______
ChangeOrder _ _ _ _ _ . - - ¥ 1 .| _ . — — — _ —
DeletleOrder _ _ — — - — — = = X | = = — - — — =

Orderlnquiry . _ _ _ _ _ _ _ _ _ X _ . - - - - —

FIGURE 10-57a Example of Restrictive Screen Movement

448

CHAPTER 10 Data-Oriented Design

Main Mernu . _

Gustomer Service J _

FIGURE 10-57b Example of Less Restrictive Screen Movement

desired, you can wsvally negotiate with a hardware
vendor to hurn-in equipment and set it up for a small
fee. Burn-in means to configure the hardware and
run it for some peried of time, usually 24-72 hours.
If there are faulty chips in the machine, 90% of the
time they fail during the burn-in period.

Al least two terminals or PCs should be config-
ured during installation of network cable for testing
the cable. For LAN installation, kire a consuitant if
yoi' ve never done this before. The consultant helps
you

define what is to be done

» define required equipment {(e.g., cabling, con-
nectors, etc.)

w get permits from the government and building
OWRErs

s obtain zoning variances

» identify and hire subcontractors

s supervise and guarantee the work.

As the user’s representative, you can prepare the
installation for the work to be done. Mark walls

Main Menu _ _
Customer Service
Sales _ _ — —
Marketing - _ _
Ordet Fulfillment — _
Creale Crder_ _ _
Change Order _ _ _

Delete Crrder

Order Inquiry — _ _

FIGURE 10-57¢ Example of Less Restrictive Screen Movement

Information Engineering Design 449

ABC Video Company

EPurchasingj (RenlaUFleturnJ (Accounting j (P%;zﬁrr:;f”)

[Customer] Video Perindic
RenvRetrn Maintenance [Mainlenance) (Prooessing)

Get Customer D
H_ Create)

Get Valid Custorner
Get Valid Video
Get Retum 1D
Add Return Date

Get Open Rentals

—{ Query)

Check Late Fees

Process Payment
& Make Change

Create Open Rental
Update Open Hental

Update/Create History

Print Receipt

i

| |

Query)}

—(Create)
—H Delete }

End of Day)

End of Month

FIGURE 10-58 ABC Process Hierarchy

1. RentalRetum

2. Customer Maintenance
Main Menu

3. Video Maintanance

4. Other

FIGURE 10-5¢ ABC First-Level Menu
Hierarchy

where all wires should be, using colored dots. Fer
instance, you can use blue dots for phone lines, red
dots for I.AN cable, and green dots for electrical
outlets. Number all outlets for identification of wircs
at the server end, Colored tape shows where cable
runs should be placed in falsc ceilings and walls,
Configure one PC, with the network operating sys-
tem installed, in the location of the file server. As
cabling is complete, move the sccond PC {o each
wired location, starl-up the network, and send mes-
sages. Make sure the location is as expected and that

450 CHAPTER 10 Data-Criented Design

. Rent/Return Processing

—— 2. Customer Maintenance
— 1. Greals Gustome:
2. Change Customer
3. Delete Customer
4. Custorner Inguiry

3. Video Mantenance
1. Creale Video
2. Change Video
3. Delete Video
4. Video Inguiry

—— 4. Other
— i. End of Day
2. Startup
3. Shutdown
4. End of Manth
[t. Update Custorner History
2. Update Video History
5. Query

sible date for equipment and software availability is
the beginning of project work.

Cabling is necded before equipment. Equipment
is needed before software. Software is needed before
applicalion use. Some minimal slack time should be
left as a cushion between dates in case there is a
problem with the installation or the item being
installed. Leave as big 4 cushion between installation
and usage as possible, with the major constraint
being payment strains on a small company.

ABC Video Example Hardware/Software
Installation Plan
For ABC, a local area network is to bc usced. A

file server with one laser printer, three impact print-
ers, and five PCs are planned. The LAN will be a

FIGURE 10-60 ABC Menu Structure

the wiring works. Test all wites because they will be
wrong. Make sure all wiring is correct before the
electrical contractor is paid and leaves.

The important issue is fo make a choice of who
will do what work long before the work is needed,
and plan for what is to be done. Use a lawyer to write
all contracts using information provided by you, as
the client’s representative, and the client,

Timing of installations can be crucial to imple-
mentation success. When different types of work are
needed, such as air-conditioning and electrical
cabling, the work should be sequenced so the con-
tractors are not in each other’s way, and in order of
need. For instance, a typical sequence might be
building frame, building shell, false floor/ceiling
framing, electrical wiring, plumbing, air-condition-
ing, communications cabling, false floor/ceiling fin-
ishing, finishing walls, painting, and decorating. Any
sequences of work should be checked with the peo-
ple actually performing the work to guarantee that
they agree to the work and schedule.

In general, you want to end testing of all equip-
ment to be available for the beginning of design a¢
the fatest. This implies that all previous analysis
work is manual. If CASE is to be used, the latest pos-

1. Rertal’Return

— 1. Get Request
. Get Valid Cuslomer
. Get Open Renlal
. Get Return ID
. Add Retum Date
Check Late Feas
. Get Valid Video
. Process Payment and Make
Change
9. Create Open Rental
10. Update Open Rental
11. Create/Update Customer History
12. Update ltem
| 13. Print Receipt

bl Rt R

2. Customer Maimenance
— 1. Greate Customer
2. Retrieve Customer
3. Update Customer
| 4. Delete Gustomner

Main
Meny™ |

3. Video Maintenance
1. Create Video

2. Rstrieve Video
3. Updats Videa
4. Delete Video

4. Other
[1. End of Day
2. Slartup
3. Shutdown
4. End of Month
5. Query

FIGURE 10-61
Structure

Incorrect Rental/Return Menu

Information Engineering Design 451

Rent'Return Processing

Customer Maintenance
Create Customer
Change Custormer
Delate Customer
Customer Inquiry

Video Maintenance
Creale Video
Change Video
Cslste Video
Widso Inquiry

Other

End of Day

Startup

Shutdown

End of Month
Update Customer History
Update Video History

Query

FIGURE 10-62 ABC Dialogue Flow Diagram Menu Structure Entries

Mair Menu-ABC R/R
Rent/Return Processing] WY

Customer Maintenance ’_‘_*__i

Create Customer ¥ t‘ 4
Change Customer E i b &
Delete Customer L &
Custemer Inquiry A

Video Maimenance k.
Create Video ¥ YY)
Change Videa L &

b

Delete Video

Video Inguiry Yy LA F)

Other ¥
End of Day [)
Startup I [
Shutdown [
End of Month F

Update Customer History
Update Video History 4
Query 4

o

Unrestricted access within a function (subject to access rights} except for
‘other’ processes. All ‘other’ processes are invoked from and returmed to
the menw.

FIGURE 10-63 ABC Dialogue Flow Diagram

452 CHAPTER 10 Data-Oriented Design

Novell ethernet with SQL-compatible DBMS soft-
ware, Carbon Copy, Word Perfect, Lotus, Norton
Utilities, Fastback, and Symantek Virus sofiware.
The goal is for all hardware to last at lcast five years
if no other business functions are added to the sys-
tem. The configuration details are shown in Figures
10-64 and 10-65. There should be adequate capac-
ity to add accounting and order processing software
if needed. The current average daily rentals of 600
is cxpected to double in five years. The current num-
ber of customers is 430, and is expecied 1o be 1,600
in five years.

To develop a plan, assume that the current date is
Ianuary 1, and that the application installation is
scheduled for August 1. Design has just begun. The
PCs and laser printer were installed five months ago

for availability during planning, feasibility, and

analysis. The currently installed software includes a
CASE tool on twa machines, Word Perfect, Norton
Utilitics, Fastback, the SQL DBMS, and SAM Virus
software. The remainder of the software and hard-

ware must be ordered, installed, and tested as part
of this plan.

First we determine what we need. A compari-
son of currently installed items to the list of re-
quired items shows the following items need to
be planned:

Network cable and connecters

File Server

Novell Software

Network Interface Cards (NICs, i.e., ethernet
boards)

[mpact printers

Bar Code Reader and Imprinter

Carbon Copy (network version)

Word Perfect (network version)

Norton Utilities (network version)

Fastback

SQL DBMS {network version)

SAM (network version)

Lotus (network version})

PC —

|
Bar Code m
Reader g
E)
o
| E— g
Impact ”

PC —

Bar Code
Readsr

=

| —
impact

i8

Bar Code
Reader

Filg Server

]
Laser

% Tape Backup

FIGURE 10-64 ABC Configuration Schematic

Autemated Tool Support for Data-Oriented Design

Hardware Characteristics:

12 Mb Memary

800 Mb Disk

Super 486, SCS| Channel
Color menitor

File server

1 Laser printer 8 Page/Minute

3 Impact printers for two-pan forms (or 4 cheap |asers
with tear-apart forms)

5PCs 2 Mb Mermory
1.4 b Floppy disk for startup
Mo hard disk

Local printer (see above)
1 2400 Baud Modem for long distance troubleshooting

1 Streaming tape backup 100 Mb/Minute

FIGURE 10-65
Details

ABC Hardwarc and Software

Everything should be ordered as soon as possi-
ble to ensure availability, Equipment and software
ordering is the first ilem on the plan.

The group has installed network software befare,
but not the cable, so thev obtain approval from Vic
lo engage another consultant, Max Levire, from
their company to perform that work, Max has been
installing mainframe and PC networks for over
20 years and knows everything about their installa-
tions and problems. He immediately takes over the
network planning tasks. He first obfains a rough idea
of the planned locations for equipment, computes
cable requircments, and orders cable and connectors.
Then, for the plan, he adds tasks for mapping spe-
cific cable locations for the installers, for installing
and testing the file server, and for installing and test-
ing the cable (see Table 10-6).

At the same time, Mary and Sam work at plan-
ning the remaining tasks. Each software package
must be installed and tested. These lasks are planned
for Sam and one junior person. The tests for all but
the SOL package ate to use the (ool and verify that
it works. For the SOL package, Sam and a DBA will
install a small, multiuser application to test that the
single and multinser functions are working as
expected. Of all the software being used, it is the

453

one with which they arc least familiar, so they
use the installation test as a means of gaining more
exprrience.

All tasks relating g0 new equipment and software
are scheduled to take place during a six-week
period in Janvary and February. This allows several
months of cushion for any problems to be resolved;
it also allows disruptive installations {e.g., cable) to
be scheduled around peek hours and days. The
schedule does not show elapsed time, but other work
is taking place beside the installations. For instance,
design work is progressing at the same time. As the
application is implemented and the users have need
for the equipment, the PCs and printers are moved to
their permanent locations. This occurs in late spring
for data conversion. The last stand-alone PCs are
scheduled to be added to the network in late July,
long betore the application implemeniation date of
Angust 15,

AUTOMATED ToOL
SUPPORT FOR DATA-
ORIENTED DESIGN

Many CASE tools support aspects of data oriented
design (sce Table 10-7). Two specifically support IE
as discussed in this chapter. The IE CASLE tools are
Information Engineering Workbench* (IEW) by
Knowledgeware, Inc., and Information Engincering
Facility (IEF) by Texas Instruments, lnc. Both prod-
ucts receive high marks of approval and satisfaction
from the user communitics. Becausc of their cost,
both products are used by mostly large companies.
The products offer enterprise analysis in addition to
application analysis, design, and construction (i.e.,
coding). Both TEF and IEW work on PCs, networks,
and mainframes.

A typical IEF installation could include a main-
framc version with the centralized repository. Users
check cut portions of a repository to work with on a
PC. Then, when the work is complete and checked
om the PC, it is merged with the mainframe repuosi-

4 JEW for a O8/2 environment 1s called the Advanced Develop-
ment Workbench (ADW).

454 CHAPTER 10 Data-Orented Design

TABLE 10-6 Installation Plan Items

Due Date Responsible frem

110 Mary/Sam Order equipment and software

1110 Mary/Sam Order cable and connectars

115 ML Plan cable, printer, PC, server locations

241 ML Install and test file server and one PC

21 Sam, Jr. Pgmr, Install and test impact printers

211 Sam, J1. Pgmr, Install and test bar code reader and printer

2/5 Sam, Ir. Pgmr, Install and test Carbon Copy (network version)

2/5 Sam, Jr. Pgmr. Install and test Word Perfect (network version?)

245 Sam, Jr. Pgmr. Tnstall and test Norton Utilities (network version)

2/5 Sam, Jr. Pgmr. Install and test Fastback

245 Sam, Jr. Pgmr. Install and test Lotus {network version}

2/5 Sam, Ir. Pgmr, Install and test $AM (network version)

245 DBA, Sam Install and test SQL DBMS (network version)}

2/10 ML, Union Contractor Install and test cable

2/15 DBA, Sam Install test application and verify SQL DBMS

5/15 Sam, Vic's LAN Move 2 PCs, bar code reader, and 3 printers to permanent
Administrator locations and test

7130 LAN Administrator Move remaining three PCs to permanent locations and test

8130 Mary, Sam Remove CASE tools from PCs, remove single user soft-

ware from PCs and file server

tory for official storage. When the merge takes place,
the checked-out items are revalidated for consis-
tency with all mainframe repository definitiens. Both
products offer antomatic SQL schema generation for
data. [EF offers automatic code generation for Cobol
with imbedded SQL, and can interface to generators
for other languages.

IEW and IEF differ in important ways. [EW is
more flexible in that it does not require the com-
pletion of any matrices or diagrams. However, io
take advantage of the interdiagram evaluation
software that assesses completeness and syn-
tactic consistency, all matrices and diagrams are
required during a given phase. This means that
you might not have the diagrams or analyses from

planning, but you still can create levels of ERDs
within the analysis tool. Similarly, you might not
have the analysis tool, so action diagrams can be cre-
ated directly within the design tool. IEF’s strength
is that its rigorous adherence to Information Engi-
neering has led to substantive intelligence checking
within the software. Both tools easily manage and
sort large matrices that result from several of the
analyses.

The weakness of the tools differs for each tool.
[EW is primarily a PC-based product that can be
unstable when used for large projects. IEW also pro-
vides DFDs, not PDFDs, and is not a pure data
methodology tool. A strength of IEW is that Knowl-
edgeware was an [BM partner in its repository defi-

Automated Tool Suppott for Data-Criented Design

nition; as a result, TEW is compatible with AD-cy-
cle software from IBM.

IEF’s strength is also its biggest weakness. IEF
requires completion of every table, matrix, and dia-
gram at this time.® The level of intelligem checking
that can be performed is higher than with most other

5 1993

455

CASE products, but the requirement to complete
every table, and so on does not make sense for all
projects, TI has recognized the severity of this short-
coming and is increasing the flexibility of the prod-
uct without compromising its capabilities. The
mainframe version of 1IEF uscs DB/2 for repository
management and can generate C, Cobol, DB/2, SQL,
and other languages’ codes.

TABLE 10-7 Automated Tool Support for Data-Oriented Methodologies

Product Company Technique
Analyst/Designer Toolkit Yourdon, Inc. Entity-Relationship Diagram
New York, NY (ERD)
Bachman Bachman Info Systems Bachman ERD}
Cambridge, MA Bachman IDMS Schema
Bachman DB2 Relational
Schema and Physical
Diagram
CorVision Cortex Com. Action Diagram
Waltham, MA Dataview
ERD
Menu Designer
Deft Deft ERD
Ontarnio, Canada Form/Report Painters
Jackson Structured Pesign
{(JSD)—Initial Model
Design/1 Arthur Andersen, Inc. ERD
Chicago, IL
ER-Designer Chen & Assoc. ERD

Baton Rouge, LA

IEF
Dallas, TX

Texas Instruments

Normalization
Schema generation

Action Diagram

Code Generation

Drata Structure Diagram
Dialog Flow Diagram
Entity Hierarchy

ERD

Process Data Flow Diagram
Process Hierarchy

Screen Painter

{Continued on next page)

456 CHAPTER 10 Data-Criented Design

TABLE 10-7 Automated Tool Support for Data-Oriented Methodologies (Continued)

Product Company

Technique

IEW, ADW (PS/2 Version) Knowledgeware

Atlanta, GA

LBMS
Houston, TX

Systemn Engineer

CADRE Tech. Inc.
Providence, RI

Teamwork

vs Designer
Santa Clara, CA

Visual Software [nc.

Action diagram
Code generation
Database diagram
ERD
Normalization
Schema Generation
Screen layout

ERD

DFD

Menu Dialog

Transaction Dizlog

Entity Lile History

Module Sequence

DB2, ADABAS, IDMS, Oracle
Table Diagram

Control Flow

Code Generation

ERD

Process Activation table
Program Design Tools
Testing Softwarc

Process flow diagram
Action Diagram

SUMMARY

Data-oriented methods assumc that, since data are
stable and processes are not, data should be the main
focus of activities. First, design focuses on the
usage of data to develop a strategy for distributing or
centralizing applications. Several matrices summa-
rize process responsibility, data usage, type of data
used, transaction volumes, and subjeclive rcasons
for centralizing or distributing data.

Next, processes from a process hierarchy diagram
are restructured into action diagrams in design. The
details of process interrelationships are identified
from the PDFD and placed on the action diagram.
Each process is fully defined either in a diagram or in
the data dictionary. Process details arc grouped into
modules and compared to existing modules to
determine medule reusability. Modules are analyzed
from a different perspective to reflect concurrency

opportunities or requirements on the action diagram.
Entities are added to the diagram and related to
processes. Lines connect individual processes to
attributes to complete the action diagram specifica-
tion of each application module. For manually drawn
diagrams, an optional activity is to identify screens
and link them to attributes and processes, to give
a complete pictorial representation of the on-line
portion of the application.

Data-oriented design focuses on the needs for se-
curity, recovery, and audit controls, relating each
topic to the data and processes in the application.

The menu structure and dialogue flow for the
application are defined next. The menu structure is
constructed from the process hierarchy diagram to
link activities, processes, and subprocesses for menu
design. The structure can be used to facilitate inter-
face designers’ application understanding. The
dialogue flow documents the flexibility or restric-

tiveness of the interface by defining the allowable
movements from each menu level (from the menu
structure) to other levels of menus and processing.

Finally, installation plans for all hardware and
software are developed. A list of tasks is defined,
responsibilities are assigned, and due dates are allo-
cated to the tasks.

There are two fully functional CASE tools that
support data-oriented methodology as discussed in
this chapter, IEW and [EE. They are popuiar in com-
panies that use data-oriented methods.

REFERENCES

Date, C. 1., An Introduction 1o Database Systems, Vol. 1,
5th edition. Reading, MA: Addison-Wesley, 1990.
Finkelstein, Clive, An fatroduction to Information Engi-
neering: From Strategic Planning 1o Information

Systems. Reading, MA: Addison-Wesley, 1989,

Knowledgeware, Inc., Informartion Engineering Work-
bench™iAnalysis Workstation, ESP Relegse 4.0,
Atlanta, GA: Knowledgeware, Inc,, 1987,

Loucopoulos, Pericles, and Roberto Zicar, Conceptual
Modeling, Databases and CASE. An Integrated View
of IS Developmen:. NY: John Wiley & Sons, 1992,

Martin, James, fnformation Engineering, Vol. 3: Design
and Construction. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1990,

Martin, James, and Carma McClure, Diagramming Tech-
nigues for Analysis and Programmers. Englewood
Clitfs, NJ: Prentice-Hall, Inc., 1983.

Texas Instruments, A Guide to Information Engineering
Using the IEF. Dallas, TX: Texas Instruments, 1988,

KEY TERMS

action diagram
application security
audit control

data distribution by
location matrix
data security

backup data usage by location
bum-in matrix

candidate for template denormalization

code generator dependent concurrent
computer verification processes
congurrent processes dialogue flow diagram
condition bracket Dp/De>N-1

control point Dg < ND

controlled redundancy federation

Study Questions 457
full backup recovery
hardware installation plan recovery procedures
horizontal data partitioning repetition bracket

incremental backup
independent concurrent

menu structure
normalization

off-site storage
physical security
procedural template
processflocation matrix

EXERCISES
1.

STUDY QUESTIONS

replication

secunty plan

selection bracket
sequence bracket

sight verification

subset partitioning
structural relationships
transaction volume matrix
vertical partitioning

ProCesses

Analyze Figures 10-8 to 10-11 and Table 10-1.
Develop and present a recommendation for cen-
tralization or distribution. Define all recom-
mended data and software locations. Explain
your reasoning for each choice.

. Complete the action diagram fer miscellaneous

processing. Define the contents of the EGD File,
Go visit a local small business such as a video
store, restaurant, or supermarket. Assess their
security and physical layout. Develop a list of
recommendations you would make if installing
a computer system for this company. Present
vour findings 10 the class and the reasons for
your recommendations.

1. Define the following terms:
action diagram repetition bracket

code generator replication

control point security

controlled transaction volume
redundancy matrix

reCovery vertical data partitioning

2. What are structured programming tenets and
why are they important in [E design?

3. What is the purpose of an action diagram?

4. Discuss this assertion: “Normalization to the
third normal form and higher is always desir-
able for a physical database.”

458

10,

11,

12.

15.

16,
17,

18.

CHAPTER 10 Data-Oriented Design

. Define the four types of database distribution.
. Describc how security, recovery, and audit con-

trols complement each other.

. There are six types of disasters considered in

recovery planning. What are they and what
data/application problems do they cause?

. What arc common metheds of securing data

against unwanted access?

. What is the purpose of off-site storage? How

off-site should off-site storage be?

Whal are the trade-offs in securily and recov-
ery design? Why not build & fortress to secure
everything?

Discuss the differences between full and incre-
mental backup.

What fcatures of computers make audit con-
trols difficult?

Ilow is a menu structure diagram constructed?
What is its purpose?

. How can dialogue flow diagrams be used 1o

partially provide for access control?

What are the structural relationships on an
action diagram? Where do they come from?
List the steps in developing an action diagram.
For what types of applications does concur-
rency analysis become important?

What is reusability analysis? Why is it
important?

19.

20,

21

22,

1,

Why, when developing an action diagram,
must the processes sometimes change from
what is on the PDFD?

Describe the matrices and formulae used 10
determine ceniralization or distribution of data.
In the absence of subjective reasoning, would
the matrices and formulae lead to a rational
decision? Why or why not?

Why is an installation plan important? How
can installation be used as a teaching exercise
for junior people?

What aspects of physical environment should
be considered in an installation plan for new
equipment?

. Describe the diagram intcrrelationships for

data and processes from enterprise analysis to
analysis to design.

EXTRA-CREDIT QUESTION

Analyze the Advanced Office System (AQS)
case in the Appendix. Develop all of the distri-
bution matrices and subjective rcasoning
forfagainst distribution. Develop recommenda-
tions and explain your reasoning for each
choice.

OBIJECT-

CHAPTE

11

ORIENTED

ANALYSIS

INTRODUCTION

In this chapter, we reanalyze the requirements for the
ABC Video’s rental processing application using an
object-oriented approach. This approach requires the
definition of many new terms and a fundamentally
ditferent way of thinking about applications and
their components. Keep in mind that object arienta-
tion is very much an immature methodology class
that is still evolving.

Several distinct schools of thought have emerged
on how best to represent object thinking. Since they
discuss the same topics, the schools have consider-
able conceptual overlap. The first school is object
otientation that uses many graphical forms parallel-
ing these of other methodologies. Authoss using this
approach are Coad and Yourdon and Rumbaungh
et al. {see References at the end of the chapter). The
second school of object orientation is tabular, using
mainly tables to list and define objects and their
parts. This approach is used by Booch and Berrard.
The graphical methodologies lack the reasoning
processes of Booch’s approach, while the tabular
method is not easily communicated because of the
extensive detail generated. Therefore, the Booch and
Coad and Yourdon approaches are both modified and
integrated throughout this discussion. Since few
people dispute the need for analytical rigor and
graphical richness, this type of ahject methodology

L
I
I

is preferable to either one or the other approach
used singly.

CONCEPTUAL

FOUNDATIONS OF

OBJIECT-ORIENTED

ANALYSIS

Two kev concepts define object orientation: encap-
sulation and inheritance. Encapsulation is & prop-
erty of programs that describes the complete
integration of data with legal processes relating to
the data. In addition, encapsulated objects have pub-
lic and private selves (see Figure 11-1). The public
part of an object defines what data are available in
the object and the allowable actions of the ohject.
The private part of an object defines local, object-
only data and the specific procedures each action
takes.

The second major property of object orientation
is inheritance. Inheritance is a property that allows
the generic description of objects which are then
reused by related objects. Objects are grouped into
classes that are defined as like objects that have
exactly the same properties, attributes, and pro-
cesses, (Jbject classes are arranged in hierarchies
of rclationships. Within a hierarchy, objects at lower

459

480 CHAPTER 11 QObject-Oriented Analysis

Pukhc Parts

Object Mame

Attribules

Processes

Public Parts

Private Parts

Class/Object:
Custamer

CustomerPhone }

CustormerMarme CUS@OI“QBF /-
CustomerAddress Phang. Pic xxibxux. /.
CustomerCreditRating | Name Plex(38). . /. -

Processes: F
Add

Update

Delete

Address Pic x{60})

 Creald Customer.

FIGURE 11-1 Encapsulated Object: Public
and Private Parts

levels inherit the data and processes of the superior
classes. Hierarchies can also be linked to form
lattice-like networks of hierarchies of objects.

An example of an object class 13 employees (see
Figure 11-2). Each employee has a name, address,
social security number, and so forth. Some employ-
ees are also managers. Managers are a subclass of
the employee class. By subclass, we mean that man-
agers have the same properties as employees (be-
cause they are employees), and that, in addition, they
have additional properties that only managers have.
Managers might have an additional subclass of man-
agers who are on a management commiitee, The

management committee subclass is said to have
multiple inheritance because it inherits the proper-
ties, attributes, and processes of employees and
managers as well as having its own.

Object orientation is an approach to thinking
about problems that, when properly applied, repre-
sents a substantive improvement in the resulting
analysis, design, and code modules. For 30 years, we
have known that the key goal of software engineer-
ing is to manage the complexity of the problems we
automate. We have also known that the best way to
manage complexity is to decompose the larger prob-
fems inte intellectually manageable, small tasks, that
hide their internal workings from other modules, and
that are coupled only by communicating messages. !
These are the goals of analysis and design that lead
to well-structured and well-formulated programs and
madules. Object orientation, when properly applied,
appears to come closcr to automatically resulting
in these desirable outcomes than other ways of
thinking.

Thinking in objects requires a paradigm shift. A
paradigm 15 a generally agreed vpon way of thinking
about a situation. In the process metheds we concen-
trate on functional thinking. or the steps taken to
perform some procedure. [n data methods, we con-
centrate on entity thinking, ot the data objects and
their interrelationships that dictate much process-
ing. Entity thinking is a difference in degree rather
than a difference in kind—a foreground/background
shift. We move from processes that change data to
emphasizing data that require processing {see Fig-
ure 11-3).

1 See the works of CAR Hoarg, David Parnas, Nicklaus Wirth,
and Edsger Dijkstra. In particular, the discussions are summa-
rized in the following references: Hoare, C. A. R., “The
Emperor’s Old Clothes,” Dijkstra, Edsger, “The Humble Pro-
grammer,” both in AMC Turing Lecture Awards, NY: ACM
Press and Addison-Wesley, 1947, and Pamas, David, “A
Technique for Software Module Specification with Exam-
ples.” Communications of the ACM, Val. 15, #5, May, 1972,
pp. 330-336; Parnas, David, “On the Criteria to be Used in
Decomposing Systems into Modules,” Communications af the
ACM, Vol 15, #12, December 1972, pp. 10533—-1058; and
Wirth, Nicklaus, “Program Development by Stepwise Refine-
ment,” Corununications of the ACM, Vol. 14, #4, Apni 1971,
pp. 221-227.

Definition of Object-Criented Terms 461

In ebject thinking, we can identify data and pro-
cesses somewhat independently, but they are mar-
ried early on and must be thought of together,
forever after, 1o reason properly about their behav-
ior and contents. The paradigm shift to object think-
ing is from thinking of data and processes as separate
to thinking of data and processes as one.

Several times in this discussion, we have men-
tioned the term “if properly applied.” Object orien-
Manager | Bagﬂgrbaarﬁl#?am tatio.n is no differenF than any other methodology in

- that it requires consistency and correct reasoning fo
result in the desirable properties described. When
improperly applied, object orientation results in a
badly designed application that might actually be
less efficient than the same application designed
poorly using some other methodology.

Employee

ol
DEFINITION OF
OBJECT-ORIENTED
FIGURE 11-2 Example Object Class TERMS

Hierarchy

Object orientation is based on the notion of objects
which cneapsulate both data and processes on that

Process Data
Methodologies Methodologies

o ™
Funation = Entity =
Group of Activities Class of Business
Describing Businass Thing which the
Processes Application tracks

—HO—T

Entity-
Relationship
Diagram

Diagram
oram

Entity = Bus. Entity
Rslationship = Bus.
Constraint

A

FIGURE 11-3 Process and Data Methodologies as Flip Sides of the Same Paradigm

4562 CHAPTER 11 Object-Criented Analysis

data. An object is an entity from the real world
whose processes and attributes (that is, the data) are
modeled in a computerized application.

Pracesses are variously called functions, actions,
scrvices, programs, methods, properties, or modules;
these terms may or may not have the same meuning
to the people using them. For that reason, we stick
to the term process to mean the transformational pro-
gram language code that acts on its object data.

An abstract data type (ADT) is the name used
in some languages (e.g., C) for the new, user-defined
data type that encapsulates definitions of object data
plus legal processes for that data. In this text, we use
the terms encapsulated object, object, and abstract
data type interchangeably.

The major analysis activities focus on defining
objects, classes, and processes. Class/objects arc the
lowest level of logical design entity. Class/objects
define a set of ittms which share the same attributes
and processes, and manage the instances of the col-
tection. The class defines the attributes and pro-
cesses; the objects are the instances of the class
definition.

There are different types of class-object relation-
ships. First, classes can occur without having any
rcal data associated with them. Classes whose
instances are other classes are called meta-classes.
For instance, we might define a class Customer with
subclasses for CashCustomer and CreditCustomer.
The class is a meta-class; the subclasses are class/
objects which manage the data of Cuestomer.

Classes can be composed of classfobjects te
describe a composition relationship of whole and
part. A whole class defines the composed object
type. The part class defines all the components of
the whole class. For instance, a car, as a whole class,
contains parts that include motor, wheels, doors,
seats, and so on.

Classes can also be defined to allow specialized
versions of an item. The meta-class is called a gen-
eralization class, or gen class for short. The sub-
classes are called speciafization, or spec, classes. A
generalization class defines 4 group of similar
objects. For instance, vehicle s a generalization on
car. The specialization class is a subclass that
reflects an is-a relationship, defining a more detailed

description of the gen class. For instance, a car,
truck, or tank are all specializations of the general
class vehicle, These could be further specialized
themselves, For instance, car could have specializa-
tions by type car: full-size, mid-size, or economy.

Each type of class and its subclasses form a hier-
archic, lattice-like arrangement of relationships.
Through the relationships, the lower-level classes
inherit the data and processes of the related higher-
level classes. Thus, if we were to refer to an econo-
myCar object, we would have information and
processing for vehicles, cars, and economy cars
all available.

Messages are the only legal means of communi-
cations between encapsulated objects. Messages are
clear in their intention but not clear in their imple-
mentation, which is completely determined by the
language (see message types in Figure 11-4}, For
instance, at the moment Ada does not imple-
ment message communication. In this text, a mes-
sage is the umit of communication between two ob-
jects. Messages contain an addressee (that is, the
object providing the process, ulso called a service
object), and some identification of the requested
process.

A major difference between object orientation
and other methodologies is the shifting of responsi-
bility for defining the data type of legal processes
from supplier (or called) objects to client (or calling)
objects. This shift, along with the notions of inheri-
tance and dynamic binding, support the use of poly-
morphism, which is the ability to have the same
process take different forms when associated with
different objects. Dynamic binding is a language
property that selects actual modules to execute dur-
ing application operation. The concept is completely
described in Chapter 12,

A supplier obhject is one that performs a re-
quested process. A client object is one that requests
a process from a supplier. For instance, [might need
to have a date translated from month-day-year
format to year-menth-day format. As a client object,
I requcst the translation of the supplier object and
pass it the date (0 translate, If the language supports
polymorphism, T also pass the data type of the date to
be translated.

Cbject-Oriented Analysis Activities

|
Customer L Create

Binary Message: Addressee Service Identifier

Unary Message: Addressee Service fdentifier

Argumsnts

{ 1
Qrdar IComputeTota} | PastDucFees. CurreniFeas

Keyword Massage: Addressee Service ldentifier Keyword Expression{s)

T T
ServiceMod | DateTranslate | Figld=Dateln, DataType=Ineger

FIGURE 11-4 Example of Message Types

An example of polymorphism is, for instance, a
process to perform comparison of two items to iden-
tify the ‘larger’ of the two. One object might be
alphabetic, requiring a logical comparison; another
object might be decimal numeric, requiring a nu-
merical comparison; a third object might be an array,
requiring numerical array comparisons. This poly-
morphic object has three implementations of
its process to compare and derermine the larger of
two items. The client object requests a specific
comparison process, here either alpha, numeric, or
array.

To surnmarize the terms, objects are encapsula-
tions of data and processes that have both public and
private parts. Objects can communicate via mes-
sages which differ by language. Objects are arranged
into classes of similar objects, and can belong (o
more than one class. By the property of inheritance,
an object exhibits the attributes and provides the ser-
vices of the classes of which it is a part. Polymor-
phism is a desirable property of objects but requires
a client-server view of objects along with dynamic
binding capabilities.

OBJECT-ORIENTED
ANALYSIS
ACTIVITIES

The docurnentation for object-oriented analysis?
includes a series of tables and graphics (Figure
11-5). The tables are lists that document individual
components of the analysis—objects, processes (and
their assignment to objects), attributes, and classes.
The graphics show relationships between objects
and object classes, state transitions of intraobject
changes in the application, and time-ordering
interobject—event processing. Each documentation
representation is elaborated by tracing the object-
oriented analysis of ABC Video’s rental processing
system,

2 The analysis documentation builds primarily on the work of
Booch | 1983, 1991] and Berrard [1985]. The Class diagrams,
subject summary, gen-spec and whole-part diagrams are all
from Caad and Yourdon, 2nd ed. [1990].

464 CHAPTER 11

Object-Oriented Analysis

Summary Paragraph

Tables/Lists
Object List

Process List

Object-Attribute List

Process-Attribute List

Diagrams

Object Relaticnship Diagram
Class Hierarchy Diagram
Generalization/Specialization
Structure Diagrams

Whale/Part Structure Diagrams

Subject Summary Diagram

Provides a brief summary of all major functions te be performed.

Containg potentiat objects {(nouns) from the paragraph. Each entry is evalu-
ated 1o determine that it s an cbject, to classify it as solution space or problem
space related, and to assign it a unique, formal name.

Cantains potential processes (varbs) from the paragraph. Each is evaluated

to determine that it is a process, o classify it as solution space or problem
space related, and to assign it a unigue, formal name. All solution space class/
objects are tentatively related to processes and the relationships are
evaluated.

Contains field name attributes with each object they describe. Each class/
object's entries are normalized and other class/objects are crealed as needed.

Cantains formuiae, constraints on processing, and stale/status changes for
each process as raquired; some procasses have no attributes.

Identifies objects with connsacting lines showing different types of interobject
relationships.

Shows objects arranged in one ar more lattice hierarchies to link shared
data/processes and to depict inheritance of those data‘pracesses.

Deapicls objects which express is-a relationships. This diagram is optional.

Depicts objects which are compositions for which the whole class is composed
of one or more of the part subclasses. This diagram is optional.

The highest level of independent classes or classfobjects in each leg of a hier-

State Transition Diagram

archy are promoted to subjacts for melusion in this diagram which provides a
summary of the clagses in the application. This diagram is optional.

Contains system states (.., statuses) and the events {process outcomes) that
cause those states to exist.

FIGURE 11-5 Summary of Object-Oriented Analysis Documentation

Develop Summary Paragraph
Rules for Summary Paragraph

The first, and most important, step of object-oriented
analysis is to develop a single summary paragraph
describing the problem. The purpose of the para-
graph is ta focus your attention on the most concrete,
yet high-level description of the problem. Hidden
within a good summary are the main class/objects
and the main processes to be provided by the appli-
cation, In a large application, development will be
iterative with a series of more detailed summary

paragraphs developed to elaborate the imdividual
sentences from a summary. In a smaller problem,
like ABC Video’s, we only need one level of
SUMMary,

The guidelines for writing the paragraph arc as
follows:

1. Write only declarative sentences of the form:
Noun—Verh
Noun—Verb—Object
Verb—Object

2. TFor ease of quality assurance, write cach sen-
tentce on its own line,

3. Review the paragraph carefully (o ensure:

» All desired funciions are represcnted.

» Al] major information and processes are
identified.

m All sentences are at the same level of
abstraction, detail, and importance.

These are guidelines because the development of the
paragraph is an individual activity performed by the
SE with the user, and specific to each application. It
is one result of interviews and other data collections
that take place before and during analysis. Qbject
orientation assumes that you have the requirements
for the application in hand and understand what the
application is supposed to do.? Therc are no graphi-
cal representations for paragraph information.

ABC Video Example Paragraph

Refer back to Chapter 2 for the description of ABC
Video's rental processing requirements, The initial
puragruph reads:

Customers select one to n videos for rental, Customer
phone number is entered to retricve customer data and
create an order. Bar code TDs for cach tape are entered
and video information from inventory is displayed.
The video inventory file is updated {decrease the
count of available copies by one). When all tape IDs
are entered, the system computes the total. Money is
collected and the amount is enlered into the system.
Change is compuled and displayed. The rental is cre-
aled, printed, and stored. The customer signs the
rental {orm, takes the tape(s), and leaves, To return a
tape, the video Bar Code ID is entered into the sys-
tem. The rental is displayed and the tape is marked
with the date of return. If past-due amounts are owed,
they can be paid at this time; or the clerk can select
an option which updates the rental with the return
date and calculates past-due fees. Any outstanding
video renlals are displayed with the amount dug on
each lape and a iotal amount due. The past-due
amount must be reduced to zero when new tapes are
taken out.

3 Lorenz [L993] recommends the development of ‘use cases’
which track all variations of each transaction through its pro-
cessing. This is, in essence, what you do in interviews with
users duting a notmal data collection activity.

Object-Qriented Analysis Activities 465

'y

. Customers select ong to n videos for rental.

2. Customer phone number is entered to rebrieve

customer data and create an order.

3. Bar code |Ds for each tape are entered and video

information from inventory is displayed.

4. The video inventory file is updated (decreass the

count of available copies by one).

5. When all tape [Ds are entered, the system com-

putes the total.

&. Money is collected and the amount is entered into

the system.

7. Change is computed and displayed.

. The rental is created, printed, and stored.

2. The customer signs the order form, takes the
tape(s), and leaves.

10. To return atape, the video Bar Code 1D is entered
into the systern.

11. The rental is dispiayed and the tape is marked with
the date of return.

12, If past-due amounts are owed, they can be paid at
this time; ar the clerk can select an option which
updates the rental with the raturn date and calcu-
lates past-due leas.

13. Any autstanding video rentals are displayed with
the amount due on each tape and a total amount
due.

14. The past-due amount must be reduced to zero
when new tapes are taken out.

15. For new customers, the customer information
is entered into the system and added to the
customers.

16. For new vigeos, the video information is entered

into the system and added to inventory.

[o+]

FIGURE 11-6 Initial Paragraph in Numbered
Sentence Format

For new customers, the customer information is
entered into the system and added to the customers.
For new vidcos, the video information is entered into
the system and added to inventory.

The paragraph is reformatted as a numbered list
of sentences (see Figure 11-6). This numbered sen-
tence format is recommended because it simplifies
discussion, quality assurance, and reviews.

Once the paragraph is drafted, you examine each
sentence carefully 10 make sure all the pertinent
information is present and clearly stated. In this
paragraph, there is confusion about a ‘new order’ in
sentence 2 and an ‘outstanding video rental’ in

466 CHAPTER 11 Object-Oriented Analysis

sentence 13. You ask vourself, What do we mean by
an ‘order’? If you do not know, you may need to ask
the client what he means by an order.

Vic wants an order to have information that is
linked to videc information whenever customers
have any videos out on rent, that is, they are an
‘active” customer. An order should contain informa-
tion about all current rentals, dates returned, and laie
fees. Any other fees owed, for instance, penalties
assessed for late payment, should also be present
until they are paid. In other words, Vic uses the word
order to describe what we have termed a remial. This
confusion is clcared up immediately because differ-
ent words for the same items always cause confu-
sion. Vic does not mind changing the term order to
rental. He uses the term order because he thinks his
business is similar to order-entry processing which
he managed in an old job. The major differences
between these two activities is that Vic has a cash
business and order-entry applications are usually
used in accrual accounting businesses that link to
acceunts reccivable accounting. Vic is correct; there
is similarity between rentals and order processing,
but the term rental fits this particular business and
will be used.

To be consistent in the wse of terms, we modify
scntence 2 o read:

2. Customer phone number is entered to retrieve cus-
tomer <lata either to create a rental or to retrieve
aclive rentals.

This change also implies a status for rentals of
‘active’ or inactive’ which we will need to further
clarify,

The term video (nformation from inventory in
sentence 3 should be mere specific. Knowing the
actual fields to be displayed will be helpful in the
class analysis and in attribute definition. Upon fur-
ther conversation with Vic, you change the informa-
tion to read:

3. Barcode 1Ds for each tape are entered.
3a. Video name and renral price from inventory are
displayed.

The next unclear issue is: When is money col-
lected for new rentals? Can a customer rent a video,
pay past-due fecs, and pay for the current video

renial upon is return? Again, we go back to Vic, the
client, and ask him what he wants,

Vic says, “I would like as little bureaucracy as pos-
sible in this system. Since 80% of videos are
returned on time, [want new rentals paid in
advance—when they are rented. About 90% of
my customers return their videos through a slot
in the door during nonworking hours. Any
videos that have late fees are checked mn, and a
note of past-due fees must be made.

“For legal reasons, 1 must be able to prove
how past-due fees are derived. To meet this
obligation, the past-due fee amount, rental date
and return date must all be maintained.

“Also, T do not want to encourage ‘dead-
beats” who do not pay for their rentals, so 1
insist that any outstanding fees be paid before
any new rentals.”

With the above information supplicd by Vic, we
evaluate the sentences dealing with payments. Al-
though they remain somewhat ambiguons, they
would be sufficient if we chose not to change them,
The information is clearer it sentences 13 and 14 are
moved between sentences 2 and 3 and are renum-
pered 2a and 2b for the present.

One remaining ambiguity might be computations
for the ‘total’ and ‘change.’ If the computations are
understood, they are not required in the paragraph.
We do not reed the computaiions for the paragraph,
but we do need it soon. So, if the computations are
not understood, you again go back to Vic and ask
how the computations are performed.

Vic: *"There are two basic totals: one for set-
tling past-due fees and one for the current
rental. They may be computed logether as the
rental total cqual to the sum of all past-
due items, fees, taxes, and current rentals.
Change is computed as the rental-total less
amount paid.”

Vie’s definition of the rental-total raises a new
question about the paying of late fees and sentence
2b. If past-due fees must be settled before any cur-
rent rentals are allowed, how can you add the infor-
mation together to create the rental-total?

Object-Orented Analysis Activities 467

Old # New # Sentence

2. 2. Customer phone number is entered to refrieve customer data either to create a rental or
to retrieve an active rental.

2a. 3. Any outstanding video rentals are displayed with tha amount due on each tape and a te-
tal amount due.

?b Note The past-due amount must be reduced to zero when new rentals are made.

3. 4, Bar code |Ds for each tape are entered.

3a. a. Video name and rental price from inventory are displayed.

5. 6. When ali tape 105 are entered, tha system computes the total (= past-due fees + X
other fees + ¥, currant video rantal tees).

6. 7. Money is collected and the amount is entered into the system.

7. 8. Change is computed {= amount entered-—order-total} and displayed.

9. It the change amount is negative, that is, the customer did not pay for all fees, the clerk

asks for more money.

10. If the customer gives the clerk more money, return to step 7, else, when the clerk presses
an order complete key, the system ‘pays-off’ the fees on a first-in-first-paid order until the
amount entered is used up. The renlal is redisplayed. Past-due items ‘paid-off’ are
marked paid and the status of the gurrent video rentals are either paid or due.

1. If the amount entered paid for one or more current rentals, they are updated as paid and
the videos are given to the customer; else when the clerk presses the rental complete
key again, the current rentals not paid for are removed and placed back in stock.

4, 12. When the clerk presses a renta! complete key (to be defined by the system), this order is
complete and the video inventery file is updated {decrease the count of available coples
by one}.

8. 13. The rental is stored and printed.

FIGURE 11-7 Partially Renumbered Paragraph

“Oh,” says Vic, “I meant that the ¢lerk should not The new sentences 9, 10, and 11 add needed
give the customer the video tapes until all of the information to our understanding of the problem, but
past-due fees plus current rental fees are paid. now they are at a different level of detail from the
They can still process the current rentals on the other sentences. They constitute processing that
computer at the same time. Remember, my accompantes change. So, to keep the level of ab-
motio is no burcaucracy.” straction consistent, they should be removed from

this paragraph and kept for use during the next iter-
This aew information does change at least the order ation of change processing. To indicate that other
of sentences 2 through 8 (sce Figure 11-7). Atthe steps are needed to process change, modify sentence
end of the paragraph, add the following so the in- 8 toread:

formation is not lost.
8. Change is computed (= amount-entered—rental-

total}, displayed, and further processed by the clerk
as required.

2b. NOTE: The amount paid less change must be
equal [o the rental-total or the clerk should
politely refuse to give the customer the current At the moment, the final paragraph for ABC
1apes. Video’s rental processing system should read like the

468 CHAPTER 11 Cbject-Criented Analysis

one in Figure 11-8. All major functions, data entities,
information sources, and destinations are identified.
All sentences are at the same level of abstraction,
detail, and importance,

Identify Objects of Interest
Rules for Identifying Class/Objects

The next step is to identify and analyze all of the
class/objects of interest. The items are called class/
objects because they identity a collection (class) of
like instances (objects). The rules are summarized
here:

1. Underline all nouns in the summary
paraggaph.

2. List the underlined verbs on a separate sheet
of papet, using the exact samne scquence and
spelling as in the paragraph.

. Evaluate each noun to make sure it is an
object. {Common errors are to include attrib-
utes objects, that are not of interest to the
solution of this problem, or physical objects
we do rot keep information about).

4, Determine whether the ohject is in the sols-
tion space (must be present both 1o describe
the problem and 10 develop a solution) or the
problem space (must be present to describe
the problem).

5. Name each unique object in the solution
space. Ignore the processes in the problem
space. Use the convention ‘=name’ to iden-
tify duplicates of already named objects and
to show that you know it is a duplicate.

ad

The mechanics of the identification are to underline
the nouns in the paragraph. Once the underlining is
done, make a list of the nouns on a separate sheet of
paper. When making the list, keep the nouns in
exactly the same sequence as they occurred in the
paragraph and use exactly the same spelling as
occurred in the paragraph!

Next, evaluate each noun to make sure it is an
object. Evaluate similar criteria for identifying enti-
ties in the data methodology: people, places, events,
applications, organizations, or other abstractigns
about which the application must keep information

To rent tapes,

. Guslomers select ong to 11 videos for rental.

2. Customer phone number is entered fo retrieve
customer data either to create a rental or to
retrieve an active rental.

4. Any outstanding video rentals are displayed with
the amount due on each tape and a total amount
due.

4. Bar code |Ds for sach tape are entered.

5. Video name and rental price fram invantory arg
displayed.

6. When all tape IDs are entered, the systerm com-
putgs the total (= X past-due feas + . other feas
+ X current videg rental fees).

7. Money is collected and the amount is entered info
the system.

8. Change is computed (= amount entared — order-
fotal). displayed, and further processed by the
clerk as reguired.

9. When the clerk presses an ‘order-complete' option
key {to be defined by the system), this rental is
camptete and the video inventory file is updated
(decrease the count of avaifable copies by one).

10. The rental is stored and printed.
11, The customer signs the order form, takes the tape,
and leaves.

To return a tape,

12. The videe bar code 1D is entered into the system.

13. The rental is displayed and the tape is marked
with the: date of return.

14. |t past-dus amounts are owed, they can be paid
at this time; or the cterk can select the 'order-
complete' option which updates the rental with the
return date and calculates past-due fees.

To add a customer:

15. Enter custemner information.
16. Create customer.

To add a new video:

17. Enter video information.
18. Create video inventory.

NOTE: The entire amount gwed must be paid before
any rentals are allowed. That is, the amount paid less
change must be equal to the rental total or the clerk
should politely refuse to give the customer the curent
tapes.

FIGURE 11-8 Final Paragraph for ABC
Order Processing

Object-Oriented Analysis Activities 4469

Chjsct Name

Altributes

Processes

‘ﬂ' — — — — —MCustomerAddress

Class/Object:
Customer

1 CustomsrPhaone
‘| CustomerMame

4 CustomerCreditRating

1 Processes:

M- Add Query :
4 Update CheckCredit |-
1 Deiete 3%

FIGURE 11-9 Class/Object Diagram Format

or for which processing is required. If the items in
the list fit any of these criteria and pass the other
tests, keep them on the list.

There are no hard and [ast rules for this process,
only heuristics or rules of thumb. Ask yourself the
following sets of questions. Does the noun identify
something from the real world you want to store in-
formation about? If so, keep going. If not, it is not an
object in this system, so cross it off.

Does the noun identify something that takes on
values itself, for instance, a social security number,
balance, or rental total? If so, these are attributes (or
fields) describing an object. Cross them off this list
and put them on a list of attributes somewhere. If
not, then keep going.

Does this name unigquely identify a set of things
with the same attributes? If so, keep going. If not, if
it identifies one unique thing, it may still be an object
but you should look for commonalities and combine
with some other class/object.

Once you have crossed off all nonobjects in this
application, you are ready for the next analysis on
objects: Determine if it is in the problem space or in
the solution space. The problem space includes
objects that are required to describe the problem but
are not required to describe the solutien. For in-
stance, you might need to know something about
IRS reporting requirements to properly define the
length of time you need to keep an accounting file
of transactions. But the IRS does not factor into the
solution, nor do you keep any information about the

IRS in the application. In this example, the IRS
would be a problem space object.

The soletion space includes objects that are
required both to describe the problem and to de-
velop a solution. In ABC Video, ‘customer” is nec-
essary to both the problem definition and to the
automated application solution. So, it is in the solu-
tion space.

‘When you are done evaluating all entries in the
list, the solution space objects are given a class/
object name by which they are known for the life of
the application. During this step, we eliminate dupli-
cates of each object. By convention, the name in the
list is entered as either ObjectName or =0Object-
Name. The format QhjectName identifies a unique
ciassfobject. The format =QbjectName identifies
a synonym of a class/object. The =ObjectName
ensures quality assurance reviewers that you have
accounted for all objects and have considered every
entry on the list.

Finally, a class/fobject diagram is begun. A class/
object is a collection of like things in a class; the
objects are the individual instances of the things in
the class. Class/objects are drawn as a rounded verti-
cal rectangle with a shadow rectangle, The class/
object is divided into three parts to depict the name,
attributes, and processes (see Figure 11-9). The three
areas identify publie information relating to the
class/object. Eventually other details are added for
private information during design. Now, let us retarn
to ABC’s application to develop the object list.

470 CHAPIER 11 Object-Criented Anglysis

ABC Video Example Object List

First, we underline the nouns from the paragraph
(see Figure 11-10). Objects represent people, organi-
zations, events, applications, or other abstractions
from the real world about which we need to keep
information. These are all identified by nouns. The
underlined nouns represent all of the potential
objects from the paragraph. If the paragraph is com-
plete, this action should result in the identification of
all major objects relating to the application,

Next, list the objects exactly as they are spelled
and ordered in the paragraph. The first-cut object list
is shown in Figure 11-11, The dispositions for each
object are discussed here.

The first analysis is to eliminate attributes from
the [ist. In the first-cut object list, attributes are
crossed out and their respective objects are listed.
Attributes change value for each related object
instance. To identify an attribute, we ask, Can this
name take on a value? If the answer is yes, it is an
attribute. Attributes are set aside for use in a future
step.

Figure 11-11 shows Rental attributes includ-
ing AmouniDue, TotalAmountDue, RentalTotal,
Amount, and Change. Attributes of Videos on
Rentals include RentalPrice, ReturnDaie, and Past-
DueFees. Video attributes include RarCodeld and
VideoName. Finally, PhoneNumber 1s an attribute
of Customer.

Next, we evaluate remaining nouns to determine
if they are objects. The nouns that are clearly
objects are the following:

customers

videos

rental (4 times)
tape (4 times)
money

clerk (3 times)
video inventory file
rental form

sysiem

The objects ir the above list do not take on values
of their own. They are material and distinct, and they
are of interest to the application. Therefore, they
are objects.

To rent lapes,

1. Qustomers select one to 1 yideos for rental.

2. Cugtomer phone number is enterad to retrieve
customer data either to create a rental or to
retrigve an gctive rentai.

3. Any gulstanding video rentals ars displayed with
the amount due on each 1ape and a ftotal amouni
due.

4. Bar code IDs for each tape are enfersd.

§. ¥ideo name and rental price from inventory are
displayed.

6. When all tape 1Ds are entered, the aystem com-
putes the rental total (= X past-due fees + ¥ other
fees + & current video rental fees).

7. Money is colkected and the gmount is entered inta
the gystem.

8. Change is computed {= amount entered - order-
total}, displayed, and further processed by the
clerk as required.

9, When the glark presses a rental-completa’ oplion
key (to be defined by the system), this reatal is
complete and the video inveniory file is updated
{decrease the count of available copies by ane).

10. The rentaf is stored and printed.
11. The customer signs the ental forn, takes the
tape, and leaves.

To return a tape,

12. The yideo bar code |0 is entered into the systemn.

13. The tental is displayed and the tape is marked
with the date of return.

14. if past-due amounis are owed, they can be paid
at this time, ar the glark can select the 'Tental-

complete’ option which updates the renial with the
return date and caleulates past-due jees.

For new customaers,

15. Enter customer informatiorn.
16. Create customar.

For new videos,

17. Enter vidao information,
18. Create yideg.

FIGURE 11-10 Underlined Nouns

At this point we are not concerned that there are
duplicates on this list, or that we will not keep auto-
mated informatiot about all entries on this list. The
less obvious, remaining entries we need to eval-
vate are:

Object-Criented Analysis Activities 471
Noun from Paragraph Dispasition Noun from Paragraph Disposilion
Customers Object rental Object
videos Object customer Object
Costomorphona-Rursber Attribute of Customer, rental form Object
Rental tape Object
customer data Object videa-Barase-0 Aftribute of Video, VOR
rental Qbject eyators What we are creating
active rental {Object rental Object
autstanding video rentals Object 1ape Object
tape Object date-airatarn Attribute of Video on
Plalamaunt-dus Attribute of Rental Rental
Ba-sade-a Attribute of Videe, pact-guc-amedals Attribute of Rental,
YideoOnRental (VOR) VOR

fape Object {hoy (meaning Attribute of Rental
Mideo-Rame Aftribute of Video past due amount}
FoRla-pHiae Attribute of Video, VOR clark Object
tapa-ba Attribute of Video, VOR rontal-oorplate Event trigger
system Object aptien
reRta-iatal Attribute of Rental rental Object
Money Object roturA-daie Attribute of Video on
aFRauaE Aftribute ot Rental Rental
GyetoR What we are creating pact-duo-ioes: Attribute of Video on
Ghange Attribute of Rental Rental
clerk Object SR OHRIOHARLER All attributes of
clerk Object customer
‘rantal-admphato- Eveant trigger customer Object

aptien-key widae-inigrmation All attributes of video
rental Object Video Objsct
videa invantory file Object

FIGURE 11-11 Initial Object List for ABC Rental Processing

status were to remain in the application, it would be
appropriate to change the wording to be more pre-
cise 10 open/closed rental. At some point, the analy-
sis should be reviewed with Vic. So, for the active
rental issue, for instance, we might ask Vic the
following:

active rental

outstanding video rentals

‘rental complete’ option key (2 times)
customer information

video information

‘Active’ is an adjective describing a state of a
rental. As soon as we say describing we know this
is an attribute of some sort. The allowable states
most probably are *active’ and ‘inactive,” in which
case this is the status of a rental, an attribute.
We may want to reevaluate what an active/
inactive rental is to make sure this is correct.
Active, in the sensc used here, appears to mean open
rental with rentals, based on the paragraph. Then
inactive would imply no rentals outstanding. If this

We have talked ubout active rentals. Does active
rezlly mean an open rental? If not, what other Kinds of
rentals are there? If yes, do we need to keep that sta-
tus separate or is it implicit? For instance, is an open
rental any for which a rentat is not returned or is
returned with late fees owed?

The next action on active rentals is based on the
answers to these questions. Vic decides that active
does mean open rentals and that a specific status is

472 CHAPTER 11 Oblect-Orlented Analysis

not required as long as he has access to epen rental
information,

Cutstanding video rentals is also an adjectival
description of videos on a rental that appears to be a
status. Other statuses of videos on rentals that we
might identify so far are combinations of;

outstanding/returned
on-time/late
paid/not paid.

We note these for the attribute list and eliminate
them from further discussion here.

Last is the rental complete vption key. This is a
noun phrase describing an implementation detail—
a key on the keyboard to be pressed to indicate the
end of rental processing, It is not an object because it
has no attributes, and we do not keep data about
it in the application. It is an event trigger that will
initiate some processing, but it does not enter into
this level of analysis so it is eliminated from the
object list.

Last are cusromer information and video infor-
mation. These two items are sirnilar in that they both
reference a collection of atributes describing 1wo
entities. As such we could either list their attributes
(then omit them from the list because they are

attributes) or call them objects. We opt for calling
them ‘collections of atiributes’ and eliminating them
from the object list.

Now we return to the objects we did find o
decide if they are in the problem space or the solu-
tion space. Problem space objects are required to
describe the task domain but not to develop an auto-
mated solution. Solution space objects are required
10 describe both the task domain and the auntomated
solution. Once problem space objects are identified,
they drop out of the remaining analysis. We de-
cide which space each object describes (see Fig-
ure 11-12).

The last stages are to name each object with a
unigue name by which it will be known in the sys-
tem and to eliminate duplicate names for the same
object. When we find a duplicate, we indicate the
name by an equal sign (‘=" appended to the frent
of the name to signify that the name already ap-
peared once,

During this exercise, we have two options for
dealing with repeating information and relationship
objects which describe one-to-many relationships.
We can define thern for later normalization or we can
define them as fully as possible now. We opt for
more completeness now because it usually means

Object Space Justification

Customers S Need automated customer information

Video S Need automated video information

Rental S Nead automated rental information

Tape 38, 1P Three references are tape information to be maintained in the
system. One reference is to the tape taken home by customers; this
reference is in the problem domain.

Moneay P Real money is cutside of the system. We are congernad with the
amount which is data entered into the system and related 1o rental.

Clerk Wae do not keep statistics or other information an clerks in the system.

Video Inventory File S Need automated video infarmation.

Rental Form P Just a different media than 'rental . . . nof relevant by itselt 1o the
solution.

System P This ig irrelevant because ‘system’ is what we are building.

FIGURE 11-12 Object Space Justification

Solution or

Nour from Problem

Paragraph Space Object_Name

Customers 5 Customer

videos S Videolnventory

rental s Rentat

active rental = =Rental

outstanding s YideoOnRental

video rentals

tape s =VidecCOnRentai

tape 5 =VideoOnRental

rental S =Rental

video inventory 5 =Videotnventory

fila

rental S =Rental

rental] =Rental

tape S =VideoOnRental

remal S =Rental

customer s =Custormer

vidao) =Videolnventory
FIGURE 11-13 Object List for ABC Rental
Processing

less reworking later. For example, a rental has one or
mare related videos. We could define both of these
as ‘rental,’ or we could define Renta! and VidenOn-
Rental separately, We opt for the normalized form
because it results in a more complete analysis. This
results in four classfobjects: Customer, Rental,
VideoOnRental, and Videolnventory.

Figure 11-13 shows the classfobjects from this
analysis in their final form (for this step). Notice the
objects are still in order by their sequence in the
paragraph, all have a space designation, and all solu-
tion space obiects are named.

Finally, we depict class/objects from this list. We
switch [rom the term object to the term class/object
to acknowledge both the shared attributes and pro-
cesses and the instantiation of them, ABC has four
classf/objects corresponding to Custamer, VideoOn-

OCbject-Oriented Analysis Activities 473

Rental, Rental, and Videolnventory. The foor class/
objects are depicted in Figure 11-14 for further ¢lab-
oration in future steps. Information that we know at
this point is also in the diagram.

Identify Processes

Rules for Identifying Processes

The next step is to identify processes. The rules for
identifying processes are summarized as toltows:

1. Circle all verbs in the summary paragraph.
2. List the circled verbs on a separate sheet of
papet, using the exact same sequence and

spetling as in the paragraph,

3. Evaluate each verb to make sure it isa
process. (Commion errors are to include sta-
tus, physical actions, or comments.)

4, Determine whether the process is in the solu-
tion space or the problem space.

5. Name each unique process in the solution
space. Ignore those processes in the problem
space. Use the convention ‘=npame’ to iden-
tify duplicates of already named processess
and show that you know it is a duplicate.

6. Assign objects to verbs if the object is trans-
formed by the process or if the object data is
read by the process.

7. Ewvaluate the object assighments:

I there is only one object assigned to a
process, continue.

If all objects are read-only, continue,

For processes with more than one object
transformation, evaluate the transformation
process:

If all processes are exactly the same, and all
data types acted on are exactly the same, then
mark the process for creation of a reusable
module.

If all processes are exactly the same, but all
data types are not the same, mark the process
for polymorphic madule creation.

If all processes are not exactly the same,
redevelop the paragraph to more specifically
define the processing.

474 CHAPTER 11 Object-Oriented Analysis

L OLONNGIEICIONEOL
3 Customer

CustomerPheone

REEEEY:
| videoOnRental [:

1 CustomerPhone
i| BarCodzld

4 ReturnDate

] LateFeesOue

Vides Inventary

| VideoCountDiCopiss ::
:{ BarCodeld

FRental

‘| CustornerPhone
| BarCodeld

.| ReturnDate

| LateFeedDue

| TotalAmtDue

i| TotalAmtPaid

3| Change

FIGURE 11-14 ABC Class/Objects

Processes are actions described by verbs, We iden-
tify the verbs in the summary paragraph, circling
them to distinguish them from the nouns, Once the
circling is done, make a list on a separate sheet of
paper of the verbs. When making the list, keep the
verbs in exactly the same sequence and use exactly
the same spelling as eccurred in the paragraph!
Then, evaluate each verb 1o make sure it is a
process. Ask yourself if the verb is a process that
the application must provide. If yes, keep going; if
not, cross the verb off. For instance, if the paragraph
said “The clerk enters the customer’s phone number
into the system,” the ¢lerk has been removed as a
problem space object. But, the verb enters as applied
to the customer’s phone number s required data
entry to begin the rental entry process. So, enters
temains in the system. If we had included the terms
To rent a tape ot To return a tape in the list, these
are summary descriptions of entire procedures

and the verbs remt and return would be excluded as
NONProcesses.

After the first evaluation, review each verb again
to determine if it is in the solution space or the prob-
lem space. The meanings of solution and problem
space are the same as for classfobjects. Problem
space means the process is required to define the
problem but not the automated solution, Soiution
space processes are required both to define the prob-
lem and to define the selution.

Next, review each verb carefully and give it a
meaningful name, Try to define meaningful process
names that indicate both the process and the class/
object on which it acts. So, for enter a customer
phone number, the process name might be enter-
CustPhone,

For any processes that use the same verb descrip-
tor, or that you think are exactly the same, mark with
an asterisk for further evaluation in the design phase.

Inclnde an asterisk on processes that work on objects
with different data types. Name them the same verb
appending a unique identifier for each instance,
These unique names make recognizing these pro-
cesses in the next step easter. One possible naming
convention* is fo describe the sitwation, such as
enterTapeldRental, enterTapeldReturn, and enter-
TupeldRenew. The idea is to assign names that you
can live with for the entire life of the object and
its processes. In design, if these processes are all
defined as the same, we simply truncate the names to
enterTapeld.

The last step in identifying processes is to assign
class/objects to operations. List each object with all
processes that use or trausfors it. When this identi-
fication is done, reevaluate all processes with more
than one object assignment.

The three questions you ask in this evaluation are
summarized in Figure 11-15. First, ask if only one
abject is actually transformed by this process. If the
answer is yes, go to the next process to be evalu-
ated. If the answer is ne, then continue with the
evaluation.

Next, for the processes being transformed, does
the exact same processing occur to ¢ach object? That
is, are the data types and the process steps identi-
cal? If the answers to these questions are all yes, no
further analysis is required. You have identified a
candidate for development as a reusable module. If
the answer is no, then you must identify the specific
differences with the next set of questions.

Third, are the data types different or identical?
Are the processes different or identical? If the data
types are different and the process is the same, these
process-object combinations are candidates for poly-
morphic module creation and should be noted with
an asterisk. If the processes are different, then you
must refine your paragraph to define the specific
processes for each object, and redo this part of the
analysis from the beginning.

When you have evaluated all of the multiobject
processes and resolved any inconsistencies, you are
ready to perform the next step. Next, we identify the
processes for ABC Video’s rental application.

4 A convention is a locally agreed upon way 1o do some
activity.

Object-Orented Analysis Activities 475

1_ Is only one object actually transicrmed by this
process?

If yes, this process is complete.
If no, continue.

2. Does the exact same processing occur for each
object? This means the same steps and the same
transformations.

If no, go to step 3.
If yas, are all object data types the sama?
If yes, this process is compiete; create one
reusable module for this process.
If no, mark for polymorphic module creation.
3. Redsfine the sentence(s) to identify the specific
processing of sach object. Then, reevaluate
the processes beginning at step 1.

FIGURE 11-15 Muiltiobject Process
Evaluation

ABC Video Example Process List

The steps we follow here are to circle the verbs,
evaluate them as processes of interest, define solu-
tion and problem space processes, assign class/
objects to processes and evaluate those object
assignments (refer to the summary list on p, 473).

The first step is to return to the paragraph and cir-
cle the verbs. Analyze cach verb to ensure that it is
a process. For instance, if you include in your list the
termns ‘To rent tapes’ and “To return a tape,’ the verbs
‘to rent’ and ‘to return’ are omitted from the list
because they are identifying the entire process, but
are not processes in the system. All verbs in the para-
graph are processes. Figure 11-16 shows the verbs
circled in the final paragraph.

Next, list verbs and identify their space. Remem-
ber, problem space identifies processes needed to
describe the problem but nof the solution; solution
space processes are needed to describe both the
probiem and the solution. Figure 11-17 identifies the
space of each process listing a reason for exclusion
of problem space items. The problem space pro-
cesses all refer to physical actions which are not
tracked by the application, The verb is complete is
the only nonprocess in the list. /s complete refers to

476 CHAPTER 11 Chbject-Oriented Analysis

1, ne to n videos for rental.
omer datz either antal or
<D retrievy an active réiTEt

3. Any outstanding video rentalsgra displayed>

with the amount dug on each tape and a
total amount due.

4. Bar code IDs for each t_aE

5. ¥ideo name and rantal price from inventory

re displayed;

6 When all tape 10s §fe enfered) the system

<GompuiaEhe rental Toral (= & past-due fees
+ ¥, olher fees + X currerd video rantal fees).

7. Mone and the amount
<5 gnieréidirio the systermn.
8. Change b (= amount enfered
— rental-total), ¢ edhand further

by' the clark as required.

9 When the clerk@ressesa rental-omplete’
aption key (o ke defined by the systemn),
this rental pleterand the vi i
fileq§ updateg¥decrease the count of avail-
able copies by ons}.

10. The Lema_ln

11, The gustomeGEignDthe rental form, akeskhe
tape, and q

To return a tape,

12. The video bar code IO nto the

system.

13, The rentalis displayaiand the tape
<i§ markegwith the date of retum.

an sefedpthe 'rental-complete’ option
(pdatePthe rental with the return
date andalculatéppast-due fees.

To add a customer:

15.ust0mer information.
1 6.u stomer,

Ta add a new video:
17 Enteiviceo information.
13.video inventory.

FIGURE 11-16 Paragraph with Verbs Circled for ABC Rental Processing

a rental status in the procedure which signals difter-
ent processing. This status i3 an attribute of the pro-
cess that we will deal with in the next step.

Next we name solution space processes, eliminat-
ing duplicates. Figure 11-18 shows the list of solu-
tion processes with names. The duplicate actions are
EnterBarCode, DisplayRental, DisplayVideoOn-
Rental, KetrieveRental, RetrieveVideoOnRental, and
WriteRentol.

Several actions deserve further comment. Sen-
tence 5 for tape rental says, *Video name and rental
price from inventory arc displayed.” This sentence
implies that name and prices are retrieved from
inventory, so the sentence should be modified to
reflect this action. Sentence 13 for tape return iy sim-

ilar in saying “The rental is displayed. . . ."” The rental
cannot be displayed until it is retrieved. The word
‘tape” in the same senlence is ambiguous. Does this
refer to the VideoOnRental or to Videoinventory? In
fact, both are affected by this action. The VideoOn-
Rental is vpdated with the return date and the Video-
fnventory is updated to add ome to a count of
available tapes (the opposite of the action in sentence
9). The sentence should be rewritten 1o reflect these
differences. The new sentence now reads:

13, The rental, related video(s) on the rental, and
video(s) in inventory are retrieved and displayed.
The return date 15 added to the video{s) on the
rental. One is added te the count of available
tapes in inventory. Inventory is updated.

Chbject-Criented Analysis Activities 477

Verb from

Paragraph Diaposition

select P—Customer physical
action—delate

is entered P—process (could be more mean-
ingful it called, e.g., read-
from-terminal)

to refrieve S—process

to create S—process

to retrieve S—process

are displayed S—process

are entered S5—process

are displayed S—procass

are entered status-attribute

computes S—process .

is collected P—Clerk physical action—delete

is entered S—process

is computed G—process

displayed 5—process

processed P—Clerk physical action—delete

presses P—Clerk physical action—delete

is complete status—attribute

is updaied S—process

is stored S—process

Varb from

Paragraph Disposition

printed S—process

signs P—Cusiomer physical action—
delste

fakes P—QCustamer physical actior—
delete

leaves P—Customer physical action—
delete

is entered S—process

is displayed S—process

is marked S—-process

are owed Rental status—attribute

can be paid P—aoptional physical action—
delete

can select P—Clerk physical action—
delate

updates S—process

calculates S—process

anter S—process

creale S—procaess

entet S—pracass

creale S—pracess

FIGURE 11-17 Process Dispositions for ABC Rental Processing

A similar ambiguity is present in sentence 14
which states that ‘amoumts . . . owed . .. can be paid.’
This process, can be paid, refers to sentences 68 in
the tape rental process. Because these processes are
present, we do not need to change the paragraph, but
we must reference those sentences so the actions are
clear. Sentence 14 now reads:

14. [f past-due amounts can be paid at this time
{(repeat sentences 6-8 above); else the past-due
fees are caleulated and the rental is updated.

This new sentence omits the extraneous informa-
tion previously present. Both the object list and the
process Hst are reevaluated to reflect these changes.
The verbs in sentences 6—8 are also reviewed to
ensure identical processing and are added in the
proper sequence to the process list. The old verbs are
replaced with ‘are calculated’ and ‘i1s updated.’ We
review that the nouns from sentences 6—8 and 14
are accounted for in the object list.

The last step is to review the sentences once
more, using the object list as reference to assign
objects to processes. Figure 11-19 shows the resolt
of this activity. The rule for performing this activity
is that any object that is read or acted on by this
process is identified.

All processes relating to multiple objects are
reanalyzed to determine if they are the same pro-
cesses. RetrieveRentalVOR is identified in the fig-
ure as requiring two actions which we discuss here.
The processes dealing with Rental and VOR take
information that is separate and process it as if it
were integrated, The Rental information identifies
the customer and the VOR describes a video, There
is one Renral per transaction and one VOR per video.
The question then becomes one of definition: Is it
necessary to maintain this Rerzal, or can it be added
to each VOR and eliminated?

As in the other methodologies, the Rental infor-
mation and the Customer information are essentially

4786 CHAPTER 11 Object-Criented Analysis

Verb from Paragraph Space Process Name Ob]écl Assignmant
is entared S EnterCustPhone

to retrieve 5 ReadCust

to create S CreateRental

to retrieve s RetrieveRental YOR
are displayed s DisplayRental VOR
are entered S EnterBarCode

are refrieve s RetrioveInvantory
are disptayed) DisplayInventory
computes) ComputeRentalTotal
is enterad 5 EnterPayAmt

is eomputed s ComputeChange
displayed 5] DisplayChange

is Updated s Updatelnventery

s stored 3] WriteRenta!

printed s PrintRental

FIGURE 11-18 Named Process List for ABC Video

duplicates. If the company operates on a cash
basis and simply needs to know videos cutstand-
ing for a customer, then we do ros need Rental. If
the company operates on an accrual basis and
needs (o be able to exactly reconstruct individ-
ual transactions, then we need Rental. Video rental
is a cash basis business; therefore, we do not need
Rentaf but we do need to carry its information
in VOR.

Next, we consider Vic's potential need to differ-
entiate between rentals for a customer or to main-
tain information beyond the rental’s life, Once again,
the software engineers return to Vic to find the
answer.

Vic: “1 have customers sign a copy of a rental and
I keep those. I use them to resolve disputes, to
find errors, and to provide accounting records,
I don't care how vou idennfy rentals because
I don't have a need, at the moment, for any

analysis. | would like to add trend analysis in
the future.”

From this discussion, we know there ts no busi-
ness requirement to separate the two objects. A side
issue to the decision is whether separation or join-
ing of the objects impacts processing time. For ABC,
there is no process time impact. If there were an
impact, we would probably opt for the faster solu-
tion. We could chooese consolidation of VOR and
Rental 10 simplify processing. In this case, Rental
would be removed from the list and declared in the
object list as =VOR. Another option is to leave it as it
is. A third option is to think about Rental as Trans-
action since attributes, such as TotaldmountDue,
apply to a specific grouping of videos for a customer
at a point in time. There is no ‘right” answer to this
question, and we do not have enough information to
make a final decision although transaction sounds
like an idea we will need in design. For now, we will

Object-Criented Analysis Activities 479

Verb from Paragraph Space Process Name Object Aggignment

is entered S EnterBarCode

is retrieved S RetrigveRental VOR

is dispiayed 5 DisplayRental VOR

15 added 3 AddRetDateVOR

is added 5 Add1toVinv

is updated 5 Updatelnventory

can be paid S =ComputeRentalTolal
=EnterPayAmt
=CompuieChange
=DisplayChange

are calculated 5 ComputelateFees

is updated 5 WriteRentalVOR

enier 5 EnterCustomer

create S CreateCustomer

enter 5 EnterVidealnventory

create 5 CreateVideolnventory

FIGURE 11-18 Named Process List for ABC Video (Continued)

change the name of Rental to TempTrans 1o reflex
this thinking and will revisit the need for this class/
object again during design. There are no other

multiobject processes. The final process list is Fig-
ure 11-20,

Define Attributes of Objects
Rules for Defining Object Attributes

An attribute is a named field or property that
describes a class/object or a process. Each objectis a
collection of attributes which take on values. A set of
specific atiribute values describes an object or
instance. Each object is identified by a primary key
which is a unique set of values comprised of one or
more attributes. A primary key in object-orientation
may not actually be used to identify stored objects;
physical addresses are most often used.

To define the attributes of an object, we identify
all of the information about obiects. First, atiributes
that were set aside during object definition are
now assigned to a class/object. All items from the
original object list that we deleted because they were
attributes are now listed with the class/objects
they describe.

The original description of the project is
rechecked to identify any adjectives or adjectival
phrases describing nouns that are now objects in the
solution space. In our case, we reread Chapter 2’s
description of the case and rewrite any attributes
identified there that are missing from the ebject list.
These attributes are added to the list.

Next, evaluate the rewritten paragraph to find any
data requirements underlying what is stated in the
paragraph but not already known, For instance, a sta-
tus is implied in the statement 'Retrieve all open
rentals.” The adjective ‘open’ implies a status of
open/closed. Any gualified class/objects should be

480 CHAPTER 11

Chject-Oriented Analysis

Verb from Paragraph Space Process Name

is entered 5 EnterCusiPhone

ta retrieve s AeadCust

to create 3 CreateRental

to retrieve 3 RetrieveRentalVOR
are displayed 5 Display RentalvOR
are entered 3 EnterBarCode

are retrieved) Retrievalnventory
are displayed S8 Displaylnventory
compules S ComputeRentalTotal
i5 emered s EnterPayAmt

is computed S ComputeChange
displayed 3 QisplayChange

Object Assignment—Action

Actions are {R)ead, {Write, Dala
Entry {DE}, (D)isplay (Pjrocess in
memary, {PR)int

Cuystomer {DE)
Customer
Rental (R}

Rental {R), VideoOnRental (VOR,
R), {(NQTE: This requires twe dif-
ferent actions because the primary
keys and read processes are dif-
ferent. We are keeping these to-
gether for now for simplicity. All
processes marked . . . Rental VCOR
fit this requirsment.)

Rental, YOR {0}
VOR (DE)
Videolnventory {R}
Videolnventory (D)
Rental {Process)
Rental (DE}

Rental {F)

Rental (D}

FIGURE 11-19 Class/Object Assignments to Processes for ABC Video Processing

evaluated to determinc if the qualification is identi-
fying an attribute. When evaluating the paragraph,
ask what information is needed to perform, docu-
ment, or track each action taken. When you identify
new information, create attributes for each piece
of information.

Next, normalize each set of attributes to third nor-
mal form (3NF}.” For any newly normalized sets of
objects, any process-object encapsulations should be

5 Recall that narmalization inchudes the following:
INF—Removal of repeating groups of information
2NF—Removal of partial key dependencies
INF—Removal of nonkey dependencies.

If you have problems with this activity, refer to Chapter 5 1o
refresh yoursell on this activity.

reexamined to determine that they encompass both
the original object and new objects resulling from
the normalization process.

When al! atfributes are listed with an object, iden-
lify a primary key identifier. A primary key provides
a unique identification for the object and is com-
posed of one or more attributes. Compare objects lo
determine if any have identical primary keys. If the
answer 15 ves, consolidate the objects, or change the
object with the incorrect primary key. Now, lel us
walk through attribute identification for ABC.

ABC Video Example Object Attribute List

All items from the original object list that we deleted
because they were attributes are first listed with the

Object-Oriented Ancglysis Activities 481

Verb from Paragraph Space Process Name Object Assignment—Action
is updated S UpdateInventory Videc|nvantory (F)
is stored] Write Rental Rental, VOR (W)
printed s PrintRental Rental, VOR {PR)
is entered k) EnterBarCode VOR (DE)
is retrigved S RetrieveRentalYQR Rental (R}, VOR {R)
is disptayed S DisptayRental VOR Rental {D}, VOR {0}
is added s AddRetDateVOR VOR (P)
is added 5 AdditoViny Videolnventory (F)
is updated S Updatenventory Videolnventory (W)
can be paid s =ComputeRentalTotal

=EnterPayAmt

=ComputeChange

=DisplayChange
are calculated s ComputelateFees Rental (P), YOR (P)
is updated S WriteRental VOR Rental {W), VOR (W)
entar S EnterCustomer Customer {DE}
create 5 CreataCustomer Customer (W)
anter s EnterVideclnventory VidecInventory (DE}
creats 5 CreateVideolnventary Videolnventory (W)

FIGURE 11-12 Class/Object Assignments to Processes for ABC Video Processing (Continued)

class/objects they describe. We refer to Figure
11-14 to find those items. A partial list of the attri-
butes from our paragraph is shown in Figure 11-21.

Nexi, we review the Chapter 2 description of the
case and rewrite any ateributes identified there that
are missing from the object list. These attributes are
added 1o the list as shown in Figure 11-22.

Nexit, we reconsider our paragraph to find any
hidden attributes that are implied by other informa-
tion such as statuses. We have open and closed
rentals, but we might not require a specific attribute
for the status. We know a rental is open when it has a
RenralDate without a ReturnDare, or when it has late
fees owing. We can check those attributes in lieu of
carrying a specific RentalStatus attribute. Keeping
this attribute requires a judgment call. If junior peoa-

ple are doing the programming, a RentalStaius
attribute is simpler. If senior people are doing the
programming, either method is acceptable, As a mat-
ter of choice, we will carry the RentalSratus to make
sure that future maintenance programmers can also
easily understand the processing.

Figure 11-23 shows the initial attribute list for
each object. We evaluate each, in turn, to determine
its completeness and primary key.

Customer® appears complete in its information
required to perform rental processing, VideoOn-
Rental is considered next. We know we need a

& Note that if Renta! had been retained, it would have had the
same primary key as Order and would have been climinated
in this step rather than the earlier one,

482 CHAPIER 11

Object-Criented Analysis

Verb from Paragraph Space Process Name Object Assignment—Action
Actions are {Rjead, (Wirite, Data
Entry {DE}, (Diisplay (P}rocess in
mermaoty, {PRYint

is enterad S EnterCustPhone Customer, Data entry (DE)

to retrieve 8 ReadCust Customer

to create 8 CreateRental TempTrans (R}

ta retrieve S RetrieveRentalvOR TempTrans{R}, VideoOnRental
{VOR, R}

are disptayed S DisplayRentalVOR TempTrans (D}

are antered 5 EnterBarCode TempTrans {OE)

are refrigved 3 Retrievelnventory Videolnventory (R)

are displayed 5 Displayinventory Videolnventory (D)

computes S ComputeTermpTransTotal TempTrans (Process)

is entarad 8 EnterPayAmt TempTrans (DE)

is computed s ComputeChange TempTrans (F}

displayed =3 DigplayChangs TempTrans (D}

is updated S Updatelnventory Videolnventory (P}

is stored s WriteVOR VOR (W)

HGURE 11-20 ABC Final Process List

Customer Phone to tie rentals to customers and a
Video ID to tie rentals to inventory. From Chapter 2,
we also need rental and return dates. The question
is how much fee information we need. Vic supplies
the information that he needs to know that regular
fees, late fees, or other fees have been paid and the
amount of the fee. Therefore, we add those attributes
to the list and it also appears to be complete.

The Videolnventory is not normalized. While we
are normalizing, we can also evaluate the impact of
Vic’s nebulous desire for promotions on inventory
objects. Refer to Figure 11-23s list of the fields and
definitions relating to videos in inventory. Repeating
information is indented. Primary keys of each part of
the information are underlined. The 3NF result of
normalization is four relations (see Figure 11-24):
VideoInventory, BarCadeVideo, VideoPromo, and
PromaVideo.

The distinct definition of VideaPromo means we
can omit it after this analysis because promotions are
a future requirement. The separation of BarCaode-
Video from Videolnventory means we need to reeval-
uate the object and process lists to define related
changes. Since Videolnventory and BarCodeVideo
are always accessed together, we can just add Bar-
CodeVideo to the lists anytime Video/nventory is
present. We may want to consolidate the two objects
tater in the design, for convenience of processing, if
we can accommodate repeating information.

The final object attribute list is shown in Figure
11-25 and omits the VideoPromo Promo Type
objects as discyssed above. The attribute list shows
the class/objects with their attributes. The process-
object figure is corrected to reflect the new Bar-
CodeVideo classfobject. The objects are all INF and
appear complete for ABC rental processing.

Object-Criented Analysis Activities

483

-
Verb trom Paragraph Space Process Name Ubject Assignment—Action
printad PriniTempTrans TempTrans (PR}
is entered EnterBarCode TempTrans {DE}
is retrieved RetrieveVOR TampTrans, VOR {R}
Videolnventary (R)
is displayed s DisplayTempTrans TempTrans {D)
is added S AddRetDateTempTransVOR TempTrans (P}, YOR (P}
is added S AdditoViny Videalnventory (P)
is updated 5 Updatalnventory Videolnventory (W)
can ba paid L =ComputeTermpTransTotal
=EnterPayAmt
=ComputeChange
=DisplayChange
are calculated 8 ComputelateFees TempTrans {P}, VOR (P}
is updated) WriteVOR TempTrans, VOR {W)
enter 3 EnterCustomer Customer (DE}
create s CraateCustomer Customsr (W)
enter S Entervideolinventery Videolnventary (DE)
craate 1 CreateVideolnventory Videolnventory (W)

FIGURE 11-20 ABC Final Process List (Contintued)

inference limitations; for example, a prerequi-
site of video rental is that all late fees must
be paid).

Define Attributes of Processes

Rules for Defining Process Attributes

Attributes of processes define formulae, constraints,
or status processing performed by or on processes
in the application being developed. In particular,
process attributes define:

The steps to define process attributes are similar
to those for object attributes,

1. Assign attributes which were set aside dur-
ing ohject or process definition to a ¢lass/
object.

. Review the original problem description and
any notes from data collection to find
attributes.

. Review the summary paragraph to find
implied attributes, such as statuses a process
can take,

= how the process is performed in the system
(that is, formulae performed by the process,)
for example, the formula computing change
for a video rental)

s status changes resulting from the process exe- 3
cution (for example, a customer changes from
an overdue status to a current status when late

fees are paid)
» constraints on the process (that is, prerequi-
site, postrequisite, ime, structure, control, and

We use the original description of the problem and
the paragraph to determine process attributes.

484 CHAPTER 11 Object-Criented Analysis

Object Name Attribute Name

Customer CustomerPhone

CusiomerPhone
BarCodeld
ReturnDate
LateFeesDue
TotalAmiCue
TotalAmiPaic
Change

TempTrans

VidecQOnRental CustomerPhane
BarCodeld
ReturnDate

LateFeesDue

VideoName
RentalPrice
VideoCountOfCopies
BarCodslD

Videoinventory

Both of these solutions might be acceptable, but
the first places the prerequisite that “all rental fees be
up-to-date’ on the customers. This requirement is
slightly different than ‘all late fees must be paid
betore new rentals.’ The difference is in how late
fees are defined; that is, do customers incur late fees
when the due date is past the current date or when a
video is returned and it has been kept out past the
expected return date? In keeping with Vic's edict of
the least bureaucracy placed en the customer, the
latter definition would be preferred, and he verifies
this preference. With this discussion, let us turn to
defining the attributes for ABC Video.

FGURE 11-21 A Partial List of Attributes
from the Paragraph

Status attributes identify state changes due to a
process’s successful completion. The status attri-
butes will, during design, be assigned to a class/
object. The purposc of identifying them with pro-
cesses is that they are more abvious and less likely to
get lost.

The constrainis are identified to ensure that the
procedural code generated during design includes
the constraints. The formulae are included as process
attributes because they provide some of the logic
detail that is also included in the process design.

One inadvertent consequence of process attribute
identification can be the definition of artificial con-
straints on processes. For instance, in the ABC
Video rental process, we know that customers must
return and pay for prior rentals before taking oul new
rentals, But consider this situation:

A customer has several tapes on loan. The customer
returns all but one video and wants to rent two others.
The customer could pay for all past renals, the new
rentals, and late fees up to the current date for the tape
still on loan.

Or the customer could pay for all past rentals and
the new rentals. The remaining tape, because it is not
retumned, is left unchanged,

Objact Name Attribute Name

CustemerPhone
CustomerLastName
CustemerFirstName
CustemerAddress
CustomerCity
CustomerState
CustomerZip
CustomerCraditCardType
CustomerCCNumber
CustomerCCExpDate
CreditRating
CustEnroliDate

Customer

CustomerPhone
BarCodeld
ReturnDate
LateFeesDue
TotalAmtDue
TotalAmtPaid
Change

TempTrans

CustomerPhone
BarCodeld
ReturnDate
LateFeesDua

VideoOnRental

VideoName
RentalPrice
VideoCountOfCopies
BarCodeld
TypeVideo

Vendor
DateReceived

videolnventory

Additional Attributes from

FIGURE 11-22
Chapter 2

Object-Oriented Analysis Activitles 4as5
Object Name Attribute Name Object Name Attribute Name
(Primary key is underlined, VideoOnRental CustomerPhong
Repeating information is BarCodeld
indented.) RentalDate:
FeegPaid
Customer CustomerPhone ReturnDate
CustomerLastName LateFeesDue
CustomerFirstNamea L ateFessPaid
CustomerAddress FessDue
CustomerGity FessPaid
CustomerState
CustomerZip Videolnventory VigegName
CustomerCreditCardType RentalPrice
CustomarGCNumber VideoFeleaseDate
CustomerGCExpDate VidenCountQfCopies
CreditRating TypeVideo
CustEnroliDate Vendor
DateReceived
TempTrans CystomerPhong PromotionType
TotalamtDue P onD
TotalAmtPaid PromeOfDate
Change PromoPrice
BarCodeld
RentalDate BarCodeld
FeesPaid BarCaodeRentalCount
ReturnDate BarCodeRentalDays
LateFeesDue
LateFeesPaid
FeesDue
FaesPaid
FIGURE 11-23 Imitial Object Attribute List for ABC Rental Processing

ABC Video Example Process Attribute
List

First, we list all processes down the left margin of a
page (see Figure 11-26). Then, we examine each
process to determine whether it is constrained in any
way. To identify constraints we return to the origi-
nal description of the problem and the final para-
graph to determine processing formulae, constraints,
and statuses,

The obvious process attributes are the formulae
used to compute rental total and to compute change,
Each of these are entered in the table {see Figure
11-26}. To ensure proper payment processing, a
postrequisite that Change be grealer or equal to zero
is defined. If this postrequisite is not met, payment
processing is performed again.

The first entry in the table for RetrieveRental-
VOR is a prerequisite that the Customer informa-
tion must be retrieved and a Rental able to be devel-
oped. If this process is not successful, it is due to a
new customer and the EnterCustomer process is
initiated.

Several status attributes which were set aside
during process identification are defined here. Two
statuses were identified for knowing when all
video data entry is complete and when all transac-
tion processing is complete. Both of these prerequi-
site statuses are listed with related processes in
Figure 11-26. Notice that for the constrained pro-
cesses, we listed the type of constraint and the
details of processing relating to the constraint.
Alsa, notice that many processes have no specific
attributes.

486 CHAPTER 11 Object-Oriented Andlysis
Unnormallzed Form TNF 2NF aNF Disposition
VideoName YidaoName
RentalPrice RentalPrice
VideoReleaseDate VideoReleaseDate - — Videoinventory
VideoCountOfCopies VideoCountOfCopies
TypeVideo TypeVideo
Vendor Vendor
DateReceived CateReceived
Pr ign T YideoName YideoName
PromeOnDate ErpmotionTyps BromotionType — VideoPromao
PromoCffDate EromoOnDate BromoOnDate
PromoPrice PromoCitDate
PromoPrice
PromotionType
PromoQOnDate
PromoQOfiDate —_— FPromoType
PromaPrice
BarGodeld YigaoName
BarCodeRentalCount BarCodsld
BarCodeRAental Days BarCodeRentalCount Y — BarCodeVideo
BarCodeRentalDays

FIGURE 11-24 Normalization of ABC Inventory Information

Perform Class Analysis

Rules for Analyzing Classes

This siep is conceptually one of the more difficult
steps in object-oriented analysis. It is also crucial to
defining the class relationships properly. You have
already learned to define entities, relationships,
and class hierarchies in Information Engineering,
so many of the ideas are not new. What is new is
the notion that not just data is inherited: Both data
and processes are inherited and considered in
this analysis.

The goal is to define classes of class/objccts
and their relationships. A class defines the attri-
butes and processes that are shared by one or more
class/objects. All objects are members of at least one
class. When multiple objects share attributes, or
share processes, we extract the attributes and pro-
cesses in common, and create a superset class, The
important issue is to ensure that the class does, in
fact, relate in exactly the same way to all of the mul-

tiple classfobjects. The class has no objects of
its own; it is simply identifving shared data and
processes.

Classes are similarly evaluated for commonly
shared attributes and processes to create layers of
classes. The notation for such a relationship is simi-
lar to that of an entity-relationship diagram with
directed arrows indicating the direction of the rela-
tionship and small numbers indicating the cardinal-
ity (i.e., number) of the relationship (see Figure
11-27). Recall that cardinality can be ane-to-one
(1:1), one-to-many (1;m), or many-to-many (m:n}).

To instantiate means to define the values of a
specific cccurrence of an object. (Keep in mind that
processes are the same for all instances.) For exam-
ple, the class/object Customer has cne instance
object for each customer. At the analysis level, an
instance is analogous to a tuple in a relation or a
record in a file. In an order entry example, itlustrated
in Figure 11-28, Customer class has no specific data;
it is an abstract class. The Cust class/fobject instanti-
ates, that is, defines the data values for the customer

class. The Order classfobject inherits the data and
processes in the Cusiomer class.

Inheritance relationships identify shared data and
processes. The object at the arrow-headed end shares
or inherits from the other object. Inheritance
relationships identify hierarchical networks of
relationships.

Booch [1991] also recommends the design of
classes for class/objects whose data or processes are
used by another class/object. For instance, an order
uses information about inventory items. Therefore,
another class would be created shared inventory
information (see Figure 11-29). This notation is the
same as for general classes,

A fifth type of class, a meta-class, can also be
defined, but is usually developed during design. The

Object-Orented Analysis Activities 487

meta-class relationship defines a class whose in-
stances are themselves classes. For instance, cus-
tomers contain CustomerName which defines a
subclass ‘character string,” which defines a subclass
‘character.” Customer is a meta-class representing is
character string contents. In general, afl classes and
class/objects from analysis are meta-classes that are
glaborated during design.

Coad and Yourdon [1990] recommend looking
for classes by evaluating each class/object for special
cases and creating generalization classes [or spe-
cialization classfobjects. For example, cash and
credit customers might be specialized class/objects
of the general class customer (see Figure 11-30).
Coad and Yourdon customize their notation for
generalization-specialization relationships, although

Objeci Name Attribute Name
{Primary key is underlinad,
Repeating information is

indented.}

CustomerPhone
CustomerLastName
CustomerFirstName
CustormerAddress
CustomarCity
CustomerState
CustomerZip
CustomerCreditCardType
CustomerCCNumber
CustomarCCExpDate
CreditRating
CustEnroliDate

CustomerPhone
TotalAmiDue
TotatAmtPaid
Change

CustomerPhone
BarCodeld
RentalDate
FeesPaid
ReturnDate
LateFeesDueg
LateFeesPaid
FeesDue
FeesPaid

Custorner

TempTrans

TempTransDetail

Aftribute Name
LustomerPhone
BarCode|d
RentalDate
FeesPaid
ReturnDate
LateFeesDue
LateFeesPaid
FeesDue
FeesPaid

VigeoName
RentalPrice
VidenReleaseDate
WidecCountOfCopies
Typavideo

Vendor
DateReceived

VigeoName
BarCodeld
BarCodeRentalCount
BarCodeRental Days

Object Name
Video(OnRental

Videolnventary

BarCodeVideo

FIGURE 11-25 Final Object Attribute List for ABC Rental Processing

Retrieve RentalVOR

DisplayTempTransVOR
EnterBarCode

Retrieve Inventory
Displayinventory
ComputeRentalTotal
EnterPayAmt
ComputeChange

DisplayChanga
UpdateInventory
WriteRental

PrintTemp Trans
EnterBarCode
RetrieveRentalVOR
DisplayTremTransVOR
AddDate ToVOR
Updatelnventary

488 CHAPTER 11 Object-Orlented Analysis
Process Attribute
EnterCustPhane
CreateTempTrans

Prerequisite: CreateTempTrans process must be successful to continue rental process-
ing. ! not successtul, goto EnlerCustomer pracess.

Status: Bar code entry finished.

Postrequisite: All rentals are entered.

Formula = L ateFeesCue + EVideoPrice by CustomerPhone

Formuyla = TotalAmountDue — Telal Amt Pd by CustomerPhone

Postrequisite: Change must be > zero to sucesssfully complete this process. if change
< Zerp repeal payment process.

Prerequisite: TotalAmountDue=zero, and processing is complate.
Prerequisite: TotalAmountDue=zers, and processmg is complete.
Prerequisite: TotalAmountDue=zero, and processing is complete.

Status: Bar code entry finished.

=ComputeTempTransTotal

=EnterPayAmt
=ComputeChange
=DisplayChange

Write Rental
ComputerLateFees
EnterCustomer
CreateGustomer
EnterVideo|nventory

CreateVideolnventory

Formula = %, LateFess by CustomerPhona

FIGURE 11-26 Process Attribute List for ABC Rental Processing

Object-Qrignted Andilysis Activitios 489

Line Type Relationship

@ Uses

Instantiates—Same data type

Instantiates—Ditlerent data type

- fnherits—Same data type
F - Inherits—Different daia type
N
Meta-Class
7
Cardinali N Relationst
1 FRequired
a1 Optional
om Opticnal
1m Required

FIGURE 11-27 Relationship Types and Cardinatity for Object Class Diagram

it is not necessary to do so unless using their CASE
tool. Figure 11-30 shows two alternative general-
fzarion-specialization notations.

Coead and Yourdon also recommend that classes
be created to express whole-part relationships. For
example, in manufacturing, finished goods are
assemblies of other goods; the whole class might be
for the finished product, while the part classfobjects
define each component (see Figure 11-31). Again,
Figure 11-31 shows two notations, a customized ver-
sion of whole-part as expressed by Coad and Your-
don, and the more general notation used in manual
drawings and other CASE tools.

To summarize, we have five types of relationships
that we evaluate for specifically. First, we lock for
shared attributes and processes across class/objects
to define inheritance classes. Then we evaluate the
classfobjects for specialization and for component
part relationships. Next, classfobjects which use the

attributes or processes of another class/object are
identified to create a class for the common class/
object items. Finally, we define meta-classes as
abstract classes whose instances are themselves
classes.

To create less cluttered diagrams, elevate the
highest independent class or class/object on each
diagram 1o define subjects. A subject is the most
abstract class represented in an application. The pur-
pose of subjects is to provide a summary identifier
that represents the cluster of subordinate relation-
ships which inherit from the class (see Figure 11-32).

Finally, we reevaluate and, as necessary, redefine
both process-object assignments, class, and class/
object definitions again. We reevaluate to ensure
that all definitions accurately reflect the applica-
tion requirements, and are ‘clean,’” that is, all
processes relate to all data with which they should he
encapsulated.

490 CHAPTER 11 Object-Oriented Analysis

Cust

Class/Object

| Customer Class

Order

Class/Object

FIGURE 11-28 Order Entry Example of Customer Class

ABC Video Example Class Analysis

The class diagram for ABC renial processing is
fairly simple (see Figure 11-23). First we draw the
object classes: Customer, VideoOnRental, Video-
Inventory. BarCodeVideo, and TempTrans.

Next, we evaluate the relationships between
them. Referring back 1o the attribute list, we see that
VideoOnRental (VOR) contains information from
Customer, BarCodedVideo, and Videolnventory. The
question is, Is this an inheritance relationship or a
using relattonship? In other words, are the data and
processes also shared by VOR or does it simply use
the data? The answer is found in the process
descriptions. For all three classfobjects, if the object

does not exist while rental processing is going on,
the rental class/object is supposed to be able to add
new customers and new videos. Therefore, the pro-
cesses for adding and reading the information from
all three classfobjects are shared and should be
inherited. If VOR simply used the data, the using
relationship would have been more appropriate.
BarCodeVideo, Video-Inventory, and Customer are
drawn as classes because they will not actually store
data. They manage the shared processes.

Next, we consider the relationship of VideoOn-
Rental (VOR) to TempTrans, There is considerable
overlap since VOR gets all new objects from Temp-
Trans, and TempTrans gets all information about
open rentals from VOR. In this example, neither can

Cbject-Oriented Analysis Actlvities 491

(T T
:{ Customer Class

Customer G/O

Inventory

FIGURE 11-2¢ Example of Using Class

inherit the processes of the other. Since thev both use
each other’s data, they have reciprocal using rela-
tionships which are expressed in the diagram (see
Figure 11-33).

Then, we create new classfobjects for attributes
and processes not shared or inherited by VOR (see
Figure [1-34).

Next, we consider the relationship between Bar-
CodedVideo and VideoInventory. VideoInventory
defines the characteristics of a group of inventory
items. For instance, there will be one object with the
value Terminator 2 in the Video Name, but there
might be many BarCodedVideo objects which refer
to that name. That is, there are many copies of the
movie, each with its own bar code. Therefore, the

characteristics of VideoInventory appear to be in-
herited by BarCodedVideo.

Next, we ask if the processes of VideoInventory
also apply to BarCodeVideo. For instance, when we
add a BarCodeVideo, do we need to know or do pro-
cessing for Videolnventory? One attribute of Video-
inventory, a count of the number of videos in stock,
is created and updated every time VOR is created or
used during rental processing. Therefore, a class for
VideoInventory that includes the attribute(s) and
processes that are shared is required. Now we have
two classes dealing with Videolnventory and one
class/object that will contain the data. The diagram
reflecting these final data and processing require-
ments is shown in Figure 11-34.

492

CHAPTER 11

Object-Oriented Analysis

Generalization
Customer

Bpecialization
Credit Customer

Adapted from Cead and Yourdon {1990).

Traditional Notation

Credit Customer

Specialization
Cash Customer

Customer

Cash Customer

FIGURE 11-30 Example of Generalization-Specialization Classes

Draw State-Transition
Diagram

Rules for Drawing a State-Transition
Diagram

A state-transition diagram defines allowable
changes for data objects. Specifically, for each
change of data content for an object, we identify the
initial state, the event that causes the change, the
process by which the change occurs, and the result-
ing state. A stale is a set of values an object can have

while a transition is an event causing a change to
the set of values.

There are two subtly different types of state-
transition diagrams known as the Mealy model and
the Moore model. The Mealy model defines all staie
changes and associates each with an action; it is used
in this text. The Moore model defines all actions and
associates each with a state. Theoretically, both mod-
els lead to the same definitions, they take different
perspectives. For novices, the Mealy model is sim-
pler because it is easier to identify and verify state
changes than it is to identify and verify that all
actions are present.

The icons used in drawing a state transition dia-
gram are shown in Figure 11-35 as a circle and
directed line. The rules for developing a state-
transition diagram are as follows:

1. Draw one diagram for each objcct/class and
each class.

2. Identify the possible states the class/object
can take.

3. Draw circles on 4 diagram labeling each with
a state.

Object-COriented Anclysis Activities 493

4. Connect the states to show transition from
onc statc to another, Use directed arrow lines
to show the direction of state change (i.e.,
from . ..te...). Each state should lead to
one or a small number of other states.

5. Label the transition lines to identify the
events that initiate the change. Write the
event names above the lines.

6. Label the fines with the processes that man-
age the event. Write the process names under
the lincs.

Whole
Toagter

Part: Coil

Part: Chassis

Part: Elevator

Adapted frorn Coad and Yourdon (1990}

Traditianal Notation

Elevator

FIGURE 11-31

Example of Whole-Part Class

494 CHAPTER 11 Object-Orentad Analysis

Product
Composition

Cusiomer

Inventory

FIGURE 11-32 Example of Subject Diagram

7. Examine the diagram. If there are any recur-
sive state changes, reanalyze that part of the
diagram in mere detail to remove the recur-
sion or to specifically label the state and its
processes as recursive.

&. Walk through the diagram with other team
members until it is complete and accurate,

The circle identifies the states of the object. Directed
lines signily transitions and lead to the resulting
state. The event causing the transition is written on
top of the directed line. The process that changes

the state is written under the directed line. The
names of states should be unique, but the names of
events and actions need not be unique if they, in tact,
relate to mere than one state. Events can spawn more
than one process. Conversely, object states can
require more than one event to be changed. If many
events are required to initiate a state change, they are
shown with separate lines leading to the state. If
any of several events can initiate a state change, the
lines converge into one line entering the state. Each
class and class/object in an application has a state-
transition diagram developed for it.

Customer

Add, Read

Videolnveniary

Add, Read

BarCodeVYideo

TempTrans

i

YideoOnRental

Adid, Read

FIGURE 11-33 (lass Diagram for VideoOnRental

Object-Criented Analysis Activities

495

Customer

Add, Read

Videalnventory

Add, Read

Change, Delete

BarCodeVideo

Add, Read

il Change, Delete |

TempTrans

F

.
VideoOnRertal

BCVideo

Change, Delete

FIGURE 11-34 Class Diagram for ABC

State-transition diagrams are optional represen-
tations in object orientation. They are useful for
diagramming the behavior of systems with

= muitiple message types
= complex processes
= synchronization requirements.

Different diagrams, such as fence diagrams,’ are

often substituted for state transition diagrams when
there are less than 20 states.

7 See Martin and McClure, 1985, for a further discussion of dif-
ferent substitute representations.

T

Circles are used for class/cbject states

Directed arrows are used for transitions

FIGURE 11-35

Icons Used in State

Transition Diagrams

496 CHAPTER 11 Object-Oriented Analysls

ABC Video Example of State-Transition
Diagram

The steps to developing a state-transition disgram
are to draw ¢ircles for each state that an object can
take. Then connect the circles with lines showing
which states lead to which nexi-states. Label the
lines with the event triggering the change on top and
the associated process from the application under the
line. Rental VOR objects are the most complex in
the ABC Video rental processing task, so they are
discussed here. Development of state transition
diagrams for the other objects is left as a student
exercise.

In its most simple form, a rental is either open or
closed (that is, no rental). So, the first iteration of the
state transition diagram will begin with those two
states, The high level diagram 1s in Figure 11-36. For
each path between these two states, we ask ourselves
the guestion, What causes the change? First, what
causes the change from no rental 10 an open rental?
Open rentals are created when a customer requests
a renfal; this is the event for the line from no rental
to open rental, The process accormpanying this event
is to create an open rentai.

Second, what causes the change from open rental
to nto rental? Return of the video{s) and payment of
late fees can cause an open rental to be closed. There
are twe events in this statement, so now we ask our-
selves about the events' timing. Are all returns and

payments performed at the sume time? If not, what is
different about them? From the description of the
rental process, we know that returns can be made
without any payment taking place. S0. we separate
these events.

Consider returns first. When a video return takes
place, what process 1s performed? The answer is that
we update the rental with the return date. The rental
does not change from open to closed when a return is
performed, however; so, we draw a recursive line
from open rental o open rental and mark it with the
event and process. This recursive fine identifies a
need for another level of detail on rental states
because each state should have its own circle for
clarity of expression.

Finally, we evaluate the other event, payment of
rental fees. This event causes a rental to become
closed. The directed line connects open rental to
nofclosed rentsl, the event is pay late fees, and the
process is close rental.

We already know we have to create another level
of detail to this diagram to be more specific about
return date processing, but we also want to evaluate
this diagram to sce what else is required. Does this
diagram account for gif rental states? The answer
is no. It does not account for situations when late
fees arc owed {in other words, if there 15 already
an open rental), and it does not account for updates
for fees paid. So, we redraw the diagram 10 include
these siates.

Closed
Customer
Rental

Pay Late Faas

Clstomer
FRequest

Open
Customer
Rental

Mark
Date
Return

S~ ~m 1

Close Order

FIGURE 11-36

High-Level State-Transition Diagramn for ABC Rental Processing

Summary 497

Al
Fees
Paid

Read Bar Code

Create
Temporary

Open VOR | Return

Rental Out or Late Fee Owad

Customer

R?

Returned,
Unpaid
YOR

Return,
Mo Late
Fees

FIGURE 11-37 State-Transition Diagram for ABC Rental Processing

In the revised diagram (see Figure 11-37), we
continue the thought process we used to draw the
first diagram while accounting for the details we
omitted from the first diagram. Now, we try 10 iden-
tify the states through which a rental proceeds from
its opening to its closing. The states are:

= open

= temporary, new rental in memory, until fees
paid

» unpaid, retwrned VOR may have late
fees

w paid, returned VOR

= closed rental with return date and all fees
paid

Next we draw the lines showing how each of
these states comes to exist. Notice that a customer
request triggers a search of open rental and will
result in cither the temporary rental status or the
add-on rental status, depending on whether or not a
rental for this client exists. The remaining events
are return-Rental and all fees paid,

AUTOMATED
SUPPORT TOOLS FOR
OBJECT-ORIENTED
ANALYSIS

Object orientation is less than five years old in its use
in business. Yet the number and variety of support
tools and environments available attests (o its grow-
ing popularity and legitimacy. The tools presented
here represent bath partial and complete support for
one or another method of developing object views of
the world (see Table 11-1). Many tools include code
generation capabilities which automatically generate
C++ or other object-oriented code objects from
the logical definitions provided in object analysis
and design.

SUMMARY

Object orientation is a methodology that alternates
evaluation between objects and processes to develop

498 CHAPTER 11

Object-Oriented Ancilysis

TABLE 11-1 Automated Support Tools for Object-Oricnted Analysis

Product

Company

Technique

DSEE, HF/Softbench

Excelerator

Object View

Cbject Vision

O0A Tool

ProMod

Software Backplane
Coheston

SW Thru Pictures

Teamwork

Teion

Visible Analyst

vs Designer

Apollo/Hewlett-Packard

Index Tech.
Cambridge, MA

Knowledge Ware
Atlanta, GA

Borland International

Object International, 1nc.

Austin, TX

Promod, Inc.
Lake Foresl, CA

Atherton Technology/

Digital Equipmenl Corporation

Maynard, MA

Interactive Dev. Env.
San Francisco, CA

CADRE Tech. Inc.
Providence, RI

Pansophic Systcms, Inc.
Lisle, IL

Visible Systems Corp.
Newton. MA

Visual Sollware Inc
Santa Clara, CA

Integrated CASE Product
Supporting OO Analysis

State-Transition Diagram
Matrix Graph (RTS)

Application Prototyping
Software Using 4GL
or SQL Code

Visoal Application
Development System
Coad's Tool Supporting
Object Analysis Using
Coas & Yourdon Graphics
Control Flow Diagram
State-Transition 1Jiagram

Muodule Networks
Function Networks

Integrated CASE Product
Supporting OQ Analysis

Control Flow
State-Transition DHagram

DFD

Control Flow
State-Transition Tiagram
Process Activation Table

Srate-Transition Diagram
State-Transition [Yagram

Booch Diagram
Visval RD Diagram
Ward-Mellor Diagram

a complete view of an application. Objects are enti-
ties to be automated. They are encapsulated with
processes which opcrate on them or which read
them.

Encapsulated class/objects may be identified for
crcation of reusable, normal, or polymorphic mod-
ules. Reusable modules perform the same action on

the same data type class/objects, bul are called by
more than one class/object. Normal modules per-
form onc action on data from one object. Polymor-
phic modules perform one action on data from many
objects of differing data types. Object-process
capsules arc cvaluated to determine their interrela-
tionships. The interrelationships usually describe a

hierarchic network of relationships for which the
lower-level capsules inherit both the data and pro-
cesses of the higher capsules. Encapsulated class/
objects with multiple relationships have multiple
inheritance from related higher capsules.

The declarative steps performed to develop an
cbject analysis include identification of class/
abjects, identification of processes, class and hierar-
chy definition, definition of attributes of operations,
definition of interobject messages, #nd class/object
state-transition definition. The procedural evalua-
tions within each step consist of questions to be
answered and actions to be taken based on the
answers to the questions.

REFERENCES

T T T a——

Berrard, E. V., An Ohbject Oriented Design Handbook for
Ada Saftware. Frederick, MD: EVB Software Engi-
neering, Ing,, 1985,

Booch, G., Object Oriented Design with Applications.
Redwooed City, CA: Benjamin/Cummings Publishing
Company, Inc., 1991,

Coad, P, and E. Yourdon, Object-Oriented Analysis,
Englewood Cliffs, NJ: Prentice-Hall, 1990.

Coad, P, and E. Yourdon, Qhject-Oriented Design,
Englewood Cliffs, NI: Prentice-Hall, 1991.

Graham, Tan, Object-Oriented Methods. Reading, MA:
Addison-Wesley, 1991.

Taylor, David, Ohject Orientation and Information
Svstems: Planning and Implementarion. NY: John
Wiley & Sons, 1992,

KEY TERMS —
abstract data type (ADT) mela-class

attribute Mowre model

class multiple inheritance

class hierarchy object

classfobject object-oriented analysis
client object part class

encapsulation polymorphism
generalization class primary key

inheritance private part (of a class/object)
instance problem space

instantiate process attribute

Mealy model public part (of a

message classfohject)

Study Questions 499

solution space superset class

specialization class supplier ohject

state transition

state-transition diagram user object

subject class whole class
EXERCISES ——

1. Complete the state-transition diagrams of the
ABC Video rental processing application. Walk
through the diagrams in class and discuss the
difficulties and alternatives you found in devel-
oping the state transition diagrams.

2. Perform an object-oriented analysis on the Eagle
Rock Golf League in the appendix, Develop all
lists, tables, diagramns, and pictures required to
document the requirements of the problem.

3. Split the class into three teams. Have each team
develop a second-level analysis of ABC Cus-
tomerOnVideo maintenance using object-
orjented analysis. Compare the resulting views
of the applicaticn.

4. Debate this assertion: Object orientation is more

likely than process or data methodologies to
lead to well-defined modules which antomati-
cally deal with problem complexity by hiding
information, being single-purpase, and having
minimal coupling.

STUDY QUESTIONS

i. Define the following terms:;

class meta-class
classfobject multiple inheritance
encapsulation object
inheritance

2. Describe the sequence of events during
analysis.

3. Compare the differences between the major

forms of documentation in structured analysis

and object-oriented analysis.

Compare the differences between the major

forms of documentation in information engi-

neering and object-oriented analysis.

5. Why is the summary paragraph in object-
oriented analysis so important?

E

500

10,

11.

13,

CHAPTER 11 Object-Criented Analysis

. Compare and contrast the definitions of

objects, processes, and encapsulated objccts,
List the documents and graphics created in
object-oricnted analysis and deseribe how they
are rclated to cach other.

What are the decisions you must make in
object-oricnted definition of object hierarchies?
Why arc they important?

What rules in ohject-oriented analysis simplify
quality control and review?

How do you determine that the allocation of
objects to processes is correct? What are the
questions asked, and why are they importani?
What is polymorphism? What is its importance
in object orientation?

Whal is the purpose ol a state-transition
diagram?

Describe the development of a state-transition
diagram.

14. What is the relationship between a state-

transition diagram and objects, processes, or
encapsulaied objects?

15. What is the purpose of a graphical class

1.

2.

diagram?

EXTRA-CREDIT QUESTIONS

What arc the rules for identifying objects? Can
vou think of others that might be useful?

The steps that use nouns and verbs to identify
objects and processes, respectively, have been
criticized as too simplistic. Can you think of a
different approach to identifying objects and
processes, perhaps borrowing from another
methodology, that improves on the process?

OBJECT-

CHAPTE

ORIENTED

DESIGN

INTRODUCTION

Object-oriented analysis defines classes and class/
objects, processes, and the assignment of objects (o
processes, resulting in encapsulated objects. In ob-
Ject-oriented design (QOD), we continue this analy-
sis of the problem domain to assign the encapsulated
objects to one of the four subdemains, clabarate
component definitions to include service processes,
design module interactions, and define the required
miessages and their typce.

CONCEPTUAL

FOUNDATIONS

Encapsulation and inheritunce are the basis for
O0D, just as they were for object-oriented analysis.
In addition, the scope of the thinking process is
expanded. The design approach is holistic, designing

ik

people, hardware, software, and data as the four
components of object-oriented systems.! As Figure
12-1 shows, the four components all relate to each
other and can all communicate with each other. This
design methodology makes a valuable contribution
o methodological thinking by integrating the com-
ponents, many of which are frequently ignored.
As multiprocessor computing, such as in client/
server, increases, this type of classification will be
required of any methodology. Object method devel-
opers have led the thinking about multiprocessor
applications because of the closeness between
object-oriented applications and operating systems
from which many concepts are borrowed.

00D explicitly uses an iterative approach to de-
tailed design that Booch calls “round-trip gestalt”
[Booch. 1991, p. 1881, meaning the incremental
development of whole applications. Each prototype

I This concept of fowr components is from Coad, Peter &
Edward Yourdon, Object-Oriented Design. Englawood Cliffs,
NI: Prentice-Hatl, 1992,

501

502 CHAPTER 12 Chbject-Criented Design

Hardware

Data

Human

Interface

Software

FIGURE 12-1 Object-Oriented Subdomains

is the entire application as currently defined. As the
prototype is examined, further details of operation
are explicated for incorporation in the next iteration
of the prototype. Following the format of previous
chapters, we first define terms used in the QOD
process, then move on to developing guidelines for
each step and an example of the step and thinking
processes for ABC Video’s rental application,

DEFINITION OF

OBJECT-ORIENTED

DESIGN TERMS

The seven steps to performing an object-oriented
design are:

1. Allocate objects to four subdomains, includ-
ing buman, hardware, software, or data,

2. Develop time-event diagrams for each set of

cooperating processes and their objects.

Determine service objects to be used.

Develop Booch diagrams,

Define message communications.

Develop process diagram.

Develop package (i.e., module) specifications

and prototype the application.

Hewmhw

In this section, we define the terms used in these
steps, again integrating and extending the work of

Boach with that of Coad & Yourdon. Keep in mind
that while the terms are fairly well-defined, the man-
ner and order of implementing the steps is not, The
documentation created by these steps is summarized
in Tabke 12-1.

In the first step, problem domain objects are
assigned to one of the human, hardware, software, or
data subdomains. The human subdomain dcfines
human-computer interaction in the form of dia-
logucs, inputs, outputs, and screen formats. A dia-
logue is interactive communication that takes place
between the user and the application, usually via a
terminal, to accomplish some work. A dialogue
defines actions of users and actiens of the application
and hardware. Inputs (i.e., data entry), outputs (e.g.,
reports), and screens are the three modes of com-
munication used for a dislogue. The task being per-
formed is usually a transaction relating to a business
event (e.g., sale of goods), but could also relate to
application-generated events, such as sensor read-
ings in process control or a data request in a query
application. A screen design alone is a static defini-
tion of field formats while the dialogue is a series of
interacticns that takes place via a dialogue.

The hardware subdemain defines cbject assign-
ment to physical processors or firmware.? The hard-

2 Firmware refers to soltware that is permanently on a program-
mahte chip and that processes significantly faster than
memory-resident software program code.

TABLE 12-1 Object-Oriented Design
Documentation
Tables

Process Assignment
to Object Table

Subdomain Allocation
Table

Message Table

Contains all solution space
objects and, for each, the
processes that act on the object

List of processes and
subdomain assignments

Contains, for each process,
the calling object, the called
object, the input message
contents, the output message
contents, and the object to
which control is returned

Diagrams

Subdomain Allocation
Diagram

Time-Ordered Event
Dagram

Booch Package
Dragram

Process Dhagram

Opiional graphical depiction
of process-subdomain
assipnments

Depicts required sequencing
of processes

Depicts objects and message
Hlow for the entire application.
Lower-level Boach diagrams,
one per processor, are created
to show ohjects and processes
with message flow.

Shows hardware configuration
and process assignment to
ProCessors

Definition of Object-Criented Design Terms

ware interface is significant as we develop applica-
tions using more firmware, mainframes augmented
by local intelligent devices, and distributed process-
ing. To support these types of processing, alloca-
tion of tasks to hardware must explicitly be part of
the methedelogy.

The software subdomain defines service con-
trol and problem-domain objects. Service control
objects, also known as utility objects, manage
application operations. Depending on the complex-
ity of the application, synchronizing, scheduling, or

503

multitasking services to control object/process work
might be required. Problem-domain objects are the
class/objects and objects (hereafter, both are referred
to as ohjects) defined during analysis and describ-
ing the application functions.

The last subdomain relates to data, which are the
actual instances of the objects in the solution set.
During the data design. data are normalized and
redesigned to accommodate operational efficiencies.
Depending on the ‘purity’ of the object implemen-
tation, the physical data storage may or may not
implement encapsulated data and processes in the
database. The most common variation of data stor-
age is a template definition that uses physical address
pointers 1o reference the physical data store for data
and processes. The template is analogous to the File
and Working-Storage Sections of a COBOL pro-
gram, but includes a process template as well as a
data template.

The second step for all processcs, regardless of
their subdomain assignment, is to develop time-
event diagrams. Time events are the business, sys-
tem, or application occurrences that cause processes
to he activated. Time-event diagrams show se-
quences, concurrency, and nesting of processes
across objects. The time-event diagram, then,
shows the relationships between processes that are
triggered by related events or have constraints on
processing time. Process relationships are either
sequential or concurrent, determining the types of
service objects required in the application. Processes
that are not concurrent are sequential and related
only by data or parameters passed between the pro-
cesses. Concurrent processes operate at the same
time and can be dependent or independent. Depen-
dent concurrent processes require synchronization of
some sort.

Above, we defined service control objects as
managers of application operations. The third OOD
step is to determine which service objects are needed
to control the application. There are three broad cat-
egories of service objects: synchronizing. schedul-
ing, and multitasking.

Synchronizing is the coordination of simultane-
ous events. Synchronizing objects provide a ren-
dezvous for two or more processes to come together
after concurrent operation (see Figure 12-2).

S04 CHAPTER 12 Object-Criented Design

Concurrent
Process 1

Concument
Process 2

Synchronizing
Process

FIGURE 12-2 Diagram of Synchronizing Object Functions

Scheduling 15 the process of assigning execution
times to a list of processes. Scheduling objects can
be for sequential, concurrent-asynchronous (i.e.,
independent), or concurrent-synchronous (i.e., de-
pendent) processes. In the terminology of COBOL,
scheduling objects are analogous to a mainline rou-
tine (see Figure 12-3), but the scheduler performs
many functions beyond those of a COBOL mainline.

Multitasking is the simultaneous execution of
sets of processes (see Figure 12-4). Each set of con-
current processes is called a thread of control.
These threads are initiated by the scheduling objects
and controlled by muititasking objects. Multitask-
ing objects track and control the execution of mul-
tiple threads of control and can be in both the
problem domain and the service control domain.
These three types of service control abjects provide
the structure within which problem domain objects
execute.

Service object definition is based on time-event
diagram analysis. If all ebjects are sequential and
used one at a time, then only scheduling objects are
required. If concurrent processing takes place, syn-

Get object

Get memory location
Store object
Enqusus object
Dequeus cbject

Set time

Chack time

Stop tirme

FIGURE 12-3 Scheduling Object Functions

chronizing and scheduling objects are used. If many
users are supporied concurrcntly, rmultitasking
objects arc added to the other types.

After service objects are identified, the next step
is to begin to develop a Booch diagram. A Booch
diagram depicts all objects and their processes in
the application, including both service and problem
domain objects. First, a draft diagram is created.
Then, several message passing schemes are evalu-
ated. After a message passing scherme is identified,
message contents are defined.

The basic graphical forms used are rectangles and
ovals {see Figure 12-5). Vertical rectangles signify a
whole package. A package in QOD is a set of mod-
ules relating 10 an object that might be modularized
for execution. Service packages are single purpose
and do not usually have subparts that are visible to
the rest of the application, Service objects have no
visible data, that is, no oval identifying a data part
to the object. Problem-domain packages have data
identifiers for objects and processes. The object in
the oval and the process names ate each in their own
horizontal rectangle (see Figure 12-5). In Figure
12-5, the lines connecting modules show allowable
paths for messages.

Next, messages are defined. A message is the
only legal means of communications between en-
capsulated objects. Messages are clear in their
intention, but not clear in their implementation
which is completely determined by the language. For
instance, at the moment, Ada does not implement
message communication. In this text, 2 message is
the unit of communication between two objects.
Messages contain an addressee (that is, the object
providing the process, also called a service object),
and some identification of the requested process.

Definition of Object-Oriented Dasign Terms

505

Multitask Manager
Scheduled Waiting Active
Trans1 Transd Trans6
Trans2 Transs ..
Trans4 Trans?

;II'Iransn

CPU—Agtive Task = Transé
Compute

Execute
Write...

FIGURE 12-4 Mulutasking Management of Multiple Threads

Messages may be unary, binary, or keyword (see
Figure 12-6). Unary messages contain only an
addressee and service identifier. Binary messages
contain addressee, service identifier, and two argu-

ments (that is, variable object names or addresses
upon which the service is performed). Keyword
messages contain addressee, service identifier, and
one or mor¢ keywords, each with an argument

Control Object

Initiate Process

Get Critaria

Format Data
Dispiay Data

FIGURE 12-5 Sample Booch Diagram—Simple Inquiry Process

506 CHAPTER 12 Object-Criented Design

Linary Message: Addressee

Service Identifier

I
Customer | Create

Binary Message: Addrassee Service Identifier

Arguments

L Order

ComputeTotal :

PastDueFees, CurrentFags

Keywork Message: Addressee

Service |dentifier

Keyword Expression(s)

T T
ServiceMod , DateTranslate lFieId=Dateln. DataType=Integer

FIGURE 12-6 Example of Message Types

to show optional proccss selection. Message defini-
tions probably will expand as languages capable of
expressing and processing object-oriented designs
develop.

The next step is to develop a process diagram
that defines the hardware environment and shows
process assignments to hardware, The first activity is
to draw a hardware configuration showing proces-
sors (shadowed boxes in Figure 12-7) and devices
{plain boxes in Figure 12-8). Lines connecting
pracessors identify allowable messuge paths. At this
summary level, multiple messages may travel
each path.

When the process diagram is complete, the Booch
diagram is divided and redrawn for each processor in
the configuration. These subdiagrams show the
extent of replication in the application and may iden-
tify new service object needs to control interproces-
sor communications. The message tist is reexamined
to ensure that all interprocessor messages are
accommodated and complete. For multiprocessor
applications, the timing of processes is reverified to
ensure correct definitton.

Using the information from the problem domain
analysis and the OOD diagrams describing object
interrelationships and timing, the next step is
o develop package specifications and prototype
the appkication. These are not the last steps in

the design, only the fast steps in an iteration of
the design process which may have several itera-
tions. As a result of prototype development, other
service abjccts might be recognized as needed.
Iterating requires review of all design steps and
redoing analysis as required to support develop-
ment of a complcte application prototype for each
iteration.

Package specifications define the public inter-
face for both data and processes for each object, and
define the private implementations and language to
be used. The public interface is that part of the datx
and process definitions visible to all objects in the
application. The private interface describes the
physical data structure and actual functions (i.c., data
manipulations, calculations, or control processes) to
be coded for the application, Multiple implementa-
tions of the same function that operate on different
data types might be required. The function that has
one name but multiple implementations is called
pelymorphic. Polymorphism, is the ability (o have
the same process, using one public name, take dif-
ferent forms when associated with different objects,

One item in a package specification is a definition
of the lahguage to be vsed. Process timing (i.e.,
sequential or concurrent) and a need for poly-
morphism determine the type of implementation
language required. Some languages are more con-

Cefinition of Object-Oriented Design Terms

507

Printer

PCO06 -
Gateway

P02 -
Manager
Query,

PCQO3 -
Gas Tank
Moniloring

Gas Purnp
Sensors

Gas Tank
Sansors

FIGURE 12-7 Process Diagram Example of Convenience Store/Gas Station Network

straining than others. To understand these language
differences, binding and client/server relationships
should be understood. Binding is the process of
integrating the code of communicating objects.
Binding of objects to operations may be static (fixed
at compile time), pseudo-dynamic (parameter
driven and decided at the beginning of a session), or
dynamic {decided for each object while the system
is executing, that is, at run time).

A major difference between object orientation
and other methodologies is the shifting of responsi-
bility for defining the data type of legal processes
from server (or called) objects to client {or calling)
chjects. A server object is one that performs a
requested process. A client abject is one that
requesls a process from a supplier. For instance, you
might need to translate a date from month-day-year
format to year-month-day format. As a client object,

you request the translation of the supplier object and
pass it the date to be transiated. If the language sup-
ports dynamic binding, you also pass the data type of
the date (for example, binary string or packed
matrix). This shift, to client/server logic, plus the
notions of inheritance and dynamic binding, support
the use of polymorphism.

Let’s refurn to the idea of binding and work our
way through these ideas and how they work together.
In most business applications, we think of processes
as always operating on the same type of data. For
example, ilems on an order have an order quantity
{for example, 2), quantity type (for example, each
or dozen), and price (for example, $1.20) that is
expected to match the quantity type. To compute the
line item total, we multiply quantity times price for a
given quantity type. But what if the type quantity is
not known beforehand and the formula must change

508 CHAPTER 12 Object-Oriented Design

based on the type? Then, we have three choices.
First, we could write many routines that are all resi-
dent in the compiled code as static binding requires.
This is the most common COBOL solution.

Second, we could write many routines that use
information passed (0 the computation procedure to
identify which routine to use for the session (for
instance, only dozens will be processed in one ses-
sion). This is called pseudo-dynamic binding (e.g.,
in Ada at the moment).

Third, we can write many routines and pass the
quantity type to the computing ohject in the request
messapge to dynamically bind and select the routine it
needs to compute the total (as in Assembler, C++,
or Smalltalk). Dynamic binding is done on-the-fiy
at run time. When the computation is complele, the
quantity type code no longer is kept in the com-
puter’s memory.

Binding time is a function of the language used
and the application’s requirements, If the appiication
is batch, single-thread, and sequential, there is no
need for any but static binding. If the application is
anything else {multithread, concurrent, real-time),
dynamic binding is desirable, but many languages
only support pseudo-binding. Then, the application
reguirements, in the form of business needs for
responsc time or process time, should drive the lan-
guage selection decision.

We no longer assumc that a called object can do
only one thing in only one way; instead, a called
object can do only one thing but it can do it in many
ways. This ability to do one thing many ways is
polymorphism. Polymorphic processes take different
forms when associated with different objects, but a
process afways takes the same form with a given
object. Clicnt-object message requests contain both
the process and the form of the process. The poly-
morphic process then loads its correct process code
to service the request via the dynamic binding mech-
anism of the implementation language. An example
of pseudocode for polyraorphic pairwise itern com-
parison is shown in Figure 12-8.

This discussien summarized the major terms,
diagrams, and procedural steps in object-oriented
design. Next, we discuss the steps of OOD in detail,
including altocation of objects to the subdomains,
developing time-event diagrams, determining ser-

Pairwise Compare—
Two Mumbers

FA=B
return-code = 1
8lse
return-code = 0.
Return return-code.

Pairwise Compare— *
Twao Matrices

Setsub =1

Set return-code = 0.

Perform compare
varying sub by 1
untif sub = 1st-entry.

Return return-code.

Compare.

If A{sub} nat = B{sub)
return-code =1,

Compare-exit. Exit.

FIGURE 12-8 An Example of Polymorphic
Descriptions for a Comparison Process

vice objects, developing Booch diagrams, devel-
oping process diagrams, and developing module
specifications. Prototyping is beyond the scope of
this text.

OBJECT-ORIENTED
DESIGN ACTIVITIES

In ABC’s rental application, we are using off-the-
shelf software in an off-the-shelf hardware environ-
ment. In the environment, the operating system,
network, database, and form of human interface are
all given. Because of our choices—PCs, MS-DOS,
Novefl Netware, and a SQL DBMS—the application
does not easily lend itself to objcct-oriented design
that assumes none of the services and functions pro-
vided in our target environment. Because of the dif-
ferences, we will discuss ABC at two levels: one for
SQL DBMS3 which becomes unobject-iike, and one
for a Unix/C++ environment that stays object-like.
First, we follow ABC through the process of design
keeping in mind that the off-the-shelf software will
be used. Think of this design as object-based, that
is, based on object thinking, but decidedly not
object-oriented in implementation. Object-based
design is what is practiced by mosi novice object-
designers, and is what most CASE tools being retro-
fitted for object orientation will be. In the chapter
appendix, we present a second design for a Unix/

C++ cnvironment that is completely object-oriented.
Without both discussions, the view of object orienta-
tion that you would get is not complete, and soine
of the discussions would be inaccurately stated for
object-criented design.

Allocate Objects to
Four Subdomains

Heuristics for Allocating Objects to
Human, Hardware, Software, and Data
Subdomains

The first step is to allocate the problem domain
processes to one of the subdomains: hardware, soft-
ware, data, and human interface. Each process and
the data it requires from its object’ are examined to
determnine whether they are best implemented as part
of the human interface, hardware, software, or data
subdomains. There is no particular order to the allo-
cation process. [t is recommended to allocate the
software domain last, because it is the default for all
processes not allocated elsewhere. Since these
implementation alternatives are usually not broken
apart by other methodologies, and since hardware is
wsually completely ignered, the consideration of
these subdomains and explicit allocation of objects
to them provides useful detail that is explicitly docu-
mented for maintenance. Also, since hardware
options are becoming more numerous and common
(e.g., automated teller machines have local intelli-
gence and some of the application code tor deposit
and withdrawal processing), this mechanism accom-
modates hardware and firmware in design decisions.

We will discuss data first, because current guide-
lines demonstrate some of the shortcomings of cur-
rent QOD writing. Booch suggests that standard
database activities should be assumed to be under
the control of the data domain, including create,
retrieve, update, and delete processes (i.e., CRUD).
All other data manipulations or computations are
allocated ‘somewhere else.” Coad & Yourdon, and
mast authors published after 1992, assume the vse of

3 Superset objects, class/objects, and objects are all assurned in
the use of the term ofyfecr.

Object-Oriented Design Activities 509

a DBMS and usually an object-oriented one that
includes the properties of persistence, inheritance,
and abstract object-oriented data definition. Some
authors assume use of an SQL-compatible databasc
with an equally unobject-like language, recommend-
ing that the data functions should be separated from
the application which will maintain its object-like
properties for all non-data operations,

Keep in mind that this is an inexact process that is
highly dependent on the implementation language
and the implementation envirgnment, For example,
if we were using Smalltalk, in which everything is an
object, separation of data access and manipulation
is usually more efficient than keeping the functions
all together. Conversely, if an QODBMS, such as
Gemstonc, were used, the DBMS object performs
the physical CRUD actions and the application
objects usually conirol the logical CRUD functions
that are grouped by obiect. The key idea is that judg-
ment on allocation of functions is required and needs
10 be done with knowledge of the entire implemen-
tation environment,

If the application needs to use a nonOODBMS,
then evaluating whether data integrity, security, and
aceess controls can be adequately maintained by not
using the DBMS language is required. If the appli-
cation can both perform the functions faster, and pro-
vide for integrity and so forth, then there should be
areal analysis of where the functions should be, The
application requirements for execution and response
time may force use of a programming language
when constraints are tight, and default to use of the
DBMS language when there are no constraints.

Table 12-2 sumnmarizes this discussion, showing
that allocatien of physical and logical read, write,
and delete actions and the control over security,
integrity, and access be tied to constraints and the
type of database environment used. 1f no DBMS is
used, the alternatives are either to allocate DBMS
functions 10 each object, or to design dara control
objects that perform DBMS functions, or to design
a polymorphic reusablc object that performs all
DBMS functions.

We said before that DBMSs illustrate the problem
of all authors in object-oriented design. For the most
part, OO authors do not work in commercial busi-
ness and do not build commercial applications; they

510 CHAPTER 12 Object-Oriented Design

TABLE 12-2 Heuristics for Data Allocation Processes

Type Database 00 00 Non-0O0O Non-00 None

Functional or response Y N Y N —

lirme constraints

Allocaie CRUD to DBMS Phys, All *Phys. Phys. —
*Log.

Allocate CRUD to Object Log. — *Phys. *Log. All

Or geneTic Log.

Allocate security, integrity — All —_ *All —

checking, access control

w DBMS

Allocate security, integrity *All — All *All All

checking, access control
to Object or create generic objects

Legend:

Phys, = Physical functions {tead, write)
Log. = Logical functions (edit}

= = Requires analysis and judgment
All = Physical and logical

Y = Yes

N = No

work in defense-related businesses and build real-
time, embedded applications which function as part
of some larger system. For instance, defense appti-
cations might include building a guidance system for
a missile, a monitoring system for airplane radar, or
a reporting system on the Hubble microscope. These
applications all have no persistent data; rather, they
work on sensor data and pass on the informa-
tion they filter for processing or feedback by other
systems.

The problem with applying embedded-system
thinking to persistent object problems is that there
is little overtap in designing for temporary and
persistent data. Persistent data and, in particular,
DBMS-stored persistent data, have entirely differ-
ent thinking processes that the computer-scientist
authors of most object-oriented methods do not rec-
ognize. Because of this lacking recognition, these
heuristics on object allocation are more crude than
those of, say, process methods which have been tried
for the tast 20 vears.

A similar problem occurs in the hardware
domain. Object-oriented authors most often are
designing state-of-the-art hardware as part of their
application design including customized operating
systems and software. Most business applications
use off-the-shelf hardware that is generalized in
function and has many user features. The only cus-
tom development in most business applications is
the application software itself. So, the design prob-
lem with hardware is opposite that of DBMSs. For
hardware, the methodology authors do more detailed
levels of development than is necessary in most
business applications. You will see this problem
again when we discuss service object definition.

Now let's consider allocation of functions to the
other subdomains. The human interface is exactly
what you think it is, the interactions with people,
usually through a terminal device, that provides the
essential inputs and outputs of the application. The
human interface is discussed poorly in the OOD
books that do exist (including all of those in the ref-

erences of this chapter) because of the traditional
lack of human users it object-onented applications.
Because of this lack, they are discussed in Chapter
14 as one of the ‘forgotten activities’ of systems
analysis and design.

In general, the activities that provide human
interface control, such as screen interactions, arc rec-
ommended to be relegated to the human component
of the application. Again, there are no campelling
reasons for blindly making this decision, therefore
it is subject to analysis. Activities that can be
grouped across objects, such as line control, error
message display, and screen reads and writes can all
be abstracted out of the individual objects and placed
in reusable, generic objects. The actual editing of
data from screens should remain with the original
object unless there are sufficient similarities across
screens and data items to warrant abstracting them
out as well, or unless the functions will be assigned
to human interface hardware. To perform this ab-
straction requires listing all the detailed, primitive
actions required of screen interactions for each ob-
Ject, identitying which actiens are performed auto-
matically by the DBMS or other application
software and removing them from the list, and re-
evaluating the remaining items to determine whether
ar not there are commonalities across objects.

This primitive level of detail may be deferred
automatically when you relegate all screen interac-
tinns to the human interface. This deferral allows
you to build the interface during prototyping even
though you may not know all of the primitives dur-
ing the first iterations. In other words, allocating
screen interactions to the human interface is a means
of deferring detailed design decisions until initial
prototype development.

The more distributed devices and processors, the
more likely that processing might be allocated to
firmware embedded in otherwise unintelligent
devices. For instance, automatic teller machines
include some intelligence for editing magnetic strip
information from the cards used for withdrawal and
deposit of funds from banks. They can, for instance,
tell what type of card, such as Visa, is being used,
and whether or not the personal ID number {PIN) is
a valid combination of digits. They cannot tell
whether or not the PIN matches the card number

Object-Oriented Design Activities 511

entered because that requires access to a database
that is not stored locally. In addition, specific hard-
ware functions, such as accepting a deposit enve-
lope, are functions that would be allocated to
hardware.

Allocation of processes to hardware/firmware is
deterrined by the need for fast response time, min-
imum communication delay, and minimum process-
ing time. Whenever any of these three constraints are
present ir an application’s functional specification,
hardware process allocation should be investigated.
Some authors recommend that allocation to hard-
ware can include functions to be performed by the
resident operating system. When there 18 access to
these functions and they can be used as generics, this
is a useful, time-saving idea. So, for instance, in
systems such as Unix and Smalltalk, where the
environment, operating systemt, and application are
essentially inseparable, thinking of opetating sys-
tems and hardware as one simplifies design thinking.

Finally, we have allocation of processes Lo soft-
ware. This allocaticn assumes that alt problem-do-
main processes not already allocated elsewhere will
be implemented in software in the software domain.
This allocation includes remaining service and prob-
lem domain objects atter the other allocations are
complete. Now, let us turn to ABC Video to see what
allocation means in this application.

ABC Video Example of Subdomain
Allocation

ABC’s rental application will be an interactive, mui-
tithread set of processes which will service up to six
threads of control, with growth to some higher num-
ber. Therefore, the concurrent processing require-
ments of the application should be considered when
allocating processes to subdomains to ensure that
timing requirements will be met.

To refresh your memory, we had decided to use
an SQIL.-compatible database to implement the
application. We can interface the SQL language
with other languages, but, as is typical of most
DBMS software, all data accesses must go through
the DBMS. This implics that the create, retrieval,
update, and delete (CRUD) functions will all be
allocated to the data subdomain as discussed above.

512 CHAPTER 12 Object-Oriented Design

By doing this allocation, we explicitly are decid-
ing what is and is not object-oriented. SQL is not
object-oriented, Therefore, any functions performed
in SQL are not object-oriented. The design can pro-
ceed in an object manner until the primitive level is
reached, then the design is completed in SQL.

If we look at the output from the analysis where
we allocated objects to processes, we can identify all
those processes relating to these functions. Each
objcct has simple CRUD functions as well as a need
for CRUD functions on a user-view of the database
that incorporates Customer, inventory, and VideoOn-
Rental. Eventually, for SQL implementation, we will
collapse the superset objects back with the class/
objects and will control the use of add and read func-
tions by logic in the SQL DBMS application code.
Any access control on superset objects is controlled
by the DBMS.

Figure 11-20 processes are listed in Table 12-3
with their subdomain allocations. First, consider the
data subdomain. From Table 12-2 we know that we
can allocate the data functions based on application
requirements, We are using a non-object DBMS und
have no constraints on processing. Part of the attrac-
tion of the fourth generation database is its ease of
use, therefore, anything that can be allocated to the
DBMS should be. As Table 12-3 shows, all CRUD
functions are allocated to the data function. Simi-
larly, printing, which interfaces with exlernal
devices, is allocated 10 hardware. Print control is
allocated 10 hardware because in a LAN, spooling
and printing are network operating system functions
that are not under application control.

All data entry functions are allocated to the
human interface for design and control, Remaining
processes are allocated to the software subdomain.

Draw Time-Order Event
Diagram

Rules for Drawing a Time-Event Diagram

A time-event diagram graphically depicts the tim-
ing constraints and events that trigger reiated
objects, showing sequences of processing, concur-
rent processes, and nesting of processes across

objects. Time-ordered event diagrams show neither
flow of control nor if-then-else logic. These dia-
grams are showing what can happen in time, includ-
ing required timing. The time-order event diagram
becomes the basis for decisions about concurrent
processes and is helpful in identifying service-
object nceds of the application.

The diagram is a two-dimensiconal graphic with
objects listed down the left axis and time, broken
inte segments corresponding to events in the appli-
cation, along the horizontal axis. For processes that
might run cencurrently, multiple lists of the objects
are shown. Synchronization of concurrent events is
shown by the divergent lines returning to one event
at some point (see Figure 12-9).

Two formats for time-event diagrams arc used.
One shows deviations from an otherwise horizontal
line with events and critical times demarcated by
vertical bars (see Figure 12-10). The other format
shows rising steps to mark events and critical time
slots within the main object (see Figure 12-11}. If
one diagram per transaction is created, the rising step
method is preferred because it is easy to see the
points of change. If one diagram per application is
drawn, the information can be presented more com-
pactly with the horizontal line method.

Rewrite ald VideoOnRental
Write new VideoOnRental

Print TempTrans

Rewrite BarCodeVideo

Potential concurren! procasses

FISURE 12-¢ Potentially Concurrent
Processes

Object-Oriented Design Activities 513

TABLE 12-3 Process Subdomain Assignments

Subdomain

Process Name Data Hardware Process Human

EnterCustPhene X
ReadCust X

CreateTempTrans X

Retrieve VOR X

DisplayTempTrans X
EnterBarCode X
Retrievelnventory X

ComputeTempTransTotal X

EnterPayAmt X
CompuicChange X

DisplayChange X
Updatelnventory

WrileVOR X

PrimTempTrans X

EnterBarCode X
Retrieve VOR X

DisplayTempTrans X
AddRetDateTempTrans VOR X

AddltoViny X

Updatelnventory X

ComputeLateFees X

WriteVOR X

EnterCustomer X
CreateCustomer X

EnlerVideolnventory X

CrealeVideolnventory X

Diagram segments are defined as event-driven or event-driven segments, the event is identified on the
clock-driven, For time-consirained segments of the horizontal axis. Actual drawing requires knowledge
diagram, the allowable maximum time is labeled of the problem domain requircments for processing.
along the horizontal axis {see Figure 12-12). For The steps to creating a time-event diagram are:

514 CHAPTER

12 Object-Oriented Design

Object 1
Object 2 U U

Object 2

Obiject4

——
——
—t—

=
Y

Time / Events

FIGURE 12-10

Horizontal Time-Event Diagram

1. Definc all allowable transactions in the ABC Video Example of a Time-Order

application.

Event Diagram

2. Define the processing steps for each trans-
action. For ABC, Table 12-4 shows the transactions allowed
3. For each transaction, design a time-event in the application. The transactions should have no
diagram reflecting the dependence or inde- surprises by this stage of design, and should be
pendence of processing steps. closely related Lo the processes defined for each
E9 EID _Ei1
o E8E4 ES E7 £ 10ms
Otjact 1 & T8 me
E8
Object 2
Chject 2
Object 4
0 -
Time / Events
E, = Event identifier
FIGURE 12-11 Rising Step Time-Event Diagram

Object-Oriented Deasign Activities 515
OBJECT Disptay
Retrieve GCust - 10 ms
Cust-15ms
Customear ERTE,E;E Create
Cust
|
: Displa
| Retrigve 0:_"'1(¥
Order | rer History
History istory-
15 ms
Get Purchase
Purchase toms
Retrieve
Inventary Inventary
| | | | L |
I'isms I 15ms | 1 []
Time-Constraint —4 Time
0 -

FIGURE 12-12 Diagram Segments Identified as Time-Driven or Event-Driven

object. Some objects, such as TempTrans, have pro-
cesses that relate to more than one transaction, while
other objects each have processes that reflect one
transaction, such as for Customer.

Of the transactions shown, we wil} discuss two
that are representative of the others: video inven-
tory additions and rental processing.

First, we describe what happens for a Video-
Inventory addition. This step requires detailed
knowledge of the specific processing to be per-
formed. This knowledge comes from user inter-
views, study of current procedures, and so on,
Subprocess details should be based on the process-
object assignment list {Figure 11-20). If there are
discrepancics between the use of objects here and
the list, the list should be revised to reflect this more
detailed level of thought. The steps to adding inven-
tory are;

1. Enter a new Videold and remaining informa-
tion for a particular film.

2. When the NumberQfCopies is entered, add
the new video information to Videofnventory,
Begin prompting for BarCodeld until the
number of bar codes is equal to NumberOf-
Copies.

As each BarCodeld is entered, add the

new BarCodeVideo entry to the data-

base.

When the number of BarCodelds entered is
equal to NumberOfCopies, signal completion
of the transaction to the clerk and end
processing.

Figure 12-13 shows the time-event diagram for
the processing steps about video inventory creation,
Notice that two objects are involved: Videolnventory
and BarCodeVideo. Even though Videolnventory
is begun first, its processing is completed before
BarCodeVideo processing takes place. The processes
are related in that the Videold is passed to the
BarCedeVideo process, but they are otherwise

516 CHAPIER 12 Object-Oriented Design

TABLE 12-4 ABC Transaction List

Object Transactions

Create
Retrieve
Update
Delete

Customer

Create
Retrieve
Update
Delete

VideoInventory

BarCodeVideo Create
Retrieve
Update

Detete

VideoOnRental Rental without Retums
Rental with Returns
Retums without Rental

Returns with Rental

Create
Relneve

Video History

Create
Retrieve

Customer History

Create
Retrieve
Deleic

EndOfDay

independent. There is no necessary concurrency
within the transaction.

The rental transaction shows that several pro-
cesses might be cencurrent. First the steps to com-
pletion of & rental process are:

1. Get the entry and determine its type {either
CustomerPhone or Videold).

2. If the entry is Customerid, get all relevant
customer information (e.g., name, address,
and so on).

3. If the entry is Videold, get the corre-
sponding VideoOnRemtal and place 11 in
memory.

Use Customerid to get all relevant cus-
tomer information {e.g., name, address, and
S0 on)d,

4. Get all current outstanding rentals (i.e.,
either unpaid late fees or unreturned
rentals).

Computc LateFees on returned tapes.

Compute TotalAmaeuntDue,

. Display all information.

. Process returns and redo steps 5-7 until no

OOTE returns.

9. Get Videolds of new rentals until end of
transaction is signaled. For each, get
Videolnventory and BarCeodeVideo informa-
tion; format and display the relevant
information; recompute and display Totai-
AmountDue.

10. At ransaction end, process payment and
make change until TotalAmeuntDue equals
ZEro.

11. Write new VideoOnRental entries; update
and rewrite old VidenOnRental entries; print
TempTrans, update and rewrnite BarCode-
Video as required; end transaction.

o ~1 O LA

The first event, data cniry, results in one of two
possible processes being invoked. These are shown
with dotted lines on the diagram to show that only
one is running at a time. If the Videold is entered,
then wc have a choice to either nest getting the cus-
tomer or transfer control. If we transfer contral, the
video information must have been stored in mem-
ory for the first VideeOQnRental 1o avoid passing
unnecessary data. If we do not transfer control, and
nest retrieval of customer information, then the cus-
tomer information is unnecessarily passed through
the retrieval process for VideoOnRental. The best
object-oriented decision would be transfer control
to maximize information hiding here, but we can
treat these accesses as one if the DBMS supports a
user view that links the relevant information. SQL
DBMS does provide user views and we select that
option. {Make sure you read the appendix for true
object-oriented design of this information. It is
significantly different.) Once VideoOnRental is
accessed, then, the related information from Video-
Inventory, BarCrodeViden, and Customer are all
present automatically (see Figure 12-14).

Eventually, we loop through getting all current
outstanding rentals from VideoOnRental. This itera-

Object-Criented Design Activities 817

Oblects

Videolnventary

BarCodeVideo

Create Vidgolny.

Get
Videolnio |

Create
BarCodslnv.
Got
BarCodeld
Time

FIGURE 12-13 Time-Event Diagram for Inventory Creation Transaction

tion can be programmed to run until a return code in-
dicating no more videos on rental are present. This
return code, then, becomes the event to trigger the
next step of the process.

Control is passed to compute Late Fees on re-
turned tapes that will require a count of the number
of VideaOrRentals in memory to be maintained and
passed to control this process. Having processed late
fees until this count is reached triggers the next step
to compute TotalAmountDue. This is a one-time
event at this point. and its completion leads to dis-
plav of all current customer and rental information
on the user screen.

At this point, if thete are new rentals, the Bar-
Codelds are entered. This triggers obtaining Bar-
Codelnventory and VideoInventory information. To
simplify memory processing, we have a choice sim-
ilar to that above for customer and VideoOnRental in
step 3. In this case, the decision is between treating
BarCodeVidea and Videoinventary as separate and
independent or nested or the same. In order to treat
thern the same, we must be accessing a user view

that contains the relevant information. Again, SQL
allows user views, and we use the user view that col-
lapses this activity from two to one. As each video’s
information is displayed, the TotalAmouniDue is
recomputed and redisplayed.

Upon receiving the trigger that the rentals, or
returns, are complete, payment processing takes
place and continues until ToraiAmountDue equals
zero. At that time, all of the VideoOnRentals, Bar-
CodeVideo locations, and video history counts (for
returns) are updated. These are once again assumed
to be in the same object as a result of having user
view capabilities in SQL.

Determine Service Objects

Guidelines for Determining Service
Objects

Service objects perform background scheduling,
synchronizing, and multitasking control for the ap-
plication, The activities performed by some service

818 CHAPIER 12 Object-Criented Design

12 -l[

OBJECT "
o 10 |
_,L:L’L |
TempTrans ! 3 5 i
s |
Customer |
i
VideoOnRental a :
I
VINV ml
| - 12—
BCVideo |
13 !
L]] 12—
] » End

Trans
Time/ Events
Legend: 1-GetEntry

2 - ReadCusl or Read VidecOnRental
3 - Create TempTrans, ReadCust
4 - Retrieve all related VOR, Read Videolnv. and Read BarCode Video

5 - Campute Late Fees

& - Compute Total Amount Due

7 - Display Temp Trans

8 - Process Returns (includes relurn to steps 4, 6, 7)
g - Gel new rentals, Read Videolnv, and Read Bar Code Video

10 - Format and display new

11 - Process Payment (includes EnterPayAmount, Compute Change,

Display Change)

12 - Print TempTrans, Rewrite old VORs Update BarCodeVideos
13 - Write new VORs, Rewrite BarCodeVideos

14 - End Trans

rentals, update Total Amt Due

FISURE 12-14 Time-Event Diagram for ABC Vi

objects are analogous to those of an operating sys-
tem in a mainframe environment which provides job
management, task management, memory manage-
ment, [/Q management, and data management. For
that reason we will digress a minute to discuss these
operating system functions, relating them to service
objects.* '

4 This discussion is necessarily short. For further information
see Per Brinch Hansen, The Architectioe of Concurrent Pro-
grams, Englewood Cliffs, NI: Prentice-Hall, Ing,, 1977,

deo Rental Transaction

Job management routines initiate processing for
individual applications. In multitasking applications,
that means that the first scheduling tasks are loaded
and turned over to the task managcment routines for
execution, In mainframes, there are multiple jobs,
sometimes as many as 30, executing concurrently.
The job management routines keep track of all jobs
active in the system,

The task manager monitors and tracks individual
steps within a multistep set of sequential processes
(i.e., a job). Task management is similar to monitor-

ing done for multiple threads of control for concus-
rent processes. The work of job and 1ask manager
routines are similar and include:

» Load, schedule, execute

End, abort

Get/set process attributes

Create/terminate process

Wait for time

Wait/signal event

s Get/set process attributes for jobs, files, or
system data

Multiple-thread management requires both job
and task management. Think of individual transac-
tions as analogous 10 jobs to be managed, and of
individuat steps to completing a transaction as tasks,
or processes in QOD terminology. The job manage-
ment, transaction routines manage whole transac-
tions, and task management routines manage atomic
processes 1o perform the transaction.

Monitoring of individual processes (or transac-
tions) and sequences of processes, one per thread, is
accomplished either by stacks (sometimes called
heaps) or queues, depending on the operating system
software. The stack commands are push to add
something to the stack and pop to take something off
the stack. The gqueucing commands are ernqueue and
dequene, 10 add and delete itemns, respectively. The
stack (or que) items, in multithread control, include
the name of the task, its cwrent execution status (i.e.,
running, idle, or waiting), and the address of the next
command to be executed. One set of stacks is man-
aged for each transaction, and one set is managed for
edach process. Stacks operate on a last-in, first-out
principle while queues are first-in, first-out,

Similarly, the 1/O manager and data managers act
together to perform physical inputting and out-
putting of information to central processing unit
(CPU) memory. The [fO manager interacts with ter-
minals, printers, and other devices that are moving
information physically into and out of the computer.
The data manager interacts with secondary storage
devices, such as disks. The activities performed by
these managers include file manipulation and device
management. The key activities include:

Object-Crlented Design Activities 519

File Manipulation:

n Create/delete file

= Open/close

» Read, write, reposition
» Get/ser file attributes

Device Management:

» Request/release
® Read, write, reposition
n Getfset device attributes

These tasks are usually provided in primitive
form by the operating system and in a more abstract
form by a DBMS. The more sophisticated the soft-
ware environment, like a DBMS, the more likely the
services are provided by the environment.

Finally, memory management keeps track of the
location of each item, in random access memory
{(RAM). Recall that all data and programs must be
memory-resident 10 be executed. In dynamic appli-
cations in which modules and data are being moved
into and out of memory constantly, memory man-
agement is a crucial function, The main functions
provided by the memory manager include:

n Allocate/delete memeory {can be dynamic or
static)

» Track used and free memory location by task

» Track vsed and free memory within each
task’s allocation

» Garbage collection (identify and erase or
write-over unused objects)

All operating sysiem management is accom-
plished by cooperating processes that use event-
driven interrupts o provide services in the sysiem.
Interrupts at the operating system level are called
supervisor calls (SVCs). The implementation of
SVCs differs across operating systems.”

5 For a more complets geatment of this information, see any
cperating systems text. Some good ones include A, J. van de
Goor, Computer Architecture and Design, Reading, MA!
Addison-Wesley Publishing Company, 198%; Anthony P.
Savers, Operating Systems Survey, NY: Averbach, 1971;

J. Peterson and A. Silbershatz, Operating System Concepis,
Reading, MA: Addison-Wesley Publishing Company, 1983.

520 CHAPTER 12 Object-Oriented Design

Now, let’s relate this operating system informa-
tion to applications. All of these functions are
required for the three types of control provided
by service objects. If you are working in a Unix
or Smalltalk envirenment which already have
been used for application development, many of
these functions should already be available for reuse.
If you have to write your own, you need {0 test and
retest these functions verv thoroughly to en-
sure proper application functioning. In any
case, you need to decide which of the service object
functions are needed and provide them for your
application.

The steps to identifying the service objects are:

1. Examine the event diagram and identify each
process as sequential or concurrent, and, if
concutrent, as independent or cooperating.

2. Define the service needs for loading the
object, processing the object, synchronizing
the process (o others, and sending any mes-
sages the object might generate,

3. Compare this list to one specific to the target
operating environment that identifies reusable
service objects that can be uscd by this
application.

4. Enter the name, language, and any other
information needed to identify the reusable
object. For all service objects, make sure that
the class, object, event, and/or process using
the service object are identified,

5. When all reusable objects have been identi-
fied, the remaining scrvice objects included
in the remaining tasks are divided among the
four subdomains as appropriate for module
specification.

In general, all applications need scheduling
objects (see Table 12-5). The need for synchroniza-
tion and multitasking are determined by the time-
event diagram and whether or not the objccts are
concutrent and multivser. Table 12-5 shows that con-
current, single-user processes need synchronization
while concurrent and multiuser objects necd syn-
chronizing and multitasking services. Multiuser,
sequential processes, like ABC, require both sched-
uling and multitasking services.

TABLE 12-5 Decision Table for Service
Object Type Requirements

Problem Domain
Obiject Characteristics:

Sequential Y Y - —
Concurrent N N Y Y
Multiuser N Y N Y

Service Objects

Required:

Scheduling X X X X
Synchronization - — X X
Multitasking — X — X

ABC Video Example of Service Objects

First, we examine the time-event diagram to iden-
tify each related process as sequential or concurrent,
and independent or cooperating.

There are three possible sets of concurrent pro-
cesses within onc rental transaction shown on Figure
12-15 as circled and numbered sets. The other pro-
cesses are sequential. Qur decision on concurrency,
then, is based on the implementation environment,
Let’s say that SQL supports multithread but not mal-
titasked processing, therefore, we need to decide se-
quential ordering of the processes and how the
processes will be performed in SQL.

Next, for cach process, define the service needs
for loading the object, processing the object, syn-
chronizing the process to others, and sending any
messages the object might generate, SQL supports
user views. By creating user views to link Video-
Invemtory to BarCodeVideo, and VideoOnRental
to Customer, Videolnventory, and BarCodeVideo,
the opportunity for most concurrency disappears
in one database access that retrieves all the related
information.?

6 See Chapter 12 appendix discussion of ABC in which the ser-
vice object discussion results in a different outcome.

Object-Criented Design Activities 521

OBRJECT

TempTrans ! 3

Customer 2

VideoOnRental 2

VINY

BCVideo

ra
-
™

&
__w_....—_ — — — m— —

" Trans

FIGURE 12-15 Potential Concurrent Sets of Processes

Even though wc have removed concurrent object
processing from the diagram, we still have both
transaction level and process level service object
requirements. Transactions and processes all need
scheduling, including processes that load, store in
memory, initiate, terminate, monitor events, and
possibly provide message communications between
objects.

This list is compared to our target operating
environment: SQL on a PC LAN running Novell
Netware.™ The services are all provided transpar-
ently by the operating environment and are not
needed to be developed in primitive form for ABC's
application. Even though the target environment is
not object-oriented, the need for service objects dis-
appears because these are all services provided in the
operational environment.

The next step is to examine a current library of
reusable objects for use as problem domain pro-
cesses. Since ABC's environment is new, there is no

reusable library; therefore, any modules would need
specification and development.

Develop Booch Diagram

Guidelines for Developing Booch Diagram

Booch diagrams, also called module structure dia-
grams, provide a graphical summary of the class and
object information in the entire application. The
icons for drawing the diagram atre shown in Figure
12-16 with service objects in vertical rectangles with
no other detait beyond their name, and problem
domain objects in vertical rectangles with smaller
ovals to identify the object and horizontal rectan-
gles to identify the individual processes. One dia-
gram connecting the domains as required is drawn,
then one Booch diagram for each subdomain (or for
the whole project if it is small) is developed.
The steps to drawing a Booch diagram are:

522 CHAPTER 12 Object-Oriented Design

Class/Object

Package

Service Object Name

Process

Process

Sarvice Object

FIGURE 12-16 Booch Diagram Icons

1. Draw the Booch icous (sce Figure 12-16)
rclating to scrvice and problem domain
objects.

2. Evalnate and choose a scheme for connecting
the objects via messages.

3. Draw lines between objects to signify the
legal message connections.

4. Definec message processing scheme.

Service objects selected for controlling applica-
tion operatiens are arranged by personal preference,
but can be grouped by function performed: schedul-

ing, synchronizing, and multitasking within subdo-
main. The service objects described in the previous
seclion are shown with subdomain grouping in Fig-
ure 12-17.

Problem-domain objects are obtained from the
process-object assignment list developed during
analysis. This table is now reversed with the infor-
mation arranged by abject for this diagram. During
the reversal process, 4 reevaluation of process-object
assignment should be made to ensure that the pro-
cesses are associated correctly with their necessary
objects. Subdomain groups may be maintained on

Object-Oriented Design Activities 523

Hardware / Qperating System

Hargware Management Application
OpaniCloge Start/Stop
Starl/Stop Allgcate Memaory
Get/Pul Session

Memory Management Start/Stop
Define Allocate Memory
Get/Put Transacticn
Garbage Collection Stary/Stop

Security/Access Control Aliocate Memaory

Manage Tasks

Data

Define Device
Execute 10s

Define Physical Data Stores
Open/Close
Provide Dala Access- Gel/Put

Hurman

Define Device

Formal Screens

Get Data Entries

Edit for Mumeric/Alpha Entry

Define Logical Data
Access Cenirol
Application Presentation

Multiuser Management

Scofiware (Problem Domain}

Process Security/Access
Management

Load/Release/Monilor Pracesses

Provide Message Communicaticn
hetwean Objects

Application Objects

FIGURE 12-17 Service Objects by Subdomain

the diagram which means that we may have new
superset objects to define the split between objects
tor subdomain processing.

Processes that are candidates for generic, reusable
object development should be marked consistently
in some way, for instance by bold or ftalic print to
identify them visually. A quick glance at the diagram
gives the viewer a sense of the extent to which
reusable objects and processes are being leveraged
in the application.

After the icons are drawn, they are played with
to evaluate different message passing schemes,

There is no one right way to do message passing, but
there are definitely some methods that are better than
others. We will walk through a reasoning process for
message passing definition in the ABC Video exam-
ple. In general, the goal of messages are

1. To accomplish the application’s tasks,

2. Pass minimal information and pass only to

objects requiring information.

Minimize the potential for bottlenecks.

4, Maximize the potential for application
throughput.

bad

524 CHAPTER 12 (bject-Oriented Deslgn

_E

Centralized Message Control

1

> |

Distribuled Message Control

FIGURE 12-18 Sample Configurations of Object Message Passing

The evaluation of alternatives is to determine the
best throughput scheme of message passing without
creating bottlenecks, while accomplishing the first
two goals. Booch suggests a 3x5 approach to this
evaluation in which, rather than drawing the diagram
icons on paper, the information for each object is
writtennon a 3" x 3" card. The cards are arranged spa-
tially in different configurations on a large piece of
paper with lines drawn to signify the required inter-
object message communications. When a configu-
ration is identified that might be useful, it is

annotated for further analysis. Figure 12-18 shows
two different configurations for a simple application.
You can see how, if you have 20 or 30 objects, the
3" x 5" method simplifies evaluation of message
passing schemes.

All further alternative configurations are evalu-
ated to determine message traffic. Message traffic is
the number and direction of messages in the system.
Overall, the goal is to minimize the number of mes-
sages passed for any single transaction, while not
overloading any single object with message traffic

rclated work.” The minimum number of messages is
n—1, where n is the number of packages necding
to communicate in the application. That is, once
initiated, each package must communicate with
at least one other package. The centralized message
contral scheme shown in Figure 12-18 shows an
example of n—1 messages. The arrangement with
the best message traffic configuration is selected
for prototype development, and the design process
continues.

ABC Booch Diagram

Before we can develop a Booch diagram, we need
to digress and redefine some application needs to fit
the SQL environment.® The drawing of packages
normally assumes no consolidation of functions or
data via user views, but we have collapsed our pro-
cessing to take advantage of SQL features. There-
fore, Table 12-6 shows the effects of user views on
data domain processes: the 11 data processes arc
now ¢ight consolidated processes. The remaining
subdomains are not affected by the data changes.

First, we will draw the packages based on what
we now know to be the design of the application (see
Table 12-6). There ure four data packages: Cus-
tomer, Videolnventory, UserView] which includes
VYidecOnRenial, Videolnventory, BarCodeVideo and
Customer, and UserView2 which includes Video-
Inventory and BarCodeVideo (see Figure 12-19),
The related processes for those data objects are
placed in horizontal rectangles in their respective
packages.

There is one scheduling service object (which we
may not need because of the environment) that
inclodes initiation and termination of the application,
user sessions, and transactions, There is an inter-
face service object to provide all display and input
from personal computers {see Figure 12-19). The
hardware service object contains only one process
for printing TempTrans. Finally, the TempTrans

7 This would cause a bottleneck.

8 Don’t forger to read the Chapter 12 Appendix for a complete
discussion of object-oriented design using an object-oriented
development cnvironment.

Object-Orented Design Activities 525

object contains the data and problem domdin pro-
cesses that are the core of rental processing.

Next, we try different configurations of the
objects to develop a message passing scheme that
will provide necessary processing and information to
called objects, while minimizing the communica-
tions overhead in the application. Figure 12-20
shows one reasonable message passing scheme that
follows the logic of processing. The scheduling
objcct passcs control to the interface object which
has some choices. The interface object could pass,
for instance, a CustomerPhone to either TempTrans
or Customer 1o initiate rental processing. If the pass
is to Customer, it could return and pass the customer
information to TempTrans, or Customer could con-
tinue and initiate TempTrans directly. You see how
the options can build and get complex. We will opt
for a fairly wraditional scheme in which the fnrerface
will pass any rental wransaction data ta TempTrans
which will determine what to do with it. This deci-
sion is reflected by the line connecting Heumanlnter-
Jace with TempTrans,

TempTrans then initiates one of three data re-
trievals: Customer, UserViewl, or UserView2, The
data is returned and TempTrans continues process-
ing. This method of passing provides the most
information hiding between objects, but could
result in a bottleneck within TempTrans which is
controlling all of the interobject communication for
the problem (e.g., software), hardware, and data sub-
domains. This is a potential problem that would be
checked during prototype development.

The Humanfnterfuce object also communicates
directly with Customer and Videolnvemtory for
create processing which does not require Ternp-
Trans. All completed transactions, regardless of
type, return to the Scheduling object to terminate
the transaction.

Define Message
Communications

Rules for Defining Messages

The nexa step after the Booch diagram is to actuaily
define message contents to provide interobject
interfaces for the application. A table is created to

526 CHAPTER 12 Object-Qriented Design

TABLE 12-6 Consolidated Process Subdomain Assignments for Oracle

Subdemain

Process Name Data Hardware Process Human

EnterCustPhone X
ReadCust X
CreateTempTrans X

Retneve VOR X
(includes Videolnventory,
BarCaodeVideo, and Customer}

DisplayTempTrans X
EnterBarCode X

Retrieve BarCodeVideo X
(includes VideoInventory)

DisplayInventory X
ComputeTempTransTotal X

EnterPayAmt X
ComputeChange X

DisplayChange X
WriteVOR X

PrintTempTrans X

EnterBarCode X
hsplayTempTrans X
AddRetDateTernpTrans VOR X

Addliovinv X

Rewrite YOR data X

ComputeLateFees X

Write VOR data X

EnterCustomer X
CrealeCuslomer X

EnterVideolnventory X

CreateVideolnventory X

document the specific requirements of each message should come from the Booch diagram coupled with
(see Table 12-7). The objects that act as clients are the Process table generated during analysis that iden-
listed in the Calling Object column, service objects tifies objects with the processes that act on them. The
are in the Called Object column. This information Input Message column describes the data that is sent

Object-COriented Design Activities 527

Cusiomer

i

‘

Usar View 1

Vidaolnventory

TempTrans

CempTrans)

User View2

| FormatTempTrans |

1ngpute TotalAmtDue |

|Cornpute Change |

| Ada ReturnDate |

I

Schedule Object lCompute LateFess |

|

Change BarCodeVideo Human Interface
Status Ii

e

Init. Session]
|Enter BarCode
'

I

|

Hardware Sernvice [Enter PayAmount I
I

|

[Pr'mt TempTrans

Torm. Trans

|Entsr CustPhone

|Enter Custinio

[Enter Videolnventoryl
I

[Display TempTrans |
|

[Display Inventary |

| Display Change |
| I

FIGURE 12-19 ABC Rental Booch Diagram Objects

as part of the calling cbject message to be processed,
The output message is the result data that is sent on
(or returned) by the called object after processing,
The columns Action Type and Return Object are op-
tional. The action type describes the process 1o be
performed in terms of CRUD or other processing.
The return object provides continuity of processing

logic when the called object does not return directly
to the calling object.

For each process-object pair defined in the Pro-
cess Definition List, we will have one input message
to tnitiate processing and, if needed, an output mes-
sage which reports the results of processing. The
message list contains one column for cach of the

528 CHAPTER 12 Object-Oriented Design

Customer Videolnventory

Videalnvento

Cteate Create
TermpTrans
0

User Wiew 1 ser View?
Tservend) |

Read

)

FormatTempTrans
|

1Comgute TotalAmtDue [

[compute Change |
I
[Acd RetumDate |

[Compute LateFees |
|
Change BarCodeVideo
Status
[

Schedule Object

Human Inlerace

Enter Custld

Enter BarCode

Enter PayAmour
Enter Custinfo

Enter Videolnvertory
="

Init. Trans

Hardware Service

‘\Iinj TempTrans

Term. Session

Term. Trans

HGURE 12-20 ABC Booch Diagram Message Passing Scheme

tvpes of information shown in Table 12-7. The steps process list are placed in the ‘Input message”
to creating the message list arc: columa.
3. Next, decide both the *Calling object” and
1. Make a table with headings as listed in other ‘Input message’ entries,
Table 12-7,
2. Refer to the list of all object-process These two definitions seem to go together be-
combinations, The objects from that cause as we define the inpul message, we know the
list are listed in the ‘Called object’ information required to perform the process. Once

column. The processes from the we know the information to perform the process, we

TABLE 12-7 Message List Contents

Header Contents

Calling object Identifies the client.

Called object Identifics the server.

Input message Identifies the process to be
performed and any input
parameter data needed to per-
form the process, for instance,
the data type for polymorphic

Processes.

Output message Defines the output o be

passed, 1f any.

Action type Defines the process as Read,
Read/Write, Write, Display, or

Print,

Return to Identifies either the object to
which the result is returned or
a nested object for further pro-

cessing, if any.

decide which object has that information to pass it
on. This step determines much of the logical process
flow from one encapsulated object-process to
another. The logical process flow defines the se-
quence of processing in the application,

4. Define the *Output messages” by determining
what type of information is required next
from each process as il completes. For data
entry type processes, frequently the output
message is only an acknowledgement of pro-
cessing (ACK = successful, NACK = unsuc-
cessful). For some processes, no response
is required.

5. Complete the ‘Action type’ column.

The action type summarizes the type of process-
ing for designers to determine possible implementa-
tion consolidation of activities, or to decide on
further allocation of processing to hardware, soft-
ware, or firmware.

6. Define the return object column.

Object-Orlented Design Activitles 529

This column usually refers to the calling object
which is ordinarily the object to which control
returns, but some nested subprocess might take
place. When subprocessing occurs, the return object
column identifies the next object entered to help
other software engineers understand the logic flow.

Completeness and correctness review of the mes-
sage list is done to ensure that each process-object
pair has an associated message in the table and that
the callingfreturn objects are correct.

ABC Video Example of Message List

First, we make a table with the above headings.
Then, referring to the process list that we used to
draw the Booch diagram, we list all object process
combinations. The objects from that list are listed
in the ‘Called object’ column, Make sure that all
process-object pairs have one entry in the table.

Next, we decide both the ‘Calling object” from
the Booch diagram and the “Input message’ for each
entry {Table 12-8 shows the completed list). Then
the ‘Output message’ is completed for each entry,
As the owtput message is complete, we complete
gach line with the *Action” and ‘Return Object’
definitions.

Table 12-8 shows the message list for ABC's
application. It reflects the consolidated data objects,
the messages decided during the development of the
Booch diagram, and the details of information that
must be provided for each object-process. Notice
that many processes are called from within an
object itself. This localizing of processing is desir-
able to simplify interobject communication and
ensure information hiding, but it also can encourage
development of nonobject-oriented designs. Make
sure that each message contains all, and only, the
information required to perform the process. Make
sure that each message returns only the information
required by the client object.

Develop Process Diagram

Guidelines for Developing the Process
Diagram

A process diagram depicts the hardware configura-
tion and the allocation of processes to processor

530 CHAPTER 12 Ohbject-Oriented Design

TABLE 12-8 Message List for ABC Video Rental Processing

Calling Called Input Qutput Aclion Return
Object Object Message Message Type Object
Human Customer Customer CustomerPhone Create Human
Interface Information Interface
Human Video Video Videold, Creale Human
Interface Inventory Information # BarCode Interfuce
Videos Created
Schedule Schedule Application Id Queue Address Exccute Schedule
Init Appl
Schedule Schedule Userld Memaory Execute Schedule
Address or Inil Session
Logoff
Schedule Schedule Session Id, None or Quit Execute Human
Menu Selection Session Inil Session Interface
for Renral
Human Human N data Trans Request Enter TempTrans
Interface Interface (Initiate Data Memaory Requesi
Request}) Address
Human TempTrans Trans Request Drata access key Create UserView]
Intorface data TempTrans or Customer
TempTrans Customer Data access Customer Info Read TempTrans
key
TempTrans Userviewl Data access key Customer, Read TempTrans
VideoOnRental,
Videolnventory,
BarCodeVideo
Customer or TempTrans TempTrans Into TempTlrans Format TempTrans
UservViewl
TempTrans TempTrans Memory Location, Ack Compute TempTrans
VideoOnRental, Late Fees
Rent/Return Date
TempTrans TempTrans Memory location Ack Compute Total TempTrans
{Amounts Due} Amount Due
and End of
rentalsireturns
when present
TempTrans Human TempTrans Info Display Human
Interface and End of Interface
rentals/returns

when present

TABLE 12-8 Message List for ABC Video Rental Processing (Continued)

Object-Oriented Design Activities 531

Calling Called Input Output Action Return
Object Object Message Message Type Object
[Tuman ITuman No data Prompt Prompt TempTrans
Inierlace Interface {Fxceute BarCode or
Request) End of Rentals/
Returng
Human TempTrans BarCode None Format UserView2 or
Interface (Rental) or TempTrans
End ol rental
Human TempTrans BarCode None Fortmal TempTrans
Interface {Return) or
End of return
Temp Trans User View2 Bar Code Video Read TempTrans
(new rental) Inventory,
BarCodeVideo
UserView2 TempTrans TempTrans Info Temp'Trans Format Human
Interface
TempTrans
Human Human End of Rentals! Payment Data Entry TempTrans
Interface Interface Returns Amount
Human Templrans Payment Change or Compute Human
Intcrface Amount Payment Due Change Interface
Temp Trans Human Change or End of Trans Display TempTrans
Interface Payment Due
Human Temp Trans End of Trans None Change User View]
Interface BarCode Status
Temp Trans User Viewl Vidco on Rental Ack Rewrite TempTrans
Information
Temp Trans User View] Video on Rental Ack Write TempTrans
Information
Temp Trans Hardwarc Templrans Nong Print Schedule
Services
Hardwuare Schedule Trans 1¢ Terminate Schedule
Services Trans
Schedule Schedule Session Ld Terminate Schedule
Sesslon
Schedule Schedule Appl 1d Terminate System

Appl.

532 CHAPTER 12 Obiject-Oriented Design

platforms int a distributed environment. There are
two types of icons used in the diagram: processor
and device. A processor is any intelligent device
that performs data, presentation (i.e., monitor dis-
play), or application work. A device is uny dumb
device that is part of the hardware configuration sup-
porting application work. Processors are shown on
the diagram as a shadowed cube; devices are shown
as transparent cubes (see Figure 12-21). This dia-
gram is a crude equivalent of a system flowchart
used before process methods were developed. It is
crude because devices and processors are all treated
as the same, the only immediate visual knowledge
the user gets is the configuration size and the extent
to which intelligent processors are used.

The methodology assumes that hardware config-
uration decisions are not part of the SE task and that
the hardware decisions are known. Similarly, there
are no guidelines for allocating processes to proces-
sors. This is an artifact of the development of OO in
a defense environment in which the application
developers are working from specifications devel-
oped by government employees in another city, In
the absence of guidelines from the methodology, we
can borrow the distribution decijsion techniques from
information engineering and apply them to this
decision. In any case, the processes are listed in
small print next to the processor in which they
will operare.

One shadow cube is drawn for each processor.
Individual processes are allocated to each proces-
sor. Lines are drawn to show communications capa-
bilities between the processes, not between the
processors (i.e., the processors are assumed to be

Impact
Printer

All Processing

Personal
Computer

Terminat
Device

Procassar

Communication
Link

FIGURE 12-21 Process Diagram Icons

FIGURE 12-22 First-Cut ABC Process
Diagram

networked whether or not the application processes
communicate). Only one line per set of processors
is drawn, since the detuils of messages are docu-
mented elsewhere. The lines only have directional
pointers to show one-way communication.

Next, for each processor, draw the terminals,
printers, disk drives, and other peripheral devices
that arc attached to it. I there are more than one disk
drive in the cenfiguration, a list of the classes, class/
objects, and objects is made near each drive that will
contain data used by the application.

Finally, the diagram is compared to the message
list to ensure that all messages are accommodated
in the diagram and aceurately depict communica-
tions between processes. The Booch diagram or the
message list can also be used to validate the accuracy
and completencss of processes allocated to proces-
sors, and of the data allocated to storage devices.

ABC Video Process Diagram

The most simple form of ABC’s process diagram
shows the file server as the processor and the PCs
and printers as terminal devices (see Figure 12-22).
This allocation of work is a problem because it does
not take advantage of PC intelligence and, therefore,
is suboptimal in terms of benefits to be gained from
using PCs. Having said this, the allocation is con-
strained by the software environment. If SQL sup-

ports multilocation processing, then the comment
stands, If SQL does not support multilocation
processing, then Lhe figure is complete. As it is
currently, SQL does not support multilocation pro-
cessing although it does support distribution of
databases.

An alternative process distribution is shown in
Figure 12-23, Even with SQL. we could distribute
editing, the hardware management functions, pay-
ment and change processing, and printing of the
tental copy to the tocal PCs. This is a more complex
application because the multiple. sites now require
synchronization and intraprocessor scheduling in
order to coordinate their work, but, if bottlenecks
show up in a prototype of the first-cut process dis-
tribution, this is a likely candidate for the second
iteration of design and prototyping. As it is, we
select the simple design because it is significantly
easicr to implement and maintain, having no syn-
chronization overhead. If it works and is robust to
additional users, the first prototype will be com-
pleted and placed into production.

Chject-Criented Design Activities 533

Develop Package Specifications
and Prototype

Guidelines for Package Specifications and
Prototyping

At this point in the design, the functions to be per-
formed are translated into package specifications for
translation into program code. A package is an
encapsulated definition that contains both data and
process specifications that define an execute unit.
The data might be defined in the form of a class,
classfubject, or object, with specific attributes and
identification. There may be one or mere process in
a package: they result in individual module specifi-
cations and are independently executed under the
control of service objects.

Packages have both public and private parts
which are specified. The public package part iden-
tifies the data and processes to the application with-
out any indication of how they are physically
implemented. The private package part defines the

All DBMS pracessing

All transaction/thread
management

All rantfreturm processing
gxcept editing, payment,
and pnnting

Personal
Computer

Imnpact
Printer

Printer hardware functions

Edit all fisids

Process payment and make change
Print rental copy

FIGURE 12-23

Alternative ABC Process Diagram

534 CHAPTER 12 Object-Oriented Design

physical implementation. If there are polymorphic
definitions of a function, each version of the function
is defined separately, and the control mechanism for
interpreting the message and activating the appropri-
ate function is defined. Service objects should
be used for this interpretation and activation if at
all possible.
The steps to package specification arc:

1. Review the diagram/list sct.

2. Redraw a subset of Booch diagrams, one per

processor in the pmcess diagram, to depict

objects and processes by processor.

Document packages.

4. Design physical database if not already
designed.

5. Develop pseudocode specifications for all
processes and messaging handling routines.

Lok

ABC Video package specifications are not cre-
ared for this step as it is bevond the scope of this text.

WHAT WE KNOW

AND DoON°T KNOW

FROM OOA

AND OOD

Object oricntation, based en the contents of tables
and diagrams, provides a detailed, reasonably com-
plete view of an application. Exceptions to this view
arc human interface design and specific attention to
database, input, and output design, Object-oriented
design is distinguished by three characteristics:
detail, all potential environments are accommodated,
and the need for an object-oriented implementation
environmeni (0 obtain the payoff from the exercise.

The extensive detail generated in object-cricnted
design leads directly to module specification which
should be straightforward since the definition of
process details, the class/object data, constraints., and
message communications are all completely defined.

Object orientation, as seen by the exercise in the
chapter, can accommodate even nonobject-oricnred
cnvironments. The benefit of OO0D’s ability to
accommodate any applicalion environment is that,
for on-line, ohject application environments, the

methodology dees lead to information hiding, mini-
mal coupling, and maximal cohesion by virtue of the
thinking processcs. Object orientation requires good
understanding of operating sysiem concepls, object
thinking, and intcractions between services and
applications. The design process, as the chapter
appendix shows, requires iteration and prototyping
ta get required levels of detail and to ensure efficient
processing of message traftic. Most important, objcct
thinking [S NOT ihe same as entity thinking or
as proccss and data methodology thinking, Object
orientation requires a paradigm shift 1o be done
correctly.

Objcet arientation is not very ohject-oriented in
an SQL implementation envirenment. The choice
of SOL changes the entire design from what it would
be in an objcct cnvironment to be object-hased. Like
COBOL, the methodology can be made to do any-
thing. Ts this the hest nse of OOD? Not in my opin-
ion. Unless an application is at least on-line and will
be in an object-oriented environment, the work
required for object-oriented design is not worth the
effort. Especially with a fourth-gencration DBMS,
like SQL, the undesiga that must be done wastes
tremendous time and could result in a worse design
than use of some other methodology. While this
compromise is acceptable for a small, on-line appli-
cation such as ABC, it would not be acceptable for
applications with reul-time or more complex pro-
cessing requirements. Much of the effort to develop
an object-oricnted design is wasted when the imple-
mentation cnvironment is not ohject-oriented, There-
fore, the choice of methodelogy sheuld be driven
by the expected implementation environment.

AUTOMATED

SUPPORT TOOLS FOR
OBJECT-ORIENTED

DESIGN

There are @ vast number of objeci-oriented CASE
tools that have all come on the market in the last fow
years. Some are mere compleic in life cycle cover-
age than others. Some environments, such as (0]
Tool Suite, cover most of a development life cyclc,

TABLE 12-9

Summary R35

Automated Support Tools for Object-Oriented Design

Product Company

Technique

001 Tool Suite

Aclor Symantec

Cuperting, CA

Aide-De-Camp

Concord, MA

BOCS
C/Spot/Run Procase, Carp.

Santa Clara, CA
Design/1X0, Meta Software Corp.
Design/IDEF,
Design/OA

DSEE, HP/Softhench
Palo Alto, CA

Excelerator Index Tech.
Cambridge, MA

IPSYS OOARD IPSYS Software

Tool Suite

Object View Knowledge Ware
Atlantla, GA

Ohject Vision Borland International

Scotts Vulley, CA

Hamilton Techoologies, Inc.

Software Maintenance and
Development Systems

Berard Software Engineering, [nc,

Apollo/Hewlctt-Packard

Full life cycle multiuser
O0A, OOD, and code
generation tool for C or Ada

Q0D cuviroament for
client/server applications.
Links to C and SQL databases.

Configuration management
software with support for
00 languages.

Berard object and class
specification

Interactive, GUI environment
for C language development
on Sun, HP, and Apollo
hardware

Data and behavior modeling
expressed in QO C-language
tool

Integrated CASE Product
Supporling 00 Analysis
Siale-transilion diagram
Matrix graph (RTS)
Shlaer-Mellor QCGA and
Recursive Design
Applicalion prolotyping
software using 4GL

or SQL cude

Visual applicalion
development system

{Tabic continues on next page)

in this case, from analysis through cede generation.
Some tools, such as ObjectView, are more object-
based than object-oriented. Some, like Software
Through Pictures, try to shield the user from code
altogether by sophisticated graphics that generate
objects for that environment. Their cxistence attests
ta the object revolution that is beginning to be felt
in business organizutions.

SUMMARY

Object-oriented design (OOD) requires detailed
development of all required functionality in the
operating syslem and how it interacts with an appli-
cation. In this chapter we developed the seven steps
to object-oriented design, linking them to the tables
developed during object-oriented analysis. First, the

836 CHAPTER 12 Object-Criented Design

TABLE 12-2 Automated Support Tools for Object-Oriented Design (Continued)

Product

Company

Technigue

ObjectMaker

OMTool, OMT/S0L

ProMod

Smalltatkrv

Software Backplane
Cohesion

Sofiware Thru Picrures

Teamwork

Telon
FreeddC, TreedFortran,
TreedPascal, TreeSoftl

Visible Analysi

vs Diesigner

Mark Vv Systems

GE Advanced Concepts Center

Promod, Inc,
Lake Forest, CA

Digitalk
Los Angeles, CA

Atherton Technology/Thgital
Equipment Corporation
Maynard, MA

Interactive Dev. Env.
San Francisco, CA

CADRE Tech, Ing.
Providence, RI

Pansophic Systems, Inc,
Lisle, IL

1 Software Engineering
Camarillo, CA

Visible Systems Corp.
Newton, MA

Visual Software Inc.
Santa Clara, CA

Full life cycle structured
analysis using Ward-Mellor
cxiensions tool with cade
generation for Ada, C, and C++

Q0A and OOD with schema
compilation compatiblc with
Qracle, Ingres, and Sybasc
Control flow diagram
Siate-transition diagram
Module nerworks

Funclion networks

32-bit Smalltalk for 08/2

hardware

Integrated CASE Product
Supporling 00 Analysis

Control flow
State-transition diagram

DFD

Control ow
State-lransition diagram
Process aclivation table
State-transilion diagram
Code peneralion

Program code reenginecring
products tor Sun hardwarc

Siate-transition diagram

Booch diagram

objects are allocated to four subdomains: human,
hardware, software, and data. The split of pro-
cessing into these four areas accommodates the use
of, for instance, firmware, distributed comput-
ing, DBMSs, and intelligent interfaces in what
would otherwise be 2 monolithic development of
an application.

The second step of GOD is the development of
time-event diagrams for all processes and ail objects.

The purpose of a time-svent diagram is to allow the
analysts to identify independent, sequential, concur-
rent, independent, and concurrent, dependent pro-
cosses. Usually, several alternative ways of looking
at the timing of processes emerge from this analy-
sts, one of which is selected for development.

Once the types of process are defined, their ser-
vice object needs are identified. Service objects
closely parallcl operations performed by an operat-

ing svstem (O8). O8s have five main functions to
manage: memory, job, task, O, and secondary stor-
age. The memory, I/, and secondary slorage man-
agement functions are directly transltatable into
object thinking. Job management functions are anal-
ogous 10 those performed at the control level for an
entire application and/or user. Job management is
more appropriately called session, or user, manage-
ment in object terms. Similarly, tasks are individual
stcps of a job and are analogous to transaction-
related modules when thinking in abjects. Therefore,
the term used here for task functions is transaction
management. Each type of management function
requires its own type of processing and the processes
selected are particular to the application and imple-
mentation environment.

The fourth step of OOD is to develop a Booch
diagram to summarize the objects—both applica-
fion and service—and their interactions. Booch rec-
cmmends a 3" x 5" approach for which each object
and its processes are shown as a package ona 3" x 5"
index card. The set of cards is moved into different
configurations and message connections are drawn.
The purpose of this excreise is to choose a message-
passing scheme that minimizes the potential for bot-
tlenecks and that provides information hiding and
minimal coupling. The final configuration selected is
documented for the application,

The messape connections decided duting design
of the Booch diagram are elaborated in the next step,
which is to define message communications. Each
called ohject and its calling object, input message,
output message, action type, and return object arc
identified.

At a higher level of absiraction, the next step is
to develop a process diagram that shows the distri-
butien of functienality and equipment for the appli-
cation being developed. A process diagram depicts
processors, for example, computers, and devices,
that is, limited-intclligence equipment such as a disk
drive. Al equipment and their interconnections are
identified. Multiprocessor interconnections show
allowable message movement throughout a network,
while the device connections show hardware con-
figuration. The functions performed at each proces-
sor in a multiprocessor configuration are also on
the diagram.

Key Terms 537

The last step of QOD is to develop package, or
module, specifications for programming. The infor-
mation from the various tables and graphics is
rearranged to show the relevant information for each
particular module. Also, details of each module’s
Togic, if not already documented in a dictionary, arc
defined in the package specifications.

OOD CASE tools come in several varieties:
object-oriented life-cycle development, object-
oriented design without code support, object-
oriented coding without design suppori, or
object-based thinking through adaptation of exist-
ing methods.

REFERENCES

Booch, Grady, Saftware Engineering with Ado, second
ed. Mcnlo Park, CA: Benjamin/Cummings Publishing
Co,, Inc.,, 1987.

Booch, Grady, Ohject (riented Design with Applica-
tions. Redwood City, CA: Benjamin/Cummings
Publishing Co., Inc,, 19%1.

Coad, Peter, and Edward Yourdon, Object-Oriented
Asnalysis, second ed. Englewood Cliffs, NF: Prentice-
Hall, 19910.

Coad, Peter, and Edward Yourdon, Qbject-Oriented
Design. Englewood Cliffs, NJ: Prentice-Hall, 1991.

Graham, [an, Object-Oriented Methods. Reading, MA:
Addison-Wesley Publishing Co., 1992,

LaFore, Robert, Object-Oriented Programming in Turbo
C++. Emeryville, CA: The Waite Group Press, 1991,

Peterson, 1., and A. Silbershatz, Operating System
Concepts. Reading, MA: Addison-Wesley Publishing
Company, 1983,

Rumbaugh, James, Michael Blaha, William Premerlani,
Frederick Eddy, and William Lorensen, Obfect-
Oriented Modeling and Pesign. Englewoond Cliffs,
NJ: Prentice-Hall, 1991,

KEY TERMS
3" x 5" approach device
binary message dizlogne

binding

Booch diagram
client object
concurrent processes
data subdomain

dvnamic binding
hardware subdomain
human subdomain
keyword message
logical process flow

538

CHAPTER 12 Object-Oriented Design

message public package parl
message traffic round-trip gestall
madule scheduling

module structure diggram scheduling objects
multitasking server object

muititasking objects
object-bused

package specification
package

polymorphism

privale interface

private package part
problem-domain ohjects
process diagram
pracessar
pscudo-dynamic binding

service objects
software subdomain
static hinding
supervisor call (SVC)
synchronizing
synchronizing objects
thread of control

time events
time-event diagram
unary message

utility objects

public intcrface

EXERCISES

1.

STUDY QUESTIONS
1,

-2

Continue with the exercise begun in Chapter 11.
Design the application for Eagle Rock Golf
Leaguc.

Design all Customer processing for ABC’s
application. Why is it ditferent from that of
Videoinventory? If we add multiple members to
a houschold, how docs that change the design?

. Compare the SQL and C++ designs for ABC

Tental processing. If there are bottlenecks in pro-
cessing for the two designs, where are they
likely to be? How might they be removed?
Which design gives you better control over the
computer and its resources?

Define the following terms:

message service objects
object synchronizing
polymoerphism thread of control
problem domain time-event diagram
round-trip gestalt

. Define the four subdomains and the Lype of

objects found in cach.

. What benefits accrue from the allocation of

processes to hardware, software, database, and
human subdomains?

v

10.

11.

12

13.

14.

15.

16.

17,

18.

19.

20.
21.

22,

23,

24,

Why arc service objects needed? When are
they needed and when not?

What is multitasking? Why is it important in
application design?

What 1s the purpose of a Booch diagram?

List and compare three types of message
formats.

What is the purpose of a process diagram?
Describe client/server compiting and how it
relates 1o object orientation,

What is binding? What rvpes of binding are
possible? Ilow do you know what type is used
in an application you are developing?
Describe an example of polymorphism.

What are some of the problems associated with
allocation of processes to subdomains?

What does the configuration Y~ on a time-
eveni diagram mean?

Describe how to interpret a timg-event
diagram,

Describe how operating systems rclate to scr-
vice objects,

Describe the kinds of activities managed by the
rask manager.

What are the control levels in object orienta-
tion that are analogous te job and task manage-
ment in an operating system? Distinguish
between them and the tasks they manage.
What is memory management and why is it
necessary?

List the steps lo delining service objects.
Desceibe some of the problems related to this
activity.

What is the purpose of a Booch diagram?
Describe the steps to developing a Booch dia-
gram, What information is shown on the
diagram?

What is a package? What are its contents on a
Booch diagram? What are its contents in a
working application?

Booch recommends the use of 3" x 5" cards to
create and “play’ with the Booch diagram con-
tents. What is the playing for? Why are 3" = 5"
cards helptul to that process?

List three design goals of messages. Create an
example of message passing in an object-
oriented application. Describe different tvpes

of messages to illustrate good and poor mes-
sage designs.

25, What information is placed in the message
table 10 document message traffic in an
application?

26, Why is message definition a difficult activity?

27. Describe the icons used in a process diagram
and their purposc.

28. How many Booch and process diagrams are
drawn for an application?

29. Describe the validation processes used
throughout an object-oriented design process.
Why is each validation step where it is in
the process and what is the purpose of each
validation?

30. Discuss the statement: “There is no such thing
as a one-shot ohject-oriented design.”

31. What information is provided for package
specification documenmation? How do you
decide what is public and what is privatc infor-
mation to an object?

32, Whal is the role of prototyping in object
orientation?

W EXTRA-CREDIT QUESTIONS

1. Research queue or stack management, Write a
two-page paper to describe the functions of that
type of management. Then, design the object-
oriented class/objects and processing routines
that wouid accomplish these functions.

2. Booch discusses primitive processes in detail
and names several different types of primitive
processes. Research these tvpes of processes and
discuss their importance lo object-oriented
design. How important is it 1o have « name for
each type of thing in a design?

APPENDIX: UNIX/

Appendix: Unix/ C++ Design of ABC Video

C++ DESIGN OF

ABC VIDEO

Although the Chapter 12 presentation of ABC
Video’s design began as object-oriented, il ended as
a hybrid: part-object and part-not, because of the im-
plementation environment. This appendix is the

539

same design with a discussion of the decisions and
alternatives from a purely object-oriented perspec-
tive. Chapter 12 presented a consistent discussion
of the implementation throughont the text and shows
what happens when you deobjectify the application
to fit a particular language environment. This appen-
dix, then, gives you a basis for contrasting what
would happen if you designed a purely object-
oriented application. Each stage of the process is
presented with enough comment for you to see the
differences between the hybrid and object designs,
Package specifications and a prototype are still
bevond the scope of this discussion, but we present a
partial package specification so you can contrast the
levels of detail for GQOD to the other methodelogies.

A [ew terminology differences exist with the
Unix, C++ environment and we start with them,
Class structure is similar in C++ to the discussion
in the chapier. Data in C++ is defined by sfructures.
A structure that contains both data and functions is
called a class. Classes were defined in the chapter
as having public and private parts. In C++ classes
have public, private, and protected parts. The public
part is that part accessible by the rest of the system.
The private part is not directly accessible by
any other classes. These two definitions have not
changed from the chapter. A protected part specifics
what may be inherited, that is, processes that are
accessiblec by member processes in its own class or
in any class derived from its own. A derived class
is one that has multiple inheritance and is made up of
its own, and its inhcrited, data and functions. Class
inheritance is implemented by having processes that
have a protected status. Thus, in C++, the manner
of implementing inheritance is to provide the pro-
tected parl of an object and to distinguish inheriting
objects by calling them derived classes.

The term process refers to functions in C++.
Functions can be part of a class (i.e., a member} and
restricted in use, or they can be sland-alone entities
that are indepcndent of a class. At least one inde-
pendent function, main(), is required to initiate pro-
cessing of a program or application. Many functions
are provided in a library of reusable functions that
are link-edited to compiled code for execution. We
will not spend much effort on functions since they
are most evident at the code level.

540 CHAPTER 12 Object-Crientad Design

Individual language operators ure analogous to
other langnages. Polymorphism is termed operator
overloading but the meaning is the same. Virtual
functions are the method used to provide run-time
binding for polymorphic functions. Other function
types beyond the typical oncs associated with classes
include friend functions, that have read only ac-
cess to the private data of a class, and static func-
tions, that opcrate on the class level rather than at the
object {i.e., instance) level. Borland's Turbo C++
provides an cntire sct of classes with functions and
inheritance as the basis for developing applications.
The “container’ classes, for instance, include several
types of arrays, associations, hash tables, lists,
stacks, and queues. The container classes are impor-
tant hecause they provide a means for imple-
menting service objects. Next, we discuss the
object-oriented design (O0D) activities.

Allocate Objects to Subdomains

In object-oriented analysis (O0A), we defined
classes, class/objects, and superset classes needed
to properly define all of the interrelationships among
objects in the application. This disgram and the table
matching processes to their objects are the basis for
this activity. The allocation in Table 12-3 has no
change here (see Table 12-A1).

In allocating the data handling functions to the
data subdomain in C++, we commit to designing
generics 10 handle all fles. This means that we need
a new object for DB actiens, Also, there will be no
collapsing of data objects as in SOL. Object-access
control will be implemented as a saperset of func-
tions to mirror the object relationships. To imple-
ment the generics, a fixed message type that
accommodates all of the processing for all of the
data objects is required. Such a message’s minimal
contents are: From-Object, To-Object, Action, Ob-
ject, Return-code, Physical-Location-Key, Length-
of-Data, and Data.

While the subdomain allocations do rot change,
the handling of them does. Once functions arc allo-
cated to a DBMS, all developers need to know all
allowable interactions. Those interaciions must be
defined and desigred manually when no DBMS is
used. A partial list of functions required includes:

Locate Data (transform key to physical focation)

Get Daty {(muy include a prechange write to a
log for recovery)

Rewrite (may include a postchange write to a
log for recovery)

Write {may include a postchange write to a log
fot recovery)

Delete (may include a postchange write to a log
for recovery)

Spiace Managemcnt

Queue Management (including service requests
and service responses)

Backout Management

Commit Management

Lock Management

Access Control Management

Error processing for such problems as data not
found, out of space, hardware error, or unsuc-
cessful read, write, rewrite, or delete.

These [unctions can be defined and incorporated into
documentation at subdomain allocation time or dur-
ing service object definition.

The human interface definition is also going to be
different. In the main text of this chapter we
designed the system for a 4GL, in which a screen is
painted and the programmer only needs to know the
fields, their format, and desired characteristics. The
4GL software manages all of the formatting and set-
ting of field attributes. In a lower level language,
such as C++, screen format, line, starting position,
length, field attributes {e.g., blink, reverse video, or
color), and field contents are all managed by the pro-
grammer and, therefore, require design.

Anocther choice we make is to have full-screen,
line-at-a-time, field-at-a-time, or character-at-a-time
interactions. Selection of input method is application
specific. In ABC’s case, we decide that using a
method that will not slow down users the least dur-
ing pcak periods is best. Since actual data cntry is
limited to CustomerPhone, VideoBarCode, and
money amounts, for rental processing, and since
rental processing is thc most uscd function, we
choose field-at-a-time entry. If the application had
thousands of users and miillions of transactions each
day, wc might have ficld-level entry for rent/rcturn
processing and screen entry for customer and video

Appendix: Unix{ C++ Design of ABC Video 541

TABLE 12-Al Process Subdomain Assignments

Suhdomain

Process Name Data Hardware Process Human

EnterCustPhone X
ReadCust X

CreateTempTrans X

Retrieve VOR X

DisplayTempTrans X
EnterBarode X
RetrieveInventory X

Digplay Inventory X
ComputeTempTransTotal X

EntcrPayAmt X
CormpuleChange X

DisplayChange X
Updatelnventory X

WriteVOR X

PrintTempTrans X

EnterBarCode X
Retrieve VOR X

DisplayTempTrans X
AddRetDateTempTransVOR X

AddltoVinv X

Updatelnventory X

ComputeLateFees X

WriteVOR X

EnterCustomer X
CreateCustorner X

EnterVidcolnventory X

CreateVideolnventory X

maintenance, because they are more data-entry in- synchronize processing between the input devices
tensive activities. Whichever input ‘chunking’ and the computer.

method s chosen, we must intercept start and stop With field-level inpul, we could choose field-level
characters from the keyboard and bar code readerto interactions, having local, PC-based intelligence

542 CHAPTER 12 Object-Oriented Design

simulating a 4GI1. that checks alphabetic/numecric
contents and beeps on errors. This greatly compli-
cates the application and is decided againsi. At some
future date, if the numbcr of uscrs begins to tax the
file server, we could revisit this decision to speed
processing by off-loading work from the server.

Draw a Time-Event Diagram

The time-cvent diagram also does not change and is
presented here as Figore 12-A 1, Now we will pay
more attention to the potential for concurrency,
becausc we must be able to prove the processing and
that implies monitoring of the success of all write,
rewrite, and print actions.

The choices for concusrent processing all relate to
data I/O, and the consequences of deciding for con-
currency must be considercd. First, consider conse-
quences of concurrency if we opt for read/write
concurrency. At the hardware level, the affected
databases must be on separate buscs {on a PC) or
change!s (on a mainframe) to ensure that the pro-
cesses arg not contending for the same hardware disk
access time, Second, management and synchroniz-
ing modules to reunite multiprocesses within a
thread and 10 verify processing are required. This
implies a need for queues for cach process and for
each thread. For each process we need process [I,
thread ID, and return code. For each thread, we need
all concurrent processes” 1Ds and return codes from
processing. Side effects of potential errors must be
considered. For instance, if WriteVideeOnRental,
RewriteVideoOnRental, PrintReceipt, and WritelHis-
fory objects arc all active at the same time, we need
10 decide acceptable combinations of successful/
unsuceessful processing and actions taken for cach
possiblc combination.

Concurrency decisions should be based on busi-
ness constraints and needs for processing or re-
sponse time, There should be some attempt to
compute how long a transaction will take and to
determine response time. For cxample, ABC rental
transactions have an approximate processing time
of 8.6 seconds (8506 ms; see Table 12-A2) during
nonpeak time and about 11 seconds during peak pro-
cessing times. From this table, which the SEs gen-
erate, we see that input and output from the terminal

account for 8.1 seconds of the total and actual inter-
nal processing is about 306 ms or slightly over one-
half second. If the inlernal time were over twe
seconds, we would opt for concurrency to minimize
the internal strain on processing. With under a half-
second processing time, we can continue thinkirg
of sequential processing as wc did with the SQL
solution. The differences in using SQL versus an
ohject-oriented language are not yet apparent. The
major difference so far has been the level of detail
of the reasoning process to make concurrency and
data-related decisions. This level of detail is simi-
larly fower for the other OOD reasoning processcs
as well,

Determine Service Objects

In this section, wc list the required service object
functionality to show the level of detail and com-
plexity required of true object systems, bul without
much explanation. We will assume that the Unix/
C++ environment being developed for ABC will
empley reusable code objects for many service fune-
tions. ‘Free’ eode is one of the benefits of using con-
sultants who come with their own implementation
madules for many functions. We still need to deter-
mine which modules arc needed, however. Referring
back to Table 12-5, ABC is a sequential, multiuser
application with needs for scheduling and multi-
tasking managcment, in addition to 1/0, user,
transaction, thread of control, memory, startup/
shutdown, and dala management. Table 12-A3 lists
high level service objects required to suppoert ABC's
application.

Inpul/outpul is straightforward. There are four
[/O functions to design: keyboard, bar code reader,
display screen, and printer. We assume that all input
interactions are from the keyboard or bar code
readcr, which read slightly differently. The keyboard
is read one character at a time until a field is com-
plete. The bar code reader reads the entire code, or
field, at once. Thus, we can use polymorphic mod-
ules to GerField and possibly for other functions as
well. Likewise, we assume all output interactions are
to the display screen and printer. The basic actions
for all four devices is to start, synchronize (abbrevi-
ated synch from now on), get/put, wait, or stop.

Appendix: Unix/ C++ Design of ABC Video

543

14
" 12
OBJECT . 10— |
8] |
7
! 3 Lli,_'— !
TempTrans |
|
Custemer 2 !
|
of
WideoOnRental 2 4 :
i
VINY 13 |
[4 | 9 12—
BCVideo |
13 I
4] | ° | 12—
Q » E0d
Trans
Time ! Events
Legend: 1-Get Entry
2 - ReadCust or Read YideoGnRenial
3 - Create TempTrans, ReadCust
4 - Retrieve ak related YOR, Read Videolnv. and Read BarCode Video
5 - Compute Late Faas
6 - Compuie Total Amounti Due
7 - Display Temp Trans
8 - Process Rsturns (includes return 1o sleps 5. 8, 7)
9 - Get new rentals, Read Videolnv. and Read Bar Gode Video
10 - Format and display new rentals, update Total Amt Dug
11 - Process Payment {includes EnterPayAmount, Compute Change,
Display Change})
12 - Print TempTrans, Rewrite old VORs Update BarCedeVideos
13 - Write new VORs, Rewrite BarCodeVideos
14 - End Trans
FIGURE 12-A1 ABC Time-Event Diagram

Waiting requires a queue 1o manage muliiple waiting
requests.

User routinges initiate an application session and
verify user access. The ‘put’ commands all interface
to the screen I/O manager, handing off the message
to be displayed. Similarly, the “get’ commands all
interface with the keyboard or bar code routines of
the /0 manager. The purpese of user logon routines
is to identify physical lerminal address (7ermiD) and
user (UserID).

The transaction object and its routines manage
individual transactions selected from menus. Infor-
mation is directed to a specific device based on the

TermiD and UseriD passed from the User routines.
For instance, customer Maintenance has four trans-
actions: create, delele, update, and retrieve, Job rou-
tines then display menus and alter menn contents
based on user logon and access codes. As above,
‘puts’ interface with the screen or printer routines
of the /O manager objects and ‘gets’ interface with
the keyboard or bar code reader routines. The infor-
mation passed to the command object for use in
process control includes TermiD, UseriD, and
TransCode.

Thread of control is handled by a command
object and routines which manage atomic processes,

544 CHAPTER 12 Object-Criented Design

TABLE 12-A2 Rent/Return Transaction Proccssing Time Estimate

Internal
Instruction Input*® Process Output Total

Get 1000

Read (average 3) 30 ms each
plus data transfer of 6 ms
each

Compule late fees
Compute amount due 10 10

Display (average 20 lines, 3000 3000
150 ms/linc)

Gert Returns (30% of 1000 1000
transactions)

Retrieve VOR (average 3) 96 06
Compute fate fees and amount 30 a0
due {1{} ms cach)

Display 3 lines 450 4350
Get Rental (assume one) 1000 1000
Retrieve 3 DBs 96 96
Compute amount due L0 10
Display rental line, amount 300 300
due line

Process payment—enter LO00 1000
amount

Compule change 10 10
Display new amount due, 3(X) 30
change

Prinl {assumes automating 10 10

gueuing and time to transfer
gueve address)

Rewrite (average 3} 96 96
Write (average one) 32 32
Subtotal {ronpeak time) 4000 506 4060 8566
Time in queuve {average .33 2855

trans waiting during peak
times transaction time)

Tatal peak processing lime 11421

*All times are in milliseconds.

Appendi: Unix/ C++ Dasign of ABC Video 545

TABLE 12-A3 Service Objects Required for C++ ABC Application

O Manager
Keyboard Get character until end of field
Processcs Ready to reccive {Sync keyboard)
Start keyhoard entry
Reset keyboard
Send entry to screen formatter

Bar Code Start reader
Reader Sync reader
Get bar code
Send bar code (o calling rouline

Display Tdentify screen location and type
Screen interaction
Format screen protected lines
Format screen data lines
Put keyboard entry in field
Set field attributes
Check allowable value
Get crror message
Scnd cotry to calling routine
Put screen
Put screen line

Printer Sync printer
Start print
Put lines until end of print
Stop printer
Get print lines until end of print
Wait to print
Store print lines for 60 seconds
Queue address, length of print
informaticn

User Object Put logon prompt
Get logon
Verify logon
Put etror

Transaction
object

Thread of
control—
Commard
Object

Memory
Manager

Put password prompt
Get password

Verifly password

Put password error

Put menu

Get seleclion

Verily selectlion

Get memory

Release memory

Set vp global user area
Release global user area
Call delrag for user area

Get memory address of data

Get memory

Set status

Queue instructions for execution
(i.e., call object/process)

Transfer control to TempTrans ot
Drata

Enqueue transaction

Dequeue transaction

Execute instruction

Check status

Create status

Delete slalus

Release memory

Allocate memory

Desllocate ([ree} memory

Defrag memory (i.e., defragment)
Queuc memory request

Dequeue memory request

{Table continues on next page)

that is, they supervise execution of code modules.
The object reads code into memory, passes one
instruction at a time to the CPU for execution, and
interfaces fo the other manager routines to peiform
I/0, memeory, and data management. The command
object uses the fields passed [tom the transaction
object and adds to it the task and task status.
Mcmory managcement is designed simply to allo-
cate the maximum amount of space for a transaction
to any request. The largest transaction is a rental/

return which is estimated to 1ake 13,860 byies as

follows:

Design Element Bytes

Screen 80 x 22 1,760

Max ficlds 100 bytes x 10 lines 1,000

Attribute bytes three/field 300

Miscellaneous data area 8K}

Code 10,000
Total 13,860

546 CHAPTER 12 Object-Orented Design

TABLE 12-A3 Service Objects Required for C++ ABC Application {Continued)

Start/shut
Main{)

Set vp all memory

Inifiate managers

Load application code

Allocate transaction code locations
Store applicalion code

Gt DB indexes

Store DB ndexes

Start DBs

Close DBs

Transfer to User

Open DB (Open Index, Read Index
into memory, Position Index,
Open DB files)

Close DB (Write Index, Close Index,
Release Locks, Backup DB,
Backup Indexes, Close DS files)

Daia Manager

Read DB

Write DB

Rewrite DB

Position DB
Determine physical location
Request Read

Wait read

Request Write/Rewrite
Position Index

Reud Index

Wait wrile/Tewrile
Check item locks
Engueune item lock
Dequeue ttem lock
Wait for item lock

While this over-allocates memory, the alternative,
to size memory to each transaction, is more com-
plex, If memory becomes scarce, the change to
transaction size allocation can be made. To contrast
the amount of memory requircd, a Customer Create
transaction takes approximately 5K memory.

Startup and shutdown could be handled as part
of the user object, but a cleaner implementation is
to design them as separate. This start/shut object
allocates memory, initiates application and DB pro-
cessing, including bringing all transaction code and
DB indexes into memory. In C++ implementation
terms, the start/shut objcct will be the main() rou-
tine that initiales ABC processing,

TABLE 12-A4 Service Object Allocation

Lasl, daia management could be by file or by
function. By file is simpler and easier for novices to
maintain, but it also requires much more code and,
therefore, more maintenance. Here we will defing
onc sct of generic CRUD functions for the data
object with each requiring the specific DB name and
data. If necessary, polymorphic processes for
the CRUD functions can be customized for each
database.

After the services objects are developed, they are
allocated to the four subdemains of data hardware,
software, and human interface as shown in Table
12-A4. Allocation of kevboard and bar code to hard-
ware would be a possible choice. They are left with

Data Hardware

Process Human

Data Manager [/O—Print

EO-—Keyboard, Display,
and Bar codc reader

User Manager

Memory Manager
Transaction Manager

Command Manager
{Thread of Control)

Appendix: Unix/ C++ Design of ABC Video

547

Hardware Subdomain

Data Subdomain

Human Subdomain

Process)

Subdemain

HGURE 12-A2 Subdomain-Level Booch Diagram

the human interface because they are closely relaied
t0 the display processes which mirror all of their
input. Keeping these processes together reduces the
object-switching overhead required to change from
one object context to another.

Develop a Booch Diagram

The first Booch diagram in Figure 12-A2 shows the
subdomain-level communication. To simplify the
communications in the system, based on the subdo-

main message interchanges, we will define a generic
message for use in most communications. The sec-
ond Booch diagram, shown in Figure 12-A3, is at the
object level and is obviously more complex than the
SOL solution.

There are several major diffcrences between the
SOQI. and C++ designs. First, the schedule in SQL i3
a mainline routine that determines the next code to
execute and is a centralized controller of the appli-
cation. That function is performed (0 some extent
by the command manager objects in the C++ design,

548 CHAPIER 12 Object-Oriented Design

Memory

Transaction

Command

TempTrans

Hardware ¥

FIGURE 12-A3 Obiject-Level Booch Diagram

but the scheduler functions are at a lower level and
spread over the service objects. At this level, the spe-
cific processes are not shown because the diagram
would be more complex than necessary. Instead, we
have shown the service and data objects only. To
implement the application, we would completc that
detail.

The design as shown in Figure 12-A3 is still
incomplete for the data part of the processing. [n
Figure 12-A4 the next Iower level of detail to show
the complexity of the data objccts is developed.

Based on this diagram, we might decide to denor-
malize the data to provide minimal accessing of
databases during rental processing. For instance,
we might replicate all Videolnventory information
in each RarCodeVideo object to ¢liminate the need
to access another object as part of rental process-
ing. Similar denormalization might be done with
Customer and VideoOnRental. Before a proto-
type could be built, a second design iteration on
all abjects and complete design of the details is
required.

Appendix: Unix/ C++ Design of ABC Video

549

Mamary

Transachon

System

Command

TempTrans

T |

Hardwars W

¥
Customer Cus: Customer History TempTrans VideoOnRental
Creale i JI_. ;
- —/ L]
Retriave =/ e =/
L L L.
Wideo | nventory Vi BarCodeideo BCWideo VideoHistory EQD
[Dekre o> | <> ,_-d‘:i % %
[1 [| L |
1 1 1
[1] 1 1 L J
L b| I
—l L1 | S— . T .

FIGURE 12-Ad

Object-Level Booch Diagram with Data-Object Detail

550 CHAPTER 12 Object-Oriented Design

Define Message
Communications

The message list is shorter than that of the SQL
solution if we use a generic message as described
above. The generic message Jist for the C++ Booch
diagram is shown as Table 12-AS5. If we do not use
a4 generic message, the number of connections
increases from the SQL number of about 30 mes-
sages to over 170 messages for C++ as shown
in Figure 12-A35, which depicts «!! connections in
the Booch diagram, summarizing the processing
for Command and [/O manager objects. In Fig-
ure 12-A35, the processes with no specific arrows
have multiple calling routines and return to the
caller. The other routines with arrows are chained
as shown.

In the SOL design, the nctwork operating system
and SOL shielded the application programmer from
most of the compiex elements—the service objects.
With C++, the increased number of connections also
increases the application’s complexity. It we cannot
use DB user views, there are morc data objects on
the diagram. If we do not have a sophisticated oper-
ating system to monitor execution and physical I/O
aspects of the application, the capability must be part
of the application. By using generic messages,
we teduce the complexity somewhat by reducing
object abends for wiong message type and by
allowing generic code for message receplion and
interpretation,

Develop Process Diagram

The process diagram has no changes from Figure
12-22, which is redrawn here as Figurc 12-A6.

Develop Package Specifications
and Prototype

Package specifications for SQL would be simple
compared to those of C++. One package description/
program specification is shown below for customer
data. The specification identifies public and private
parts, plus the processing to be performed. Follow-
ing the specification is an example of a C++ code

module to read the customer file based on a location
that is passed to the read module,

Customer Specification

[tem: Descripiion
Name: Customer
Documentation: The customer database contains

information about legal
cusivmers for ABC.

All aceess is through the data
Mmanager routines.

All data is passed 10 using routines,

Visihility: Private
Cardinality; A00-600
Hicrarchy:

Superclass Customer

Class Cust

Metaclass None
Generic &custloc
parameters; &custree
Interface-

Implementatien:

Public: Only through passed parameters
Protected: Uses:Customer class
Ficlds =

char custphon {10];
char custln [5};
char custfn [25]:
char custadd1 [50];
char custadd2 |50];
char custeity [3Q);
char custstat [2];
char custzip [10];
char cctype [1];
char ccno [[7];
date ceexp [8];
date entrydat [8];

Opcrations: Add (put)
Seck (read)
Update (put)
Delete

Persistence: Static

TABLE 12-A5 C++ Design Message List for ABC Rental Processing

Appendix: Unix/ C++ Design of ABC Video 551

Calling Called Input Qutput Action Return
Object Object Message Message Tyvpe Object
Temp Trans Data Task ID, Task 1D, CRUD, Caller
Start/Shut Manager Terminal 1D, Terminal 1D, Open,
Thread 1D, Thread ID, Close
Database [D, Database [D,
Tvpe Request, Type Request,
Data Reiurmn Code,
Duata
Print Term Hardware- Data Address, None Print None
Trans Prini Type Print
Temp Trans, [/(}-Bar Code Task 112, Task 11, Input Caller
Start/Shut Reader, Terminal TD. Terminal 1D,
[/0-Keyboard Thread ID, Thread 1D,
Database 1D, Database ID,
Type Request Type Request,
Return Code,
Data
Start/Shut, 1/O-Display Task 103, ACK or Display Command
User Mgr, Terminal D, Task 1D,
Trans Mgr, Thread 1D, Terminai 1D,
Human Database 1D, Thread ID,
Interface, Type Request, Database 1D,
Data Mgr Data Tyvpe Request,
Return Code
System Slart/Shut Begin Non untit Process User Mgr
shut down
Start/Shut User Mgr Term Td 1/0-Display— Put Prompt I/O-Display
Logon screen
request (no
message return
to caller)
Command Temp Trans Task [D, Depends on pext Process Either
Terminal [D, calied routine, Comtnand,
Thread 1D, either Task ID, Human Mgr,
Database 1D, Terminal 1D, Data Mgr,
Type Request, Thread 1D, HW-Printer
Data Database 11, 10 Mgr
Type Request,
Data or Task ID,
Terminal D,
Thread 1D,
Daiabase 1D,
Type Request,

Return Code,
Dala

552 CHAPTER 12 Object-Oriented Design

Memory Cormmand
[AllacateMembry tAarag

| FreeMernary

| ManagpTransaction
| ManagébSta‘.us
| ManagpOueues

[DefragMemo

[GueMemoryRequest

[DegueueMearfioryRequest

TempTrans
Tranzaction (TempTran;; -———
-F’ul el _
- [createTempTrans |
GelSekection -
[ComputeTenpTransTotal
| YerifyJelaction .J
. ComputeChange
@‘nnr‘f | AddRetDatkTempTrans|
[RefeadeMemory i .
[Aedi¥in |
SetlUpglobals
ppovas "] [ComputeLpleFees |
HeleageGlobals I - Human
CallDey ra§ I ‘J Hargwars
— EnterClhistPhone .
Ente/BCode | -

StartPgn

=
I

DisplayTempTrans

- Putlings

Digplay Inventory

I [Displayf Inve

4 — DigplayChange ﬁ

N Pl A

NMge Display - !
| EnterClustomer GetPrigiLines
Main Slore F@I ;

Queughddress I

pRll —

Y

Customer Histary TempTans VideoCnRartal

Setli

LoadDRIndexes Data
[LoadDBindexes]
| LoadApolicalion | Dpen
l ShutDownAll |

Transfprolser

[Entary erln\.rentoa Wiaitto E

Claglomes

=
=

Craalg

User w

(il
i}

Il
(10

Yideo Inveniory e BarCodoVicoo ECVidea VidaoHistary EQD

Dielele

|
{
i
i

il

Tlose

[Fanage s~ P
Eanage Requests |

—
T—
T—
—
T

| Werify EW |
| Put PW ertor '

IEIITIR

FIGURE 12-A5 ABC Process Diagram

Program fragment to read the customer data:

//seekc.cpp

//read particular customer using
passed custcmer location

#include <fstream.h> //file stream
class customer

{

protected;
char custphon [101;
char custln [50];
char custfn {25];
char custaddl [50);
char custaddz ([50];
char custcity [30];
char custstat [2];
char custzip {10];
char cctype [1];
char ccno [17];
date ccexp [8];
date entrydat [8];

public:
void custdb();

}:

void main(custloc& custloc)

//customer location passed
{
person cust;

// establish customer object
ifstream cust;

// establish customer file
infile.seekg(0,ios:end);

//go to 0 bytes from end
int endposition=cust.tellg(}:;

//find file position
int n=endposition/sizeof(cust);

//number of customer on file
int position=(custloc-1) *
sizeof(cust):

//relative location # * record
size locates individual record
cust.seekg(position);
cust.read((char*)&cust,sizeof

{cust)):

// read customer information

Appendix: Unix/ C++ Dasigh of ABC Video 553
Impact
Printer
All Processing
Perscnal
Computer
FISURE 12-A6 ABC Process Diagram

SUMMARY AND

CHAPTE

FUTURE OF SYSTEMS
ANALYSIS, DESIGN,
AND METHODOLOGIES

INTRODUCTION

There arc an unlimited number of ways in which the
methodologies discussed in the preceding six chap-
ters might be compared and analyzed. In addition,
significant research is proceeding con individual
methods as well as on integrating different meth-
ods. To confuse matters, new technologics intro-
duced daily prefoundly impact our ability to develop
applications and will require equally profound
changes in methodologies to be used cfficicntly and
effectively. In this chapter, we first compare the
three methodologies to get a fix on their compleie-
ness and ability to be vsed to analyze and design
applications, Next, computcr-aided software engi-
ncering tools {CASE) are critiqued and summarized.
The deliciencies and usefulness of CASE are dis-
cussed and related both to development of current
applications and to the future applications that com-
panies now desire to build. Then, the changes in
organizational and technological cnvironments that

954

will require continuous evolution of methodologies
are described and related to problems in application
development.

COMPARISON OF

METHODOLOQGIES

In this section, we take two different approaches to
summarizing the usefulness and sophistication of the
three methadologies discussed in the preceding six
chaptcrs. In the first analysis, the phascs, information
developed, characteristics, and decisions made in the
three classes of methodologies are traced following
the work of Olle et al. |1988] and expanding the
information analyzed for each of the methodologies.
Then, Watts Humphrey's maturity framework is
described and applied to the methodologics to
describe which, if any, might be appropriate for use
in a maturing IS organization. In the concluding
remarks in this section, we summarize the findings

and discuss the future of the methodology classes
and, in particular, the three methodologies discussed
in this text.

Information Systems
Methodologies Framework
for Understanding

In their classic work, Ollc ct al. [1988], developed
the information systems methodology framework
to compare methadelogies, discuss the representa-
tion forms, and identify information supported in
methodologies available for use in the mid-1980s,
including the process methods and duta methods
analyzed in this text. Here, we summarize the frame-
work to analyze activities and phases supported by
the three representative methodoelogies. Then we
extend the analysis to evaluate the phases in which
information becomes known, the general capabilities
of the methodologies, and the sophistication of
resulting designs. Before the cvaluation, please be
cauticned that these analyses are not intending to
condemn or otherwise pass a value judgment on the
methodologies presented in this text. If they were not
the best of their class, they would not have been
selected in the first place. Rather, any shortcomings
in the methodologies only point out that an organi-
zation must compensate for the lacking activilies,
phases, or decisions by providing its own guide-
lincs and methods, or by hoping that their analysts
have the requisite skills to perform these tasks on
their own.

Activities and Phases

This section analyzes the phases of application
development work that may begin at the organiza-
tion level to develop information systems plans
(ISPs) based on business cbjectives. An ISP is an
analysis of both data and processes that includes
manual or automated work to capture a snapshot of
the work performed in an enterprise. The ISP is
modified to provide the basis for organizationat
reengineering analysis as discussed in Chapter 5
(which is not part of Olle et al.’s work). Work pro-
ceeds according to the framework to include busi-

Comparison of Methodologies 555

ness process, entity and feasibility analysis for a
given application. Analysis and design are discussed
in terms of the crientation of the majority of tasks
performed during those phases. Support for human
interface design, allocation of work to hardware or
firmware, and DBMS design are all included. Main-
tenance, the final phase of a project’s life, is consid-
ered in the extent to which it is supported in the
methodology.

Table 13-1 shows the ratings of the process, data,
and object methodologies from Chapters 612
on these activity and phase criteria. The process
method, including the work of DeMarco and Your-
don & Constantine, is most focused, including only
analysis, design, and program develcpment tech-
niques and methods.

The information engineering (IE) data methodol-
ogy is the most complete, covering all phases of the
life cycle excepl maintenance explicitly, and cover-
ing ull desipgn ilems 1o some extent (see Table 13-1),
The support for hardware/firmware design is lim-
ited to allocation of tasks and data Lo distributed
environments. There are no decisions in IE for how
to allocate work to hardwarc or firmware as in object
orientation.

The enhanced Booch and Coad & Yourdon
object-oriented {0QQ) approach ignores front-cnd
tasks, including organization level, business analysis
of entities and process, and feasibility analysis.
Rather, it assumes that these tasks have been per-
formed before object-oriented methods begin to be
used. Ohject orientation is more specific in its
approach to analysis and design than precess oricn-
tation, and, for some items, than data orientation.
0 cxamines and selects the objects and processes
of interest in developing the application during the
analysis process. These are then subsequently
refined and further defined until design primitives
are developed. Object design explicitly discusses the
control structure of the application in the form of ser-
vice objects which can support either batch, interac-
tive, or real-time applications with any number of
users, in addition to providing for distributed com-
puting through the development of process dia-
grams. The other two methodologics do not
specifically address design differences that relate to
timing or number of users for an application.

856 CHAPTER 13 Summary and Future of Systems Analysis. Design, and Methodologies

TABLE 13-1 Methodology Comparison: Activities and Phases

Knowledge Process Data Obiect

Business objectives No Yes No

as basis for applications

Organization Level No Yes—Informaticn No

Analysis Systems Flan {ISP)
or Organizational
Reengineering

Business Process No Yes No

Analysis

Business Entity No Yes No

Analysis

Feasibility Study No Yes No

Aanalysis Process-Oriented Balanced Data Objects incorporate both
and process analysis Dala and Processes and

are defined during Analysis

Design Process-Oriented Balanced Process Encapsulaied Object-
data integration Orienled

Program Program design has Program design has Iteralive protolype

some heuristics but
relies on personal

Development

expertise of SEs
Human Interface No
Guidielines
Hardware/Firmware No
Atlention
DBMS Design No
Attention
Maintenance No
Support

some heuristics but
assumes use of CASE
which generates code

Yes

Distribution analysis

Yes—Assumes 3rd
normal form relational
DBs

No

development is an integral
part of the methodelogy . . .
some methods arc oriented to
specific languages

No

Yes

No

Assumes independent
modules which should be
easily mainlained

To summarize, information engineering (IE) cov-
ers more phases of the life cycle and more specific
activities as identified by the Olle framework. Object
orientation {O0O) has more depth to the design phase
by providing for design of problem domain, hard-
ware, and service object activities. The guidance
provided by IE for distributed computing decisions
is significantly more detailed than the heuristics pro-

vided by object-oriented design for aliocation of

work to processors,

Where Information Becomes

Known

Next, we evaluate the phases in which information
becomes known by classifying data, processes,

relationships, and module information at different
levels of detail.

Table 13-2 shows that both data and object
methodologics provide analysis of all the items but
some itcms are completed in different phascs.
Major entities and processes can be known during
the information systems planning (ISP} activity of
IE, if it is conducled. In addition, the current au-
tomation stale of the cntitics and processes is identi-
fied during ISP as wcll. The same items, using the
term object for entity, are defined during object-ori-
ented analysis and arc subject to refincment during
object-oriented design. There is no explicit identifi-
cation of cur-rent antomation status for any of the
items in OO methods.

Business events and processing triggers are both
identified in TE and object oricnlation. The timing
of events, via event diagrams, is analyzed in more
detail in object-oriented design, providing a basis for
concurrent processing decisions. In IE, events are
used (o identify triggers for processing and 1o show
where external data entry is performed in the appli-
cation. Process methods identify necessary data
flows into and out of the application, but they are not
specilically tied to business events or triggers. The
event/trigger distinction is important because it iden-
tifies necessary and sufficient inputs whereas data
flow identification leads to continuation of past
data intcractions without conscicusly reflecting on
their need.

The process method does not provide for data
rclationship analysis, nor is data structure analyzed
at either the logical or physical levels. The pro-
cess method explicitly ignores timing and intcr-
process relationships.! The lack of relationship
analysis means that the resulting designs will be less
likely to mirror the business requirements of the
application, Even Yourdon’s 19892 update to the

[

This explicit ignoring of process timing and relationships is in
DeMarco and Yourdon & Constantine. Tn extensions of process
methods for real-time systems, these are both analyzed explic-
itly. For a discussion of the real-time extensions, sce Ward, P.
I, and 5. 1. Meller, Strucinred Development of Real-Time Svs-
terns (three volumes). NY: Yourdon Press, 1985,

2 See Yoordon, Edward, Modern Structured Analysis, Fngle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1959,

Comparrison of Methodologies 557

methodology fails to integrate data with process
analysis.

Object orientation appears more complete for
real-time and database applications in ¢xplicit analy-
sis and decisions for system, database, or software-
specific attributes and processes that might be
required of the application. The cvent diagram mare
explicitly identifies opportunities and requirements
for concurrency than the other methodologies. The
reliance of both process and data methodologies
(with or wilhout extensions) oo designer knowledge
and experience leaves too much 1o chance and puts
pressure on designers 1o remember Lhese tasks
(i.c., concurrency analysis and software-specific
data design).

General Capabilities

In this section, the methedologics are compared
according to the extent to which they support analy-
sis and design of the application characteristics
described in Chapter 1: inputs, data, outputs, and
constraints. In addition, processes and management
of different scurces of complexity are analyzed to
complete the general description of an application.
Inputs include the extent to which information and
events that trigger processing are included in the
analysis and design of the application, Data are
internal, computernized representations of facts about
cntitics in the real work that are stored in the data-
base for the application. Outputs are information that
leaves the computer system cither 10 a displav or to
paper or some other (c.g., image} media. Processes
describe the activity being automated, for instance,
transaction, decision, or inlerential processing,

Constraints define restrictions on objects, entities,
data, relationships, or processes within an applica-
tion. Constrainl lypes include prerequisites, tempa-
ral, inferential, structural, and control constraints.

Although not explicitly defined in Chapter 1, the
ability of the methodology 1o [acilitate management
of problem complexity is a key concern to develop-
ers. Complexity sterns [rom several sources, includ-
ing managcment of the number of elements in the
application; the degree and types of interactions, and
the need to support novelly and ambiguity.

558 CHAPTER 13 Summary and Future of Systems Analysis, Design, and Methodologies

TABLE 13-2 Methodology Comparison: General Capabilities

Knowledge

Process

Data

Object

Entities Objects

Entity Attributes

Entity Identifiers

Entity Class/Object
Structure

Data Relationships

Specific attributes
required of operaling
system, DBMS, or
software

Physical Pata
Design

General Processes

Delail Process Logic

Data relationship to
processes

Events, Triggcers

Process rglationships

Module
Structure

Module
Specifications

Feasibility—Bepun
Design—Complete
Terminology differs

Feasibility—Begun
Design—Complete
Terminclogy differs

Design Terminology
differs

NA

No

Design—Required
knowledge of designers,
not part of methodology

Design, Programming

Feasibility-—Begun
Design—Complete

Feasibility—Begun
Analysis—Complete

Design

Nonc—Anmnalysis includes
identification of external
cntity inputs only.

No

Design

Design

During ISP if done
Feasibility—High
level fully known
Analysis—Complete

Analysis
Design—Complete

Analysis

Design

Analysis—Entity
Hierarchy
Design—Required
knowledge of designers,
not part of methodology

Design, Programming

During ISP if done
Feasibility—High level
fully known
Analysis—Complate

Analysis
Design—Complete

Analysis
Design—Complete

Desipgn-Process

Triggers on PDFI}

Analysis
Design—Complete

Design

Design

Analysis—Mayv be revised
during iterations

Analysis
Design—Complete

Analysis
Design—Complete

Analysis, subject to
change during Design

Analysis—Object Lattice
Hierarchy

Design—Specifically
part of the melhodology

Design, Prototyping

Analysis

Design

Analysis
Design—Complete

Design-Event Diagrams
State Transition Diagrams

Process Timing defined
in Analysis with State-
Transition and in Design
with Event/Triggers

Design

Design

Comparison of Methodologlies 559

TABLE 13-3 Methodology Comparison: General Capabilitics

Knowledge Process Data Object
Inputs None Trigger Identilication; Event Analysis
Screen Design Heuristics State Transition Analysis
Data Minimal Entity Relationship Object Analysis
Diagram, DBMS, Object Allribule Analysis
Normalization
Output None Screen Design Heuristics None
Prerequisiie None Yes Yes
Constraints
Temporal Constraints None Limited Yes
Inferential Constrainls Nonc None Nonc
Structural Constraints None Data only Hicrarchic inheritance for
data and processes
Controls None Problem domain Includes both problem and
service demains
Complexity Top-down perspective Top-down perspective Round-trip Gestalt
bManagemment perspective

Management of
Novelty

Management of
Ambiguity

Relies an 5C skill for
proper manual
decomposition

None

None

Relies on SE skill for
proper manual
decomposition

None

Noae

Allocate processes to
hardware, software, DBMS,
and human interface; treat as
four separate elements

None

None

As Table 13-3 shows, none of the methodologies
are complete in providing for analysis of all types
of design criteria. None of the methodologies sup-
port design of inputs or outputs, even though both
data and object methods identify the need for inputs
via event/trigger identification.

None of the methodologies deal with inferential
constraints (see Table 13-3). Remember, the fact that
constraints might be missing from a mcthodology
does not mean that they cannot be in the resulting
application, only that they must be remembered and
designed outside of the mcthodology and rely on
designer skills. Process methods are the most limited

in providing no constraint identification and pro-
cessing as part of the methodology. In contrast,
object-oriented analysis specifically provides a step
to identify and define the constraints on processing
and structural constraints as they relate to both data
and processes. IE and data methods are in the middle
with prerequisite constraints shown on action dia-
grams, while structural constraints are limiled to
those expresscd in a class hierarchy for data. Con-
trols are explicitly provided for in both data and ob-
ject methods and are absent from process methods,
Complexity managcment is similar in data
and process methads since both take a top-down

560

perspeclive and are controlled through SE skills. IE
decomposition is somewhat easier when an ISP is
performed, because the software decomposition fol-
lows from primitive busincss processes which trans-
late into computer processes. The SE skills required,
then, are for further decomposition of computer pro-
cesses into modules and execution units that pro-
vide for desired software characteristics such as
minimal coupling, maximal cohesion, and so on,

The OO design perspective of round-trip gestalt
and expiicit use of iterative protolype development
supports complexity management to some extent by
providing increasingly detailed abstractions of the
application with each iteration. OO design also man-
ages complexity through inheritance which mini-
mizes the replication of both data and processcs and
by allecation of processes to hardware, software,
DBMS, and human interface. Through the allocation
of objects and processes to each subdomain, the sub-
domains can be considered independently, even by
different design groups. The only nced for inter-
group coordination is for interprocess message
definition.

For complexity management of ambiguous or
novel requirements, nene of the methodologies pro-
vides guidance.

Nonc of the methodologics guide input/output
design. Process and object methods are unlikely to
be useful in identifying conversion requirements of
an application, since they do not differentiatc auto-
mated from manual data as [E does. Similarly,
process and object methods are not likely to lead to
well-defined databases since the methods do not pro-
vide guidelines for database design.? [E provides
explicitly for normalization and logical database
design while recognizing the need for physical
design based on data usage requirements.

None of the methodologies are perfect at com-
plexity management. Object orientation appears to
facilitate complexity managetnent more than the
other methodologies through its support for inheri-
tance and allocation of processes to subdomains,

3 Attermipts by Boach {1991). for instance, to design databases
into an GOR and by Yourdon (1989} 10 inlcgrate entity-
relationship and data analysis in Moedern Systems Anafysis
are incomplete and cursory.

CHAPTER 13 Summary and Future of Systems Analysis, Design. and Methodologies

Novelty and ambiguity of requirements are not
addressed by any methodologies.

Sophistication in Explicit Design
Decisions

Sophistication means “devcloped in form or tech-
nique,”* complex, or worldly. In this scction, we rate
the mecthodologies in their ability to guoide the
devclopment of sophisticated modules, programs
and applications to exhibit characteristics of
reusability, modularization, information hiding,
maximal cohesion, and minimal coupling. The
issue is not can the methodologies use or result in
modules with these characteristics—the answer is
absolulely ves, they can. The issue is the extent to
which the methodologies explicitly provide guide-
lines and validation heuristics for reaching designs
that exhibit these characteristics.

Nuither data nor process methodelogies provide
for information hiding, maximal cohesion, or mini-
mal coupling beyond somewhat arbitrary heuristics.
Only object orientation specifically can result in a
clean design (sec Tablc 13-4), but it can also be cor-
rupied il the designers significantly change intra-
object and class/object structures or relationships
during design. By early cncapsulation of objects and
processes during analysis, object orientation auto-
matically imbeds cohesion in the application. By
only allowing communication via minimal mes-
sages, object orientation automatically provides
minimal coupling and information hiding. When
implemmented using objcct-oricnted DBMSs and lan-
guages, olyject designs should have these properties.

Problcms and a loss of minimal coupling and
intormation hiding wifl occur if nonobject languages
or software are used to implement OO designs. For
instance, COBOL is the antithesis of object orienta-
tion. COBOL assumes global data and cannot man-
age encapsulated objects because it assumes
separation of data and process, Therefore, if COBOL
is the target language. object orientation would not
be a good choice of methodelogy, all other things
considercd.

4 From Webster s New World Dictionary, pockei edition. NY:
Popular Library, 1973, p. 544,

Compariscn of Methodologies 561

TABLE 13-4 Methodology Comparison: Explicit Design Decisions

Knowledge Process Data Object

Extent of Information NA NA Analysis—Begun
Hiding Design—Complete
Extent of Heuristics rely on Uses Process-design Forces design until

Modularization SE skill

Exten of Maximal
Cohesion

Heuristics rely on
SE skill

Extent of Minimal Heuristics rely on

Coupling SE skill
Supports reusable No
object design

Supports reusable Yes

module/object use

Extent of Reusability Relies entirely on

SE skill

heuristics and SE skill primitives, highly dependent
on implementation langunage.
Relies on SE skill and proto-

typing.

Heuristics rely on
SE skill

Analysis—Begun
Design—Complete

Heuristics rely on Forced by the methodology

SE skill boi could be subverted by
SE errors.

No Heurislics and procedure
for identifying reusable
objects

Yes Includes heuristics and

limited procedurc for identi-
tying reusable objects

Can be 80%+
Organization dependent

Relies entirely on

SE skill

The other measure of sophistication is the extent
to which the methodologies support reusability and
reusable module/object design, Only object orienta-
tion provides for explicit identification of potential
reusable processes and objects, Once the reusable
items are identified, object orientation does not pro-
vide further guidance in how to actually design
reusable modules; nor should it necessarily provide
such guidetines.

1E covers the whole life cycle, something both
process and OO methodologies need to provide for
application development, The IE data methodelogy
provides more human interface design guidance and
is the only methodology that covers the complete life

cyele of an application. IEs’ disadvantage is that
many activities rely on SE skill and experience 1o
know the activity should be performed rather than
incorporating the need for the activity in the method-
ology. When data is complex, nonobject software
(cither DBMS or language or both) are used, or if
human interface design is paramount, information
engineering would be the choice.

Structured analysis and design, the process meth-
odology, is the feast prescriptive in telling users how
to perform the various activities, and it has the least
activities in the methodology.

Overall, object-oriented methodologies would
be expected to lead to a design that more closely

562 CHAPTER 13 Summary and Future of Systerns Analysis, Design, and Methcdologies

resembles the functional requirements, if the func-
tional requirements are adeguately stated before DO
analysis begins. The lack of front-end activities in
OO hinders its usefulness in business. Keep in mind
that just because object orientation is the most
explicit methodology, it is weak in actual data
design, human interface design, and must be used
with object-oriented languages in order to realize the
benefits from its use. Also, every author has a dif-
ferent O0) methodology with different notation and
different reasoning. As a result, the fledgling OO
methodology will change and be refined over the
next decade. Large-scale commitment to GO without
attaining some consensus and stability of methods
certainly adds risk te application development.

Humphrey’s Maturity
Framework

The Humphrey's maturity framework® was devel-
oped for the Department of Defense as & self-
asscssment framework that identifics levels of
computing and application development pracess
raaturity. The goal of the framework is to provide a
means of assessing and accelerating technology
transfer from research to practice throughout the
Department of Defense. According to Humphrey,
the ideal software process is predictable, consistent,
measurable, and monitored according to objective
standards. The maturity levels are initial, repeat-
able, defined, managed, and optimizing (see Fig-
ure 13-1).

At the initial level, neither measures (i.c., statisti-
cal control) nor orderly progress are possible, This is
the tevel at which organizations operating under no
mcthodology and no life cycle operate. Managerial
oversight for quality, productivity, and change con-
trol to provide some stability to project schedules are
required organizational supports that must be present
to even attain the initial level.

At thc repeatable level the organization has
introduced managerial controls in the form of project

5 Sce Humphrey, Watts, Managing the Software Process. Read-
ing, MA: Addison-Wesley Publishing, {nc., 1989,

Process Control

Process Measurement

Process Definition

Repeatable

Basic Management
Control

FIGURE 13-1
Maturily

Humphrey's Five Levels of

management cost, schedule, and change controls.
Project team members are expected to commit to
their tasks and he measured against their commit-
ments. While never actually saying the words, the
repeatuble level implies the recognition of both a life
cvcle and a methodology, that is, a repeated sct of
global level tasks with deliverable products that
implicitly become the measures of schedule and cose
performance and that are performed within a defin-
able process. Humphrey's reason for having a life
cycle/methodology is to provide a [ramework within
which to address the risks 10 a development project
from new Lools, methods, and/or technologies. Orga-
nizational support in the form of providing for
walk-throughs, formal design mcthodologies, con-
figuration management for code, and application
testing standards and methods are required at the
repeatable level to continue to the next stage.
Humphrey argues the need for a process group
{(i.c., a Standards group) which defines the steps to
making orderly progress in project work and that
provides a nucleus for transferring the process
knowledge to the working groups.

The defined level requires the definition of the
software development process, which defines the
mcthodology in sufficient detail to guide the work

process and define detailed subphase products that
collectively become the phase deliverables needed 10
further manage the tasks. Each deliverable product
has process and product measures of quality and pro-
ductivity that are aggregated to the phase and project
level for managerial oversight and assessment. At
this stage, a quality assurance group that performs
independent analysis of product and application
quality is formed 1o report Lo management on a prod-
uct-by-product basis. At the defined level, a process
database is established and all SEs arc trained in the
use of the informatlion to provide history for the
organization on the use and productivity of each
project and tool.

At the managed level the organization initiates
“comprehensive process measurements, beyond
those of cost and schedule”™ [Humphrey, 1988,
p. 302]. The managed process requires analysis of
the process database measures to ensure that com-
parable statistics are available and can be universally
intcrpreted, and that project-specific data that high-
light unique characteristics or aspects of application
development projects are stored and interpreled
properly. At the managed process level, the data for
the process database should be gathered automati-
cally and used to modify the process to “prevent
problems and increase efficiency” [Humphrey, 1988,
p. 306). Humphrey takes pains to point out that the
database should not be used to penalize either proj-
ect teams ot individuals, but that type of use by man-
agers can be taken. One example of measures is
function points.

The optimizing level is onc at which the orga-
nization continues improvements begun at the
managed level and starts development process opti-
mization. The optimizing level, ideally, allows SEs
to identify many types of errors in advance of their
causing delays and problems on a current project by
analyzing and identifying the patterns of mistakes
from other projects based on information in the
process database. In my opinion, this is truly an ideal
at this peint in time since our ability to detail the
steps to what appear to be random incidences of
Murphy’s Laws is rudimentary, at best, and nonex-
istent, in practice.

While Humphrey's framework is useful for dis-
cussing key differences between methodologies,

Comparisan of Methodologies 563

it i1s not without problems, First, it is based on
Humphrey’s and others’ experiences in the field but
has never been subjected to empirical validation of
its definitions. Humphrey asserts that the maturity
framework “represents the actual ways in which
software-development organizations improve”
{Humphrey, 1988, p. 307]. The stages arc presented
as distinct and sequential, with the implicit under-
standing that to attain, for instance. the optimizing
level, an organization must have moved threugh all
previous levels. There 1s no basis for this supposi-
tion. In fact, the framework represents Humphrey’s
ways of attaining software development maturity
without recognizing that it may not fit all situations.
The second drawback to the framework in analyz-
ing methodologies is that many of the requisite
support activities are organizational, not method-
ological. For instance, walk-throughs, configuration
management software, and testing standards are out-
side the scope of methodologies. We assume they are
not an issue in this discussion,

Having said these criticisms, the framework is
still uselul for discussing problems with methodolo-
gies that relate to the extent to which they define
development activities and support phase work.

Table 13-5 shows my subjective ratings of the
methodologics with respect to Humphrey’s frame-
work. None of the methodologies has a unifotmly
high rating in all of the categories.

In general, process methods are the least pre-
dictable, consistent, measurible, or monitorable
because they leave so many activities to SE skill and
omit specific activitics from the methods. At worst,
process methods are at Humphrey's initial stage; at
best, they are repcatable. Because the focus is on
process, I would assume that consistency and mea-
surahility of processes should be medium, that is,
different people should arrive at similar analyses. In
fact, we think they are low to medium. Designs
would be expected to vary most because the heuris-
tics are vaguc. Data analysis, data design, and human
interface design, which some authers add on as an
afterthought, would all be expected to vary signifi-
cantly across different SEs because they are not
explicitly part of the methodology.

Measurability is low to medium. Assuming func-
tion point metrics, measurability is low because

564 CHAPTER 13 Summary and Future of Systerns Analysis, Design, and Methodologies

TABLE 13-5 Methodology Comparison: Humphrey’s Framework

Knowledge Process Data Object
Predictable Low Medium-High Medium
Consistent Low-Medium Medium-High . Low-Medium
Measurabic Low-Medium Medium Medium-High
Monitored Low-Medium Medium Low-Medium

function points concentrate on externals (e.g.,
numbers of intcrfaces, files, If/Os, and so on) and not
on processing complexity.

The ability to monitor the methodology-defined
tasks is probably about medium. The ability to mon-
itor process-oriented applications is low when only
methodology-supported phases and tasks are moni-
tored and would be inconsistent if monitored tasks
were defined by project.

The data methodologics have slightly better over-
all ratings. In Humphrey's framework they are. at
worsi, repeatable and, for saome activities, reach the
defined level. IE is reasonably predictable in having
a set of activities defined into phases for ISP, feasi-
bility, analysis, design, and program design. If using,
for instance, Texas Instruments® version of [E, there
are many more tasks that are not all necessary for a
given application; thus the activities are not com-
pletely predictable across projects. The activities
should provide a level of consistency across SEs
who should be expected to define the same entity-
relationship diagram and the same activities even
though details would probably differ. Therefore,
consistency should range from medium to high, The
extent to which IE analyses and designs are measur-
able is ranked as medium. If function point analysis
is used and baselines for the company have been
defined, the measurability is probably medinam since
IE analyzes the major function point items. The
extent to which IE can be monitored 15 medium. [E
defines morc tasks and activities and follows more
phases of the application life cycle; therefore, its
ability to be monitored is greater than that of pro-
cess and object methods. However, all projects
are subject to unforeseen problems that require
unplanned time, and monitoring cannot assist in

foreseeing those problems. Therefore, not all tasks
and activities can be monitored to the extent that
they eliminate problems during the development
process. If a CASE tool, such as IEF, is used for
develepment, monitorability is high because the
entire life cycle has well-defined stages, products,
and reports on status that can be tracked for
all phases.

Ohbject orientation, in the form of the enhanced
and integrated Booch/Coad & Yourdon method-
ology is similar to IE in predictability and mea-
surability. Consistency is lower and varies trom
low to medium because individual SE skill is
required to define the calling scquences and ultimate
operational structure of the application, even though
the definition of the object pieces is fairly well
described. The difference between a good calling
sequence and message set and a had one is difficult
to define in abstract, procedural terms, but can only
be noticed through prototyping and actual compari-
son of different schemes. Monitorability is less
because of the ill-defined nature of service-
object identification and of language-specific OO0
requirements, Moving targets, like OO, are hard to
measure. 00 is repeatable at best in Humphrey’s
framework.

The bottom line on methodologies
Humphrey’s framework is that the methodologies
alone do not offer enough guidance to support the
defined level of application development manage-
tnent, let alone get to the optimizing level. For this
reason, more work on methodologies, life cycle, and
development activities are needed to accommaodate
the variety of work for different types of applica-
tions. Having said this, we also need to be realistic
about just how much predefinition of decision

and

Comparison of Autermated Support Enwironments

processes can, in fact, be imbedded in methodolo-
gies. Two things seem obvious. One is that we can
define some of the methodology-driven activities
more completely. The other is that the engineering
nature of the SE task is that each application will
require unique characteristics and design that cannot
he codified!

In summarizing this section, ne single method-
ology appears to be complete and sufficient for
all the tasks and activities performed during an
application development. There is no silver bullet
that will solve our application development prob-
lems or provide a complete cookbook for the devel-
opment process. For these reasons, there will always
be a need for SE expertise in application develop-
ment. There 1s also a need for continued definition of
tasks needed during application development and the
continuous evolution of techniques that are inte-
grated into the various methodologies to guide those
tasks.

COMPARISON OF
AUTOMATED
SUPPORT
ENVIRONMENTS

There is a marked degree of consensus on many
design features of the ideal CASE environment.
Table 13-6 summarizes many features and functions
that Pressman, Gane, Booch, Martin, and McClure
recommend. The curiosity is that the vendors do not
seem to listen. Take three general requirements as an
example: integration, intelligence, multiuser support,

CASE integration is the absence of barriers
between one graphical or text form and others. The
experts agree that the most useful CASE should sup-
port all project tife-cycle activities within an inte-
grated environment. The rationale for this position is
that tools that support only application development,
even if they include project management, address
only a small, possibly noncritical, portion of the SE
discipline. Further, the integration should be seam-
less, that is, transparent to uscrs. Transparent inte-
gration includes the automatic conversion of
diagrams and design text into other forms of docu-

565

mentation or program code with little or no manual
intervention. The integration should be both between
tools and between life-cycle phases. This level of
itegration implies that some resolution of funda-
mental semantic and syntactic differences between
phases is required. Specifically, differences between
analysis and design should be eliminated through
CASE use. To reach this sophisticated level of inte-
gration, the methodologies require some redesign to
remove their own built-in lack of seamlessness
between phases activities. For instance, in process
metheds, one major intellectual stumbling block is
the transition from data flow diagram (DFD) in
analysts to structure diagram in design. Many people
ask, Why not develop a structure diagram in analysis
mstead? Or, conversely, Why not carry DFDs
through to design?

Next, intelligence in tools is desirable. Artificial
intelligence (Al) in CASE facilitates reusability and
provides consistency and completeness checking
within and between graphical and text forms. Al rou-
tines can be used to implement the concepts of
reusable analysis, design, program specifications,
and code. The routines can locate, retrieve, and
select specifications matching design parameters and
can identify specification fragments that do not
match what is required. Other applications of Al are
the analysis of completeness and consistency of
requirements or code. Other checking is between
phases to match logical design to physical design to
code. This use of Al is technically feasible and not
particularly difficult. What we don’t know about Al
for these uses 1s what to match, how 10 match it, and
when the best time for matching occurs. New meta-
language descriptions of analysis and design re-
guirements will be required to fully exploit Al in
CASE. These meta-languages must also be consis-
tent and no additional burden to the other integration
and multiuser support requirements of CASE.

One consistently recurring theme in all CASE
products and research is concern over the replace-
ment of one sort of complexity with another sort of
complexity. The sclution to software development
productivity, quality, and reliability problems is to
build tools that, in hiding some complexities of the
development process, are necessarily complex them-
selves. The hidden complexities require absolute

566 CHAPTER 13 Sumrnary and Future of Systems Analysis. Design. and Methodologies

TABLE 13-6 Desired Computer-Aided Software Engineering Features and Functions

Project Management:
Work breakdown
Cost estimation
Person/task scheduling
Monitoring allocated vs. actual times
Budget creation
Monitoring budget vs. actual money spent

Documentation for all Work

Word processing editor functionality

Integration of text and graphics

Nesting of text, graphics, and so on with recall at
all levels

Document templates—predefined and customizable

Query capabilities to all parts of the graphical and
text definitions

Version/release control support

Change contrel support

Analysis

Graphical and text support for specific methodology

Inteligent syntactic evaiuation of completeness
and correctness

Repasitory (i.e., dictionary) support for all graphic
and text information with nesting and linkage
within and between levels

Support for reusable component recognition,
definition, use

Human interface definition support

Prototyping support

Cuslomizable reporting facility

Design

All analysis functions above

First-cut of next step graphical form from analysis
via automated functions

Support [or program definition language (PDL) with
interface 10 code generators for several languages

Bi-directional interface to analysis and code from
design

Sensitivity analysis on designs

Code

All above plus

Source code templates

Source code syntax checking and comparison to
requircments

Automated code generation

Automaied third normal form database definition
from repository data definitions

Auwtomared minimal test set definition . . . with
generation of test data

Integration to software configuration management lool

General

Consistent interface with function keys having
identical uscs across phases

On-line documentation, suggestions for problems

Adaptability to local conventions for methodelogy use

Support on any operating syslem, hardware platform,
DBMS generation, and if not, machine indepen-
dence of designed application

Interfaces ta other tools and products

accuracy and reliability themselves to make their use
worthwhile; the systems will have to reveal them-
selves upon reguest so users may understand internal
processing. With Al routines, that, for instance, learn
to predict what is required for code based on design
specifications, these revelations are crucial to guar-
anteeing CASE’s continued use.

The integratior: of phases and tools must also be
multivser, Multinser CASE support implies some
sort of centralized repository of infermation about
the application that is accessible by any number of
people concurrently. Warnings t¢ users when a com-
ponent is changed and automatic version control are
desired features, Multiuser support extends to group

work collaboration, scheduling, tracking, sensitivity
analysis, and electronic meeting support.

MNow, let’s first cxamine the extent to which the
methodologics themselves exhibit the properties
thought to be desired for CASE, then extrapolate
from that to determine the level of support for these
features we can rcalistically expect from CASE
products,

First, integration across phases and graphical
forms is important to building intelligence into
CASE. If we examine the threce methodologies
described in this text, structure analysis and design
(SA), information engineering (IE), and object ori-
entation (Q0), we would find the most integration in

Comparison of Automated Support Environments

00 with less in 1IE and even less in SA. OO begins
with tables that are increasingly elaborate but whose
contents can be traced from the beginning of analy-
sis through to development of module specifications,
There is no shift in thinking required once the data
and processes become encapsulated, because they
continue to be encapsulated throughout the remain-
ing steps.

IE hus less integration because there are two
fairly distinct paths of thought in IE, one for data and
one for processes. Within each path, the level of
integration is consistent and high, but between paths,
the integration is less consistent and there are few
guidelines for integrating the two. One example of
this lack of consistency is that, depending on the
author, IE should not have data files or entities
shown on action diagrams; action diagrams should
remain a process sequencing and event trigger iden-
tifying graphical form. If this line of reasening is fol-
lowed, data and processes are integrated at the
program specification level. Program specification
work is micro-design that could then miss major
global problems because of the lack of data-process
integration.

SA is even less integrated than IE because data
are not specifically addressed in the methodology.
The analyst is supposed to know what ‘data stores’
are required and the appropriate contents of those
data stores. Some authors® assert that a data store can
refer to a group of related normalized relations,
while others’ assert a data store is a third normal
form relation. When data analysis is not an official
activity, by definition it cannot easily be integrated
inte the methodology. Similarly, there are nurmerous
texts that describe how to use SA for developing
real-time applications® and that provide a foundation
for several of the graphical forms used in OC. But
close analysis of the Ward & Mellor methodology,
for instance, identifies a very different approach to

6 See Gane, Chris, Computer-aided Software Engineering: The
Mezhodolngies. The Products, and The Future. Englewood
Chiffs, NJ: Prentice-Hall, Inc., 1990,

T See Yourdon, 1989,

8 Ward, . T, and S. I. Mellot, Structured Development for
Real-Time Systems (three volumes). NY: Yourdon Press,
1985, is one of the most commaonly used.

567

developing applications from the original DeMarco
and Yourdon & Constantine approaches.

Given the levels of integration as low for SA,
medium for IE, and medium to high for OO, the
greatest potential for CASE to provide seamless,
complete integration of functions seems most likely
for object orientation. Further, the higher the level
of integration, the greater the intelligence that can
be built into the software, once again, identify-
ing OO as the most likely to provide extensive use of
AL Does that mean that Al cannot be used for the
other methodologies? Absolutely no! It means
that sephisticated Al that recognizes reusable analy-
sis, design, or code fragments and that performs sig-
nificant semantic analysis of the contents of
diagrams and the interdiagram relationships is masr
fikely in 00O. Anyone using any CASE tool today
knows that they provide fairly extensive syntactic
evaluation intelligence that will tell you, for
instance, if your connections on a data {low diagram
{DFD) are all legal, or that the external entity inter-
actions from the context diagram are all accounted
for in the DFD.

From the discussion of the previous 1wo issues,
you should be able to figure out that multiuser sup-
port in products also lags behind the desire for its
sophistication in industry . . . and it will continue to
do 50 for at least five years. Multiuser support adds a
level of underlying complexity because of the need
for locking mechanisms, access security, and con-
current multipiatform hardware support that impedes
vendor development. Since there are no competitive
reasons for developing multiuser capabilities, thatis,
no other vendors have it either, vendors are not
spending their resources on multiuser support. Cur-
rent tools with a ceniral repository allow segmenting
of repository items, such as an ERD. When multiple
users want to change the ERD, they check out seg-
ments and work on their respective segments indi-
vidually. The completed checked-out segments are
checked-in to a reconciliation procedure that fre-
guently fails because of inconsistencies that are then
manually reconciled. In a truly concurrent environ-
ment, locking mechanisms would support multiple
concurrent users without segmenting and check-out
processing, but with locking mechanisms similar to
those used in DBMS software.

568 CHAPTER 13 Summary and Future of Systems Analysis, Design, and Methodolegies

What does the state of integration and Al mean
for CASE? CASE tools are necessarily limited in the
number of processes, number of entities, number of
atiributes, complexity and detail of description, and
50 on. These limitations are higher candidates for
removal by vendors than are these three more
abstract concepts: integration, intelligence, and
muliiuser support. The CASE industry has entered a
push-pull stage of product development. The push
comnes from the ever increasing desire of client com-
panies to develop ever more complex and sophisti-
cated applications, and their recognition that CASE
can be used to deploy ITs to their competitive
advantage. The puil comes from the products on the
market and their growing sophistication. As soon as
one vendor provides a feature or function, others feel
obligated to offer it too, or risk losing market share.
Many vendors try to support as many methodologies
as they can, frequently without regard to underlying
differences in mental thought processes required to
comply with the methodologies. So, for instance,
DeMarco's SA und IE analysis might both be adver-
tised as supported by the same vendor, But DFDs are
not action diagrams and vice versa, nor will they
ever be. So. when vendors claim multimethodology
suppert, beware of the claim.

RESEARCH

RELATING TO

ANALYSIS,

DESIGN, AND

METHODOLOGIES

There are two growing bodies of research?® relating
to methodologies and the application development
process. The first research is attempting to reconcile
the differences in methodologies to develop an
improved hybrid. The second type of rescarch stud-
ies the decision processes that occur in analysis and
design activities. Both of these lines of research are
described in this section and related to future

9 Sec Adelson & Soloway, 1¥85; Guindon & Curtis, 1988;
Guinden, Krasner, & Curtis 1987; Pennington, 1987, Vessey
& Conger, 1993,

changes that we might expect in methadologies and
application development.

The methodology research consists of normative
and descriptive writing on the procedures and appli-
cation focus in analyzing application problems.
From this body of work, we have over 60 identifiable
methodnlogies with primary concentrations, such as
SA, IE, and OO, described in this text. Unfortu-
nately, the value of these methodologies has not been
studied. There is no evidence that any of these meth-
odologies is better than any other of these method-
ologies. Nor 18 there any evidence that any
methodology is more appropriate for a pazticular
problem domain than any other, Intuitively, they
can’t all be best in all situations. Current research is
taking two directions to follow on this idea: First,
ong line of research attempts to integrate methods
to create an improved hybrid; second, the other line
of research i3 trying to determine when and which
methodologies are appropriate for different types
of problems.

Current research in building hybrid methedolo-
gies is primarily applied. All authors, so far, are
seeking o integrate QO notions and notations with
some other methodology, including structured analy-
sis, Jackson systems design, information engi-
neering, and others.!” This rescarch is purely
prescriptive, of the form: “If [were going to put OO
together with structured analysis, here’s what 1
would do.” While this research is promising, the lack
of researcher attention to the differences in reasoning
and thinking processes of the methods needs 1o be
resolved. Also, these authors will need to offer evi-
dence of the synergy they promise but for which they
currently offer no evidence.

The second type of research discusses methodol-
ogy learning by novices. Having leamned COBOL
or another procedural language, novice leamming of
structured analysis is easier and more accurate than
learning of other methodologies.!! Since there is less
to learn, this is not surprising. In addition, this
rescarch notes that the thought processes of OO are
decidedly different that those of SA and IE. We
would conclude then that nevices who learn Ada

10 See for example, Sanden, 1989, and Ward, 1989,

11 See Vessey and Conger, 1993,

Business and Technology Trends that Impact Application Development

first, for example, would have an easier time learning
00 than structured analysis, and their OO designs
would be more accurate. This is a promising line
of work that needs much more study, including
analysis of real unalysts doing real work before any
results applicable to business usc of methodologics
can be expected.

The study did find that analysts’ development of a
mental model is crucial to complele solution of a
task, The process followed by successful analysts
includes development, expansicn, and simulation of
a mental model that uses personal problem-solving
plans that are used o elaborate constraints, and
notemaking as a means of deferring work until a
later time. Many of these skills in Chapter 2 recom-
mended for vou to think of while studying the text
were identified through this rescarch.

Also, some comments about easy and hard fea-
tures of methodologies can be developed. The easy
features of QO are those that awomatically lead to
information hiding, minimal coupling and maximal
cohesion, the traceability of information throughout
the process, and the essential continuity of the
method (i.¢., building tables and progressively add-
ing details to the information). The hard OO features
are the extensive experience in operating systems re-
quired to determine service object requircments and
the significant coupling between the implementation
language and the application design.

The easy features of IE are entity analysis, full-
life cycle approach including enterprise through
maintenance phases, the methods for deciding distri-
bution, and the balanced thinking given to both data
and processes. The hard 1E features are the mental
shift required to move from design to program speci-
fication and from an action diagram to its compo-
nents. The decisions about the size and content of
components is left to the SE.

The easy featurc of SA is the simplicity of the
thought process which is easily grasped by most
people. The hard SA features are the disjoint phase
relationships moving from DFD to structure diagram
and decomposing the structure diagram into mod-
ulcs. These actions, like similar ones of TE, are left to
SE skills and have few guidelines.

To summarize the application development liter-
ature, wc know that skills needed seem to vary by
activity both across and within phases of a system

569

development life ¢ycle, that task domain facilitates
the process of building a mental model of the prob-
lem solution, and that different types of domain
knowledge exist, including mcthodology and task
domains.

For $Es, this research has several implications.
First, the entire field of methodology research is in
its infancy. As it matures, both the methods and the
way we use them should be expected to change. Sec-
ond, hybrid methodology that attempts to integrale
methodologies requiring different mental models of
a problem, for instance, structured analysis and 0O,
arc unlikely lo be very productive. Rather, we need
to identify which methodological crientation best
fits different problem domains, concentrating on
methedotogy improvement and use in the appropri-
ate domains.

Last, since methodologies do not provide com-
plete analysis of all aspects of problem domains, by
definition, CASE tools based on the methodologies
will also provide partial task coverage. The more
complete the methodology, the more complete the
CASE lool. Some vendors add completing tasks to
support, for example, code generation; these CASE
tools are even more complete than those that are only
methodology-based. The most notable example of a
more complete too! is Texas Instruments’ Informa-
tion Engineering Facility (IEF).

Applying Humphrey’s framework to research in
IS, methodologies are in either the initial stage or the
defined stage. CASE tools help methodologies attain
the defined stage, but sometimes Impose such rigid-
ity in doing so that usage is consirained and might
not fit either the way SEs work or the work itsclf.

BUSINESS AND
TECHNOLOGY
TRENDS THAT
IMPACT
APPLICATION
DEVELOPMENT

There are several (rends in application management
and devclopment that will change dramatically the
way business computing is performed in the next ten

570

years. The trends arc both technological and busi-
ness related, including management of legacy sys-
tems and data, client/scrver computing, development
of repositories and data warechouses, multimedia ap-
plication development, and the business globaliza-
tion. Each of these trends are briefly described with
their impact on application development and soft-
ware engineering.

Legacy Systems

Legacy mecans handed down as from an ancestor.
Legacy systems are applications that are in 4 main-
tenance phase but are not ready for retircment.
Legacy systcms are most often mainframe, COBOL
applications that were probably built using no
methodalogy and no life cycle. Such applications are
frequently referred to as “held together with spit and
glue’ because they are fragile, that is, susceptible to
intreduction of errors caused by unrelated changes.
In short, they are a liability. The reason these sys-
tems are not all rewritten and done away with
18 because of the tremendous investment in their
development.

A related concept is legacy data which is data
used by outdated applications that are required to be
maintained for business records. Legacy data are as
much as 50 incorrect and may be in an unusable
form withoul considerable expenditures of time and
money. In short, they are a liability. The reason
legacy data are not reformatted in some new DBMSs
that can optimize storage and access time is the
inherent cost of correcting the data which could be
ten times or more than the cost of reformauing,.

The impact of legacy data and systems is to
mhibit and slow the integration of data across orga-
nizations and applications, and to inhibit the inte-
gration of technologies for application use.
Ultimately, companies with significant legacy prob-
lems will be forced, for competitive reasons. to
spend the money to wransform the systems and data
into useful items or to abanden them and write off
the expense.

The impact of legacy systems and data on SE is to
continue to inhibit new application development by
requiring attention. The new puifs from industry
include need for reengineering data, methods, and

CHAPTER 13 Summary and Future of Systems Analysis. Design. and Methodologies

software that support data scrubbing to temove
anomalies and errors. These are nonirivial needs that
will divert some industry resources away from
methodologies toward these very practical and real
problems.

Repositories and Data
Warehouses

A related issue is the notion that organizations
no longer want to discard data. For instance, the
maintenance of legacy data sometimes is mandated
by the government. The means to store unlimited,
continnously growing databases currently are called
data warehouses.

Similarly, all of this data must have meta-data
that defines each attribute and its related entities (or
objects), the applications and software allowed to
access the data, and the allowable using organiza-
tions. The meta-data definitions are in a repository
which, in its most sophisticated form, is a data dic-
tionary for data, processes, hardware, and softwarse.

Repuositories control and centralize management
of data as an organizational resource. Distributed
repositories will be developed in the future but are
currently only available as one-user chunks of a cen-
tralized repository that must be reintegrated with the
centralized, official data.

Both repositories and data warchouscs have sig-
nificant overhead (i.e., human) costs associated with
managing and tracking all of the information actu-
atly managed by the software. Because of this aver-
hcad cxpense, companies must choose carefully
those items they really want to maintain indefinitely.
The luxury of being a ‘data packrat’ has currently
unknown costs.

The impact of data warehouses will be felt in the
need to design time-dependent databases'? that have
associative relationships and to migrate legacy data
to the warehouse. Associative data relationships
are irregular, dictated by data content rather than
abstractions such as normalization. An example

12 Time-dependent databases are also referred 1o as temporal
databases and have an entire body of research associated
with their definition and use,

Business and Technology Trends that Impact Application Developrnent

might be in an image document that describes an
insurance policy. That policy necds to be related to
the insured, the awner, the beneficiaries, and its
value over fime so that a complete reconstruction of
its status at any single point in timc can be deter-
mined. Existing database products can support tem-
poral databases but are not spccifically designed for
temporal data. This implies the devclopment of a
specialized temporal database type, or the extension
of existing database products to accommodate tem-
poral data definitions.

Client/Server

Client/server computing describes a situalion in
which multiple processors share responsibility for
managing pieces of an application. Currently, the
pieces include data, presentation software for the
human interface, and application. For a given pro-
cessing request, one proccssor acis as a client
requesting that a processing service be provided; the
other processor is the server that executes the
request. In this context, examples of a service
request are to access data, perform a routine, or dis-
play data on a terminal screen. In a true client/server
envirenment, any processor can be a client and any
processor can be a server. The same processor might
be a client for some actions and a processor for oth-
ers. Therefore, the client/server environment, in its
truest form, is describing a peer-to-peer network-
ing scheme in which intelligent sharing of resources
and data across multiple processors is taking place.
The state of client/server development changes
almost daily, se by the time you read this, Figure
13-2 will be out-of-date. Don’t worry, it is only to
give an example of the alternatives and confusion in
the client/server marketplace. The figure shows the
alternative configurations of presentation software,
data (and DBMS), and application software with tra-
diticnal, centralized mainframe resource manage-
ment on the upper left of the diagram. Moving down
the diagonal to full distributed client/server process-
ing, we have first presentation software that resides
both on the mainframe and on a PC. The PC soft-
ware interfaces to the mainframe presentation soft-
ware and is translated for use by the application. At
the next level of sophistication, the prescntation soft-

571

ware is offloaded to the PC completely. Then data is
partitioned (i.e., split by columns or rows or both),
and accessible via DBMS in both places. Next, the
data are moved fully to the distributed environment,
possibly with replication (i.e., multiple data copics).
At the next stage, some application functions are
performed on a PC and others on a2 mainframe. In
its most advanced state, all functions (or picces of
each) are stored both on mainframes and PCs and
with access determined by the closest processar with
available CPU time.

In client/server’s most advanced form, for exam-
ple, simple functions might be on a LAN and com-
plex processing functions on a mainframe. The data
might be anywhere. The application part closest to
the request decides type of processing to be per-
formed and ships the request off to be executed in
the most efficient place. If that location is busy, its
software might forward the pracessing request
1o another processor until idle CPU cycle time is
found. The execuling processor would obtain the
nearest version of the data and perform the requested
service. The result is sent back to the requesting
Processor,

Clicnt/server processing is sometimes confused
with downsizing. Downsizing is the shifting of pro-
cessing and data from mainframes to some other,
less expensive environment, usually to a multiuser
mid-size machine, such as an IBM AS400, orto a
LAN of PCs. Downsizing can occur with or without
clicnt/server computing. The reasons for buying
mainframes are diminished with the availability of
client/server cemputing, but the compelling argu-
ment for maintaining an existing mainframe envi-
ronment is to obtain the most benefit from the
tremendous start-up and maintenance costs associ-
ated with them. Downsized environmenis also have
large start-up costs that sometimes are equivalent to
muinframe starl-up cost.

The impact of client/server computing on SE is
here now. There is tremendous demand for SEs who
know how to integrate data, applications, and pre-
sentation software over multiple processors and net-
works. The large accounting companies, such as
Ernst & Young, who also do consulting, have found
a niche in providing leading-edge services of this
type. But the nced is in every size of company, even

5§72

CHAPTER 13 Summary and Future of Systerns Analysis, Design, and Methodologies

PAD

PNPAD

Mainframe Environment

A = Application Software

PD
PD A
PAD A
P A D
Lacal Area Network Envirpnment PAD

No Limited Full
Client/'Server Client/Server Clignt'Server
Support Support Support
Legend:

D = Database Management System
P = Display Presentation Software

FIGURE 13-2 Client/Server Aliernatives

those that cannot afford a large consulting com-
pany’s fees. The pressure on SE professionals then is
to develop the integration skills to develop and sup-
port these applications as fast as possible.

Multimedia

Multimedia is a term that describes the integraiion
of object crientation, database, and storage tech-
nologies in one environment. By the 21st century,
multimedia will transform both upplications and the
way we interact with them. New technologies must
be able 1o be incorporated into traditional application
processing to be useful in business organizations. By
defining equipment as objects and storing the object
definitions in a database repository, integrating new
equipment and technologies in traditional applica-
tions becomes not just possible, but fairly easy,

SEs developing multimedia applications require
new skills for authoring the contents of multimedia

systems, and for developing the applications that
make the information accessible in a meaningtul
manner. For graphic design, video direction, and so
on, one strategy has been to hire graphics artists or
movie school graduates, for instance, to be multi-
media authors rather than (o teach an SE about video
production. This splitting of duties still requires SEs
o develop skills in integrating multimedia in appli-
cations. At present, the skills required include OO
analysis and design, nmedia knowledge, and human
interface design incorporating moving and still-
motion video, graphics, text, and data in the same
interface.

Globalization

Globalization is the movement &f otherwise local
businesses into world markets. In 50 short years,
business organizations worldwide have evelved

Business and Technology Trends that impact Application Development

from national to multinational te global enterprises.
As with all trends, there are forces that both ease and
inhibit movement into global markets. In general,
information technologies enable globalization; and,
in general, cultural differences and history inhibit
globalization, The technology enablers are applica-
tion and communications technologies that remove
the barriers of geography and time, while providing
equal access to multimedia applications. The histor-
ical and cultural barriers inhibit cross-cultural
exchange of ideas, technologies, and methods of
work. Dealing successfully with both the technolog-
ical and cultural issues is a challenge to information
systems professionals and business managers.
Preparing ycurself for deploying globalizing tech-
nology is the challenge to SEs today.

There arc three main social barriers to globaliza-
tion of businesses; infrastructure differences, tech-
nology wransfer differences, and political and culwural
differences. Infrastructure usvally refers to the
installed base of equipment and services for commu-
nications, transportation, and services of a geo-
graphic entity (i.e., a country). Infrastructure relates
1o compulters, telecommunications, and supporting
software, including, for instance, database and net-
working software.

There are two infrastructure challenges to SEs.
The first challenge is technical, leaming both current
and past technologies, and devising sometimes
messy ways to integrate them. The second challenge
is social, developing and presenting alternatives and
trade-offs for imaginative, practical, cost-effective
applications in developing countries,

Technology transfer is a large scale introduc-
tion of a new technology to some previously non-
technical environment, Transfers of computing and
communications technologies to all developing
countries in Eastern Europe, Asia, Latin America,
and Africa are needed. History leaves me pessimistic
about such transfers taking place easily, smoothly, or
soon. Broadscale transfers for such disparate tech-
nelogies as farming methods, birth control, building
of dams, and water purification have failed simply
because technologists fail to contend with cultural
differences and resistance.!? Technology transfer

i3 See Hirschman, A. O., Developrent Projects Observed.
Washington, D.C.: 'The Brookings Institution, 1967,

573

suffers from the same bias that diffusion of innova-
tion theory in general suffers: If the technology is
not accepted, there 1s something wrong with the
intended user, not the transfer agent or the technol-
ogy. Naively, we think our way of implementing and
using are the right way as if no other way is as good.
The concept of equifinality—many paths Jead to the
same goal—eludes most Westerners, We fail to
evaluate the technology within the context of the
intended cultural structure. We assume stupidity on
the part of the users and also assume this stupidity
can be corrected by sufficient education. What we
forget is that projects fail when planning is incom-
plete, potential difficultics are not asscssed or are
misassessed, and cultural impacts of projects are
insufficiently analyzed. The challenge to SEs is not
to oversimplify projects and circumstances of their
implementation that inhibit technology transfer, but
10 attend to the cultural aspects of implementations.
In any technology transfer project, it is imperative
that the sensitivity to local differences is maximal.
Teaching and training in a different culture does not
mean making the target audience the same as you.
Equifinality must be allowed, SEs” roles change
from doer to facilitator, with less control than usual
over outcomes. Successful globalization of applica-
tions and technologies requires considerable breadth
experience for SEs; for those who can develop and
integrate the necessary business skills with their
technical skills, the rewards will be huge.
Clientfserver and multimedia are technologies
that enable globalization and require different ways
of thinking in a global context. Most effective place-
ment of data, database software, software, storage
media, and computers is the main issue. Distribu-
tien of data and functionality will require new deci-
sion criteria. Before distributed applications,
decisions were based on what the software and hard-
ware could do. Constraints drove the decision pro-
cess. Now we can have anything anywhere. The
decision criteria shift from being technologically dri-
ven (0 heing business driven. Why do we need data x
for y PCs in location z if we can have a data for &
PCs in location ¢? What business reqiirements
demand rhis placemem of data, hardware, and se on?
The extent of distributed multimedia access and
enabling of peoples in far-off locations that takes
place will become a conscious business decision.

574

Ethical, political, and practical issues inform dis-
tributed media placement decisions.

Multimedia applications, because they supporl
data, graphics, photos, audio, and video images, also
have a significant cultural component in a global
application. Design of culture-free or culturally-rich
applications becomes a decision. Is it truly possible
to design culture-free applications? My fceling is no,
all applications have cultural assumptions at least
implicit in their design, Multimedia will make obvi-
ous our assumptions about appropriatc words, pic-
tures, and ideas for users. Biases that surface
will relate (o information system developers, user
designers, and manager approvers. When applica-
lions go global, assumptions that survive in the
United States, in all likelihood, will be inappropri-
ate globally. The assumptions will require develop-
ment of the same application with dilferent media
components 1o fit the using culture. SEs will need to
lcarn how to surface cultural assumptions of appli-
cation developers and how they carry over io the fin-
ished product. SEs will need to make assumptions
explicit, then nse the assumptions 1o design cultural
diversity into applications.

In summuary, business and technical trends are
pointing toward brcadth and depth of skill levels
in SEs in many different areas. Methodelogies
do not support these trends today. Therefore, con-
tinued cvolution and change to methodologies can
be expected.

SUMMARY

Two methods of analyzing methodology classes
were used in this chapter. The first, the information
systems methodology framework, was extended to
include the characteristics of applications from
Chapier 1 and the desirable characteristics of appli-
cations. I'rom the analysis we know that both infor-
mation engineering (IE) and object orientation {00)
arc more complete in desceibing applications than
structured analysis (SA), but each addresses differ-
ent phases of the life cycle. [E is more complete in
coverage of organization level information systems
planning and analysis, both of which precede design

CHAPTER 13 Surmmary and Future of Systems Analysis, Design, and Methodologies

and implementation. OO is more detail- and pro-
gramming-oricnted, resulting in a deeper level of
design by the end of the design phase. SA is so
process-oriented that data, input, ontput, and other
detailed aspects of the application arc left to
SE skill and are not specifically addressed by the
mcthodology.

The sccond analysis of methodologies used the
Humphrey’s maturity {ramework to discuss the
maturity of methodolegies. Humphrey discusses the
initial, repeatable, defined, managed, and optimizing
levels of maturity. The results of this analysis show
that no methodologies are currently beyond the
defined level and that SA is only at the initial level.
There are too many activities that are nol addressed
by SA to reach the repeatable level for all requisite
tasks. At the repeatable level different people would
arrive at the same design. [E is at worst repeatable,
and, when completed in a CASE tool, may rcach the
defined level, OO is at the repeatable level for many
carly activities, but is at the initial level for package
and message communication design.

CASE tools werc discussed in their ability to pro-
vide three key design objectives: integration, intelli-
gence, and multiuser support. The ability of CASE is
hampered by mcthodologics that are not themselves
integratable because of shifts in thinking that must
be made from one phase of work to another. In gen-
eral, SA and TE characterize such shifts and have rel-
ative difficulty in CASE interphase integration of
work. Tn contrast, O is more consistent in the think-
ing and documentation forms both within and
between phases, thus, the CASE tools supporting
(3 are morc highly integrated and represent the
cver more detailed thinking required in OOD, and do
50 within similar graphical and texl forms through-
out the CASE tools.

Next, business and technology trends that impact
application development were discussed, including
legacy systems, repositorics and data warchouses,
client/server computing, multimedia applications,
and business globalization. Legacy systems and data
are historical leftovers from premethodology days
that may have errors and structural flaws that make
their conversion to new environments costly and dif-
ficult. In particular, client/server, data warehouses,
and rcpositories are three emerging technologies to

which companies want to migrate the legacy systems
and data. Client/server environments provide for
storage and processing of data wherever it is most
needed by the organization in a peer-to-peer
network. Data warehouses are storage technologices
that provide for massive amounts of historical data.
Repositories are versatile means of storing informa-
tion about data, applications, hardwarc, and software
that provide the definitions of interchangeable tech-
nology components. Multimedia applications will
use repositories to define the integration of object
erientation, database, and storage technologies in
one application environment.

Globalization 1s the movement of businesses into
worldwide markets. Global application developers
must deal with difficulties in development due to
infrasiructure differences and technology transfer
difficulties. Technology transfer is the large-scale
introduction of new technology to a new environ-
ment, usually a developing country, Problems in
technology transfer relate to cultural and political
differences more than 1o the new technology. SEs
developing global applications will need 10 atend
to the culture and politics to be successful. Client/
server technology enables global applications. Mul-
timedia was discussed as one type of application
with a significant cultural component.

REFERENCES

B—

Adelson, B., and E. Soloway, “The role of domain
experience in sofiware design,” JEEE Transactions on
Software Engineering, SE-11, Vol. 11, 1985, pp.
13511360,

Bergland, Gary D., “A guided tour of program design
methodotogies,” [EEE Computer, October 1981,
pp. 13-37.

Card, David N., Frank E. McGarry, and Gerald T. Page,
“Bvaluating software engineering technologies,” IEEE
Transactions on Software Engineering, Vol. SE-13,
#7, July 1987, pp. 845-851.

Conger, S. A, “Teaching globalization in information
systems courses,” in Glohal Information Technology
Education: Issues and Trends (M. Khosrowpour and
K. D. Loch, ¢ds.}. Harrisburg, PA: Idea Group Pub-
tishing, Deccmber 1992, pp. 313-353.

Datamation, "The best in client/server computing,” Spe-
cial Issue, October 1, 1991, pp. 1-24.

References 575

Dunsmore, H. E., W. M. Zage, D. M. Zage, and
G. Cabral, “Building an empirical case for CASE,”
Software Engineering Research Center Report
SERC TR-8-P, Lafayetie, Indiana, December 16,
1987.

Episkopou, D. M., and A. T. Wood-Harper, “Towards a
[ramework o choose appropriate information systems
approaches,” The Computer Journal, Vol, 29, #3,
1986, pp. 222-228.

Gane, Chris, Computer-Aided Software Engineering: The
Methodologies, the Products, and the Future. Engle-
wood Cliffs, NJ: Prentice-Hall, 1990.

Guinden, R., and B. Curtis, “Control of cognitive
processes during software design: What tools are
needed,” CHI Proceedings. ACM: 1988, pp. 263-268.

Guindon, R., H. Keasner, and B. Curtis, “Breakdowns
and processes during the early activities of software
design by professionals,” in Empirical Studies of Pro-
grammers—2nd Workshop (G. Olson, E. Soloway,

S. Sheppard, eds.). Norwood, NI: Ablex Publishing
Co., 1987, pp. 65-82.

Hirschman, A. O., Development Projects Observed.
Washington, D.C.: The Brookings Institution, 1967,

Humphrey, Watts S, “Characterizing the software
process: A maturity framework,” reprinted in Mile-
stores in Software Evolution, Paul W. Orman and Ted
G, Lewis, eds, Washington, D.C.: IEEE Press, 1988,
pp. 301-307.

Humphrey, Watts, Managing the Software Process. Read-
ing, MA: Addison-Wesley Publishing, Inc., 1989.

Tivari, Juhani, “Levels of abstraction as a conceptual
framework for an information system,” Proceedings
of IFIPS WG 8.1 Information Systems Corcepts: An
In-Depth Anaiysis, Belgium, October 18-20), 1989,
pp. 122-151.

Kelly, Jlohn C., *A comparison of four design methods
for real-time systems,” ACM SIGSOFT Software
Engineering Notes, Yol 12, 1987, pp. 238-251.

Keys, Paul, *A methodology for methodology choice,”
Systems Research, Vol. 5, #1, 1988, pp. 65-76.

McClure, Carma, CASE Is Software Automation. Engle-
wood Cliffs, NJ: Prentice-Haill, 1989,

Olle, T. William, Jacques Hagelstein, lan G. McDonald.
Colette Rolland, Henk G. Sol, Frans J. M. Van
Assche, and Alexander A. Verrign-Stuart, Information
Svstems Methodologies: A Framework for Under-
standing. Wokingham, England: Addison-Wesley
Publishing Company, 1988.

Panzi, David I.. *A method for evaluating software
development techniques,” The Journal of Systems and
Software, Vol, 2, 1981, pp. 133-137.

576

Pennington, N., *“Stimulus struclures and mental repre-
scntations in gxpert comprehension of computer pro-
grams,” Cognitive Psychology, Vol. 19, 1987, pp.
295-341.

Pressman, Roger 8., Making Software Engineering
Happen: A Guide for Instituting the Technology.
Englewood Cliffs, NJ: Prentice-Hall, 1988.

Sorensen, Paul G., Jean-Paul Tremblay, and Andrew J.
McAllister, “The melaview system for many specifi-
cation environments,” fEEE Software, March 1988,
pp. 30-38.

Wand, Yair, and Ron Weber, “On the deep structure of
information systems,"” Information Systems Research,
Vol. 4, #2, 1993, pp. 23-45.

Ward, P. T., and 8. J. Mellor, Structured Development for
Real-Time Systems (three volumes). NY: Yourdon
Press, 1985.

Yourdon, Edward, Modern Structured Analysis. Engle-
wood Cliffs, NJ: Prentice-Hall, 1989,

KEY TERMS

Al in CASE

associative data
relationships

CASE integration

client/server

complexity

data warehouse

downsizing

equifinality

fragilc applications

globalization

Humphrey’s defined level

Humphreys initial level

Humphrey's managed
level

Humphiey's maturity
framework

Humphrey's optimizing
level

Humphrey's repeatable
level

information systems
methodology framework

information systems plan
(1SP)

infrastructure

legacy

fegacy data

legacy systems

multimedia

moltivser CASE

peer-1o-peer network

PTocess groups

repository

seamless CASE

technology transfer

EXERCISES

1. Write a three- to five-page puaper describing
some nevs technology—distributed database
{e.g., Tnformix or Sybase), Multimedia, Simple
Network Management Protecol (SNMP) (net-

STUDY QUESTIONS
1.

CHAPTER 13 Summary and Future of Systerms Analysis, Design, cnd Methodologies

working protocol), imaging. Predict how the
technology will change in wse in applications in
the next five years. Predict 1S and user organiza-
tional changes as well as design changes.

. Discuss globalization of businesses and other

changes to software engineering activities that
might be required.

. Compare the methodologies using your own

technique. What are the important methodology
issues to you? How easy or hard do you find the
work involved in describing the ABC applica-
tion in each methodelogy? How easy or hard is
it to really learn each methodology? Which are
you maost likely to continue using? How likely
do you think these methodelogics are to be use-
ful for the emerging technologies of client/
server and multimedia? How would vou change
any or all of the methodologies to make them
more usable? How might methodologies
become less tied to technology? (Please send
your responses 10 the author.}

Define the following ierms:

client/server Humphrey’s malurity
downsizing framework
equifinality legacy dala
globalization repository

What phases of application development are in
the Olle et al. information systermns methodol-
ogy framework?

. Describe the features of the Qlle et al.

approach to comparing methodelogies and
identify the sophistication of the three methed-
clogies on each feature.

Why do you think the [SP was left out of the
process methods of Tom de Marco and

Ed Yourdon? (You might refer back to Chapter
1°s historical discussion for a hint.}
Object-ariented methodologies all ignore the
front-end tasks of feasibility and data collec-
tion. Why? Can thcy continue to ignore those
actions and still be useful in business applica-
ticns? Why?

9.

10.

11.

16.

17.

18,

. The Olle et al. framework was expanded to

analyze the phases within each methodology
where information is cxpectéd to become
known. Describe this framework extension
and identify, for data, processes, relationships,
physical database model, and event triggers,
whete this information is known in each of the
three methodologies.

. What is the position of precess methodologics

with respect to data and data modeling? What
is the significance of this position? How inte-
grated is data to process description? What is
the significance of this level of integration?
List three sources of application complexity.
How does each source add to the complexity of
an application?

Which methodology handles complexity the
best and why? What is deficient about the other
methodologies” handling of complexity?

To what extent do the three methodologics dis-
cussed guide input/output design? What is the
significant of this?

Ratc the three methodologies on desirable
application characteristics: minimal coupling,
maximal cohesion, and information hiding.
Justify your ratings.

What is Humphtrey's maturily framework?
How is it used to assess IS organizations? How
15 it used 1o assess IS methodologies for appli-
cation development?

. What are three shortcomings of Humphrey's

framework? How might they be eliminated?
List and deseribe the five levels of maturity in
Humphrey’s framework,

. Do many organizations or methodologies reach

the optimizing level of Humphrey’s frame-
work?

Describe the three methodologies in terms of
Humphrey’s framewaork.

If you have access 10 a CASE lool, use Table
13-6 10 analyze the sophistication of your tool.
List five ways in which the tool you use could
be improved (o contain more of the desired
CASE features and functions.

Three issues in CASE are discussed: integra-
tion, intelligence, and multiuser support. How

19.

20.

21

22,

24.

25.

26.

25,

Exercise Questions 577

does (he author view current products on the
market? tlow does a CASE tool you usc rate
on these three crileria? What changes might be
made to the tool you use to improve its integra-
tion, intelligence, and multiuser support?
Describe the research that secks to integrate the
best of all methodologies into a new, improved
hybrid. Critique the utility of such a methodol-
ogy and identify three of the problems with
this approach. What benefits might accrue from
a hybrid methodology? Why is it such a popu-
lar topic of rescarch?

Describe the research that studies novice analy-
sis of problems and relate this research to that
which seeks to intcgrate the best of all method-
ologies into a new, improved hybrid. How

can the analyst research be used to improve
methodologies? What cffcet will hybrids have
on novice learning?

What impact do legacy systems and data have
on the use of new methodologies and CASE
tools?

Definc and discuss the issues of legacy systems
and data.

. Define a data warchouse and why companies

are moving toward implementation schemes of
Lhis concept.

What is an associative data relationship and
why does it impact data storage techniques?
Define client/server computing and downsiz-
ing. Discuss how they relate,

What is multimedia and how does it relate

to application development and method-
ologies?

. Describe some of the cultural issues in global

information systems development.
What are the main issues in deploying global
applications?

% EXTRA-CREDIT QUESTION

L

Change the scenario for ABC Video. Assume
ABC is an international organization that not
only rents videos but also sclls concert tickets,
CUs, and other related cntertainment and musi-
cul merchandise. What cultural assumptions are

578 CHAPTER 13 Summary ond Future of Systerns Analysis, Design, and Methodologies

in the case description of ABC Video that need
10 be reexamined for an application to be used
in locations all over the world? What other
changes might be required for worldwide use
of the rental application? Don’t concentrate

on merchandise; concentrate on the caltural and

equipment differences. If cach of 3,000 storcs
in 60 countries send information to a single site
in, let's say, Los Angeles, once cach day,

what technology considerations might be
required?

THE FORGOTTEN
ANALYSIS AND

CHAPTE

DESIGN ACTIVITIES

INTRODUCTION

The torgotten activitics of systems analysis are
design of the human interface, conversion/imple-
mentation process, and user documentation. This
chapter concentrates on human interface because the
guidelines are not context specific and arc based on
research as well as practice. Rules of thumb for the
other activities are discussed. Both (he human inter-
face and conversion are planned for ABC Video’s
rental processing application,

HUMAN

INTERFACE

DESIGN

The presentation of information for selection and
dala entry is the single most important design item in
an application. The format, type, size, color, and
conlent of the display all are important to a user
locating, controlling, entering, or monitoring infor-
mation. A badly designed screen makes a user tire
faster, make more mistakes, and miss information
that might have disastrous eflects on decision mak-
ing. Misrepresented data can have the same effects.
The user’s perception of the application and how it
helps or hinders in performing his job 1s directly
related to the human interfuce. If a user perceives the

1] 3

application as helpful and facilitating prodoctivity,
the application will be used with a high degree of
satisfaction. If a user perceives the application as dif-
ficult, obscure, or reducing productivity, the applica-
tion will not be used voluniarily and uscr satisfaction
will be low.,

Interface design is one of the most intensely
researched areas of computing, yet much of the
research has not found its way to business applica-
tion design. In this section, we try to remedy that
sitvation. First, the conceptual foundations of inter-
face design are reviewed briefly. Then the options
and guidelines for each major activity during inter-
fuce design are presented. Following each section,
we discuss how to apply screen design guidelines fo
ABC rental processing.

Conceptual Foundations of
Interface Design

A combination of research, theory, and pructice
blend to provide the guidelines for interface design.
In general interface design needs to answer ques-
tions about when, what, and how to enter data into,
and prescnt data from. applications.

First, when lo collect data has been resolved
through long experience and research. The ideal data
entry point is at the data source. There should be no

579

580

creation and collection of paper from which dala is
then keyved into a machine. The more people who
touch a transaction, the more errors it will have.
Therefore, eliminate al! middle men, enter data at
its source, and errors are greally reduced.

Second, which data to collect and display are also
issues. The general answer, based on practice, is all
data required for business reasons. Data may be
expanded to include company specific requitements.
Also, data items IS staff think might some day be
necessary, but for which users have no current or
future business need, should not be collected or
displayed.

Last, and most complex, is how human—computer
interactions should be structured and presented to
ease learning, minimize errors, and facilitate use.
Research and theory on physical and cognitive
aspects of memory, information processing, pacing
of work, color perception, icon perception, and key-
stroke effectiveness all are used to determine guide-
lines for interface design, The results of applying the
research versus not applying the research are
increased productivity and reduced errors. Since the
research is so volurninous, it is presented in the con-
text of the chapter.

With all the choices and research recommenda-
tions, deciding how to actually design functional
screens can be a confusing exercise. In the next
sections, practical guidelines from research and
practice are developed. Information from the analy-
sis phase is used to define the display requirements
of the human interface. The analysis information is
used to define a task profile for the application.
Then, a profile of users is developed to identify
screen requiretnents that relate to users rather than
to functions of the system. The task profile is
matched to guidelines for the application type to
define and select the general interface as menus,
windows, or commands. Application type also sug-
gests functional screens as forms oriented, ques-
tions and answers, or direct manipulation. Once the
general and functional interfaces have been defined,
individual field presentation is defined and format-
ted for the screen. Finally, extra feld characteris-
tics, such as color, are decided and added to the
design. Each of these topics is summarized below
and addressed in the following sections.

CHAPTER 14 The Forgotten Analysis and Design Activities

1. Define task profile.

Define user profile and applicaticn design

response.

Choose option selection screen type.

Choose functional screen type.

Design option selection interface.

Design functional screen intcrface format.

Choose field format options for normal,

abnormal, alert, and alarm data conditions.

8. Design on-line user documentation, error
messages, and abnormal processing for all
interfaces.

9. Design reports as required.

M

N kW

Develop a Task Profile
Guidelines for Developing a Task Profile

The first activity is to develop a task profile which
summarizes work requirements of the application.
The level of detail in developing a task profile
depends on the type of application being developed.
The first task, then, is to classify the application as
either transaction, query, DSS, E8S, or process
maonitering and control (a special type of TPS).
Since transaction processing is the most frequent
application type in businesses, they are discussed
here. The level of detail and activities for task profile
develop-ment are summarized in Table 14-1 for the
above application types.

For each activity, a hierarchy of processes is
defined. This is the basis for screen navigation
design. The top activities identified become selection
options on a menu. Upon selection, the entries at the
second hierarchic level are presented, and so on
until a functional work screen is presented. The level
of detail for the hierarchy should match the level of
processing detail for the application type.

Next, required and optional data are defined for
each task (see Table 14-1). For business applications,
following the methodologies discussed in Chapters
7-12, required and optional data for entities should
have been defined and documented in the data dic-
tionary. For most business applications, this infor-
mation can be developed at the entity/relution level
rather than the attribute/field level, The idea is to
identifly mutivariate dependencies which, in real-

Hurman Interface Design

581

TABLE 14-1 Task Profile Development Activities
Process

Activity Transaction Query DSS ESS Conirol
Define Task Process Level Activity Level Activity/ Activity/ Process Level
Hicrarchies Process Level Process Level
Define Transaction/ Entity Level Entity Level Entity Level By input source
Required/ Field Level
Optional Dara
Define Data Only if greater Only if greater Only if greater Only il greater For each field
Precision than 2 decimat than 2 decimal than 2 decimal than 2 decimal

places for places for places for places for

numbers numbers numbers numbers
Define Data Process/ Activity Level Activity/ Activity Level Field Level
Source Transaction Process Level

Level
Define Entity/ Entity Level Entity Level Entity Level Fiald Level
Purpose Transaction

Level
Define Only if it varies ~ Onlyif it varies Only if it varies Only if it varies Field Level
Accuracy from 100% from 100% from 100% from 100%
Define Domain Ficld Level Field Level Field Level Field Level Field Level
ID Specific Figld Level Field Level Field Level Field Level Field Level

Display Criteria

time systems. may need to meet synchronization and
timing constraints.

If not already defined, precision requiremenis
should be specified, by field, for all numeric fields
{Table 14-1). Precision requirements specify the
number of decimal places and special display char-
acters required for numeric information. Precisien
15 very important in mathematical, statistical, and
process control applications. Precision beyond two
decimal places is frequent in business applications
dealing with large financial transactions. Banking
applications, for instance, frequently require preci-
sion to five decimal places for computing interest
due and paid. Specific maximum field size, need for
sign (e.g., +}, and need for debit/credit indicators
fe.g., CR or ()] should all be defined. For text
fields, the maximum length should be defined, if not
already done. Possible edit characters for numeric

and text fields might be blanks, commas, or slashes.
These definitions limit the number of data fields on a
line while defining specific screen contents.

The source of data for each process should be
identified next (see Table 14-1). Data source can be
user-provided through data entry, measured data
entry, or system-derived through computation. The
key to identifying source, if it is unknown, is to
determine where users go when they have a question
about data on a screen. The answer might define a
user, instrument type, or application as the informa-
tion source. When user data entry is the source, train-
ing needs and help facilities are required to ensure
proper entry. Edit checks for entry errors are re-
quired. When instrument measures are the source of
data, the signal-to-noise ratio should be analyzed to
determine the need for filtering devices or software,
Fields for which the application is the source are

582

called derived fieids for which data entry is not
allowed.

Next, the purpose of every entity or field should
be defined, depending on the type of application.
Possible choices for purpose are forms completion,
information, alert, or alarm. Business applications
data purposes are usually form completion and
information. Rarely are data items used to alert or
alarm the user. Because alarms are rare in business,
entity level checking is sufficient for all but critical
applications. For each entity, then. the task profile
identifies needs to send alert or alarm signals to the
user based on data changes or system process out-
comes. For critical and proccss contro! applications,
each data element should have its purpose defined
since the task of process control is to monitor
changes in a system and correct any abnormal or
undesired processes. Alerts to changed conditions
and alarms to abnormal conditions are an integral
part of process control interface design.

The need for accuracy for each task and, if less
than 10(0%, of the data processed should be assessed.
In business applications, this definition should be
provided only when it varies from 1009%. Typically,
variation in business is in query or ESS applications
for which ballpark numbers are acceptable for many
types of processing,

For instance, a marketing person may want to tar-
get a product to one or more specific demographic
groups. If the target mailing is 1,000,000 pieces, the
marketer needs to know how many groups he needs
to meet this goal. A sample based on selection crite-
ria {e.g., age, education level, and zip code) can be
used to project the size of the population £5%. In
this case, a 0.1% sample might be sufficient. Rather
than read a 20,000,000 record file, only 20,000
records are needed.

The last two pieces of task information—domain
and display criteria—are defined if not already com-
plete. The domain is the set of allowable values for
each field. Special display criteria might include
translations of data to text (or vice versa), or a spe-
cial color for some field, and so on.

All of these task characteristics are used to deter-
mine the type of interface in system terms, and to
determine training needs for users.

CHAPTER 14 The Forgetten Analysis and Design Activities

ABC Rental Application Task Profile

There is no special complexity in the ABC rental
application, sc completion of the task profile is rela-
tively simple. We are using the Information Engi-
neering analysis in Chapter 9 as the basis for
this discussion. The first action is to create the
task hierarchy. Using acuvity level as the top of each
hierarchy, we rearrange the processes as the next
level and their subprocesses as the third level, con-
tinuing until all processes are elementary (see Figure
14-1). This diagram is the basis for navigation
between screens, Each leg of each level on the
hierarchy is translated eventually into a menu selec-
tion list.

As of the analysis, all data were required for all
entities (see Table 14-2). Precision for money ficlds
is two decimal places. All other numeric fields are
dates or integers. The source of Customer, Video,
and Cepy data is user data cntry, so extensive edits
will be needed in the entry programs to ensure that
only correct data enters the system. End of day,
Video History, and Customer History are all derived
by the system and have no human interaction. The
derived relations identify testing requirements for
specific verification. The Rentaf relation is a combi-
nation of entered and derived data which identifies
both edit and testing requirements.

The purpose of the entities is either forms com-
pletion or information with one Rental relation
exception. The credit field will be used to deny rental
privileges to customers who have a poor credit
raling. Some special processing may be desired to
highlight bad credit ratings. The possibility of high-
lighting bad credit rating information should be
discussed with Vic and his approval obtained. No
decision is made at this time.

Accuracy for all maintenance, rental, return,
and query tasks is assumed to be 100% (see Table
14-2). If Vic, while performing ad hec querying,
chooses to sample the data rather than read the entire
database, that is ckay, but not of interest for this
definition.

The domains of each ficld are in the data dictio-
nary. No special display criteria are identified at
this time.

Hurnan Inferface Destgn 583

ABC Video Company

| Purchasing | FientalfHeturn' Accounting | pi::ﬁ:’u"l'l""” |

—(_ Check Late Fees)
Pracess Payment
& Make Change
—{_Craats Opsn Rental)

H{ Update Open Rental)
I Update/Craate Histary)

Print Receipt)

Custamer Penodlc
Rent/Return Maintenancs Mamtanance Processing
—(Get CustomerID)

- Create) Quey)
Get Valid Customer
M Gelvalidvidee) ~_ Delele) +{ Delete) { EndofDay)
—{ GetRewmniD)

—(Update) Updale End of Month
(raa e et) ~(_Updale) L{End of Montn)
—(GetOpen Rentals)

FIGURE 14-1

Develop a User Profile

Guidelines for User Profile
Development

A user profile i developed te determine the need
for special interface design requirements that relate
to the user rather than the task. User profile criteria
include physical, educational, computer, and task
capabilities (see Table 14-3). At the same time the
user profile is developed, a matching profile for the

Process Hierarchy Chart for ABC Rental Application

application and how it will address the user needs is
also developed.

Information in the user profile is obtained from
users through interviews, questionnaires, or person-
nel file scarches. If personnel file searches are per-
formed, only average ratings of user skills should
be computed unless each employee gives permission
to usc his or her information. Use of employee
records for other than personnel purposes without
permission is considered an unethical violation of
privacy rights.

584 CHAPTER 14 The Forgotten Analysis and Design Activitles

TABLE 14-2 ABC Rental Task Profile

Activity “Transaction ABC Rental
Define Task Hierarchies Process Level See Figure 14-1
Define Required and Transaction/Field Level All data required
QOptional Data

Define Data Precision

Define Data Source

Define Purpose Entity/Transaction Level
Define Accuracy Only if it varies from 100%
Define Domain Field Level

ID Specific hsplay Criteria Field Level

Only if greater than 2 decimal
placcs for numbers

Process/Transaction Level

None. Dollar amounts have
2 decimal places.

User Entry and Derived, See
Data Dictionary

Form Completion, [nformation
TG
See Data Dictionary

() Required for Change field negative
valucs, No aother special requiremnents.

In critical applications with possible life threaten-
ing consequences, each individual user should be
profiled and reviewed for proper skills, computer
cxperience, and task expertise before being assigned
to use the new application. Education can take
care of some deficiencies in skill levels, but with
some critical applications, people may be reas-
signed to other jobs when their knowledge does
nol match the application requirements. For noncril-
ical applications, the profile can average user skills
for each characteristic. User profile is used to deter-
mine sophistication of the interface and train-
ing nceds.

Physical skills include color perception, typing
skill, and physical disabilities that might be present
in the user population. Color perception problems
mean that reds and greens might not be perceived.
If colors are nsed, users should be screened to ensure
that they can recognize the selecied colors. Also,
color selection should relate to conventional mean-
ings for each color used. For instance, red is the
usual alarm-signaling color. In an application using
red to signal an alarm condition, then, all users
should be screened for their ability to perceive the
color red.

Typing is the other typically used physical skill. If
user typing skills are low, either the application must
be designed not to require typing, or typing training
should be provided to users.

Education and math profiles can be either
individual or average analyses (see Table 14-3).
Education level determines the level of writing
required to explain errors. For math-intensive or
numerical control applications, specific math skiils
might alzo be necessary of users. When this is the
case, math skills needed are defined for each task
(e.g., one task might need algebra, one might need
the ability to interpret geometric drawings, and $0
on}. Users whose profile dees not match the required
skill levels are trained or reassigned. Many compa-
nies, such as Texas Instruments, Chevron Oil, and
others, retrain their employees in math skills needed
to manage complex computerized manufacturing
cquipment.

When the average education and math levels are
lower than high school-graduate level, the applica-
tton interface must be designed as simply as possi-
ble. Instructions and text help must be written using
sentences under 25 words and use words averaging
less than three syllables. Different indexes can be

TABLE 14-3 User Profile and Application Response

Human Interface Design 585

User Characteristic

Description

Application Response

Physical Skills:
Color Perception

Typing

Disabilitics

Educational Skill:
Education Level

Math Proficicncy

Language
Native

Proficiency with

application language

Computer Proficiency
Average Proficiency

Number of packages

Jobr Characteristics:

Turnover

Experience

Red/Green/Bluce Color
Perception

Ability in words/minute

Sight, hearing, or physical
impairment that might chanpe
application hardware, software,
o1 interface design

Average or actual level of
highes! degrec

Average or actual level of
math proficiency

All native languages not the same

as intended implementation
language

Average or acinal level
of proficicncy

Awerage or aciual level of
proficiency in years of
experience

Number and type of packages
with which users are familiar

Average % new employees per
year

Average years task experience

Either design application without the
problemn colors or reassign the wsers,

Either design the application to fit the skill
level or schedule typing training to increase
skill level.

Either design application to accom-
modate impairments or reassign the
USETS.

For both education and math, design
application help and training to ensure users
can learn and use the application,

International applications should use
language native to the region for the
application intcrface.

Training and text descriptions in appli-
cation can be no mare difficult than the aver-
age level of proficiency. Traiping should be
provided 1o ensure that all users attain the
average level (i.e., the average becomes the
minimum).

Dcsign the application help, messages,
and user documentation to ensure
understanding of all functions,
messages, and menu options,

Define training method and

requirements.

Define level of supervision after training is
complete.

Determinc interface option selection

lype.

Determine level of help and location (aute-
mated vs, manual and immediate screen mes-
sage vs. requested help).

586

used to compute reading level of text. For instance,
the software RightWriter©,! provides the Kincaid
reading grade level (scale of 1-16), Flesch index of
readability (scale of 1-10), and a fog index (ratio of
nouns and verbs to total words in a sentence) as mea-
surcs of text difficulty.

Information about native language is important to
determining the language of the interface. As glob-
alization of the economy and devclopment of global
organizations increases, the need to implement the
same system worldwide will become commonplace.
When applications are implemented in other coun-
trics, the native language should be used as much as
possible. From research we know crrors arc reduced
and some user satisfaction comes from working with
applications in one’s native tongue. Sometimes, this
requiremenl is government imposed. For instance, in
the early 1980s, the King of Saudi Arabia declared
that as of 1990 all communications, documeantation,
and applicalion interfaces used in the kingdom
would be in Saudi language. This posed a tremen-
dous challenge to every company doing business
with Arabia because Arabic is read right to left, fre-
quently omits vowels, and has as much as 50% of
cvery sentence in a local dialect. At the time of the
declaration, there was no one recognized Arabic
dictionary for the Arab world. Rather, cach country
had its scholars map the language for their country.
In general, the more critical the application for
controlling some potentially calastrophic process,
the more important native language processing
becomes. | would not like to think of a persen
who barely speaks English us the controller of a
nuclear power plant with all systems and manuals
in English!

Next, computer experience is profiled. The aver-
age and range of number of years experience, num-
ber of software packages used, type of software (e.g.,
spreadsheet), and whether the individual develops
his or her own software are all important to know.
The level of computer experience, coupled with the
skill level required of the applicatien, determine the
type of training that is most effective. For applica-
tions that are complex, critical, or hava many vari-

1 RightWriter is a copy-protected product of RightSoft, Inc.

CHAPTER 14 The Forgotten Analysis and Design Activities

able activities, classroom and hands-on training
would be indicated. For applications that are simple
and have few activities, classroom, computer-bascd
training or on-the-job training are sufticient. Assign-
ment of new staff on the job might require close
supervision for a period of time to ensure that they
possess the skills 10 use the system properly. Close
supervision should be used for all critical applica-
tions regardless of complexity or method of training,

The level of task turnover in the next ruting cale-
gory determines which of the training methods is
actually used. If turnover is low, classroom or com-
puter lab training reach the most people at once and
are the cheapeslt. If tarmover is high, somce method
of individual training is required. Some alternarives
for individual training are on-the-job, programmed
instruction manuals, or compuler-based programmed
instruction. All can be effective mcans of training.

Finally, task experience is estimated. If the aver-
age user has a high level of task experience, the
labels for fields can be more abbreviated, less text is
needed to guide data entry, and an expert mode of
eperation might be preferred. If the average user has
a low level of task experience, or cxperienee is vari-
able, novice and cxpert modes might both be needed.

Task experience and teracver information lo-
gether determine the mode of interface as novice or
expert, and the extent to which on-line help should
be provided. Figure 14-2 shows thal with low expe-
rience levels, novice-only modes are required. With
a high experience level, either a mixed mode or an
expert mede-only are required.

Figure 14-3 shows thal the lype of message and
extent of on-line assistance also varies with experi-
ence and turnover. Low cxperience with low turn-
over suggests use of meaningful text error messages
with on-line help to elaborate on the error messages.
With high turnover, the on-line help should include
information on menu options, fields to be completed,
and error messages for data entry errors, With high
experience levels, the on-line messages can be
abbreviated {or eliminated with use of a beep instead
of any text message), and with high turnover, sup-
plemented with a paper manual documenting errors
and error recovery,

Last, effective training for the application type,
user education level, and experience level can be

Human Interface Design

587

Tumover

Low High

Low Movice Mode Moviee Mode

Task
Experignce

Mixed Novice and

High Expet Mods
Expert Modss

FIGURE 14-2 Turnover and Task Experience Determine Mode of Processing

Turnover

Lerwe

Task
Expetience

High

Low

High

Extensive error
messages with
on-line help

Extensive arrar, field,
and menu prompting

Extensive on-line halp
far all functions and
options

Simple, shart error
messages only

Simple arror
messages

Paper mahual for
look-up of help

FIGURE 14-3 Turnover and Task Experience Determine Level of On-line Assistance

588

decided. Training choices include classroom in-
struction, computer-based training (CBT), or on-
the-job training (OJT). Classroom training is the
most cost-effective for groups of students. Students
can ask questions and receive personalized training
while a number of people are being trained simulta-
neously. The disadvantages of classroom training are
high cost and the fact that training cannot be
repeated without additional cost.

CBT is most effective for training one or a small
number of people simultaneously and at different
rates. CBT is self-paced, low pressure, and does not
require a senior person to monitor the training. The
major disadvantage of CBT is its cost, which is
steadily dropping. Much training in business will be
computer-based by the year 2000 because, by then, it
will be cost-effective for most business uses.

On-the-job training is cheap but requires a senior
person to teach trainees. The senior person is
assumed to be a good teacher who can explain all
necessary variations to someone else. These as-
sumptions may not be valid. If OJT is used, some
manager or sentor staff person should monitor train-
ing and privately correct the teacher if a problem
arises.

ABC Rental User Profile

Video stores hire younger people, who are frequently
in high school. The tumnover is high because it is
part-time work with mostly evening hours {prime
date time) and because the business is somewhat
cyclical in video rental patterns. Since the specific
users are not known, the average user is estimated
based on the four current ABC employees. The
analysis is summatized in Table 14-4,

In the ABC example, current employees have no
physical impairments and none are anticipated. Typ-
ing skill is expected to be low. No particular prohi-
bitions on color or special equipment will be needed
except to compensate for the lack of typing skills.

The application wilk use a bar code reader, as sug-
gested by Vic, to replace the need to type most
information. The bar code reader minimizes the key
strokes required of users. The reader will scan user
TDs, if they are used, and video bar codes to enter the
information to the computer. If user IDs are not used,

CHAPTER 14 The Forgotten Analysis and Design Activities

the phone (or other ID) number will be typed. An-
other typed entry is the total amount paid. This
should not be 100 error prone because most people
pay in even dollars, receiving change. If the need io
enter a few numbers really worried Vic, user [D
cards can replace the need to type user IDs, or,
altermnatively key pads are less error prone than type-
writer keyboards and could be used.

The average education and math levels of em-
ployees is expected to be at the 10th-grade level.
This means that algebra is the most abstract level of
math skill. The system design criteria are KISS—
keep it simple, stupid—so the 10th graders can do
the work easily. The math level should be acceptable
since the only skills required are to enter the amount
paid and to make change.

The language of employees and the language of
the application is expected to be English.

Task wrnover is high and task experience varies
from low to high. Vic has one employee who has
worked there four years and two who have been
there two months. The task experience of the longer
employee is significantly greater than the other two.
While the video rental business is not complex, the
two newer employees cannot be expected to perform
all functions. The system design criteria in response
to high turnover and variable task experience is to
provide u simple interface with message help on
request for all selections, fields to be completed, and
EITOr messages.

Computer experience 1s also expected to be vari-
able but generally low. Number of years’ experience
for the three employees ranges from zero to two
years. Number of software packages ranges from
zero to three. The software used is word processing
by two people, and database and spreadsheet by one
person. One person wrote his own software,

With little computer experience, high turn-
over, low task experience, low task complexity, and
10th-grade education, two alternatives are recom-
mended, First, individual, self-paced, computer-
based instruction (CBT) is recommended because
the students can come in on their own time to train
whenever it 15 convenient. When the store is not

busy, they might continue their on-the-job training
using the CBT. The method would be to give the per-
son one each of the different transaction types. The

Human Interface Design 589

TABLE 14-4 ABC User Profilc and Application Response

User Characteristic

Description

Application Response

None

Design to minimize daia entry by using bar
code reader for Video 1D, Copy 1D; data to be
entered Customer Fhone, Amount Paid

On-line help

Needs no special design. Users must be able

Physical Skills:
Color Perception No Problems
Typing Less thar 15 WPM
Disabilitics None
Educational Skill:
Education Level 10th Grade
Math Proficiency Algebra
Language:
Nalive English/Spanish
Proficiency with High
application language
Computer Proficiency:
Average Proficiency Low, (-3 yrs.
Average =1 Yr.
Number of packages 0-3, Lolus, WP
Job Characteristics:
Turnover 65% Y.

Experience Low to High,

Average = Low

to make change.

None unless Vic wants to verify uscr ability
10 read all display text

English will be ihe implementation language.

Training in basic computer skills, startup,
shutdown, ete., required.

Use extensive on-line help for all options,
entry types, data types, forms fields. Provide
expanded on-line help 10 supplement mes-
sages for errots,

Provide cxtensive truining in all transaction
types, beginning with turning en the machine.
Maonitor performance for first week on the job
to ensure that training was sufticient.

person would enter the information and the com-
puter would uulomatically do all subsequent pro-
cessing. Then, the person would do several of each
type of transaction completely, The system would
intercept their entries and prompt them for correc-
tion, displaying reasons for the correction when thew
made errors.

Second, if CBT is too costly, on-the-job training
{OJT) with a senior person monitoring and assisting

the trainee should be sufficient. If this is the chosen
alternative, the trainees should learn rental and
return processing first. This can be followed with
less important tasks after several days. If OJT is the
preferred training method, Vic should monitor the
trainer(s) and trainee(s) closely for several days to
ensure that the trainers cover all altcrnatives, pace
the instruction Lo fit the person, and make no as-
sumptiens about the trainees” skills.

590 CHAPTER 14 The Forgotten Analysis and Design Activities

Option Selection

Once the user profile is complete, the general form
of the human interface is decided by mapping the
user and task 1o the implementation environment.
When this activity is complete, all intcrface recom-
mendations are presented to the user for discussion
and decision. Two choices are made from the
mapping of user and task to implementation envi-
ronment, Either or both of the choices may be con-
strained by particular hardware and softwarc if these
are already known, The choices are for general
option selection screens and general functional
screens. Each of these are summarized in Table 14-5.
Each set of alternatives and guidelines is followed
by a description of how to apply the information to
screen design for ABC rental.

TABLE 14-5 Summary of Interface

Choices

Interface Level Alternatives
Option Selection Menu
Window

Command Language

Form
Question & Answer
Direct Manipulatien

Functional Screen

Data Presentation Analog

Binary

Digital

Bar Chart
Column Chart
Point Plot
Pattern Display
Mimic Display
Text

Text Form

Screen Ttem Color

Size

Type Font
Type Style
Blink

Option Selection Alternatives

Choices for interface option selection design are
menus, command languages, and windows for get-
ting to some functional screen. Menus are lists of
items from which a selection is made. Command
languages are high-level programming languages
that communicate with software to direct its execu-
tion. Windows are a form of direct manipulation
environment that combine full screen, icon symbols,
menus, and peint-and-pick devices to simplify the
human interface by making it represent a metaphor-
ical desk environment.

In general, menus and windows are novice modes
of operation, while command languages are expert
modes. Windows are the interface design most rec-
ommended because they simulate an office desk and
present the most familiar interface to users. The next
section presents design guidelines for the selection
level of processing. Details of design for menu
and window design are presented in the following
sections.

General Option Selection Guidelines

General design guidelines relate to the development
of a consistent, standardized interface, consisting of
a header, a body, and a footer (Figure 14-4). The
screen may include error message lines and com-
mand entry lines as well. Many companies have
standards for screen design, so much of the work is
already complete.

The header section of the screen should contain
an identifier of the application, function, date, time,
screen ID, and program [D. An example is shown in
Figure 14-5.

The body of the screen contains variable infor-
mation {see Figure [4-4). In hierarchic menu pro-
cessing applications, the body contains menu
selection, ferms for completion, graphics output, or
graphical monitoring measures. The bedy of the
screen is subject to many other guidelines which are
discussed in the nex! section.

IBM standards also suggest a user message line
and an error message line (see Figure 14-6). Defin-
ing user commands and error message lines as fixed
may take too many lines away from the screen, so
these are optional.

Human Interface Design 591

‘Body of Sé:reeﬁ _

FIGURE 14-4 General Screen Design

¢ Seroo Compary Name Header MM/DDYY)

b, Task:Main Manu Task/Meny Header HH:MM:55 1
L i : : . - ™y

" Body of Screen’

FIGURE 14-5 Screen Header Example

592

CHAPTER 14 The Forgotten Analysis and Design Activities

SerGi
Task:Main Menu
>

Company Name Heacer

Task/Menu Headesr

MW DDYY
HH M. 55
<,

xxx0M Ertor Message
Command

>

FIGURE 14-6 Commuand and Error Line Examples

The footer screen section contains indicators of
navigation choices. Navigation choices should iden-
tify which key to select for each allowable move-
ment option. Movement can be within a screen,
between screens, or between menus and functional
scereens. Usually, screen navigation actions are taken
by using special keys: escape (ESC), delete (DEL),
or programmed function keys {PF or F keys). The al-
lowable actions should be identified at the bottom
of the screen in 2 manner similar to that shown in
Figure 14-7. The identifiers should always contain a
connector (such as colon} between the key label and
the action label, The action labels should be con-
cise, clear, and consistent across the entire applica-
tion (see Figure 14-7). Ideally, only actions allowed
from the current screen should be shown. Others
might be blanked out or muted to indicate that they
cannot be chosen here.

Menu Standards

The research on menu processing has given us
guidelines for location and ordering of menu op-
tions. User/SE choices prevail for menu optien

names and option selection technique. First, based
on the number of items on the menu, location is
decided. If the number of options is less thun 10, the
items should be centered as a left-justified list of
options. If numbers or letters are assigned to the
options, they should be right-justified, followed by
a period, and two spaces to the left of the corre-
sponding choice (see Figure 14-8).

When the number of options is 10 or greater, you
should experiment with ditferent layouts to make the
menu simple and easy to use. If the options are all
independent, separating sequences of four or five
options by blank lines enhances understandability
(see Figure 14-9). If list options are interrelated, then
experiment with segmenting the screen into different
areas with each area containing an area ID and a cen-
tered, justified list of options for the area (see Fig-
ure 14-103.

The options for menu selection are entry of an
option 1D without cursor movement, point and pick,
or eniry of an option ID with cursor movement.
Either of the first two are rccommended and selec-
tion should be based on user preference (see Figure
14-11). The third option requires more key strokes

Hurngin Interface Design 593

¢ Scr0 Company Name Headsr MMDOYY

h. Task-Main Menu Task/Menu Header HH:MM-8S A

Bady of Screen

0001 Er'rt)-r'ﬁﬂéééagé;' e

kComrnand:- A P _
F1:Help F5:Undo F7:End Trans F3:Pg Bn F11:ShL TakyNxt Fld
kFS:Quil FG.End Entry FS.PgUp Fig:Sh R *Tab:Lst Fild ESC:Quit y.

FIGURE 14-7 Screen Fooler Example with Function Keys

Customer Maintenance

1. Add

2. Delste
3. Update
4. Cuery

FIGURE 14-8 Numbered Menu Option List, Less than 10 Choices

594 CHAPTER 14 The Forgotien Analysis and Design Activities

. Consullant Assassment
. Consullant Selection

. Applicant Scheduling

. Consultant Maintenance

Ly R —

. Consultant Contract Creation
. Interview Scheduling

. Clignt Maintenance

. Cliant Contract Creation

o0 = A in

9. Query Consultants
10. Query Clients
11. Client Billing

12, Censultant Payment

13. Business Trend Analysis
14. Accounts Payable

15. General Ledger

16. Payroll

FIGURE 149 Menu Option List, More than 10 Independent Choices

and is more error prone; therefore, it is not recom- option or letters assigned from the alphabel in
mended. Option [Ds can be alphabetic or numeric; scquence. Again, there is no one right answer and
alphabetic options can be the first letter of the uscr preference should prevail. If a point-and-pick

Rental/HRetutn Processing Customer Maintenance
Create Add
Update Delete
Query Update
Query
Video Maimtenance Peripdic Pr i1
Add End of Day
Delete Report
Update Video Startup
Update Copy Shutdown
Query History Update
Query

FIGURE 14-10 Menu Option List, More than 10 Interrelated Choices

1. Create
2. Delete
3. Update
4. Query

Enter Selection: ___

Cursor Movemeni and Sslection

' ™
Cursor to the Opligh, Press RAeturn:

Create
Delete
Update
Query

Yy
Move to Option, Enter Number
__ 1. Create
__ 2. Delgte
__ 3 Update
_ 4. Cuery
\. /

FIGURE 14-11 Menu Selection Options

device, such as a mouse. is used, no option [Ds are
required.

In all cases, when entry of a selection option is
used, the message requesting the data entry should
be centered on the screen, two lines under the last
menu item, and should be in this location on all
screens, This means that the locasion of the entry line
should be two lines under the longest list in the entire

Hurman Interface Design 595

application, and that it is always displayed on that
line,

The listing of options within the menu should be
based on frequency of choice when point-and-pick
selection is used, and should be based on alphabetic
order of choices when entry of a selection ID is used.
Frequency listing is used for point-and-pick selec-
tion because the cursor should be positioned auto-
matically at the most frequent choice (see Figure
14-12). The positioning by frequency of use mini-
mizes keystrokes when maving to other choices.
Alphabetic sequence of choices is used when a
selection 1D 15 entered, because users can read and
understand an alphabetic list faster than a random
list (see Figure 14-13). Both alternatives assume a
novice user who does not know the options from
memory.

The last issue in menu design is option names.
Some authers® recommend specific names even il
it means repeating some information (see Figure
14-14). Other authors® recommend concise but
meaningful names with no repetitive information
(see Figure 14-15). Combining these guidelines, we
can design screens that are easily understooed and
used. First, the option names should be listed to com-
pletely define the process and entity(s) {as in Figure
14-14). Then, any information repeating in all
entrics should be removed and placed in a header
for the menu list {(see Figure 14-16). The result is
the concise list from Figure 14-15 with a short
header providing the additional information from
Figure 14-14.

To summarize, menu applications should be
designed in the context of a standard screen format
that is used throughowt the application. Menu items
should be centered, selection action should be obvi-
ous, and minimal information should be in the body
of the screen.

Window Standards

Windows are rectangular screen areas used to
display information. Window displays differ from

2 For instance, Banks &Weimer [1992].
3 For instance, Galitz [1981]; Thomas [1982].

596

CHAPTER 14 The Forgotten Analysis and Design Activities

Customer Mairtenance

Add
Change
Query
Delete

Cursor 1o Selection, Press Enter

Add Customer
Change Customer
Query Customer
Deleta Customer

FIGURE 14-12 Menu Options Listed By
Frequency

menu-driven full screen displays because users can
view different, possibly unrelated information at the
same time in different windows. For instance, in
ABC’s rental application, we might be looking for
rental information for Saruh Cropley. We can begin a
query function, then type, for example a *?” in the
Customer Name field to indicate a look-up. A new
window opens up and shows customer names. We
select Sarah Cropley, the window closes, the name is
moved to the first window, and we continue the
query. Look-up and selection of information from a

FIGURE 14-14 Complete Menu List

window is simpler than a menu system which uses
the entire screen for one thing at a time. Because
windows are different from menus, they have dif-
ferent gnidelincs and standards for their use.

A typical window can have the components
shown in Figure 14-17. A Close Box stops process-
ing and is similar to an F3 key use defined for a
menu, The Title Bar names the window the same
as the header line in the header portion of a menu.
Location ID and status indicator identify where the
user is in the window and whether or not processing

Customer Maintenance

Add
Delete
Query
Update

Enter Selection; ___

- ™
Cursor to Selection, Press Entaer
Add
Change
Quety
Delste
. vy

FIGURE 14-13 Menu Options Listed
Alphabetically

FIGURE 14-15 Concise Menu List

Customer Maintenange
Cursor to Selection, Press Enter

Add
Change
Query
Delete

FIGURE 14-16 Combined Menu List

Human Interface Design 597

is normal. The zoom box and resize box both are
used to change window shape. Zoom toggles
between current size to full screen and back. Resize
allows the user to customize the desired width and
height to the window. Scrolling efements, arrows,
bars, and boxes are used te move vertically and
horizontally in the window, and are similar to func-
tion keys F8-F11 we defined for the menu sys-
tem. A scroll box is dragged to move a variable
distance, while a scroll bar pages up or down
depending on where it is touched, and a scroll arrow
moves one line at a time. Most window elements
are available for use in a windowing application,
such as Paradox, but usage is sclected by the pro-
grammer. All are recommended if the application
contains multiscreen forms completion. At least one
type of scrolling element for each dimension should
be provided.

Close Box Menu Bar Window Title Zoom Box

Window Title

Seroll Arrow

Scroll Arrow Scroll Box

= Seroll Bar

Scroli Box

Bedy of Window . . . Variatle Information

Scroll Arrow

|

Size Box

Scroll Bar Scrol Arrow

FIGURE 14-17 Window Components

598

CHAPTER 14 The Forgotten Analysis and Design Activities

Window D

. Vertical Horizontal

Body Title Bar Seroll Bar Seroll Bar
|| Close Box || Scroll Arrow || Scroll Arrow

Uo Up
— Window Title | [— SO ATOw | Ly Seroll Ariaw
t— Zoom Box — Scroll Bax — Scroll Box
-— Scroll Bar L Scroll Bar
— Resize Box

FIGURE 14-18 Window Component Hierarchy

Windows have two basic varieties: tiled and over-
lapping, Tited window systems only create non-
everlapping windows. These work best for process
control and nondata intensive applications. When
many functions and types of data may be active at
once, overlapping windows might be desired. Over-
lapping windows layer windows as opened, one on
another, until the application maximum. To move
from one window to another, the user clicks on the
edge of the desired window to bring it to the front
of the stack.

Windows are defined as hierarchies of objects for
management. Figure 14-18 shows the hierarchy for
the window components in Figure 14-17. As new
windows are opened, a new hierarchy is built. All
of the window hierarchies are managed by a screen
manager which links all hierarchies.

Windows should be set off from each other and
from the background by thick, easily recognized
borders. Tiled windows should provide blank space,

if it is available, between windows. In current win-
dowed systems. the user has little choice about
positioning of selected options for title bar and scroll
bars, tor example, but, if choice is allowed, the
design should be consistent in all tasks. One of the
best features of the Macintosh environment is that
Apple Computer requires any software operating on
the Mac to use exactly the same interface definition
as the Apple operating system. All soltware seems
familiar before it is even used. Finally, if no other
features beyond a window space are used, scrolling
1o allow viewing of all window accessible informa-
tion should be provided.

Window menu styles include horizental pull-
down, Lotus-style horizontal pop-up, and vertical
pop-up. Horizontal pull-down menus show the
top-level selection choice across the top of the
screen, taking the least screen space of all menu
options (see Figure 14-19). When a menu s acli-
vated, by having the cursor moved to its location, the

Hurman Interface Design 599

Registration

Student

Faculty Billing

FIGURE 14-19 Horizontal Pull-Down Menu Example

second-level menu is pulled-down from the original
entry. To make a selection, the cursor is moved 1o the
desired option and activated. Activation is either
through a return key or by pressing a mouse button.

Lotus-style horizontal pop-up menus present a
second level of options shown as menu items {see

Figure 14-20). The main difference is that pop-up
selection continues to show between pull-down and
pop-up menus the second level actions, whereas
pull-down menus disappear as a selection is made.
Vertical pop-up menus are long lists that con-
tain a portion of the list in a scrollable window (see

Registration

Create Update

Student Faculty
Yerity

Detete

FIGURE 14-20 Lotus-Style Horizontal Pop-Up Menu Example

600

CHAPTER 14 The Forgotten Analysis and Design Activities

Registration

Faculty

Delele
Guery

Sludent Faculty Billing

Serollable elements
not shown on
the screen

Assignment

Vacztion

| Sick Leave

HGURE 14-21 Vertical Pop-Up Menu Example

Figure 14-21). To select an action not currently
showing, the menu is scrolled until the desired action
is visible. Then it is activated. Vertical pop-up menus
also disappear once an action is activated. [n Figure
14-21, the items that would not be showing on the
screen are in the gray area.

There is no research on the effectiveness of these
three types of menus. In general, though, we know
from past research that familiarity with the interface
type leads to greater satisfaction with the software.
Both horizontal pull-down and Lotus-style pop-up
screens are familiar to most PC users. Vertical pop-
ups remain useful for long lists.

Both pull-down and vertical pop-up menos offer
a simaple means for providing expert and novice
modes of work. Command keys can be defined for
specific functions and shown on a menu for optional
use (see Figure 14-22), Novices can use the menu
without paying attention to the commands, while
experts can learn commands as they need them,
becoming proficient in some areas and remaining a
novice in others. This option, plos the office desk
metaphor that people easily rclate to, make win-
dowed environments the preferred development
screen stvle.

ABC Rental Option Selection

The ABC rental application is mostly transaction
processing with some query processing. Both
windows and menus are recommended for transac-
tion systems, with windowed query development
recommended for query applications. Both graphical
and digital presentation are recommended. If hard-
ware has not already been chosen, these recom-
mendations imply math and graphic capabilities [or
the workstations. Standard displays should be suffi-
cient unless Vic wants many graphics, in which case,
one display should be high-resolution for graph-
ical use,

The key screen design decision is between win-
dows and full screen menus for selection. There is ne
one best choice in this decision. When software is
chosen before screen design, software sometimes
dictatcs the interface. For instance, mainframe soft-
ware, for the most part, does not support windows
as this lext is written. The most advanced screens
require a full-screen menu interface. Conversely,
some PC software does not support anything but
menu bars and windows. To use full-screen menus in
this software is cumbersome and costly. User pref-

Human Interface Design 601

Registratian

Create
Update
Verify
Delete

Student Faculty Billing

FIGURE 14-22 Function Keys on Pull-Down Menu for Expert Use

erence for selection tends 1o be strong and should
be the deciding factor.

Assume no software is selected yet. To give Vic
an informed choice we should sketch both window
and menu screen and let Vic cheose which he likes
best. To do both, we have to design the interface 10
accommodate the application. For windows, the
menu bar should include each major entity and/or
process. The menu bars and subchoices for ABC
rental processing are shown in Figure 14-23. This
design might change with software selection, such
as dBase IV, so a sample menu bar with subchoices
for dBase is also shown as Figure 14-24. Next, a
hierarchic menu system is defined for contrast
{see Figure 14-25). The hierarchy menus mirror
the task hierarchy defined above, One menu is
present for each activity and for its successive lev-
els of subactivities until the functional screens
are reached.

The recommended design uses windows. Vic
selects windows with the Figure 14-23 menus to be
used. He dislikes the dBase menu because none of
the functions relate to his applications. Finally, Vic
requests a ‘quick lock” at the screens on the com-
puter to confirm his choice.

Functional Screen Design

Functional Screen Design Alternatives

Omnce all navigation through menus or commands is
complete, the functional level of screen is presented
for the real work of the application. Functional level
screen choices are direct manipulation, question and
answer, and form filling. Direct manipulation inter-
actions are those in which the user performs an
action directly on some display object. CAD/CAM,
CASE, and some computer-based training (CBT)
systems have direct manipulation interfaces.

Question and answer (Q& A} nterfaces are
those in which progressively more focused dialogue
takes place based on responses to preceding ques-
tions. Artificial intelligence applications and some
CBT systems are the most common uses of the Q&A
format.

Form-filling interfaces are most commeon in
transaction processing applications but can be
used for any application needing to collect discrete,
single values for variables. Form-filling interfaces
present the user with labels and indicators of where
data is to be entered. Users are led through the form

602

CHAPTER 14 The Forgobten Analysis and Design Activities

Rent/Return Video Customer Periodic Other

FIGURE 14-23 Menu Bar for ABC Rental Processing

completion process by cursor movement and mes-
sages from the software,

Functional Screen Design Guidelines

In general, the application type determines the most
appropriate functional screen design. Recommended

interface designs are shown in Table 14-6 for ali
application types. Windows are the preferred methed
of selection presentation because they can be layered
1o keep track of thinking processes during long
selection sequences, and because their pop-up action
matches the way people think more closcly than
menus. Command languages are not preferred for

Files Recerds Utllities

FIGURE 14-24 dBasc IV Mcnu Bar for ABC Rentul Processing

Human Interface Design

603

Option 1; All Menu Choices on One Screen

Customer
Maintenance
Create
Rent/Return Update
Delete
Quiary
Video Maintenance | Periodic Processing
Create End of Day
History
Update
Delete gpda'e
uery
Query Startup
Shutdawn

Option 20 Individual Menus for Each Level of Ghaice

SCRMN AEBC Video mmddyy
Rental Processing Application
Main Menu
Move the cursor to your choice,
Press Enter

Rental Processing
Customer Maintenance
Video Maintenance
Periodic Processing

F1:Hlp F3:End

SCRo2 ABC Video mmddyy

Rental Frocessing Application
Customear Maintanance Manu

Mave the cursor to your chaice,
Press Enler

Create

Update

Delste

Query

F1:Hp F3:End F5: Main

SCRO3 ABC Video mmddyy
Rental Processing Application
Video Maintenance Meanu

Mave the curser to your chaice,
Press Enter
Create

Update
Delete
Query

F1:Hlp F3:End F5: Main

SCRo4 ABC Video mmddyy
Rental Processing Application
Periodic Processing Manu

Maove the cursar ta your choice,
Press Enter

End of Day
History
Update
Query
Startup
Shutdown

F1:HIp F3:Eng F5. Main

FIGURE 14-25

Hicrarchic Menu Set for ABC Rental Processing

604

CHAPTER 14 The Forgotten Analysis and Design Activities

TABLE 14-6 Interface Design by Application Type

Application Type Selection Function Display
Al Window Q&A Text short answer is usual
Menu Form display; could also include
Command graphic results.
Language
DSS and ESS Window Forms Graphical-bar column, point
Menu Windows plot
Digirtal
Need help and cautionary
comments for inappropriate
output form use.
Process Monitor/Control Window Analop display Nia
Menu Mimic display for
muitivalued or
Command multidimensional
Language data
Digital display for
specific numbers with
symbols, numbers or
indicators (e.g.. alert)
Command Language
Direct Manipulation
Query Window Window Graphical-bar column, or
point plot
Menu Form
Command Language Command Language Digital
Transaction Processing Window Forms Forms
Menu

Command Language

DSS and ESS because the users of these applications
are usually managers who should not be expected to
know a command language. DSS and ESS may be
used infrequently and the interface should chauffeur
and lead the user as much as possible. Command
languages are the third choice for all application
types because they assume expert level knowledge
both of the task and of the computer system doing

the task. ldeally, a combination of windows with
optional expert commands should be provided.

For transaction applications, forms completion
screens are preferred for functional processing.
Q&A is much less efficient for transaction applica-
tions (TPS) than forms because line-by-line entry
takes longer and is fatiguing. Direct manipulation is
inappropriate for TPS.

For query applications, all options can be used for
selection and query generation. Query generation is
the functional processing in a query application. For
query generation, windows with query criteria are
preferred. For experts, direct command language use
is preferrcd. Query results can use graphical or digi-
tal styles of presentation.

DSS and ESS should use a consistent interface
until data results are presented. Either window
selection with window request formulation or menu
selection with form request formulation are recom-
mended. Results screens can combine any graphic
and digital presentation styles, although warning
messages for inappropriate display selections might
be desirable.

Artificial language applications usually resultin a
Q&A format. Each Al language environment uscs
its own method. For instance, Turbo Prolog™* uses
a combination of windows and command language
to initiate processing. A text answer which may have
an associated probability of correctness is the usual
Al output. Some Al language environments aiso
support limited graphical display.

Last, in process control applications, the func-
tional display is the results display. Analog, mimic,
and graphical display are all commen in process
control, sometimes on the same screen. The display
usually has a command line at the bottom of the
screen. Commands are limited to requesting addi-
tional information about a certain measurement or
part of the system being monitored, or requesting a
different display. The most flexibility and sophisti-
cation of design are required in process control ap-
plications because they are most {ikely to be critical
in terms of having life-sustaining responsibility.

ABC Functional Screen Selection

ABC rental processing is a TPS and will use forms
for the data entry functions. The forms screens for
data entry include rental, return, customer mainta-
nance, video maintenance, periodic, and query
selection processing. These screens should not
change regardless of which option selection inter-

4 Turbo Prolog is a trademarked product of Borland
International.

Human Interface Design 605

face is selecied. Therefare, they could be designed a:
the same time the general interface is being decided.
In any case, the forms screens should be presented ro
Vic to get general comments and (o ¢correct any
design he might dislike before a prototype is built.

Presentation Format Design

Once the general form of the interface is decided,
details of display are decided. The first set of choices
are for data presentation based on the type of data,
The second set of choices are for specific field for-
mats. Presentation format describes the method of
displaying data on a screen.

Presentation Format Design Alternatives

The options for presentation format include analog,
digital, binary graphic, bar chart, column chart, point
plot, pattern display, mimic display, text, and text
forms.

ANALOG, Analog displays are for continuously
variable data (see Figure 14-26) and are usually used
in direct manipulation interfuces. Analog displays
use a pointer of some kind to show a position that is
analogous to a value the position represents. Ana-
log displays all should have a scale, pointer, a di-
rection indicator of increasing/decreasing measure,
and an indicator of normal/abnormal measures (see
Figure 14-26). For instance, analog display is effec-
tive for the pounds per square inch of pressure (psi)
to show a measure of exerted force. Another exam-
ple from manufacturing is the continuous flow of
various densities of oil from a cracking plant which
is effectively conveyed via analog display.

The scale is a numeric indicator of the item mea-
sures. A pointer indicates the current position on the
scale. Pointers might be arrowheads or needles and
may be fixed or moving. The indicator of increas-
ing/decreasing direction is usually a combination of
arrows and tcxt to indicate the meaning of direction
of pointer movement. Normal and abnormal mea-
sures can be indicated by a shaded section of the
scale, different colors to scale numbers, a change in
color of the pointer, a tone for abnormal measures, or

606

CHAPTER 14 The Forgotten Analysis and Design Activities

4
ormmal Range

12

Numeric Scale, Mormal Range
Indicated, Arrow Moves

Change in last hour : + .2

Partial Circle, Numeric Scale,
Amount and Cirection of Change
Shown, Amrow Moves

FIGURE 14-26 Examples of Analog Displays

some means of showing expected and unexpected
numbers.

The guidelines for analog displays are summa-
rized as follows:

Dhasplay Contents
Scale to which the measure applies
Painter to indicate position on the scale
Indicator of increasing/decreasing direction
Normal/abnormal measures indicated
Display Design
Use conventional user mental model of item
Use moving points on fixed scales
Use same analog design for all analog
measures on display
Use design method—circular scale or open,
partial circle scale—to facilitate user
recognitton
Usage
Rate of change
Range of values for continuous data
Determine acceptable operation

In gencral, the most effective displays fit the users’
mental model of the measure, use moving pointers
on fixed scales, and are consistently designed when
more than one analog measure is used. If numeric
analog values must be tracked, a semicircular open
scale using a fixed pointer with a moving scale
allows faster numeric recognition.

Analog displays are best used for monitoring rate
of change, monitoring a range of analog values, or

for determining ranges of acceptable operation.
Examples of rate of change are the flow of oils
in a cracking plant or the voltage fluctuation
m cables, A monitoring example is a speedometer
for speed limit. Pressure gauges in a nuclear power
plant or bond ratings selections that must fall within
company guldelines are examples of ranges of
operation.

DIGITAL. A digital display is used to convey
exact numerical information. Digital displays are
most effective when used for variables that have one
value at a time. Each value requires a label io iden-
tify the data value.

Guidelines for digital data and an example are
shown in Table 14-7. In general, only that data of
required precision for accuracy should be displayed.
Field size should provide for the maxitnum and min-
imum values. Tf data displayed changes frequently,
as in a stock trading application, the data should
stay on the screen long enough for comprehension,
about five sceconds, before being changed. If the user
is monitering change, an arrew, plus/minus signs,
or other indicator of direction of change might
be shown.

BINARY. Binary means having two parts. A
binary display shows some graphic to indicate a
two-value selection option. Usually, we think of
binary items as having on-off, or yes-no, or zero-
one values.

TABLE 14-7 Guidelines and Example of
Digital and Binary Data

Display Contents:
a. ‘Y’ or ‘N’ or other character

b oore

<. ‘On’or 'Of”

d. 1 or0{One or zero) or other numerals
e. ¥ orblank

Display Design
1f lext form, use contenls a, ¢, or d above
If analog display, use bore
If i a menu list, usebore

Usage
To indicate an item that is *turned on” or ‘turned off”
To mdicale a two position setting

Example of digital time display

07:15

Binary interface information can be presented
using lext or graphics in several ways (see Figure
14-27). The binary itemn can be displayed in text
using the words yes-no or on-off, or with letters *y’,
‘n’. A menu can list the option with a check mark to
indicate an ‘on’ condition. A graphical button, or
circle, can be used—when the button is empty, the
item is not on; when the button is filled in, the item
is on.

By itself, binary indicator selection may not be a
major decision. It becomes important when used
with other information on the screen at the same
time. If used in a menu, a check mark, change of
color intensity, or change of color can all be used to
effectively indicate an ‘on’ condition without using
any extra characters. If used within a line of text, text
presentation (e.g., ‘y’ or ‘n’) is more effective.

BAR CHART. A bar chart summarizes numeric
data as one or more horizontal bars whose lengths

Human nrerface Design 607

correspond to the values of related variables (see
Figure 14-28).

By convention, bar charts show increases in value
as the chart is read left to right, Bar charts are effec-
tively used 1o show task plans over time, percentage
of task completion, comparisons of item values (i.e.,
itemt I value vs. item 2 value), and cyclic data (e.g.,
product sales over a f{ixed period). In business
applications, bar charts are rarely used on screens
with other graphic displays; they are generated by
applications as summary ocutput for managers, and
can be ¢asily generated on-line by many software
packages.

COLUMN CHART. A column chart is & bar
chart using vertical bars rather than horizontal ones.
Bar charts are most eften used when time is a fixed
period (or is not relevant). Column charts are most
oftent used when time varies and is shown on the
x-axis (across the bottom). For instance, cyclic data
is most effective in a bar chart when comparing
a fixed period (see Figure 14-29). When compar-
ing cyclic data over periods, a column chart is
more effective.

The general rule is 1o use column charts for mul-
tiple time periods, to compare different items on the
same scale, or for consistency with cultural conven-
tions which assume a vertical scale (e.g.. plotting
temperatures, fimes, revenues, sales).

POINTPLOT. A point plot is a column chart that
shows the x-y points on the diagram with or without
a line connecting them (see Figure 14-30). Point
plots might have trend lines generated o show the
direction of change. A band chart is a special type
of point plot that plots several variables on the same
diagram. Band charts use shaded areas of the dia-
gram to show variable participation. Bar charts are
mast effective for showing cumulative variable par-
ticipation or percentage of participation of each vari-
able {see Figure 14-31).

PATTERN DISPLAY. Pattern recognition is a
human strength. When designing displays that are
monitored for change in complex systems, patterns

608 CHAPTER 14

The Forgotten Analysis and Design Activities

Example of Alphabetic tisting Using Y/N Indicators

Namg Sex Married ? Deceased?
Jongs, Sandra F N N
Andrews, Barcy F Y Y
Lana, Bruce Y Y

Example of Menu List
Lsing + or Blank Indicators

Font

Cairo

10 Pt.
12 Pt
14 Pt

Helvetica
+ New Century
Times Roman

FIGURE 14-27 Examples of Binary Indicators

are effective. Pattern displays repeat the same
graphic several times with identical ‘normal’ dis-
plays (see Figure 14-32a). When a change to one
portion of the pattern occurs (see Figure 14-32b), it
is easily perceived by users. These are not very
common in business applications.

MIMIC DISPLAY, A mimic display shows a
schematic or other replica of a systern to allow the
user to monitor its functioning (see Figure 14-33),
Because mimic displays are usually symbolizing
complex systemns, the information presented should
be kept to a minimum needed to control, monitor,

Marsha

8 1mn . iz

14 16 B 20

Years of Education

FIGURE 14-28 Example of Bar Chart

Bar Chan ol Sales Data
by Product for Manth of
Seplember, 1893

Blue Jeans

Sweaters

T-5hirts

SMR 10MM 15MM

Caolumn Chan of Sales Data

I
I
I
20MM I
I

15MM

!
1
|
i
|
1
1

10MM

MM

Sept. Oct. bov.
Lageng:

T-Shirts
Sweaters
Blue Jeans

FIGURE 14-29 Bar and Column Charts of
Sales Data

or obtain information needed. The symbols, spacing,
and relative sizes of symbols used in the display
should conform to business conventions to convey
immediately meaningful information, For example,
Figure 14-33 shows an electirical diagram, not a
plumbing diagram; therefore, the users should be
electricians or electrical engineers.

Mimic displays are best used when a monitoring
application reguires a view of the whole system.

Human Interface Design 609

They provide understanding of system component
relationships and can be more easily understood than
other types of graphics for the same information.
Colors can be used to highlight abnormal function-
ing of components. In business applications, mimic
displays are effective for monitoring network com-
ponents, telecommunication linkages between net-
works, and even for lracking problems in application
interfaces.

NARRATIVE TEXT. Text is verbiage in which
words, rather than numbers or symbols, are used 1o
describe the intended information. Text is hard
to read, time consuming to understand, and requires
a high skill level of the user. Ideally, text is mini-
mized; but some applications require comments or
special, noncodable instructions that must be in
text format. Some guidelines for text usage are the
following:

» Use no more than 60 characters per 80 charac-
ter line.

= Wrap text as a word processor does, Do not
require the user to change lines.

» Use abbreviations common to the work con-
text, and use abbreviations sparingly.

u Allow users to scroll, change paragraphs, and
control the text creation process.

TEXT FORMS. One of the major uses of displays
in business applications is for data entry that corre-
sponds to a form. Form screens present a series of
labeled fields of information for which seme infor-
matioti is completed by the user and some informa-
tion is generated by the application. Forms screens
simulate paper forms that they replace or automate.
Because forms automate information from paper,
the format, sequence, spacing, and information 1o
be completed should mirror that of the analogous
paper form.

Forms screens should have standard header,
instruction, body, and footer information that differs
from the general screen format (see Figure 14-34).
The different areas should be clearly delineated,
grouping information that is related (e.g., the header)
or that repeats. The header should contain an appli-
cation identifier, function identifier, date, time, and a

610

CHAPTER 14 The Forgotften Analysis and Design Activities

Sales
By Manth

JFMAMJJASOND

Sales
By Month

Connected Line Plot

Uncanngcted Line Plot

JFMAMJJASOND

Sales By Month
By Location

Trend Ling
Shows Average
Change

./

JFMAMJJASOND

FIGURE 14-30 Example of Point Plots

screen/program ID as discussed above. The header
may be the same as the general screen header,

The instructions can be in the form of screen text,
help availability, or a short description of expected
action. As much as possible, the screen should pro-
vide intuitive guidance. Instructions should lead the
user to supply information to get to the next step.

The body of a form contains the labeled fields
to be entered in an easily understood, contextually
rclated format. The footer should provide screen

summary totals or other summarizing informations.
Footers and instructions are optional. The body,
then, is the main focus of attention.

The body of the form should be partitioned or
windowed to mirror sections of data to be entered
{see Figure 14-35), The screen in Figurc 14-35
shows a simple Customer Add screen for ABC
Video. All information relates (o the customer and
there is no additional family member information in
the application. If additional family members are

Human Interface Design 611

F100MM CGumulative Revenue By Product
7oMWL _ _ _ _ _ _ . _ _ _ _ _ _
$50MM L _ L L - — - —
$25MM - — —

| T-Shi.rlts | Swéaters Blue Jeans
FIGURE 14-31 Example of Band Chart

added to the membership, the Customer Add screen
might fook like Figure 14-36 which shows two sec-
tions, one for general customer information and one
for additional family members.

Euch field or group of fields should be clearly
labeled to identify the required information. Cus-
tomer preferences are needed to design identification
for some fields, For instance, three variations of
name and address information are shown in Figure
14-37; all three conform to different, good design

a. Normal Pattern Display for 100 Indicators

cOnoo CcoD00 00000 00000 0DOQO
0000¢ ocoDOD GOODOOOC CCGOO0O0 000QQ
0000 00000 QoOOUO O00CD 00000
o0ono 00000 QOPQO 00000 QO0QDO

b. Abnarmal Pattern Display for Several of 100 Indicators

0000C ©OCODO O0O0OO (0000 OOOOO
DoCoD ® 00000 CQOO0D GCODO0O QOO0O0D
DOOOQ 00QO0 UOOQD CQ0CGO GO00D
0DD0OOD OGN0 00000 COQ0O0@® OOCO0O

FIGURE 14-32 Normal {a) and Abnormal (b)
Pattern Displays

guidelines. The first variation shows each field
labeled. The second shows major fields labeled and
miner fields with understooed labels. The third shows
one heading for all fields; this heading minimizes the
texl on the screen. No one of these is preferred over
the others, Rather, the customer should be allowed to
choose the preferred design.

Labels, and any codes designed as well, should be
designed to be familiar, less than five characters
long, and include letters and numbers. Fer instance,
Figure 14-38 shows four possible codes for a Cus-
tomer {D. The first alternative, 13-8041, is a phone
number. It is low in recognition for the clerks in the
store, but the highest of any choice for the customer.
Who deesn't know their own phone number? For
that reason, high customer recognition, a phone
number, is a good choice for Customer 1D,

The second choice, CONGOOL, is a combination
alpha and numeric code. The first four characters are
the first four letters of a last name and the last three
characters are a scquential number. This is also high
in recognition for both customers and clerks. It is
less recognizable than a phone number, but a good
choice in any case, The next code, 03001 uses ‘03’ to
denote “C’ and a sequential number *001° to denote
sequence within the Cs. The purely numeric code is

612

CHAPTER 14 The Forgotten Andalysis and Design Activities

<
o
jeig=
C e
n B
Hn
ax
o
)

[s[e][e[e]s[ale]e[s]e[aln]

Connections that ¢an fail are exaggerated to ease monitoring.

FIGURE 14-33

cryptic but short. It is less useful than the first two
choices.

Text information, such as names, should always
be left-justified. Ideally, they should be long enough

Instructions

Body

Totals

FIGURE 14-34 Sections of a Form Screen

Mimic Display for Electrical Monitoring System

to provide for the maximum length of the informa-
tion. This is difficult with names, especially hyphen-
ated names. Each application defines its own
maximum; but, in general, over 90% of names in the
United States are shorter than 35 characters. If disk
storage space is tight, shortening fixed-length text
fields is one way to conserve space; another is to
define a variable length field that does not store
unused spaces.

Afier the individual labels, fields, and field codes
are defined, the next task is to position them on the
screen. The design is context related and should
group fields that logically go together, From cogni-
tive psychology research we know human brain
capacity is limited to holding 5-7 bits of information
called ‘chunks’ in our short-term memories. Short-
term memory (STM), also called ‘active’ memory,
is what is in your head while you are thinking, STM
15 measured in nanoseconds of response time for
processing and is analogous to the arithmetic/logic
unit (ALUY on a computer where all processing takes
place. In designing presentation formats, we try to
group iterns to take advantage of the chunking phe-
nomenon. For instance, in the Customer Add screen

SarGM1 ABC Video Rental Processing 122{124"93

Custemer Maintenance

Create a Customer

Name:
Address.
City: St _ Zip
Credit Card Type: — (A, ¥, M)

Credit Card Number:

Expiration Date: — / — [—

F1:Hp F23:Quit F5Undo FoEnd Ent F7:Save
Tab:Nxt *Tab:last ESC:Del Ent

FKGURE 14-35 Customer Add Screen

in Figure 14-35 above, address and credit card
information form two natural groupings of informa-
tion that should be on the screen as a group. Another
aspect of shori-term memoery chunking is to posi-
tion required fields first, followed by optional fields.
This placement should allow users to signal com-

ScrGM1 ABC Video Rental Processing
Customer Maintenance

Create a Customer
Customer Number: aaa999

121293
23015

Mama: ,
Address:
City: St dp——
Credit Card Type: — (A V.M
Number:
Date: —!

Additignal Members: First Name Lﬁmmm _

F{:Hp F3:Quit F5:Undo
Tab:Nxt ~Tat:Last ESC:Del Ent

F&End Ent F7:Save |

FIGURE 14-36 Customer Add Screen with
Additional Family Members

Human Interface Design 813

pletion of data entry without having to tab through or
touch unneeded fields.

We must also account for long-term memory pro-
cessing in screen design. Long-term memory is
what i3 stored in your brain, similar to disk storage
for a computer. Retrieval of stored information uses
a schema, or mental model, of what are effectively
primary and secondary keys for retrieving informa-
tion. Retrieval time is measured in 100s of millisec-
onds or slower. When chunking cannot be done,
screen items should be spatiaily separated to allow
users to switch contexts as they move their eves
from one section of the screen to another.

When positioning information on screens, you
should also consider possible reusability for screens.
For instance, the Cusiomer Add screen above could
also be used for delete verification, updating, and
individual customer query.

When positioning is complete, each screen should
be given a system name that is added to the task
hierarchy to relate screens to tasks.

It used to be thought that the shortest possible ter-
minal interaction time was desirable, but this is not
true any more. Research shows that we need to pace
work so that ‘psychic overload’ does not occur.
Chunking items for data entry that iogically go
together is one way of pacing work. Another is in
pacing the response time for different types of work.
Long transactions can take a relatively long time,
up to 20 seconds, while short transactions should
take a short time, less than five seconds. Keystroke
response is a simple, direct interaction and should
have immediate response from the computer. A
query, request to activate a function, and selection
of a menu item are all examples of simple interac-
tions, Examples of complex interactions are a data-
base update, saving a word-processed document, or
sending a facsimile transmission of several pages.
Delays of up to 20 seconds are acceptable if the user
is kept informed on the status of the precessing.
Some methods of telling the user the system is work-
ing are a message, *. . . Working .. *, a clock icon
with hand movement synchronized to different per-
centages of completion, or a whirring sound from the
equipment.

Other field definitions for forms relate to char-
acter entry and default values. Guidelines for

614 CHAPTER 14 The Forgotten Analysis and Design Activities

a.) All Figlds Labeled

Last Name: First:

Address:

City: State: _ Zip: -

b.) Major Figlds Labeled

Mame:

Address:

©.J One Heading, All Fields

Mame and Address

FIGURE 14-37 Label Variations for Name and Address Information

character entry are listed below; examples of field = Make areas of the screen not used for input
guidelines are shown in Table 14-8. naccessible to the user.

= Always display keyed information. Guidelines for default values are:

= Never require delimiters to be keyed. For = Display all defavlts before any data entry
instance, in a social security number, provide begins.
dashes to split the numeric parts: Xxx-Xx-XXxx. s Confirm defaults by tabbing past the field.

» Do not require entry of leading zeros for nu- » Default replacement should not alter current
meric fields or of following blanks for text default value, For instance, if the default date

fields. is 1oday’s date, and the operator places yester-

a.) Customer D is Phene Number

913-8041

b.) Customer ID is Alphanumeric Code
CONGOO1

¢.) Customsr 1D is Numeric

03001

FIGURE 14-38 Vagations for Customer ID
Code

day's date in the field, the next transaction
should still have the default of today’s date.

ABC Rental Presentation Format

First, design the standard interface for all functional
screens in the application. This should include
header, date, time, screen I}, and program ID (see
Figure 14-39).

Next, design the keys for navigation, error cor-
rection, and help and design the footer to identify
them and their functions. The standard used here is
fairly common. Program keys and their meanings are
shown in Figure 14-40,

We need to know when a portion of processing
is done, for instance, when returns are complete
(F6}, and we need to know when the transaction is
complete for inputting the total amount paid (F6).
The F8-F11 functions are used for retrieval and
query processing to browse through multiscreen out-
put (F8-F9) that is longer than 80 characters (F10-
F11). The other keys are for changing actions during
data entry.

The designations for F1, F3, and F8 through
Escape (ESC) are IBM standards that have been fol-
lowed by many PC applications. The remaining
keys: F2, F4-F7 are open to definition, F2 and F4 are
not used here and can be used for future changes. We
cowuld have assigned the End Entry type and End

Human Interface Design 615

Transaction functions to F2 and F4 as easily as to
F6 and F7 (see Figure 14-40), F2 and F4 are not used
1o minimize the probability of hitting the wrong key
and canceling a good transaction. If either of these
keys is pressed accidentally, it should have no effect.

Finally, we design the detail form screen for
rental/return processing. The periodic processing
and customer and video maintenance screens are left
as assignments at the end of the chapter. Rental/
return processing includes chunks for Customer
information, Open Rental information, New Rental
information, and Payment information. Correspond-
ing to the chunks of information, the screen can be
thought of as having four sections. The middle two
sections are identical except that New Rentals cannot
have return dates, late fees, or other fees applied.
So, we design three different sections, Each section
18 designed separately, keeping in mind that there are
20 usable lines on the screen and that we want about
75% blank space. For this screen design, we assume
a screen size of 24 lines by 80 characters per line.

The sections of screen information should be pri-
oritized for condensation and crowding if it becomes
necessary. For ABC rental processing, the priorities
are highest to lowest: rentals, payment information,
retums, and customner. Singe new rentals are generat-
ing the payment information, they are most impor-
tant. Payment information is second because it must
be accurate and easily understeod for the clerk 1o
handle money properly. Returns are a low priority
here because 90% of returns are on time, Customer
infermation is only important for the clerk to verify
the customer name. If necessary, the remaining cus-
tomer information could be condensed onto ong line
for display.

The first section of the screen is for Customer
information. The information to be included is name,
address, city, state, zip, phone number, and credit
status.

The first issue to be decided is what type of ficld
labels to use. For example, the options for Customer
are individual field identifiers, only a Cusfomer
identifier, or some combination of the two (see
Figure 14-41). To minimize information on the
screen, we use only the word Customer {Option 2,
Figure 14-41). This also makes sense since the Cus-
tomer [D probably is to be scanned to minimize data

816 CHAPTER 14 The Forgotten Analysis and Design Activities

TABLE 14-8 Field Format Guidelines

Content Poor Design Beiter Design
Do not intersperse letters and numbers AlBICI ABCU01
Use alpha mnemonics that are meaningful, ZXCVBO01 VideolKH
predictable, easy to remember, distinet
Try not to mix special characters with User types: Preformatied
letters and numbers $123.45 __.__

User types: 12345
Break long codes into groups of three 277426631 277-42-6639
and four digus
Do not use frequently confused letters gand 0 Use zero, 0, only
in codes tandl Usc one, 1, only

Identify maximum number of spaces for
item data enfry; replace space marker
a5 data is entered,

Enter Vid-ID

Enter Vid-ID:
after three char.
Vid-ID:123_ _

Labels

Poor Design

Better Design

Use abbreviations and contractions

Try 10 keep labels less than eight
characters long

Design abbreviations 1o be less than
five characters

Separate mnemonics by hyphens

Place label t lefl of single occurrence field

Place label over column of repeating
information

Video Identification

Customer name and
and address

Ident

VidID

Name:
Sam Joncs

Name; Sam
Cicrry
Leonard
Jesus

Video ID

Customer;

ID

Yid-ID

Name: Sam Jones

Name:
Sam
Gerry
Leonard
Jesus

entry and the Customer information is displayed
automatically.

The second issue is format of the information.
The options in Figure 14-41 all follow a conven-
tional post office address format. The address need
not be formatted in that manner, but the high recog-
nizability of addresses in this format is a strong

inducernent to keep it the same. Unless screen space
is a major problem, the post office format will
be kept.

Two fields remain: Customer ID and Credit Sta-
tus. Customer fD 15 an important field as the identi-
fier of the information and should be positioned in a
way that highlights its presence. Conversely, Credit

TABLE 14-8 Field Format Guidelines (Continued)

Human Interface Design 517

Error Messages

Poor Design

Better Design

Use upper and lower case if possible

Only use asterisks in extreme situations

Error IDs should be in a consistent
location

Should be brief

Should be positive

Should be constructive

Should be specific

Shouid be comprehensible

Should allow the user to feel as if they
control the system rather than the
system controlling them.

Provide levels of messages with less
detail for error message and more
detail for requested help.

ALL UPPER. CASE
IS DIFFICULT

TO READ
*RARAT]y g *HRck

is rEkEyery e

distracting ¥++*¥,

PFO01 Error 001

Error 002 PRY)2
Numerics were expected
by the application but you
entered some nonnumeric
information.

You entered an illegal date
format.

You idiot! This mistake
should NEVER occur.

Hlegal entry or ?

FAC DB
29081230123

?

Mixed case is preferred to
enhance readability.

*****ALERT**** *
The database may have
been destroyed.

PFOC Error 001
PFO02 Error 002

Numerics expected.

Enter date format

mm/dd/yy

Reconstruct database and
begin again.

Enter data format
mm/dd/yy

Database error,
Cali the DBA at x3456.

To undo, press F5.

Status is only important when it is the cause of a can-
celed request. So, Credir Status needs some sort of
‘alert” design but, otherwise, can be positioned te
conserve space, Several aliernatives for Customer ID
and Credir Starus formats are shown in Figure 14-42,
All alternatives are acceptable; the third option is
selected because it minimizes Jabels and has credit in

an easy-to-spot location—the upper right corner of
the screen.

The second section of the screen is for Open
Rentals information. The information needed on
the screen includes Video ID, Copy ID, Descrip-
tion, Rental Prices, Rental Date, Return Dave, Late
Fees, and Other Fees. By convention, a typical bill,

618

Screen IDABC Vigeo Rental Processing

Activity Name
Sereen Fungtion

mmidd/yy
hh:mm:ss

Body

Allowable Function Keys

FIGURE 14-3¢ Standard for ABC Video
Functional Screens

invoice, purchase order, or shipping papers list the
item identifier followed by its description. We follow
this convention for ABC. Two basic alternatives for
fees and dates are shown in Figurc 14-43, Since the
same line design will be used for the New Rentals
screen section, the allernatives as they would display
for new rentals are also shown.

—Key _Funclions

Fi Help

F2 NoiUsed

F3 Quit'No Save
F4 Not Used

=] Undo Last Entry
F6 Erd Entry

F7 End Trans/Save

F8 Page Forward

F9 Page Back
F10 Shift Fage Right
F11 Shift Page Left
DEL Delste Character
ESC DELCancel Field
TAB Goto Next Field

ShiftTak Go To Last Fiald

FISURE 14-40 Program Keys and Functions

CHAPTER 14 The Forgotten Analysis and Design Activities

The alternative which is easier to read and un-
derstand shouid be selected. If neither is obviously
easicr to read, the vser should be consulted. The
choice here is the first alternative. Keeping the dates
together allows fast understanding of a tape’s late-
ness, while keeping the rental information and retumn
information separate allows fast understanding of
rental fees owing. Vic has stated that no rentals are
made without payment of rental fees, so the second
option loses some appeal. The first option is selected
then on the basis of keeping like things together—
dates with dates and money with money. When
returns are processed, the defanlt of today’s date
should be placed in the Return Date field.

The third section of the screen is for New Rentals
information. For this section, we use the Open
Rentals line definitions and blank out the fields
for return dates, late fees, and other fees (Figure
14-43a). A default of today’s date should be placed
in the Renral Date field. The only issue is how many
tapes should a customer be allowed to rent at any one
time. There are arguments for any number one can
select and they all are determined by opinion. There-
fore, Vic should select the number of allowable tapes
out on rent at any one time.

When asked, Vic wants no restrictions at first.
Then, he reconsiders. “If | allow unlimited tapes,
someone could theoretically give me a stolen credit
card as identification, rent many tapes, leave town,
and I'm out the tapes. Maybe | should limit the num-
ber. But, one or twe does notl seem encugh, What if
they arc short, like music videcs? What if they want
to watch movies all day? Why should I stop them?
Hmmmum. I think someplace between 10 and 20 is
probably okay because most people would never
rent that many. My biggest customer is George
Anderson and he takes out about six tapes at a tine.
So, [guess 10 ts a reasonable limat.”

With ten tapes as the limit, the sereen needs no
scrolling because all information will fit on one
screen. Because this choice turns out to be an
important design decision, Vic should be reconsulted
and told that scrolling will not be available for rent/
return processing. If he chooses 10 change the num-
ber, or asks for scrolling, it should be provided.

The fourth section of the screen is for Payment
infermation. For payments, the fields are the Tota!

Human interface Design 419

a.} Label Each Figld

Customer Name:

Address:

City:

St Zip:_

b.) Custamer Caly

Customer:

FIGURE 14-41

Amount Due, Toral Amount Paid, and Change. These
could be on one line, two lines, or three lines as
shown in Figure 14-44.

The choices for payment should be first, readabil-
ity and wnderstandability, and second, space avail-
able. For ABC, all information can fit on the screen
with three-line spacing and still have room left over,
So, the last alternative (Figure 14-44c) is selected
as most easily read. The money fields should be

Customer Name Screen Options

right-justified with one set of numbers on the rental/
return lines. The title fields should be right-justified
for the group of three lines,

Last, we consider placement of the entire screen
in the blank arca between the standard screen header
and footer. So far we have 22 lines accounted for in
the renial screen: two standard header, one screen
header, two footer, lour customer, ten rent/return,
two rent/return header, and three total lines, There

a.) Label Each Field, Position on Same Line for Easy Location 1D

Customer(D: _ -
Name:
Address:
City:

Credit: __

Sr_ Zip: -

b.} Label Each Field, Position Separately

CustomerID: _ -
Name:
Address:
City:
Credit:

St Zip: -

.} Minimal Labels, Position on Same Ling

Custormer:

d.) Minimat Labels, ldentify Main Fields

Customer: __ -

Credit: __

FIGURE 14-42 Altematives for Customer ID and Credit Status

620 CHAPTER 14 The Forgotten Analysis and Design Activities
Alternative A. Dates First, Fees Second
Video Copy Rental Return Rent Late Other
D # Description Data Date: Feps Fees Fees
XAXEX HX A XKXARKKR XK KA XK KR K AEKH N A 95/9%/99 99/99/99 98.89 §9.99 99.99
KXXXX KX KA XK KAHHKH R KKK NK XK XHXIEKEX 99/99/99 99.99
Alternative B. Rental Information First, Return and Extra Fees Second
Video Copy Rarital Rent Return Late Other
ID # Description Date Fees Date Fees Fees
XEXAX XK 000X IOEN KKK X XXX XX 99/99/89 99,99 99/99/98 29.99 99.99
WK XX AOCOEHXIICHN XICK IR KK AN XXX 99/99/39 9959

FGURE 14-43 Alternatives for Dates and Fees

are no ¢xira lines on the screen {see Figure 14-45).
Ideally, one blank line should separate the header
and footer from the body. Also, one blank line is de-
sired to separate the rental/return information from
customer information. To provide blank lines, we
either delete a header line or change the arrangement
of information on the screen. According te our pri-
orities, customer information should be condensed
onto fewer lines to gain the blank lines. The Cus-
tomer {D can be added to the customer name line

A, Oneline
Total Due 999.99 Total Paid 999.9% Change 999.99
B. Two lines

Tetal Due 999.99 Total Paid 999.99
Change 999,89

C. Three lines
Total Due 998.99

Total Paid 999.99
Change 999.99

FIGURE 14-44 Alternatives for Payment
Information

and given its own label to specifically identify it
(Figure 14-46a). This makes reading the Customer
{1 somewhat more difficult but adds to the readabil-
ity of the rental information. A better choice is to
redesign the standard header and make it two lines,
with the second line identifying the function, and
only display function keys available and use one
line. This screen (Figure 14-46b) is preferred and
recommended. In the end, Vic should select Ais pre-
ferred screen and it should be the final design. Vic
selected the recommended screen for the same rea-
sons that informed its design.

Field Format Design

Field Format Alternatives

Field format design selects the characteristics of
individual fields or values of fields on a screen. The
alternatives for field format design include size, font,
style, color, and blink for individual tield values, and
include coding options for field labels.

SIZE. Size is an issue in field attribute definition

when it is selectable. For many software platforms,
the size, spacing, and selection of characters is fixed
within the application. Size of characters is mea-

Human Interface Design 621
SCRROT ABC Video Remal Processing 12/02/94
RentReturn Processing ¢2:03.15
Rentals and Returns
Customer: #xxx999 Crix
EEFEFES RS FE LR ET ST e)
SOONCXRXXIOOARIKXIXIOEKHN X
KEAXXKXAXAKKX, XX 99999
Video Copy Rental Return Rant Late Other
D # Description Date Date Fees Fees Fees
XXNEK XX 000X LA KENXNKHEH KK 99/99/00 99/09/95 £9.89 908,99 §9.99
WO XX K000 X XIOCCOUK L XKL XXX 89/99/99 99/99/99 99.99 98.99 99,99
XXKEX XX KAXRXAOCKN KA AN XKLL XKL KXY $09/99/99 99/99/99 92.99 99.99 89.99
XXAXX XX RXXUXICOKHKKKICOICKNK I KK I KX 899/99/99 99/99/99 9%.99 99.99 99.99
XXHEX MX EXXHXAEX XN XH X AXK 98/99/99 99/99/99 99.69 £9.99 89.99
XNKHX WX KAXKXHAKNK KXHXKXAKEKN KK AN AKK 98/99/99 99.99
MWONEX XX HIKNANE N KEX IO CEOOXH KK XK £9/99/99 99.99
XXAKK XX OO0 XXX K KX §9/99/99 9899
WNXXX AKX HRKANH I XEXARK I KA A KR KA LR XK 99/29/99 99.99
XNXEX XX XX KHKA XN AR KA ICK X XN K XA XK 96/99/69 89.99
Total Due: 999,89
Amount Paid: 999.99
Change: 999.93
F1:Hlp F3:Quit Fa:Undo FE:EndEnt F7:Emd Trans FB8:PgUp FS PgDn F10:3h R Fi1:8hL
Tab: Nxt Fid “Tab: Lst Fid ESC: Cncl

FIGURE 14-45 Alternative 1 for ABC Rental Screen

sured in points. A point is a measure of type that is
approximately 1/72 of an inch (about 2,8 mm), In
general, the size of characters should be ne less than
10 points and no more than 14 points unless an alert
or alarm situation is being shown. These sizes are in
the range of normal printed point sizes for display
processing. An example of the range of point sizes is
shown in Figure 14-47,

The default in most applications is 12-pont type.
As you can see from Figure 14-47, the larger the
point size, the fewer characters fit on a screen. At
18 inches, the minimum point size should be about
9 and a comfortable point size is 12, The further
away from the screen the user is, the larger the point
size should be. At 30 inches, the minimum point size
should be 10 points and either 12 or 14 points print
size are acceptable. At 10 feet, the size should be
about 72 points, or one inch.

FONT. Most software applications have a fixed
default for type font as well as type size. Most
applicattons default to a serif style such as that nsed
in this text. A serif font bas been proven easier to
read and faster to comprehend than a sans-serif style
such as this. If fonts are selectable, the rule of thumb
1s to select one or, at most, two fonts and vse them
consistently throughout the application for obvicus
distinctions. For instance, use one font for all field
labels and another font for all information entered by
the application user. Do not mix fonts for the same
purposes or users witl get confused and error rates
will increase.

STYLE, Type styles might include regular, bold,

italic, cutline, reverse video, sMaLL caps, ALL

CAPS, underline, or stsike—thraash. While the
options make for interesting reading, interchanging

622

CHAPTER 14 The forgotten Analysis and Design Activities

a.) Customer ID on Cuslomer Name Line

|D: xxx999 Customer: XXX XXX Cr. x
X000 XKL AN K
RLOOOOOUCERNK, Xx 99999-0559
b.) Recommended Screen Design
SCRROM ABC Video 12/02/94
Rent/Return Processing 02:03:15
Customer; #xxx999 Crx
IEREXERUXIK CXEXANKAXKHKX
XRHERERIHH IR KNK KKK
KOCKARKRN KN, XX 99989
Videc Copy Desecription Rental Return Rent Lais Other
D ¥ Date Drate Fees Fess Fees
KXNKH XX OO KKK X RICH I HRHKCK I IAAX 99/99/99 84/99/99 99.99 99.99 99,59
KXNXX XX KRR KR XK XH KK KK HXCHXCHKRHK 99/99/99 99/99/09 99.99 99.59 89.809
KXKXH XX XX KHKX X KXKERHKH KKEKAEKKK KAHX 99/99/99 49/99/39 099,99 99.99 89,89
AXXKK XX KEXXHXRCRHAAR N XX KK IR KN 99/99/99 8/99/99 949.99 99,99 99,99
KXKXK XK KRRXHR KK KKRKK KK KK KA KA HKAKK 94/90/99 99/99/99 99.99 99.29 29.99
KKKNH XX M AKX MK A 96/98/99 93.99
KXNXK XX UK HKRXH OO N 85/95/99 99.99
KXKXX XX JOLIK A KN HKIKK KN KA KA KIL XM XN 89/99/99 599.99
KXNHK XX KNI OCKX I KON CAXIHXIKN 858/99/99 90.99
KXKNK XX KXNXHKHRICEIHN XK XXX §9/99/99 992.89%
Total Due; 989.99
Armount Paid: 999.99
Change: 989.99
F1:Hlp F3: Cuit F3: Unde F6 EndEnt F7. End X Tab: Nxt Fid ~Tab:tstFld ESC: Cnel

FIGURE 14-46 Alternative 2 for ABC Rental Screen

the styles on a form to be completed make it much
harder to comprehend and will increase error rates.
In general, regular print is acceptable in all applica-
tions for text display. For general purpose, noncriti-
cal text, regular print is recommended.

Bold print and reverse video are useful to call
attention to a field if it is warranted. For instance,
bold tvpe style is effective for alert field values on a
monochrome screen. A common use of reverse

video is to show cursor position. The character at
which the cursor is positioned is shown in reverse
video and switches back to normal as soon as the
cursor is moved.

Italics and cutline are not generally used because
they are harder to read and, therefore, increase com-
prchension time, Strike-through and underline are
used mostly in word processing applications and
can be elfective in that context. For most forms-

Hurnan Interface Design 623

This is 10 point type.

This is 12 point type.

This is 14 point type.
This is 18 point type.
This is 24 point type.

FIGURE 14-47 Sample Point Sizes

completion TPS applications, neither of these is rec-
ommended. Finally, research studies have shown
that use of all capital letters increases comprehension
time and they are not recommended.

COLOR. Color can be an effective addition to
screen design, or it can seriously detract from the
understandability and readability of the information.
For indicating binary or ternary conditions, color is
faster and easier to comprehend than any other cod-
ing scheme.

Research provides clear guidance on appropriate
and inappropriate uses of color for application dis-
plays. Color is most effectively used for search tasks
in which the goal is to find one or two objects (of
the same celor) that differ from surrounding objects.
This type of search does not occur often in business
applications. Color coding also is effective for:

s unformatted display of information

» symbols which may be within a high density
of information on the screen

» tasks in which the position of the item to be
identified is not known but the color is

» screens for which color relates to the task

® user tasks involving search and recognition of
difterences in symbol color

Color is least effective for tasks in which a large
number of colors are indiscriminately used, for

which colors selected do not differ sufficiently to
enable distinction, and for tasks in which the goal is
to identify large numbers of objects (of the same
color) when surrounded by a large number of objects
of other colors. These ineffective color uses result
in problems of discrimination. Research findings
show that performance deteriorates with more than
six colors on a screen. Many writers suggest using
no more than four colors at any one time for business
tasks,

Research on color selection recommends selec-
tion by wavelengths, ensuring sufficient contrast to
speed comprehension. For instance, Figure 14-48
shows commeon colors on a spectrum by wavelength.
Peoor choices would be blue, blue-green, and green
for different meanings on the same screen. Good
choices would be red, yellow, and blue, because they
are sufficiently different to facilitate understanding.

Because color blindness and other color percep-
tion problems are common, user profiles and vser
testing should be used to guarantee that all users

" ¢an recognize all colors on a screen. Bold or odd

colors of any type, for example, olive-green, should
be avoided.

Common meanings ascribed to colors should be
used in the application, and the common meanings
which change by culture should be adapted. The
government recommends using red only for alert
conditions, yellow for warning, and green for normal

624 CHAFTER 14 The Forgotten Analysis and Design Activities

Wavelength in Nanomelars—Color

420 — Viclet
460 —

Blue
500 —

Green
540 — Yellow
580 (—
&00 [—
640 [Red

Adapted from Banks. William W., & Jon Weimer,
Effoctive Computer Display Design. Englewocd Cliffs,
NJ: Prentice-Hall, 1992, p. 128.

FIGURE 14-48 Color Spectrum

because that is the common, conventicnal use for
these colors. The use of a flashing red signal should
be limited to an emergency condition requiring im-
mediate action.

BLINK. Blinking characters or ‘flashing’ is a use-
ful attention-getting device for monochrome or lim-
ited color displays. Blinking is considered more
annoying than color codes by most users and should
be limited to no more than one field at a time or one
meaning at a time. An example of effective flashing
would be to flash all data entry fields in error. As
errors are corrected, Aashing stops.

Blinking rates need to be monitored for the Aash
rate or speed of blinking. The optimal Mash rate is

2-3 times per second with equally spaced intervals
for on and off. Rates of 8—12 flashes, while discern-
able, can cause nausea and even scizures in people
with photo-epilepsy. For those of us over age 30, a
phenomenon called flicker fusion causes us to see
constant light when the flash rate is very high, over
50 times per second.

Guidelines for Field Format Design

Assignment of field format characteristics is a judg-
mental activity bascd on SE experience and common
sense, Follow the tenet ‘less is more’ in defining
field formats that add formatting options. The use
of these options diverts atlention, causing a delay in
the thinking proccss. If delay and attention shift are
not desired, the result will increase error rates and
reduce productivity.

Effective uses of color, blink, or audio sound for
directing attention should be considered; however,
user approval should be obtained before adding for-
matting changes to the screens.

ABC Field Format Design

One field on a rental screen, credit standing, might
be waorth highlighting. In addition, when processing
takes place, several other items might be high-
lighted. In particular, data entry errors and insuffi-
cient payments, latc tapes, and special fees should be
considered for use of color, blinking, or bold type.
These items are chosen because they represend all
of the abnormal conditions that occur during rental
processing.

A customer’s credil standing is acceptable unless
it is specifically changed by Vic during an update
process. Since its change requires management
action, a customer with a poor rating should proba-
bly be denicd rental rights. This process has never
been discussed with Vic and needs verifying. If he
approves, the credit standing for poor ratings only
could be displayed as a red or a blinking field 1o
highlight credit status.

Data entry errors can also be highlighted. Since
red is being used to signify denial of rental rights, a

ditferent color should be chosen. If data entry errors
are highlighted, the recommended colors are either
yellow or blue to make them distinct from the red
used for credit standing,.

Insufficient payment occurs when the Change
Amount is a negative number. The current design
calls for moving the cursor to the payment field
which is updated with the new Total Amount Due.
Since this is not an expected occurrence, clerks
might miss the cursor movement and complete the
transaction even though insufficient payment has
been made. Some methoed of highlighting is also
desirable 10 ensure against such mistakes. The rec-
ommendation is to blink all money fields and move
the cursor to the new Tofal Amount Due.

Late tapes might cause a justifiable denial of
rental rights, but this has also never been discussed
with Vic. The number of days that consiitutes sig-
nificant lateness needs to be defined. If monitoring
of lateness is desired, a red, blinking value in the
rental date field could be used to represent signifi-
cant lateness.

Last, special fees, which require management
update, might also be highlighted and a cause for
rental denial. The use of special fees is not well-
defined to the project team at this point. Presumably
Vic is using special fees for lost or damaged tape
assessments. Perhaps if the fees are over a certain
amount, te be defined, Vic would want the field high-
lighted and, unless paid, rentals would be denied. If
Vic wants this highlighting, a red, blinking field,
consistent with other remal denial fields, would
be suggested.

A long conversation with Vic resolves all of these
issues. The recommendations for errors, credit prob-
lems, and insofficient payments are all accepted. Vic
likes the idea of denying rental rights when tapes
are over 10 days late. He questioned the use of the
same blinking red signal, however, thinking that
white blinking might be morc effective. The SE
explained that if one signal, blinking red, is used for
rental denial regardless of reasan, it will be more
easily learned by the clerks. Vic agrees with the rec-
ommendation. He does not want special fees high-
lighted, nor does he wani rental dented. He is using
special fees for the two purposes described, but he

Conversion 625

also is using it for tapes purchases with money still
owing, a usage never before defined,

Design of Report Output

In many companies, formal reports are no longer
produced from application systems. Instead, users
are provided with a query language and told to
develop ad hoc reports as they are needed. When
formal reporis are required, they usnally are based

- on queries of the same information. The guidelines

for reports, then, follow similar guidelines for
SCTeens.

1. Design a standard header and footer and
be consistent in the general format on all
reports.

2. Keep report body as close to query screens as
possible.

3. If query screens are not present for the speci-
fied reports, follow the design guidelines for
screens. Define clearly identfiable areas for
grouping information that is related or that
repeats. Follow reasoning for individual
fields on a report that parallels the reasoning
used for screen design.

The ABC rental receipt is shown in Figure 14-49
as an example of a report that follows the design of
its related screen. Notice that while the receipt has a
header, i1 is preprinted and differs from that of the
screen. Preprinted information is most effective
when it is printed in some unobtrusive color, such
as turqueise, which users can ignore when they
become familiar with the report format.

CONVERSION

Conversion of applications is a systems analysis and
design in miniature. The activity is only concerned
with transforming data from its current format and
storage media into a new application’s format and
storage media. Conversion is usually concurrent
with design and done as a side activity by a small
group of one to three people who report to the PM

626

CHAPTER 14 The Forgotten Andlysis and Design Activities

ABC Video Rental
5930 Preston Rd.
Atlanta, Ga. 30303
Customer Information: #xxx399 MIWDDYY
HXENEHRCRIRAN XANRCARANKARK
R CRHR AR ARKHKAX KX KANA
0COCCOONNOCK, XX 98999
Video Copy Rental Return Rent Late Other
D # Description Date Date Fees Fees Fees
99999- 989 AR KER XA AR KK KHHHHK rremsdiyy mm/dddyy 99.99 96.99 99.99
99939- 9389 EARERAEKHXEXEKHKKHXKHXHHEXNHHAK mmiddlyy mm/ddlyy 98,98 99.99 99.99
§9999- 999 KOO OO XRKK KKK KK HHHK rrmiddiyy rm/ddiyy 99.99 99.99 99.99
99959- 999 AR AAICR RN KR I CHIHKHANAK mm/deliyy mmiddiyy 99.99 99.99 99.99
99959- 999 HXNAKIENEKEHXHENRHFHE N KHKKX mm/dd/yy mm/ddfyy 98.99 99.99 99.99
99959- 999 HIOHOOERR KOOI KN K KKHNNK rmiddiyy rm/ddiyy 99.99 99.99 99.99
§0999- 099 REXXXRAKK KHX KHXKRAXKAHKKKAK mm/ddiyy rm/ddlyy 99.99 99.99 99.99
99993- 999 XD KRN rensdd’yy 9598
69969- 999 XOOOUOOOUCOUCO R X KN mmyddiyy 5999
59999- 999 OO0 CCOCKI XXX mimsddfyy 5999
99943- 999 HOQOOOCOCONOCONONOOONCOUNXX mm/dd/yy §59.99
Total Fees Due: 999.99
Total Paid: 959.99
Change: (99.99}
Accepted By:
FIGURE 14-49 ABC Rental Receipt
and work with the DBA to define and populate the 8. Recommend and gain approval for imple-
new database environment. The activities of con- mentation strategy.
VErsion arc: 9. Develop a schedule for application

1. Identify current and future locations for all
data items,

Define edit and validate criteria for all
attributes.

Define data conversion activitics.

Define options for data conversion.
Recommend and gain approval for data con-
version strategy.

Develop a schedule for data cenversion
based on estimates of time to convert one
data tem.

Define options for application conversion and
implementation.

Wope

implementation.

Identify Current and Future
Data Locations

The Grsi task is te identify the data being converted.
A matrix listing every relation with its attributes/
tields 1s developed. Then, in one columun, the present
location of each attribute 15 identified. An avtomated
data ficld entry has the current file, relative address
in the logical record, length, type characters, and
currenl data name. A manual field entry identifies the
data source and person respansible for data accuracy.

A third column is created (o identify specific con-
version errors if they are known.

Define Attribute Edit and
Validate Criteria

For attributes that are simply being moved from one
location to a new location, the cdit and validaie cri-
teria should already be delined in a data dictionary. Tf
this information is not alrcady defined, the conver-
sion team defines and documents necessary edil and
validate criteria.

When attributes are being encoded to use a short-
ened storage format, the encoding scheme must have
been defined. 1f a coding scheme is not already
defined, the conversion team works with the design
leamn to define and document the encode-decode
scheme.

Define Data Conversion
Activities and Timing

Three major issues relate to data conversion. First,
the automation status is either automated or man-
ual; second, is data accuracy and reliability; third, is
the ease of mapping from the old data storage
technique to the new data storage technique (see Fig-
ure 14-50).

The extent to which data is already automated,
clean, and has a simple mapping from the old to the
new data storage technique, makes conversion sim-
ple. When duta are manual, inaccurate, or not easily
mapped, conversion is difficult. When data are all
three—manual, inaccurate, and not easily mapped—
conversion becomes a critical task that may define
the critical path for the application development.

Manual data that must be automated require
extensive edit and validation criteria in the data entry
pregram to prevent bad data from getling into the
database. Data that are not easily mapped may have
no simple way for conversion staff to verify accu-
racy of progessing, therelore, tesling and test verifi-
catton with user assistance become critical tasks in
determining data conversion success.

Data that are inaccurate require two things, First,
the conversion leam must define what the possible

Conversion 627

cotrect data values are. Second, the conversion team
and user must define the mapping from incorrect val-
ves to correct values. Then, any new values that
might change the mapping from old to new storage
technique must be reviewed with the systems design
team to cnsurc that the application design is still
valid, Third, an army of clerks must be hired to cor-
rect the errors. This means that special training for
data correction is rcquired. Fourth, training for the
new application must address the data inaccuracies,
the new values, and their interpretation for all cur-
rent data users.

Drata that have combinations of problems require
multiple skills of conversion team members and
complicate the conversion process. Data conversion
planning shonld he complete early in the design
stage. The planners should know which types of
these problems are present and how the conversion
team is planning to minimize their impact.

Select and Plan an Application
Conversion Strategy

Thc mcthods of conversion are direct cutover and
gradual conversion. Both methods may or may not
be supplemented by continuing parallel execution
of the old application to allow comparison of results
and verification of processing.

Direct cutover means that on the sct day, the old
wiay of work is abandoned and the new way begins
1o be used, This is a risky method since few appli-
cations work perfectly the first time. There is no
wiy lo compare results and verify correctness of the
new processing.

Gradual, or incremental, cutover is a conver-
sion approach in which the new application is
implemented in some piecemeal form. The imple-
mentations may be geographic, functional, iterative,
or some combination of (hese. GGeograpbic conver-
sion is an approach in which the entire application
is implemented in each location, one location at a
time. The application that is used to account for pay
telephanes in the United Statcs, COIN, has several
different versions in operation across the country at a
time. As a new version is implemented, one of the
locations volunteers to be the first 1o use it. It is

628

CHAFTER 14 The Forgotten Analysis and Design Activities

Easy Map

Accurale

Inaccurale

Autornated Difficull to Map

Accurale
fanual
Difficult to Map

Inacourate

Difficult to Map

Easy Map

Easy Map

Easy Map

Best Case.
Simple programmable conversion

Difficull programmable conversion

Significant editvaldate with clerical
clean-up, but still programmable

Significant editivalidate with clerical
clean-up, difficult to program

Use create program with alf editivalidate
tgh clerical support

Use multiple create/merge programs,
difficult verification, high clerical support

Use create program with all edit/validate
high clerical support

Worst Case.

Use multiple create/merge programs,
difficult verification, high clerical ard
management support

FIGURE 14-50 Decision Tree on Ease of Data Conversion

implemented in that one geographic location for six
months. Then another location is added. After
another six months, a third location is added. The
timed geographic technigue keeps the lives of the
implementers relatively stable and allows the dis-
tributed companies using the software to choose
their own implementation times.

Functional conversion has three variations.
First, work funciions can be cut over one at a
time to the new application. This is a local version of
the geographic conversion method. Second, incre-
mental software development can place spe-
cific work functions into production use as soon as

they are tested. Third, small numbers of trans-
actions or onc type of transaction might be imple-
mented first using transaction conversion. Then,
as the users gain cxperience and the application
stabilizes, more transactions are cut over until
all are in production, In the first variation, the
entire application is implemented in one department
or group at a time. [n the second, picces of the
application are implemented one at a timc, and may
be in production company-wide or by group. In
the transaction variation, the whole application is
complete, but it is implemented piecemeal by trans-
action type.

When a new application changes the old method
of work, or when a specific problem is highlighted
during feasibility or analysis for immediatc imple-
mentation, some form of functional, incremental
conversion is useful. Both of these circumsiances
occur in large business applications, Small applica-
tions may not have enough functionality to allow
iterative conversion, requiring the complete appli-
cation to be placed into production at one time.

Gradual conversions can not always be donc.
When the new application is automating a previ-
ously manual process, gradual conversion may be
difficult unless unrelated transaciions cun be identi-
fied. When this occurs, the project tcam should
develop a [inal iesl using live data that parallels
daily produciion and can, therefore, be checked
for accuracy.

Parallel conversion means that the new and old
methods of werk, including any applications work,
are both done every day for some period, usually one
or lwo cycles of processing. Parallel conversions
only work if the new application produces the same
outputs as the old applicaticn and has comparable
fermulae and processing on the data. In the parallcl
mcthod, the people using the application would do
their jobs in the new way and follow it by doing the
work in the old way with the same daita. That is, the
same information is processed twicc. If the formu-
lag, processing, or oulputs are very ditferent, parallel
processing might not work. Paralle]l conversion is
also difficult when the number of people doing the
work is insulficient for processing the double vol-
ume of work. Then, if parallcl conversion is desired,
some gradual method should be coupled with paral-
lel execution.

ABC Conversion Strategy

Conversion in ABC is from a totally manual to a
tolally automated application. This means thal the
planning for conversion should follow the need for
data. Each relation is examined individually to
determine its criticality for processing on the first
day of Rental/Return use {ss¢ Tuble 14-9).

Of the seven relations in the application, four
(i.c., Rentals, Customer History, Video History, and
End of Day) are derived from processing und need
no conversion, The other three—Customer, Video,

Conversion 629
TABLE 14-¢ ABC Rental/Return Data
Relations and Conversion
Relation Status Priority
Rentalf Derived from 0
Return Processing
Customer Manual;/Clean i
Video Manual 2
Clean if known
Copy Manual 3
Need a count
Customer Derived trom 0
History Processing
VYideo Derived from]
History Processing
End of Day Derived from 0

Processing

and Copy—are manual and needed the first day of
operation. All could have the same priorily because
the application cannot be tested without all three
relations. The customer relation iy given the highest
priority because it has accurate data from the card
file, and therefore, should be morc easily converted.
Another reason for choosing the customer relation
first is because if it turns out to be error-ridden, the
other two files can be assumed to be as bad or worse.
Customers fend to overestimate the quality of their
data, and errors become known when the method of
processing changes.

The strategy then is convert the customer file
from the existing card files, followed by the video
and copy information. The next issue is who is to
do the data entry. The clerks might enter Customer
information during nonbusy work hours or could be
hired for extra hours of work. The estimate of con-
version for customer information is approximately
70 houss (4 minutes * 1,000 customers / 60 minutes
in an hour). This assumes four minutes of data entry
time for each of 1.{(HN) customers. The ideal solution
is to hire clerks for extra work so their entire atten-
tion is only on conversion at the time. This speeds
the process and minimizes errors that might eccur
from interruptions during the work day.

630

Ome alternative for doing the data conversion is to
hire the current staff to work more hours. If three
ABC clerks each worked two ¢xtra houis cach day,
and all work a five-day week, the customer conver-
sion would take between ten days and two weeks.
This alternative is attractive because the current
clerks know the data. The disadvantage of this
alternative is that the clerks don’t type and the
four minute estimate might be very low for them.
Another disadvantage is that because the clerks’ typ-
ing skills are low, name and address errors, which
are very dillicult to identify via computer, might get
into the file.

A betrer alternative is to hire an experienced data
entry person(s) from a temporary agency. The cost is
not loo high, $10-14/hour, and their accuracy will be
greater. For an experienced typist, the four minutes is
prebably a high estimate.

The next relations to be converted are Video and
Copy. One issue in this conversion is the high
amount of time for bar coding each copy of a video.
Assignment of bar codes affects database design. Al-
ternatives arc to usc the bar code to identify each
tape uniquely and duplicate video information in the
copy rclations, or identify each video with a portion
of the bar code and identify cach copy by a unique
sequence number within bar code. The preferred
solution from a data perspeclive is to generate one
Video 10 bar code that is the same for all copies of &
tape. Datubase storage and typing tinme are mini-
mized, and retricvals will be faster. This solation is
recommended. The only advantage to the other
alternative is that no sorting of the physical inven-
tory is requircd. The disadvantage of the unique base
code for each tape alternative is that video informa-
tien is replicated a number of times thus increasing
the time for data entry, error rates, and retricval time.

The related issue in video-copy conversion is the
physical inventory identification of al} copies of each
video for entry into the application. The scheme we
chose of one Video ID bar code for all copies of the
same tape makes dala entry eusy but makes the phys-
ical work maore difficult. The people doing this work
must sort all of the tapes by video, assign the Video
ID, and generate and affix the bar codes to each
copy. Last, each copy’s bar code must be entered into
the system. Since we chose one Video 1D bar code

CHAPTER 14 The Forgotten Andlysis and Design Activities

for all copies, we can enter the video information
and a count of copies and have the application gen-
erate all Copy relations. Part of the change procedure
for a video, then, must include changing the number
of copics. Increasing the number poses no problems.
Decreasing the number means that a check for
outstanding or past rentals must be made and, if
present for & number 10 be removed, the number may
not be removed. These maintenance requirements
should be discussed with the design leam to ensure
that they treat video processing in this way.

The last issue to decide about data conversion is
who should do the video and copy conversion dala
entry. The estimated time for a complete physical
inventory is about 28 hours. This number assumes
six seconds of inspection time per tape for 10,000
tapes, plus four seconds overhead for cxira move-
ment of tapes (0 make rcom for the sorted ones (i.e.,
10 * 10,000 / 60 seconds per minute / 6} minutes per
tour = approximately 28 hours). This includes sort-
ing the tapes by ftitle alphabetically and keeping
them in that order until the data are completely
entcred. Tapes out on loan must be included in each
day’'s conversion process to ensure 100% conversion
coverage. Onee the tapes are in sequence, the clerks
putting tapes back into inventory are assumcd to
alphabetize them automatically, adding no extra time
to the conversion.

The data entry for each tapc, because of the cod-
ing scheme defined, should take only about two min-
utes per tape for a total time of about 33 hours (i.c.,
2 = 10,600 / 60). The total conversion time for the
ABC rental/return application is about 120) hours, or
about three weeks.

Again, the clerks, who know the inventory best,
could be hired extra hours to work on conversion
sorting and data entry, or Vic might hire outside
workers to come in daily for 8-10 hours for sev-
eral days.

If Vic wants to usc his cutrent clerical staff to use
olherwise idle timg, the amount of time for conver-
sion 15 120 hours divided by the number of idle hours
per dav. If the three clerks arc idle u total of six hours
pet day, the conversion will take approximately 20
days. This is a long period of time and usually, the
longer conversions continue, the greater the likeli-
hood of errors, The recommended approach is to hire

temporary data entry clerks to sort the tapes, assign
bar codes, and enter the data into the system.

The alternatives and recommendations are pre-
scnted to Vie for his approval. He chooses to hire
two temporaries for two weeks to work full-time on
converting all data. His rationale is that he really
wants his clerks to concentrate on customers, and
he decides they can help with the physical inventory
sort in their spare time, The remainder of the time
they should be working at helping customers. If
videos are missed during the inventory sort, they will
be found as they are rented and their information will
be entered into the application then.

USER
DOCUMENTATION

Mix of On-Line and Manual
Documentation

User documentation is important because it Is usu-
ally the first information about an application that
new employvees are given, Therelore, it should be
developed and maintained to disclose accurate usage
information about an application. User documenta-
tion is started after analysis and can be a paralle!
activity to design. Some researchers and practition-
ers recommend developing the user documenta-
tion before design begins. The application is
then designed to meet the requirements of the user
documentation.

Frequently, users develop the manuzl documenta-
tion and define what they would like for on-line help
and messages. At the least, uscrs should participate
in developing user documentation. The arguments
for having users develop their own documenta-
tion are:

= Users are less likely to assume knowledge
that SEs take for grunted (e.g., how to start an
application).

= Users know what to do better than SEs.

s Users who develop their own documentation
require less training because they already
know how the system will work.

User Documentation 631

With complete novices who have never used a
computer system, having them develop the user
manuals is NOT a good idea.

Contents of the user documentation vary with
each project and company. In general, the writing
style should not be patronizing, but should take the
users’ general level of computer expertise into con-
sideration. This means that documentation written
for experts can be concise, use jargon, and have less
explanatory information about how to get started.
Documentation written for novices should begin at
an clementary level, for example, “The button to
turn on the machine is located. .. .”

An outline for general contents of user documen-
tation is provided in Table 14-10. First, any docu-
ment should contain a table of contents. A system
overview deseribing the scope of processing is next.
Assumed level of user and expected system-user
interactions should be inctuded in the overview.
Diagrams should be frequent and ‘understood by
your mother.” Also in the overview, include in-
formalion about whom to call for help and what
kind of help they offer. For instance, Operations pro-
vides assistance if the terminal malfunctions,
or the Information Center assists in developing
ad hoc queries.

Describe the hardware, software, and at a very
high level, how the equipment is connected. This is
especially important when 1.ANs, distributed appli-
cations, or PCs hooked to mainframes are being used
and some functions arc locul and some temote. Be
specific about what work is performed in what loca-
tion and how to determine problems.

Next, describe the general formats for screens and
functions. Begin the details of systcm operation with
startup and shutdown, including security informa-
tion, without documenting sceurity codes! Describe
all function keys and what they do.

Then, for each screen in the application, present
the screen and the required/optional entries made by
the operator. Be speeific about the type of data to be
provided. Present an example of a correct screen
and of an incorrect screen with crror messages.
Sequence this information by logical groupings of
activities. For instance, for ABC, there would be
four functional description sections: rental/return,
customer maintenance, vidco maintenance, and

632

TABLE 14-10 User Documentation
Contents

Introduction
Application Overview
Special Features
Format of Document
Support Group Services, Contacts

Generzl System Information
Obtaining a User 1D
Starting the Machine
Shutting the Machine Down

System Access Procedures
Logen Procedures
Logoff Procedures

General Data Entry Information
Menus and Meou Selection with exampies
of all screens
Data Entry Screen Formal with one example screen
Function Key Assignments

For each seclion:
List screen(s)

Rent/Return Procedurcs
Customer Maintcnance

Procedures Required
Video Maintcnance Procedures entries
Periodic Processing Procedures Optional
Backup/Recovery Procedures entries
Error Recovery Procedures Pracedure for
Error Messages screen

complelion

periodic processing. For each sercen, describe nor-
mal, error, optional, and required processing.

Include backup and recovery information if
the user is expeeted to perform those activities.
Be specific about what actions are performed and
the sequence of actions. If recovery must be acti-
vated from a specific terminal, for instance, begin
the instructions with something like the following.
“At Terminal 011, located on the 2nd floor of
235 West Covina in the southwest corner, and
labeled ‘MAIN OPERATOR TERMINAL,’ enter
the following.”

In an appendix, provide a list of all error mes-
sages, by message ID with a detailed description of
how to correct the error. Format the appendix te cor-

CHAPTER 14 The Forgotten Analysls and Design Activities

respond to the sequence of functionat sections in the
body of the report,

AUTOMATED
SUPPORT FOR
FORGOTTEN
ACTIVITIES

Many products are available to support the activi-
ties in this chapter. For screen design, screen ‘paint-
ers’ and application generators both provide screen
design. Screen painters are forms-oriented design
tools that allow fast prototyping and layout of
screens that then generate coded descriptions of the
screens. A user idendifies that screen design is
desired; if the relation is described in the tool, the
fields can be listed to provide screen design guid-
ance, and the user “paints’ the screen by placing
labels and field names on the screen in the target
location. When complete, the screen can be called
up to allow printing and viewing of the screen
as it would be presented to the data entry clerk.
Screen painters can be stand-alone software pack-
ages but are more frequently a function of CASE
¢nvironments.

A second type of software suppert for screen
design is available in application generator software.
The screens for menus are designed first with menu
entries typed in by the software user. Then as func-
tional screens are reached, the program code to gen-
crate the requisite screen interaction (e.g., $QL) is
coded. If custom form dcsign for data entry is
required, some packages include that activity, too;
others require the designer 1o generale the code
within the package.

Conversion software support is mostly in the
form of wtility programs that allow easy reformatting
of data to move from a current autemated file 10
one or more new files. Merging of information from
two sources to create new composite files is some-
times provided but requircs morc complex soft-
ware coding.

Manual-to-automated data conversion ideally
uscs the application code for data creation to further
test it and increase estimations of reliability. Sev-

eral application generaior packages, for example,
Focus™.% provide automalic screen generation with
no underlving edit or validation for ‘quick and dirty”
data entry. This is useful in prototyping and demon-
strating prototypes, but should not be used for the
production application. Focus generates the screen
by sequentially listing the fields as defined in the
database. As a ling fills up with data, a new line is
generated. This automatic screen utility only works
on files with no repeating information and cannot
join files for combined data entry.

Help packages are now plentiful in the market-
place. Help used to be totally manual and all mes-
sages had to be in the user documentation. As help
has moved to become an on-line function, more mes-
sages are documented on-line than in manuals. The
advantage of a Help package that is independent of
specific soltware is that it, and its messages, can be
used across applications and software environments.
This cross-application use can help ensure that defi-
nitions arc consistent throughout the company and
can make data administration standards compliance
easler to monitor.

The automated packages supporting the screen
design, conversion, and help processing are summa-
rized in Table 14-11.

SUMMARY ——

In this chapter, human interface, conversion, and
user documenlation were discussed as three required
activities during analysis and design that are omit-
ted from many methodology discussions,

Human interface design focuses on screen inter-
actions between users and the application. Using a
task profile and wser profile to guide the design
process, first the option selection method is chosen.
The alternatives for option selection are menus, win-
dows, or command languages. Then, the prescnta-
tion format(s) most effective for the data to be
displayed are decided. Presentation formats include
analog, digital, text, text form, bar chart, column
chart, point plot, pattern, and mimic displays. Within

5 Focus is a proguct of Information Builders, Inc., New York.

References 633

the presentation format, each screen item’s charac-
teristics of size, type font, style, color, and blink rate
are defined. In designing forms, decisions about the
chunks of data to be presented and formatting of
chunks on the screen are reguired.

Conversion allernatives are direct conversion ot
incremental conversion. Incremental conver-
sion may be geographic or functional (by transac-
tion, by department funetion, or by application func-
tion). Direct conversion has the highest risk of
failure because the old method disappears at con-
version; therefore, when an alternative is present,
it is usually recommended. Ineremental conver-
sion type selected is determined by the context of
the application.

Reports are designed following the same general
guidelines as those of screens. Whenever a report is
of displayed information, both screen and report
should use the same format.

User documentation is an important introduction
to an application for many new employees. As such,
it should be easy to read, oriented toward the educa-
tion and computer experience level of the reader, and
should include all information for normal and abnor-
mal processing of an application. Lists of contacts
for different types of problems should be identified.

REFERENCES

Bailey, R. W., Human Performance Engineering: Using
Human FactorsiErgonomics to Achieve Computer
Svsiem Usabifity, 2nd ed. Englewoad Chifts, NI:
Prentice-Hall, 1989,

Banks, William W, It., and Ion Weimer, Effective Caom-
piter Display Design. Englewood Clifts, NJ:
Prentice-Hall, 1992,

Carter, R. C.. “Visual search wilh color,” fournal of
Experimental Psychology: Human Perception and
Performance, Vol. 8, 1982, pp. 127-136.

Christ, R. E., “Review and analysis of color coding
resgarch for visual displays,” Human Factors, Yol. 17,
1975, pp. 542-370.

Cohen, Barhara E G. {ed.), Human Aspects in Office
Automation. New York: Elsevier, 1984,

Galitz, Wilbert Q., Human Factors in Office Automation.
Atlanta, GA: Life Otfice Management Association,
Inc., 1980,

634 CHAPTER 14 The Forgotten Analysis ond Design Activities

TABLE 14-11 Automated Support for Interface Design, Conversion, and On-Line
Documentation

Product Company Technigue

APS Dev, Center Sage SW Screen/Form/Report Painters
Rockville, MD

Deft Deft Form/Report Painter
Ontario, Canada

Easytrieve Ribek, Inc. Data Conversion Ulility
Tacoma Park, MD

Focus Information Builders, Inc. Prototyper
New York, NY Screen Generator
Application Generator

Foundation Arthur Anderson & Co. Prototype Generation
Chicago, IL Screen Design
Version Conlrol

IEF Texas Instruments Dialog Flow
Dallas, TX Screen Design
IEW, ADW(PS/2 Version) Knowledgeware Screen Design

Atlanta, GA

PucBase CGI Systems. Inc. Screen Flow
Pearl River, NY

Teamwaork Cadre Technologics Inc Screen Painier
Providence, Rl

Telon and other products Pansophic Systems, Inc. Screen/Report Layout
Lisle, 1L
Vigihle Analyst Visible Systems Corp. Screen Painter/Prototyper

Newton, MA

Galilz, Wilbert Q., Handbook of Screen Format Design, Powell, Tames E., Designing User Interfaces. San Mar-

Wellesley, MA: QED Information Sciences, Ing.. cos, CA: Microtrend Books, 1990,
1981, Olsen, Dan R., Jr, User Inferface Management Systems:
Martin, James, Design of Man-Computer Diglogues. Models and Algorithms. San Mateo, CA: Morgan
Englewood Cliffs, NI: Prentice-Hall, 1973, Kaufmann Publishers, 1992,
Mayhew, D. 1., Principles and Guidelines in Sofiware Schneiderman, Ben 1., Designing the User Inter-
User faferface Design. Englewood Cliffs, NJ: face: Strategies for Effective Human-Computer
Prentice-Hall, 1992, Interaction. Reading, MA: Addison-Wesley, 1987,
Morland, D. Verne, “Human factors guidelines for Thomas, Joha C.. “User interface design,” Proceedings
terminal interface design,” Communications uf NYU Symposium on Human Factors, New York,

of the ACM, Vol. 26, #7, July 1983, pp. 484494, NY, May 1982.

Tullis, T. 5., “Screen design,” Handbook of Human
Computer Interaction, Mark Helander (ed.).
New York: Elsevier, 1988, pp. 377-411.

KEY TERMS

analog display
band chart

menu
mimic display

bar chart normal/abnormal measores
binary on-the-job training (OJT)
binary display option selection

body of form overlapping windows

body of screen
classroom instenction
close box

parallel conversion
parallel execution
pattern display

column chart paint
command language point
computer-based training point plot
({CBT) poinler
derived field precision requirements

digital display

quesiion & answer format

direct cutover resize hox
direct manipulation scale
direction indicator screen painter
field format screll arrow
flash rate scroll bar
Micker fusion seroll hox

[UCI'[B]' screen section
[urm screen

funcrional conversion
geographical conversion
gradual cutover

header screen section

serolling elements
short-term memory
status indicator
task profile

text

tiled windows

horizontal pull-down menu title har

incremental cutover transaction comnversion

incremental software user profile
development vertical pop-up menu

location 11} window

long-term memory zoom box

Lotus-style horizontal
pOp-up menu

EXERCISES

1. Complete the screen design for Customer and
Video data eatry for ABC Video. For video data
entry, keep in mind how conversion defines the
add function to antomatically provide for Copy
relation creation. Specifically, identify reused

o)

STUDY QUESTIONS
1.

9.
10.

11.

12.

13,

Study Questions 635

portions of screens or whole screens for differ-
ent functions. Discuss why cornplete reuse of
Create Video screens is not possible for Video
Update processing.

For the CCD Medicaid case described in Appen-
dix A, design windowed menus for the applica-
tion. Design the screen for Patient Information
Creation. How much scrolling is necessary?
What colors, type, style, font, and so forth, do
you recommend [or each field?

Definc the following terms:
anatog display oJT
field format scrolling elements
flash rate user profile
form task profile
horizontal pull-down

menu
Why is the data source the best location at
which data should be entered into automated
applications?
Why should screen design guidelines be
followed?
Describe a task profile and how it is used in the
application development screen design and
Conversion.

. When should individual users be profiled and

when can average user information be uscd?
Describe how novice/expett modes of opera-
tion should be determined.

Describe how extent and type of on-line mes-
sages and help are defined.

Describe the option selection choices and how
you decide which to use.

Why is command language use by itself rare?
What is a screen window and why are they
popular?

How many scrolling options are available?
What is the minimum scrolling that should be
provided in an application?

What are the dilferences between tiled and

overlapped windows?
Why should function keys be consistent?

636 CHAPTER 14 The Forgotten Analysis and Design Activities

14. Deseribe general screen design contents. 24. Discuss issues in data conversion.

15. What is dircct manipulation interface? 25. Why should users do user documentation?

16, What application types use forms as the most Why should application developers do user
common functional screen design? documentation?

17. List and define five data presentation altcrna- 26. Discuss how contents of user documentation
tives, For each alternative, describe one possi- can be varied to match user skills and computer
ble business applicalion use. expertise.

18. When are bar and column chart use recom-
mended? X EXTRA-CREDIT QUESTION

19, How are ficlds positioned on a screen? On a

i. Define a poorly designed menu and functional
screens for ABC Customer Maintenance. Use at
least 1{) bad design elements. Then, fix the
design problems and define effective screens for
the same function, Describe the guidelines fol-
lowed in defining each element of the good
screens. Write a paragraph discussing the kind
of crrors that wsers might make from using the
poorly designed screens.

line?

20. Why are short-term memory (STM) and long-
term memory (LI'M) important in screen
design?

21. When is color cffective in screen design? How
many colors should be used on screens at any
one time?

22. How can type font be varied for effective
screen design?

23. What are three options for incremental conver-
sion? How do vou choose which to use?

IMPLEMENTATION
AND

PART

MAINTENANCE

1]

The five chaplers in this seclion discuss implementa-
tion and maintenance issues. An application is never
completed until it is retired. After analysis and
design, we must be able to implement the design on
computer hardwarc using computer software or our
work is useless. The first three chapters in this sec-
tion relate to implementation issues: selecting a
computer language; evaluating and sclecting hard-
ware, software packages, or consulting services; and
festing/quality assurance of the finished product.
Chapter 15 defines characteristics of languages,
to allow us to distinguish between ten languages that
are evaluated. Then, the languages are matched to
the application types discusscd in Chapter 1 and
to the methodologies discussed in Chapters 7-12.
Language selection, rather than code structure, is
emphasized because of the increased use of com-
puter-aided software engineering (CASE) tools to

generate code. The language selected must be able 1o
support the application requirements. In Chapter 15,
we first describe identifying characteristics of lan-
guages. Then, the implementation of each charac-
teristic is described for ten languages. Basced on the
language characteristics, we define the types of ap-
plications for which each language is best suited.
Similarly, outsourcing and use of software pack-
ages are growing in all industrics bceause it is
frequently cheaper to buy rather than build an appli-
cation and,or its environment. In Chapter 16, we dis-
cuss the evaluation process and highlight the types
and alternatives for soliciting bids from vendors,
Sections and contents of a request for proposal
(RFP) are defined and developed for the ABC case
to show what they look like. Hardware, software,
and consulting services might all be contracted for in
the same request, or could individually be the subject

637

638 PARTIV

of RFPs, Examples of RFP ¢xpectation ¢riteria for
each type of work are provided to give a sense of
the level of detail to which work is defined in an
RFP. Then, vendor proposal evaluation alternatives
are defined and discussed in relation to ABC Video’s
application.

Regardless of the development product—pack-
aged software, generated CASE code, or manually
programmed code—proving that the software works
by testing it ai various levels of detail and aggrega-
tion is required. Chapter 17 defines the different
strategies for testing and types of testing performed.
Test types are matched to strategies to develop an
effective overall strategy for testing applications. For
each level of testing, key issucs in test case devel-
opment are identified. Based on research on testing
etrors found, guidelines for deciding when to stop
testing at each level are provided. The ABC case is
then analyzed to demonstrate how the theories
apply in practice.

The last two chapters relate to change. Chapter 18
discusses application change management that zll
take place throughout the life of a project. Change
is a way of life in computing and application devel-
opment is no exception. In Chapter 18, we first dis-
cuss how to design for reusability by using templates
and reusable modules, Then, change management
techniques that apply to documents, decisions, soft-
warg, and application configurations are presented.
The antomated tools section includes soltware rep-
resentative of cach type of change management.

Implementation and Maintenance

Doecumentation for project work can be thousands
of pages long, Since errors in code usually begin to
be traced through documentation, it is important to
identify changes to facilitate the error tracing pro-
cess. Also, uscrs and maintenance personnel who
might only infrequently review documentation
should be directed to the new information rather than
having to read entire documents each time. The tech-
niques for identifying change easily are identified in
Chapter 18,

Similarly, application decisions might provide a
useful trace of the considerations and dis¢arded
ideas throughouwt a project’s life. Few project teams
keep such a decision trace because, historicalty, to do
so meant maintenance of more thousands of pages of
paper. With automated decision support and sophis-
ticated word processing, keeping a record of deci-
sion history is now feasible and can be useful in
organizations with rapidly changing management cr
on projeets that support business functions that are
subject to rapid industry change.

Software changes and appiication configuration
management are the other major topics of Chapter
18. A recent buzzword identifies software reengi-
neering, also called reverse engineering, as the back-
ward design of undocumented programs and
applications that were probably buill withoul the
team having followed a methodology to guide the
work. Also callied spaghetti code, such applications
can be maintained beyond a useful life. In the chap-
ter, we describe how to decide when to reverse

cngincer, recngineer, or retire applications and/or
individual programs. Once the decision is made to
maintain software, management of the software
maintenance process is an important task in deter-
mining thatl the correct configuration of modules,
functions, programs, and s0 on, is in production. The
issue of configuration management is more compli-
cated when multiple versions of software, such as a
DOS and MVS versions, exist. Techrtiques and man-
agement practices for configuration managemenl are
deseribed in the chapter.

Finally, your career is important and requires
management by you for your working life. It is dif-
ficult to plan a career without having a scnsc of what
opportunities and expectations are available, First,
the typical job levels and types of jobs found in busi-

Implementation and Maintenance 439

nesses are described. Then, one way to pian a carcer
by thinking through your wants and requirements for
tcchnical, job, company, geography, and opportuni-
ties for advancement is developed. A method for
defining yvour chances of job success is defined next.
Trends of IS jobs over the last five years by geogra-
phy, salary, and industry are discussed. Part of
developing yourself into a professional and having
a career is to maintain your profcssional status.
Techniques for maintaining professional status and
building on knowledge arcas including cducation,
professional association membership, accreditation,
and reading are all defined, with suggested ap-
proaches to applying the infermation to your own
situatjon,

CHAPTE

15

~ CHOOSING AN

IMPLEMENTATION

_ LANGUAGE

INTRODUCTION

In this chapter, we discuss the sclection of a lan-
guage for implementing an application. Program-
ming is the process of designing and describing an
algorithm to solve a class of problems. As any pro-
grammer knows, any activity can be programmed
in any language . - . just not necessarily as cffec-
tively or completely in cach language, When work-
ing on an application, we do not always have a
choice of the language we vse. But with the selec-
tion of the wrong language, we constantly compro-
mise the requirements to fit the constraints of the
language. Tn this chapter, we discuss characteristics
of languages and how to select a programming lan-
guage bascd on requirements of an application so
that, if there is a choice to be made, an appropriate
language can be selected. The activity of program-
ming is not discussed in this text because, with
CASE environments and tools, much program code
is automatically generated.

First, the charactcristics of languages are defined.
Then 10 computer languages—SQL, Focus, BASIC,
COBOL, Fortran, C, Pascal, Ada, PROLOG, and
Smalltalk—arc cvaluated according to the char-
acleristics. These languages represent the major
programming paradigms, including proccdural (For-
tran, COBOL, BASIC, Pascal), object orientation
(Smalltalk, Ada), declarative processing (SQL,

640

PROLOG), flourth-generation languages (4GL,
Focus), and expert sysiems (PROLOG). They also
represent the most popular languages in use in busi-
ness organizations loday and 1o the years to come.
Then, languages are matched to different types of
applications and methodologics. Finally, automated
support for programming is discussed. First, we
develop the characteristics that distinguish between
languages.

CHARACTERISTICS
OF LANGUAGES

To differentiate languages, we must evaluate how
cach language deals with data definition and
processing, malhematical and logical processing,

" control, conditional, array, input/output, and sub-

program processing in addition to nontechnical
assessment of each language’s ease of use, portabil-
ity, and maintainability. Finally, available automated
development aids such as CASE and code generators
are noted.

Data Types

Each language supports some data types. A data
type is a language-fixcd definition of data. All lan-
guages support variables and constants for numeric

Data Type Example
Integers 1,2,3
Real -1.01, 3.21
Character/String Abp12:,
FIGURE 15-1 Examples ol Universal Dala
Types

and character data. The universally supported data
types are integers, real mumbers, and character
strings. Example of each are shown in Figure 15-1.
Integers are wholc numbcers such as one, two, or
three. Real numbers inctude positive and negative
continuous numbers, including all decimals. Char-
acter strings are any legal combination of alphanu-
meric characters.

Fewer languages support one or more of logical,
Buolean, pointer, object, bit, date, or user-defined
data types. Logical data types arc notation provid-
ing for nonnumeric comparison including and, or,
or not processing (see Figure 15-2 for example).
Also, the comparison operators used in logical data

Data Type Example

Logical And, Or, Not, <, », =,
L2 E

Boolean True, Falss

Pointers 16F26
{where 16F2§ is a valid
memory address)

Object Customer=123486, Add,
Change, Delete, Inquire

Bit 01

Date 02 28 93

FIGURE 15-2 Examples of Nonuniversal
Data Tyvpes

Characteristics of Languages 641

types include ail variations of equality and incquality
operators (see Figure 15-2).

Boolean operators generate binary true/false in-
dicators based on somce logical comparison (see Fig-
ure 15-2), Pointers are addresses of other program
or data constructs that are uscd for reference within
i programn.

Objects are programmed encapsulations of data
with methods. The example in Figurc 15-2 shows
only the names and 1D of an object with the names of
the methods or program modules that can manipu-
late the data. In actuality, an object contains all of the
data and all of the program code [or the methods.

A bit is an individual binary digit (see Figure
15-2). Bit manipulation is highly desirable in pro-
grams using binaey status indicators. In an eight-bit
character set, use of one bit rather than eight to indi-
cate a single value can save millions of characters
of storage space.

Date data types define combinations of months,
days, and years that support only legal date entries
(see Figure 15-2). Rather than writing routincs
to validate dates, the language may have built-in
validation processing.

Finally, user-defined data types are data defini-
tions that become fixed within a program or appli-
cation. User-defined data types can be for any
application-specific combination of legal characters.
A commuon uscr-defined data type is for a date con-
struct when the language does not provide a dale
data type.

Data Type Checking

Data type checking refers to the extent to which a
language enforces matching of specific data defini-
tions in mathematical and logical operations, There
are four levels of type checking, ranging from type-
less to strong checking. Which level is required is
dependent on the application type. In general, the
more stringent the requirements for accuracy and
consistency of processing, the more desirable strong
type checking becomes. With object methodologics,
strong checking is desirable because with polymor-
phism, the ability 10 have multiple modules process-
ing the same function but on different data types,

642

01 COBOL-INFC.

a5 EXAMPLE-NUMBER PIC 9(5).
01 TARGET-INFO.
a5 TARGET-NUMBER PIC 9(5).
PROCEDURE DIVISION.
Move '‘A124X" to COBOL-INFQ. *** Causes no
arrers

Move COBOL-INFC to TARGET-INFO.
** Causes no armrs T

Move EXAMPLE-NUMBER to TARGET-
NUMBER. “** Abend—tillegal data in
EXAMPLE-MUMBER ***

FIGURE 15-3 Cobol Typeless Checking

the probability of errors is reduced with strong type
checking.

Typeless checking means that there is no explicit
checking performed. In typeless languages. such as
BASIC or COBOL., alphanumeric characters are
allowed in an integer field, but might canse an abend
if the ficld is referenced as an integer {See Figure
15-3). Operations using typeless flelds are not guar-
anteed to cxccute successfully. Typeless ficld pro-
cessing is not consislent across languages or
compilers.

The next level provides automatic type coercion
in which mixed data types are allowed, but conver-
sion of incompatible iypes occurs when used
together. Also called mixed mode type checking,
differcnt data types within a category (e.g., numeric)
are converted 1o a single target type for mixed mode
operations, In Fortran, for instance, mixing a real
and integer number in a mathematical operation
leads to unprediciable results because the target type
is determined by the result field definition (see Fig-
ure 15-4). If the result field is defined as real, the
process will yicld 4 real number. Tn Fortran, the first
character of a field determings its dala lype. Names
beginning with A—H and O-7 are real; names
beginning with [-N arc integer. In Figurc 15-4a, the
result field begins with B; therefore, the tesult field is

CHAPIER 15 Choosing an Implermentation Language

a real number, If the result field is defined as inte-
ger, the process rounds the answer and the result is
imteger. In the example in Figure 15-4b, the answer is
either zero or one depending on the computer system
and how il rounds inlegers. Obviously, without
detailed knowledge of the internal language process-
ing, programming errors can result.

Pseudostrong type checking, the third level of
data typc checking, permits operations only on data
objects of the same data tvpe when they are delined
in the same module. But, unlike strong type check-
ing languages, there are language inconsistencies,
or undocumented features, that allow programmers
to mix data types. Pascal is a pseudostrong type
checking language in that il supporls strong typing
within modules, but has no type checking acrosy
modules. So, data passed from one module to an-
other for processing may be combined in the called
module with another data type with no penalty.

At the highest level of data typc checking, lan-
guages with strong type checking pcrmit operations
only on data objects of the same, prespecified data
type whether in the same or other modules. If a mod-
ule contains an illegal data type, the application
would stop processing und issuc an crror message,
Ada provides strong type checking.

Language Constructs

Language constructs determine what and how
operations on data are carried out. They provide for
sequencing, iteralion, selection, and data structure

a. Theforrmulais: YA=B
510.0 = 0.50

The data are converted to real because B is a real
name.

b, The formulas: A =J
5100=10ar Q.0

Data are converted to integsr and rounded.
Results vary depending on the computer system.

FIGURE 15-4 Mixecd-Mode Data Type
Checking

piocessing, and differ for each language classified.
In general, the richer the language, the more these
constructs will be present. Tlowever, with the rich-
ness comes a trade-off in language complexity that
forces uscrs to learn more language details to
become proficient,

The need for rich language constructs depends
somewhat on the language paradigm. For instance,
SQL is a declarative, sct processing language that
does not need iteration because iteration is embed-
ded in the language. In a declarative language, vou
code what you want to do, not kow. With set pro-
cessing, you identily the database and the language
controls all file manipulation. The more procedural
the language, the richer the language constructs need
to be. The more detailed the application, the richer
the language of the application should be.

Sequencing occurs between and within com-
mands. Between-command sequencing is controlled
by you as the programmer who defines the order of
commands. [ntracommand sequencing is part of lan-
guage definition and is called operator precedence.
Operator precedence is the prieritizing of symbols
to manipulate data. All languages have at least four
arithmetic symbols in common: + for add, — for sub-
traction, * for mulliplication, and / [or division. Most
languages also have many other symbols and opera-
tions supporting unary and binary operations includ-
ing relational processimg (e.g., “less than,” “less than
or equal,” ete.), logical processing (e.g., “and,” “ot,”
or “not”). A list of operators available in different
langnages is provided 1n Figure 15-5.

Control language constructs support iteration,
sequential or selection processing via loops, exits,
conditional statements, or case constructs. Loops
provide itcrative, repetitive processing and arc usu-
ally supported through structured programming
notations such as “do while .. . or “do until. .. .
Conditional statements support “if . . _then . ..
else” processing. Conditional statements are used in
seme languages to control iterarive loop processing.
Common loop notations are shown in Figure 15-6.

Case statements allow identification of code seg-
ments that combine to identify the “case,” for
example. in Focus file maintenance processing you
can code screen processing cases for add, change,
and delete cascs. This simplifics the thought pro-

Characteristics of Languages

Operator Symbel
Adid ¥
Subtract -
Multiply >

Divide fo=
Exponerr A

And AND

Or CR

Mot -

Equal =

Less <
Grealer =

Less or equal 5, =<, <=
Greater or equal ?, =3, =

FIGURE 15-5 Language Operators

cesses involved in programming by “chunking” case
contents.

Exits lcave the current code module and return
ta the calling module or to some other named mod-
ule, Exits can be simple returns to the calling mod-
ule, such as Reiurn, Cut, or Exit statcments (See
Figure 15-7); exits can indicate the nature of the end
as in PROLOG s Fail exit, or exits can return to a
named module in a Goto statement.

Arrays, or tables, are a third type of language
construct that may or may not be supported by a lan-
guage. Linear arrays, or lists, are one type of data
that are relatively simple to support {see Figure
15-8). When higher dimension arrays are supported,
the maximum number of dimensions are identificd.
Occasionally a language will support z#-dimensional
arrays, with a vser-defincd maximum.

Mext there are four possible alternalives for phiys-
ical input and output (I/Q) of information to and
trom aulomated files or data entry fields. First, spe-
cilic [/O statements (e.g., read/write) for externally
stored data may be one of three types: record-
oriented, set-oriented, or array-oriented. Record-
oriented I/O reads (or writes) a physical record of

844 CHAPIER 15 Choosing an Implementation Language
BEGIN ... END Linear Array, List
BLOCK 1
DO ... ENDDO
FOR...

FOR...ENDFOR
ifFalse . . .

ifTrue . . .

INDEX . .

LOQOP .., ENDLOOF
REPEAT .. [END
REFEAT .. .

WHILE . .

WHILE . . . ENDWHILE
whileFalse . . .

whiteTrue . . .

FIGURE 15-6 Loop Notations

information that may contain onc or more logical
records. Recall from database class that records {or
tuples in relational terminology) are groupings of
related ficlds. Record-oriented 1/0 requires opening
and closing of files, reading or writing of records,
and user management of all file processing, such as
checks for cnd-of-file. COBOL, Fortran, Assembler
languages, and Ada are record-oriented.

2
3
4
5

Twe Dimensicnal Array of Monlhs and Days

January 31
February 28
March 31
April 30

Thres Dimensional Array of Sales By Year By Month

Year Month Sales
1996 January 220,000
1996 February 250,000
Year Maonth Sales
1995 January 150,000
1985 February 170,000
Year Meonth Sales
1994 January 100,000
1994 Fabruary 104,000

Exit Typs Processing

Return Return to Calling Module

Cut Retumn to Calling Module/Instruction

Ext Return to Calling Module

Faii Go to Calling Module/Instruction
with Boglean indicaling process
failure

Goto Go to Named Moadule

FIGURE 15-7 Exit Types

FIGURE 15-8 Types of Arrays

Set-oriented I/ assumes that all records (or
tuples) are treated the same and that some selection
criteria, when applied, wdentify the desired informa-
tion. The language controls all file and read/write
processing according to user-defined selection crile-
ria. At the end of a procedure, the set of records
{tuples} resulting from the procedure are stored in
memary for printing or display. SQI. is set-oriented.

Implicit 1/0 is similar to set-oriented I/0. Implicit
I/0 is used in 4GLs in which reading and writing of
data is hidden from the user, The user specifies the
type of process, for instance, TABLE FILE . . ., and
the language infers the type of file processing
required from the command, Set-oriented 1/O is

more rigorously defined and has provably correct
contents based on mathematical set theory which
underlies relationship processing. Implicit I/0, on
the other hand, is in languages which predate rela-
tional theory and do not have provably corrcct
resulis.

Array-oriented I/OQ reads and writes strings of
fields that are assumed to be some sort of array. The
user is responsible for defining and manipulating the
nature and data type of array. The language simply
reads or writes until the ond of the array. Pascal is
an artay-oriented language.

List-directed 1/Q is a variant of array-oriented
/0. List-directed I/ is used in Fortran to define a
fist of variable names to which ilems are direcied as
they are read. The language reads uniil the list is full,
then continues processing until the read is again
cxccuted. Dara items are not specifically formatted,
rather the format is implicit in the variable names.

The extent to which data formats and [/ pro-
cessing can be defined and controlled distinguishes
languages as 1/0-oriented versus CPU-oriented in
their processing. The more claborate the 1/Q pro-
cessing, the more [/OQ-oriented the language. The
more primitive the 170 processing, the more CPU-
oricnted the language. Fortran is an example of a
CPU-oriented language, while COBOL is an exam-
pic of an I/Q-oriented language.

Modularization and Memory
Management

The extent to which modularization and memary
managemesnt are supported is an indication of lan-
guage sophistication. Modularization is the creation
of subprograms or storcd functions. Languages dif-
fer in the manner in which the subprogram and their
data are supported. First, the ability to define sub-
programs or functions i$ important to attaining
desirable program characteristics such as maximal
cohesion. Not all langvages allow subprograms. In
particnlar, set-oriented languages (SQL) do not cas-
ily support subprograms.

Second, how dala in modules is managed is
important. Data can be local or global. Local data
storage defines data variables and constants that are

Characteristics of Languages 645

only used within a given module, Global data are
accessible to any module in the application. The
ability to have local data is important to attaining
information hiding and minimal coupling. The
cxient to which global data is required limits the
quality of resuolting programs by limiting informa-
tion hiding and cohesion.

Subprograms’ activation is similar across lan-
guages. Called modules are referenced by module
name, For instance, “CALL FACTORIAL, 5" might
be a subprogram call that passes the value five for
factorial computation, Modules must reside in a
library that is linked to the calling module via control
language (¢.g., JCL). Options for call processing
include passing of variable data either by name, by
address, or dircetly, by value. Value passing requires
local data definition while passing data by name or
address is used with either local or global data.

Generally, when using subprograms, a main mod-
ulc calls the subprogram which performs its process-
ing and returns to the calling madule. The ability 10
support subprogram processing requires one or more
entry and exit points. Exit and return processing are
also imporlanl when passing control of processing
between modules. In general, the more opportunities
to enter and exit a given module, the more proficient
the programmer needs to be to ensute proper pro-
cessing. According to structured programming ten-
ants, a well-designed module should have one entry
and one exit point. Some languages, such as Small-
talk and Ada, enforce this idea by allowing only one
entry and one exit per module. One entry—one exit
modules are less crror-prong than modules that allow
many alternatives.

The next level of sophistication is the extent 1o
which programmers have control over their own
memory management. Memory management refers
to the ability of a program to allocate more computer
memory as required. This is an option frequently
desired in variable list processing and real-time
applications that manage multiuser resources. Mem-
ory in less sophisticated languages is static: The pro-
gram is assigned a maximum at the time it is initiated
for processing. If more memory than that allocated
is nceded, the program abends, more memory is
requested manually via job control language, and the
program is rerumn.

646 CHAPTER 15 Cheosing an Imptementation Language

With dynamic memory management capabili-
tics, the program meniters its own use of storage and
allocates more memory as needed. In sophisticated
languages, the capability to dynamically allocate
memory is present.

Exception Handling

Exception handling is the extent to which programs
can be coded to intereept and handle program errors
without abending a program. This capabilily adds to
both the complexity and the range of usefulness ol a
language. This capability ranges from none to some.
For instance, COBOL allows you to intercept data
errors such as overflow or divide by zero, but not
others, such as invalid data definition or read past
end-of-file. In contrast, Smalitalk allows the inter-
ception of any error.

Multiuser Support

The extent to which language constructs for memory
management, global/local variables, and subprogram
management are availahle, determines the cxtent to
which a language can support multiple users. There
are three levels of support for multiple users that
relate to program modules having the properties of
reusability, recursion, and reentrancy. Reusability,
also called scrial recusability, is a property of a mod-
uje such that many tasks, in sequence, can use Lhe
module without its having to be reloaded into mem-
ory for cach usc (scc Figure 15-9). To accomplish
this level of program, any changes o local variables
must be reset to their original contents before the
completion of processing and return (o the calling
module. The easiest way to develop reusable pro-
grams is to provide global variables that can change
contents and local variables that cithcr cannot
change or are always reset after the module’s use.
Reusable programs can support sequential or inter-
active processing, but not multiuser or real-time
processing.

Recursiveness is a property of modules such that
they call themselves or call another module that, in
turn, ¢alls them. An example is factorial multiplica-
tion in which the same process is performed on a dif-
fcrent number of variables a number of times (see

Reusable Pseudo-code

Factorial (N, Nfact}
End=0
IFM=0 or 1
go to exit.
Loop.
1f N=1
go to exit
else
Nfact = N * {N-1)
N =MN-1
g to Loop.
Exil. Exit.

Recursive Pseudo-code

Function FACT (N}
Begin
HN=0
Thaen Factout =1
Else Factout = N * FACT(N-1}
End {Function Fact};

FACT is a tunction that recurs cortinuously
until N = 0.

Reertrant Pseudo-code

Load N, Mfact, First-Exec
If N ={0or1) and First-Exec =0
Then Nfact = 1
Else
M=
Mfact= N * (N-1)
M= N-1
First-Exec =1
Save N, Nfact, First-Exec.

FIGURE 159 Examples of Reusable,
Recursive, and Reentrant Modules

Figure 153-9). Processing with recursion is explicitly
outlawed in some languages, whilc it is considered
a main strength of others, such as PROLOG. Recur-
sion requires serial rensability of programs in addi-
ticn to the ability to maintain a queue (or stack) of
outstanding requests to be completed. This queue-
ing support provides for multiple uses of the mod-
ule by one user.

Reentrancy is a property of a module such that
it can be shared by several tasks concurrently, There
is a constant part and a variablc part to each reentrant

modulc. The constant part is loaded into memory
once and it services tasks in a serially reusable man-
ner uatil it is overwritten by another program. A
copy of the variable part is activated for cach task
when it is initiated (see Figure 15-9). A queueing
mechanism keeps track of the user’s identification,
the location of the variable part, program status
word, and register centents for the task. This infor-
mation is swapped into (or out of) the active area as
the user becomes activated (or interrupted). Only
ong task is active at a time, but several 1asks might
be in various stages of task completion. Only the
property of reentrancy allows true real-time process-
ing and support for multiple concurrent users. Both
serial reusability and recursiveness are required to
achieve reentrancy in programs.

To summarize, programming languages differ
in the extent to which thcy support alternatives
for defining data types, inputfoutput process-
ing, mathecmatical, relational, logical, bit, control,
array, subprogram, and memory processing. The
less extensive the language constructs supported,
the simpler the Janguage, but the more restricted the
domain of problems to which it is amenable. The
more extensive the language constructs sup-
ported, the more complex the language, and the
more extensive the domain of problems to which it
is appropriate.

NONTECHNICAL
LANGUAGE
CHARACTERISTICS

Nontcchnical characteristics are at least as important
as technical characteristics when selecting a lan-
guage. The nontechnical characteristics evaluated
here arc uniformity, ambiguity, compactness, local-
ity, linearity, ease of design to code franslation, com-
piler efficiency, and portability. The availability of
CASE tools, availability of code generators, and
availability of testing aids also add to a language’s
attractiveness, and are discussed in a later section,
Uniformity is the use of consistenl nolation
throughout the language. An example of nonunifor-
mity in Focus is the use of single quotes for cus-

Nontechnicdl Language Characteristics 647

tomized report column titles and the use of double
quotes for customized report page titles. This type of
inconsistency hinders the learning of the language
and almost guarantees that novices and infrequent
users will make mistakes.

Ambiguity of a language refers to the extent to
which humans and compilers will differ in their
interpretation of a language slalement. Ideally,
humans’ thinking should be identical o compiler
interpretation, and that compiler interpretation
should be intvitive to humans. Unfortunately, ambi-
guity may be inherent to some problems, such as
artificial intelligence applications which reason
through a process. As new rules and inferences are
added to an Al application, interpretation of exist-
ing data and rules might also change, thus intro-
ducing ambiguity into a previously unambiguous
application.

Compactness of a language is its brevity. The
presence of structured program constructs, key-
words and abbreviations, data defaults, and built-in
functions all simplify learning and programming.
Contrast SQL or Focus, both [ourth-generation
languages, with COBOL, a third-generation lan-
guage. A report that takes three to five lines in 4GL
procedure code requires 30-150 lines of COBOL
code (see Figure 15-10). That icarning time is con-
siderably shorter for Focus than COBOL, partly due
to the compaciness of the language.

In turn, compactness implies locality in providing
natural “chunks” of code that facilitate learning,
mental visualization of problem parts, and simula-
tion of solutions. Locality is provided through block,
case, or other similar chunking mechanisms in lan-
guages. Chunks might be implemented via a per-
formed scetion of code in COBOL, a casc construct
in Focus, or an object definition in Smalltalk. In all
three of these examples, a user’s attention is focused
only on the chunk of the code present. By being able
to ignore other parts of the code, learning of the
chunk is simplificd.

Linearity rcfcrs to the extent to which code is
read sequentially. The more linear a language, the
easier it is to mentally “chunk™ and understand the
code. Linearity facilitates vnderstanding and main-
tainability. In Figure 15-10, the COBOL code
chunks in paragraphs and performed sections; these

448 CHAPTER 15 Choosing an Implementation Language

4GL—Focus
TABLE FILE SALES
HEADING CENTER ‘SAMPLE SALES REPORT
SUM SALES
BY REGICH
ACROSS MONTH
BY YEAR
ON YEAR SUMMARIZE
ON YEAR PAGE-BREAK
END

3GL—COBOL

WORKING-STORAGE SECTION.
01 CONTROL-TOTALS.

05 LINE-COUNT PIC 99 VALLE 56.
05 END-OF-FILE PIC 9 VALUE ZERO.
a3 EOF VALUE 1.
05 CURRENT-REGION PIC 89 VALUE ZERO.
05 SUM-SALES.
10 JAN-SUM PIC (5} VALUE ZEROS.
10 FEB-SUM PIC 9(5) VALUE ZEROS.
10 MAR-SUM PIC 9(5) VALUE ZEROS.
10 APR-SUM PIC 9(5) VALUE ZEROS.
10 MAY-SUM PIC 9(5) VALUE ZEAOS.
10 JUN-SUM PIC 9(5) VALUE ZEROS.
10 JUL-SUM PIC 9(5) VALUE ZEAQS.
10 AUG-SUM PIC 9(5) VALUE ZEROS.
10 SEP-SUM PIC 9(5) VALUE ZEROS.
10 QCT-5UM PIC 9(5) VALUE ZERCS.
10 NOV-SUM PIC 9(5) VALUE ZEROS.
10 DEG-SUM PIC 9{5) VALUE ZEROS.
01 REPORT-HEADER.
05 FILLER PIC X{48) VALUE SPACES.
05 HD1 PIC X(19) VALUE
'SAMPLE SALES REPORT".
01 COL-HEADERA.
05 FILLER PIC X(132) VALUE
'REGION MONTH
01 COL-HEADER 2.

05 FILLER PIC X{132) VALUE
' JAN FEBE MAR APR MAY
JUNE JULY AUG SEPT QCT NOV DEC.

! REPORT-DETAIL.
05 FILLER PIC XXX VALUE SPACES.
05 REGION PIC XX VALUE SPACES.
05 FILLER PIC X(10) VALUE SPACES.
o553 SALES PIC X{84} VALUE ZEROS.

FIGURE 15-10 4GL versus 3GL Language Compactness

Nontechnical Language Characteristics

05 SALES-NUMERICS REDEFINES SALES.
10 JAN-SALES PIC 2ZZ.222 VALUE ZERCS.
10 FEB-SALES PIC Z2Z 777 VALUE ZEROS.
10 MAR-SALES PIC ZZZZ77 VALUE ZEROS. ~
10 APR-SALES PIC 272222 VALUE ZEROS.
10 MAY-SALES PIC 2727 277 VALUE ZEROS.
10 JUN-SALES PIC 727,277 VALUE ZEROS.
10 JUL-SALES PIC 222,222 VALUE ZEROS.
10 AUG-SALES PIC ZZZ.ZZZ VALUE ZEROS.
10 SEPT-SALES PIC 2ZZ.777 VALUE ZEROS.
10 CCT-SALES PIC 222 727 VALUE ZEROS.
10 NOV-SALES PIC 777 777 VALUE ZEROS.
10 DEC-SALES PIC Z2Z 222 VALUE ZEROS.
PROCEDURE DiVISION.

PERFORM SUMMARY-CONTROL THRU PRINT-REPORT-EXIT.

SUMMARY-CONTROL.
tF REGION = CURRENT-REGION
GO TO PAGE-CONTROL
ELSE
MOVE SUM-SALES TO SALES-NUMERICS
MOVE YEAR TO REGION
WRITE REPORT-DETAIL AFTER 3.
ADD 3 TO LINE-COUNT.
PAGE-CONTROL.
IF LINE-CQUNT = 50 OR REGION NOT = CURRENT-REGION
WRITE REPORT-HEADER AFTER PAGE
WRITE COL-HEADER1 AFTER 2
WRITE COL-HEADERZ2 AFTER 1
MOVE 4 TO LINE-COUNT.
MOVE REGION TO CURRENT-REGION.
PRINT-REFORT.
MOVE CORRESPONDING INPUT-SALES-SUMMARY TO REPORT-DETAIL.
WRITE REFORT-CETAIL AFTER 1.
ADD 1 TO LINE-COUNT.
PRINT-REPORT-EXIT.
EXIT.

FIGURE 15-10 4GL versus 3GL Language Compactness (Continued)

650 CHAPTER 15 Choosing an Implementation Language

language features facilitute COBOL program under-
standability.

The ease with which program specificalions are
translated into code is also important in language
sclection, In general, more declarative languages,
such as SQI., are considered easier to code than
more procedural languages such as Fortran. How-
cver, PROLOG and other inlerential languages,
while declarative and simple in developing single
rules, are not simple when trying to determine
whether the rules aggregate 1o the proper knowledge
siructures,

Compiler efficiency is the extent to which a
compiled language generates efficient assembler
code. Compiler efficicney varics by vendor and by
language. Compiled code cfficicncy is important
especially when programming for small computer
syslems or for cmbedded applications that interact
with other system componcnts as part of a larger
system.

Along with efficiency of cxecutable code, porta-
bility of code is important. Portability is the ability
to transplant the code without change to a different
operating platform that might include hardware, dif-
ferent operating system, or different software envi-
ronment, A hardware platform may be a single-user
personal computer, a workstation, or a mainframe.
Each of these might run the same operating sysiem,
for example Unix, or might use a different operat-
ing system. The more code that must be changed to
accommodate a specific hardware or operating
environment, the less portable the language. As
global and distributed applications become more
prevalent, the need for language pottability will
increase. Ideally, programs should be able (o be
devecloped anywhere for execution on any hardwarc
or operating system platform.

In summary, when technical characleristics do not
distinguish languages for application use, nontechni-
cal characteristics of languages hecome important
ta their selection, The nontechnical characteristics
cvaloated here include uniformity, ambiguity,
compactness, locality, lingarity, ease of code devel-
opmenl, compiler ¢fficicncy, portability, and avail-
ability of automated development tools. In the next
section, we discuss ten popular programming lan-
guages and the extent to which they contain the

langnage coenstricts above. Then we diseuss appli-
cation characteristics and how they map to the
languages.

COMPARISON OF
LANGUAGES

Ten languages are evaluated in this section to high-
light the dilferences across paradigms and language
gencrations for all of the characteristics defined
above. The ten languages selected were chosen
because of their current and expected future popu-

larity either in academic circles (c.g., Pascal) or in
industry. The langnages include SQL, COBOL, For-
tran, BASIC, Focus, C, Pascal. PROLOG, Ada, and
Smalltatk. Each language is discussed briefly below
10 haghlight the characteristics that make it popular
and unique. Table 15-1 summarizes the 10) languages
on all of the characteristics described above.

SQL

As the American National Standards Institute’s stan-
dard for database query language, SQJL has enjoved
a successful life. SQL pervades any databasc course
taught in North America and is a query language
front-end to virtually every database package on the
market regardless of machinc sizc, numbcr of uscrs
supported, or compiexity of the database. SQL’s
virtucs are mostly nontechnical: ease of learning,
compactness, vniformity, locality, linearity, portabil-
ity, and availability of automated tools (see Table
15-1). The simplicity of the language is evident in
the small number of hours of learning time it takes
novices to begin using the language. A novice might
buegin wriling queries in literally minutes. Profi-
ciency, of course, takes longer, but time to become
proficient is shorter than most database languages.
Many CASE cnvironments that support analysis
and design also support logical database design
through the process of nermalization. Those prod-
ucts also generate SQL database definitions as
the logical DB design output. Many of the same

fText continues on page HI6)

Compatison of Languages 451

TABLE 156-1 Comparison of Languages
SQL Focus BASIC COBOL Fortran
Data Types
Real Yes Yes Yes Yes Yes
Integer Yes Yes Yes Yes Yes
Character Yes Yes Yes Yes Yes
String No No N Yes No
Boolcan No No No No No
Date No Yes No No No
User-Defined No Na No Na Nao
Pointcr No No Mo No No
Bit Ideatification No No Nao Na No
String-Mask No Neo No Na No
Data Type Checking
Typeless X X
Automatic type
COETCion X
Mixed mode X X
Pscudostrong
Strong
Opecrator Precedence 0 %/x 0~ *j+ " *ix O i+ o *Hx
Binary and Unary
Operators Yes Yes Yes Yes Yes
Arithmetic +,—.%./ Yes Yes Yes Yes Yes
Relational <,=,>,5.= Yes Yes Yes Yes Yes
Logical and,or,nol Yes Yes Yes Yes Yes
Bil No No Nao No Na
Type Conversion No Yes, No Yes. Yes,
Limited Limited and Limited and
Incomsistent Inconsistent
Control
Loops No Mo FOR... PERFORM ... FOR...
NEXT UNTIL CONTINULE
Exits No EXIT, EXIT, EXIT EXIT,
GOTO GOTO GOT10
Conditional WHERE IF... iF.. IF...THEN IF. ..
Statements ELSE ... ELSE
Case No Yes {not in No COBOL 88 Na
Statements query language) only
Arrrays
Lincar Arrays No Ne Yes Yes Yes
Multiple
Dimensions No No Upto 2 Upto3 Upta3

(Table continnes on next page)

652

CHAPTER 15 Choosing an Implernentation Language

TABLE 15-1 Comparison of Languages (Continued)
SQL Focus BASIC COBOL Fortran
Input/Output
I/O of Records No No Yes Yes Yes
O of Arrays No No No No Yes
Implicit I/O Yes Yes No No No
Format Control Automatic or Automatic or Programmed Programmed Programmed
_ Programmed Programmed only only only
Data-directed I/D~ No No No No Yes
Subprograms
Subrouiines Nested Yes Yes Yes Yes
Functions Limited Yes Limited Limited Limited
Local/Global No Yes Limited Programmed Yes
Storage only
Stalic/Dynamic No Na No No No
Storage
Entry Points No Yes Yes Yes One
Pass Parameters No Yes Yes Yes Yes
Call by Address No No No Nao No
Call by Value Na No No No No
Call by Name No Yes Yes Yes Yes
Reusability No Yes Yes Yes Yes
Recntrancy No No No No No
Recursion No No No No No
Coneurrency Only when Yes No No No
used with DB2
Exception Handling Na Limited Limited Limited Limited
Nontechnical
Uniformity High Medium-High Medium Medivm Medium
Ambiguity Low-Medium Low-Medjum Medium Mediom Medium
Compactness High High Medium-High Low Medium-High
Locality High High Programmed Programmed Programmed
only only only
Linearity High High Low-Medium Low-Medivm Low-Medium
Ease of design
ta code High High Low-Medium Low-Mediom Low-Mcdium
Compiler Yes, Medium, Medium, Medivm-High Medivm-High
Efficiency when used Mostly Mostly
as embedded Interpreted Interpreted
language;
otherwise SQL
is interpreted
Source code
portability High High Medium High High

Comparison of Languages 633

TABLE 16-1 Comparison of Languages (Continued)
SQL Focus BASIC COBOL Fortran
Nontechnical, cont.
Availability of
CASE tools Yes Yes No Yes No
Code generators Yes Na No Yes No
Testing aids Yes Na Yes Yes Yes
Maintainability High Medium-High Low-Medium Low-High Low-Medium
C Pascal PROLOG Ada Smalltalk
Data Types
Real Yes Yes Yes Yes Yes
Integer Yes Yes Yes Yes Yes
Character Yes Yes Yes Yes Yes
String Yes Yes, Limited Yes Yes Yes
Boolean No,butcanbe Yes No Yes Yes
user defined
Date No No No No No
User-Defined Yes Yes No Yes Yes
Pointer Yes No No Yes Yes
Bit Identification Yes Nop No Yes Yes
String-Mask No Limited Yes Ne No
Data Type Checking
Typeless X
Ailtomatic
Mixed mode X
Pseudostrong X
Strong TutboProlog X X
Operalor Precedence {()[]— not () ** nat aby unary
+ — {unary) */ div mod + — unary * / mod rem binary
tr—t¥ + and —or maod div + — unary keyword
& size of S<r <= pr= Y/ + — & binary
(type)} <in + — binary relational
PO+ — <t > | relational logical
€= »=l==x Operaiors short-circuit
& "
&& ||
0.
= op=,
No exponent No cxponent Na exponent No exponent
operator operator operalor operatar
Operators
Binary and Unary Yes Yes Yes Yes Yes

{Table continues on next page}

654 CHAPTER 15 Choaosing an Implementation Language

TABLE 15-1 Comparison of Languages (Continued)
C Pascal PROLOG Ada Smalltalk
Cperators, cont.
Arithmetic +.—*/ Yes, also % for Yes Yes Yes Yes
modulus
Relational <,=,»><> Yes Yes Yes Yes Yes
Logical and,or,nol Yes Yes Yes Yes Yes
Bit Yes No No Yes Yes
Type Conversion No No No No No
Loops DO WHILE . .. Simulatedvia BEGIN ... END ifTrue
FOR ... REPEAT . .. WHILE. .. ifFalse
REPEAT . .. WHILE . .. FOR... whilcTmie
END INDEX ... BLOCK while False
LOOP . .. END
LOOP
Exits RETURN RETURN FAIL EXIT
GOTO CuT GOTO
RETURN
Conditional IF...ELSE IF THEN None IF...THEN iTrue
Statements BEGIN ELSE ilFalse
END, .. ELSEIF whileTrue
ELSE. . ; CASE whileFalse
Arrays
Linear Arrays Yes Yes Only as LIST Yes Yes
Higher No limit to No limit to No No limit to No
Dimensional number of number of number of
Arrays dimensions dimensions, dimensions,
Some dynamic Dynamic
atlocation allocalion
SUppaTt supporl
Input/Output
[/ Stalements Only using No TurboProlog, Yes Yes
defined function else No
/O of Arrays Only using Yes Mo No No
defined tunction
[mphicat 170 Only using No TurboProlog, No No
defined function else No
Format Control Only using Limircd Yes Yes Yes
defined function
Data-directed /O No No No No No

Comparison of Languages

655

TABLE 15-1 Comparison of Languages (Continued)
C Pascal PROLOG Ada Smalltalk
Subprograms
Subprograms Yes Yes TurboProlog, Yes Yes
else No
Functions Yes Yes Yes Yes
Local/Global
Storage Both Both Both Both Both
Static/Dynamic
Storage Both No control Bath Both Both
Entry Points One per Cne per One per One per One per object
function routine program routine
Parameters
Call by Address Yes No No Yes No
Call by Value No Yes No Yes No
Calt by Name Yes Yes Clause name Yes Yes
as subgoal
Reusability Yes Yes Yes Yes Yes
Recursion Yes Yes Yes Yes Yes
Reentrancy No Yes No Yes Yes
Concurrency No, unless Concurrent Depends on Yes Yes
Ct++ Pascal only version
Excepiion Handling ~ Yes No Yes Yes Yes
Nontechnical
Uniformity Low-High Mcdium-High Medivm-High Medium-High Medium-High
Ambiguity Low-Medium Low-Medium Medium-High Low-Mediom Low-Medium
Compactness Low-High Mcdium-High Low-High Low-High Low-High
Locality Low-High Low-High Low-Medivm Low-High Low-High
Linearity Low-High Iow-High Low-High Low-High Low-High
Ease of design
{0 code Medium-High Medium-High Medium Medium-High Medium-High
Compiler High High Usually Medium-High High
Efficiency interpreted
Source code
portability High Medium-High Low Medium-High Low
Awvailability of
CASE tools No In academia, No Yes Yes
yES
Code generators No No No No No
Tesling Aids Yes Yes No Yes Yes
Maintainability Low-High Low-High Low-High Medium-High Medium-High

656

products also provide code generation of Cobol with
embedded SQL providing DB access. Examples of
CASE products are ADW™ und IEF™. These prod-
ucts have their own code generators and can inter-
face to code generation software.

In terms of technical capabilities, SQL is limited.
It is assumed that complex programming is done
in some other language with SQL embedded as
described above. SQL can define and modify data-
bases, perform simple mathematical processing on
fields for reporting, and generate default or cus-
tomized reports.

Focus

Asx 4 fourth-generation language, Foeus consists of a
databasc cnginc with its own query language, SQL
compatibility, a full-screen processor, and language
subsets tor graphical, statistical, file maintenance,
and intelligent processing. Focus DB supports rela-
tional, hierarchic, and network files as well as pro-
viding an interface to many popular mainframe
DBMSs, such as IMS, IDMS, Adabas, Model 204,
and so on.

Like SQL., Focus® main strengths lie in the non-
technical characleristics of the language: compact-
ness, locality, linearity, ease of code translation,
portability, and availability of CASE tools for docu-
menting analysis and design (sec Table 15-1).
Occasionally, Focus can be ambiguous in interpret-
ing handling of data across a hierarchy or in multiple
joined files.

Focus is a full-function databasc language. This
means thal files can be defined, maintained, vali-
dated, modified by transaction processing, and
qucricd all in the samc cavironment and the same
language regardless of the hardware/software plat-
form. This high level of portability and full-
function naturc of the processing make Focus a pop-
ular 4GL for rapid application development and user
query processing.

A reentrant version of Focus is available to sup-
port multiuser processing. Application code in Focus
is not reentrant. A compiler is available for file mod-
ify routines; otherwisc, Focus is interpreted. Focus is

CHAPTER 15 Choosing an implementation Language

a language of defaulis thal does not support user-
defined or uscr-manaped resources.

BASIC

BASIC is short for Beginner’s All-purpose Symbolic
Interchange Code. BASIC is present in this cvalua-
ticn because of the number of applications written in
it regardless of whether it were appropriate or not.
BASIC is, well, basic. Nothing fancy is supported
in (his language, but all rudimentary processing is
present (see Table 15-1). BASIC is fairly easy to
learn and write, with reasonable levels of uniformity,
compactness, and good automaled lesting aids, The
remaining characteristics vary considerably from
one version of BASIC to another. In particular, its
portabilily is low-medium since the [/O commands
usually must change to suit a particular environment.

BASIC does standard programming opcrations,
supporting a limited, but standard number of data
types, with no type checking. There are language
constructs for loop, condition, and array processing.
Files can be read and written,

BASIC is popular hecause a whole generation of
college graduates was subjected to it as the basis for
tearning programming, Provided an application does
nol require any nonstandard processing, BASIC can
perform adequatcly.

COBOL

COBOL stands for COmmon Business Oriented
Language. It is the most frequently used language
in computer history and continues to maintain that
status even though its demise is regularly reported as
imminent. COBOL can be likened (0 a bus. Buses
arc uncomfortable, take longer than most other
modes of transportation, but are suited to many types
of trips. Similarly, COBOT. is uncomfortable to
code, it takes a long time to develop code, but it is
suited to many business problems. As an all-
purpose language, COBOL does most everything,
and it is written in a language that is close to English.

COBOL input/output processing is consistently
superior in efficiency and range of data structures
supported (see Table 15-1). COBQOL is not good for

real-time applications and cannot be used to code
reentrant or recursive structures. 1t is teamed with
multiuser software, such as CICS for telecommuni-
cation interface processing or IMS DB/DC Jor tele-
communication interface and database manipulation,
to build effective interactive, multiuser applications.

In the nontechnical areas, COBOL rates high on
availability of CASE tools, code gencrators, and
testing aids. As the most frequently used language, it
was first on the list of languages for which auto-
mated support was developed. It is a highly portable
language and is supported by many efficient com-
pilers. In the other nontechnical areas, COBOL rates
less desirable than SQL and Focus, but is compara-
ble to or better than other procedural languages.

Fortran

Shorthand for FORmula TRANslation, Fortran
gained popularity as a number-cruncher language
in the 1960s and has maintained a dwindling, but
steady, popularity ever since. Fortran’s weakness is
in the data and file structures it supports (see Table
15-1). It does not interface to DBMS software and
is limited to sequential, indexed, and direct files.
Also, input/output processing of most Fortran com-
pilers is slow, character operations are awkward and
not recommended, and data format control is more
limited than other languages.

Fortran’s strength is in the efficiency of algo-
rithms generated to perform numeric processing.
Fortran’s compilers usually are accompanied by a
subprogram library that includes many frequently
used algorithms for sort, statistical, and mathemati-
cal processing. Subroutine and subprogram process-
ing is facilitated through easily defined and accessed
global and local variables. The mixed mode data typ-
ing in Fortran is an important language feature
because mumeric processing will have different
results depending on the definitions of the fields
being processed.

Reusable progrums can be developed using For-

 tran, but no one would use Fortran to develop a com-
plete on-line, interactive system. Rather, Fortran
routings for numeric processing might be embedded
in a system developed in some other language.

Comparison of Languages 657

C

C is a high-level language developed to perform
fow-level processing.! s generality and lack of con-
straints coupled with autonomy of data structure
definition and a rich set of operators make it an
eftective language for many tasks, including interac-
tive, rensable, and recursive applications (see Table
15-1). A C program is a series of functions that are
invoked by embedding their names in code. Transfer
of control is automatic as is return processing. Sys-
tem operators, called escape sequences, are embed-
ded in the program and recognized by a preceding
backslash .

C is a concise, cryptic language that can be effi-
cient in the hands of an experienced, skilled pro-
grammer and ¢an be a mess in the hands of a novice
or poor programmer, “The language imposes virtu-
ally no rules regarding design or structure of pro-
grams and enforces nothing at all. This is not a
dummy -proof programming language, and it cer-
tainly is not for beginners” [Friedman, 1991, p. 398].
As such, the nontechnical aspects of the language
all range from low to high becausc the rating
depends on the skill of the programmer. For expert
programmers who understand how to build reusable
modules, C language provides the capabilitics
to build reusable libraries with applications built
from them.

Pascal

Pascal is a language designed to be unambiguous for
teaching students of computer science.” Programs
in Pascal are free-format, but the language contains
natural structuring syntax that can be indented to
make the language easily readable.
ConcurreniPascal provides for real-time control
over processing. Other versions of Pascal support
development of reusable and recursive programs and

1 C was developed at Bell Labs by Kernighan & Ritchig, 1978,

2 For instance, Cooper & Clancy, 1985, is a frequently used
Pascal text.

658

subprograms (sce Table 15-1). However, standard
Pascal cannot usc subroutine Hbraries since it
assumes all program modules are iastream, that is,
cmbedded within the code of a single program.
There is little contro! over interrupl processing in
the langnage, so abends cannot be inlercepled and
redirected. I/O processing is more limited than some
languages in not supporting random access files and
in very limited string processing.

Pascal is similar to C on the nontechnical char-
acteristics in that the readability, ambiguity, local-
ity, and so forth of the language arc dependent on the
author using indentation and scparation of state-
ments to ensore these characteristics, But, unlike C,
the language constructs of Pascal support readability
once the indentation is done. Pascal requires less
technical knowledge of hardware or opcraling sys-
tems to be efficient.

Because Pascal was developed as a teaching tool,
antomated programming supporl cnvironments are
available at least in academic settings.* These cnvi-
ronments require the student 1o enter the construct
desired; the software then displavs a template of
options for which the student fills in the blanks
of the selected subconstructs. There are also many
automated testing aids such as visual exccution
environments avaiiabie to support Pascal pro-
gram lesling.

PROLOG

PROLOG is short faor PROgramming in L.OCic.
PROLOG is the only strictly antificial inteltigence
language included in this group. PROLOG was
developed at the University of Marseilles in the early
1970s with the most commeon version in the United
Statcs that of David H. D. Warren. PROLOG is a
goal-oriented, declarative language with constructs
tor facts and rules. PROLOG Facts are pieces of
concrete, factual information. A fact might be: “A
part of a widget is a4 wid.” Another fact might be:

3 Thomas Reps, MIT, developed a Pascal programming envi-
romment for Cornell as part of his dissertation [Reps, 1984].

CHAPTER 15 Chocsing an implementation Language

“A wid weighs 1.23 pounds.” PROLOG rules
define how facts are assembled to make information.
An example of a rule might be: “I a widgel is
overweight, check the weight and tolerance of
gach component.”

PROLOG goals are data that match some selec-
tion criteria, for example, the probable cause of a
manufacturing problem specilied in the query: What
could canse finished widgets to be 3.2 pounds over-
weight? Subgoals, which would be subprograms in
the terminology of the other languages, are deler-
mined from the geal. In the cxample above, widget
components, their weight, weight allowances, and
how each is nsed in widget manufacturing might all
he subgoal information 1o be determined 1o answer
the guery. Goals are satisfied/answered by satisfy-
ing all subgoals. When a subgoal fails, an alternative
for arriving at similar information is found via logi-
cal backiracking through the rules. The subgoal
might remain unsatisfied, leading to a low level of
confidence in the deduced answer.

Although the constructs for PROLOG are simi-
lar in many ways to those of declarative, procedural,
and object languages, there are many significant dif-
ferences in bolh data and program processes (sce

Table 15-1). Data are facts that are normally stored

in the program rather than as separate files, Thisis a
limitation in using PROLOG for general purpose
busincss processing.

Program control is maintained through the order-
ing ot clauscs for execution and through the use of
verbs like fail, which initiates backtracking by fail-
ing a subgoal, or cit, which prevents any more back-
tracking when a subgoal is fullilled. Subprograms
are simulated via caflfreturn processing to clauses.
Iteration is performed via rocursive processing
of rules.

How one rates PROLOG on the nontechnical
aspects of the language depends on the size of the
problem being avtomated. For small problems, the
langnage can be compact, local, and linear. For large
problems, the language can be highly ambiguous,
noncompict, difficult to follow in a lingar manner,
and without local references to facilitate understand-
ing. Ironically, PROLOG is viewed as a good lan-
guage for novices with little exposure to procedural

languages. It is casy to lcarn if one can think in the
goal-oriented manner of the language.

Smalltalk

Smalltalk was developed as both operating environ-
ment and language during the 19705 at the Xerox
Palo Alo Research Center by the Learning Research
Group. It is an object-oriented language thal treats
everylhing as an object, even for instance, intcgers.
Smalltatk is highly customizable and can, therefore,
be used 1o design efficient applicalions.

Many impartant cbject-oriented concepts are
cmbodicd in the language, including abstraction,
encapsutation, and some class processing (see Chap-
ters 11 and 12). Abstraction is the definition of iden-
tifving characteristics of an object. Encapsulalion is
the tertm used Lo describe the packaging of data and
allowable processing on that data together. Objects
communicate with each other onlty by messuge pass-
ing. An individual object is an instance of a class.
Classcs describe objects that share common data and
pracesses but that also may have data and processes
that differ. For instance, the class emplovec might
have subclasses manager, professional, and clerk,
All subclasses are alse employees and share that data
and processing as well as their own, Tn addition. an
individual might be @ member of professional and
manager classes al the same time.

Smalltalk is a full-function, unconstrained pro-
grammuing language that can literally be used 10 do
anything (sec Table 15-1). The major weakness of
Smialltalk is that it docs not specifically support per-
sistent objects, also known as files. Bul il the file Is
an object, then it, too, can be processed in Smalltalk.

The strength of Smalltalk is in its use for event-
driven processing as in process control, heating sys-
tern monitoring, or just-in-time notification of
manufacturing needs. These Lypes of applications
use nonpersistent messages from the external cnvi-
ronment to drive the processing done by the appli-
cation; these applications do nol necessarily need
files for processing. Similarly, message processing
support in Smalltalk assumes point/pick devices,
such as a mouse, for interactive, nonpersistent com-
municaticn with the application vser. The only major

Comparison of Languages 659

caveat on Smalltalk use is that object orientation,
and therefore object-oriented programming, requires
a different kind of thinking than procedural language
programming such as COBOL.,

Ada

Ada, the official language of the U.S. Department of
Detense, with a user population in the hundreds of
thousands, has had more thought about its imple-
mentation than any other language. Ada was named
atter Ada, Countess of Lovelace, who originated the
idea for stored programs to drive the use of comput-
ing devices.

Ada’s design by commilttce has not resulted in a
perfect language, but in one that is better than most.
Current versions of Ada are object based rather than
object oriented. In object-based applications, pro-
grams are cooperative collections of objects, each
of which represents an instance of some object type.
All objcct types arc members of a hicrarchy of types
which are linked through processing rather than
through inheritance rclationships. Classes, rather
than types, are not formally recognized; there arc no
persistent objects such as files, and inheritance is not
supported (see Table 13-1).

Ada files, as in Smallralk, are defined as a type
within the construcis of the languoage and all pro-
cessing is on the type. Also, there is no real message
processing in Ada, at least as of 1992, Rather, the
syslem is fooled through function calls and parame-
ter passing to simulate message processing. Like
Smalltalk. Ada’s strength is its ability to support
cvent-driven processing, like missile guidance in
cmbedded defensc-related systems.

Future versions of Ada are expected to adapt mul-
ticlass inhcritance structurcs and processing,
dynamic binding of objects, real message process-
ing, and persistent objects that provide a variety of
data structurcs. With these extensions, Ada is suit-
ablc for virtually any application. The same warn-
ing about the difference in object-oriented thinking
cxpressed about Smallialk is also appropriate here:
Object-oriented desigh and program development is
different in kind than procedural develepment of
applications via languages such as COBOL.

660

PROGRAMMING

LANGUAGE

EVALUATION

Two ways of matching program languages are con-
sidered in this section. The first is to match the pro-
gramming language to the application type (from
Chapter 1), The second is 1o match the language to
the methodology used for developing the application
{from Chapters 7-13).

Language Matched to
Application Type

Few heurislics have been available to ginde pro-
gramrmets in matching a programming language to
application type. The lack of heuristics is due mostly
to the newness of most languages and their restricled
use in academia (e.g., Pascal and PROLOG). Part
of the reason for 4 lack of heuristics is also because
most businesses have developed only transaction
processing applications unti] the late 1980s; one or
two languages were sufficient for most computing in
the organization. With the development of query lan-
guages, Al applications and object orientation, more
langnages have proliferated and heuristics have
slowly developed. Keep in mind that as experience
with emerging paradigms, such as object orientation
and intelligent applications grow, the heuristics will
be refined and changed from those presented here.
For each application type discussed in Chapter 1, the
normally relevant characteristics and language
choices are discussed below and summarized in
Table 15-2.

T'tansaction processing applications are divided
for classitication inlo balch, on-line, and real-time as
the predominant form of processing. For batch
applications, COBOL and Focus are best suited (see
Table 15-2). For on-linc applications, all langnages
except Fortran and PROLOG might be used. For-
tran is excepted because of its poor I/O processing;
PROLOG is not recommended because data are usu-
ally embedded in the code, precluding most TPS
processing. Language actually chosen should be
hased on the transaction volume, with high velumc

CHAPTER 15 Choosing an Implementation Langudage

TPS moving away from the SQL and 4GL languages
toward compiled, full-function languages. If there
is a DBMS or other special data access software, the
choices narrow to Focus or COBOL depending on
the specific DBMS.

Some business systems are specialized beeause
they are real-time and have stringent response time
requirements in addition to heing critical to at least
one organization. Examples of real-lime TPS include
airline reservations, securilies transaction process-
ing, manufacturing process control, robotics control,
or analog 1/(} applications. For such systems, the
language recommendations are restricted to C, Pas-
cal, Ada, and Smatltalk {see Table 15-2). Any of
these langnages can be used to develop reentrant,
multiuser, real-time applications, although attention
to a specific dialect (or vendor version) is required to
choose a reentrant version of the language. An
alternative is to develop such applications using
assembler language as the reentrant base with one
or more of the application languages used for indi-
vidual modules,

Query processing is restricted to SQL, Focus, and
PROLOG {see Table 15-2}. SQL, Focus, and PRO-
LOG support declarative statements of what is
desired without having to anticipate the outcome in
advance. As such, they arc the only three languages
of these ten to support query processing, PROT.OG
has the added feature that it can explain ils reasoning
process and provide probabilities ol accuracy for
its data. Both SOL and Focus assume they are work-
ing on complete information and there is only
one answer to a given guery. PROLOG can be pro-
grammed to dcvclop cenfidence estimates in
answers as well as to develop all possible answers
to a qucry.

Duata analysis applications are those in which sta-
tistical roulines, trend analysis, or other mathemati-
cal manipulation of data is desired. Data analysis
applications can be programmed or can use pack-
ages combined with programs. For such applica-
tions, Focus, Fortrun, Pascal, PROT.OG, Ada, and
Smalltalk might be used {see Table 15-2). COBOL is
conspicuously absen from this list because it is not
as adept at data analysis as other languages. Focus
provides statistical modeling, financial medeling,
graphical processing, and query processing all

Pregramming Language Evaluation 661

TABLE 15-2 Application Type Matched to Language

Application Small-
Type SQL Focus BASIC COBOL Fortran € Pascal PROLOG Ada talk
TPS—Batch X X X X

TP5—On-Line X X X X X X X X
TPS5—Real-

Time X X X
Query X X

DSS/Data

Analysis X X X X X X X X
Al/Expert

Systems x

EIS X X X X

within its one langnage. As such, it is thc most full-
function data analysis too! in this group. The other
languages have the individual lools for a program-
mer 1o build a data analysis application, but the
assumption is that some processing would be done
by general purpose modeling languages (e.g., Sta-
tistical Analysis System—SAS.* If complex simul-
taneous equations are required, Focus is not the
appropriate language. Then, choices are restricted
to Fortran, Ada, or Smalltalk. Foriran dees not actu-
ally provide simultanecus equation solutions, but it
can be ‘fooled’ into performing as if it does. The
other languages are better choices for simultancous
equalion processing. Some dialects of C (i.e., Con-
current C) and Pascal (i.c., Object Pascal) might also
be used [or simultaneous equations.

ESS or DSS applications may have changing
requirements that are not well undcrstood due to the
unstruciured nature of the problem domain, For such
applications, C, Pascal, PROLOG, Ada, or Smalttalk
might be used (see Table 15-2), One or more of these
lunguages might be combined with purchased soft-

4 SAS is a registered trademark of the SAS Corporation,
Cary, NC,

ware packages to provide all the functions of
such applications.

GDSS applications almost always use packages
to support group decision processes, but might nse
C, Pascal, PROLOG, Ada, or Smalltalk for part of
the processing, depending on the environment (see
Table 15-2).

Finally, artificial intelligence applications, specif-
ically expert syslems, might use PROLOG (sce
Table 15-2). Only PROLOG supports inference
through logic programming. None of the other lan-
guages is appropriate to Al applications.

Language Matched to
Methodology

The experience with methodologies is similar to that
of languages in that few heuristics are Known to
guide methodology selection. Rather, at the present
time, a company tends to adopt and learn one
methodology and it is used for all applications,
whether appropriate or not. The position taken
here 1s that the methodolegy and language should
match the application type. In this section, the ten

662

CHAPTER 15 Choosing an Implementation Language

TABLE 15-3 Application Type Maiched to Methodology

Small-

Mecthodology SOL Focus BASIC COBOL Fortran € Pascal PROLOG Ada falk
Process X X X X X X X X
Data X X X X X
Object C+ X X X
languages are matched to methodologies which were AUTO MATED
discussed in Chapters 7-13.

Process methodologies which prevailed in busi- SUPPORT FOR
ness until the mid-1980s are most successfully vsed
with SQL, Focus, BASIC, COBOL, Fortran, C, Pas- PROGRAM
cal, und Ada (see Table 15-3). The other languages DEVELOPMENT

require too much attention to data or program design
to lead to optimal language use with process meth-
ods. Also, the vse of process methods should not be
used with data-intensive applications because of the
lack of specific attention given to data with such
methods. The C-language is here because il is
process oriented; if C4++ were the language, it should
only be used with object-oriented (OO) methods.
Similarly, Ada can be used here but it is best used
with OO methods.

Data methodologies balance the design of pro-
cesses and data evenly and are useful with SQL,
Focus, COBOL, C, and Ada applications (scc Table
15-3). For interactive applications in which the pro-
grammer needs only limited control, SQL and
Focus are useful. For more complex applications,
COBOL., with 2 DBMS and ielecommunications
monitor, provides interactive processing capabilities.
The process discussion on C and Ada applies here;
both languages can be used with data methods bul
are recommended with OO methods.

Finally, for object methodologies, C++, PRO-
LOG, Ada, and Smalltalk arc most likely to lead to
successful implementations (scc Table 15-3). The
languages omitted in the object category do not cas-
ily support one or more of the object lenets of poly-
morphism, message passing, class inherifance, or
encapsulation,

In the age of the smart machine, the availability
of developmental aids, CASE environments, code
gencrators, and testing aids such as debuggers,
incremental compilers, windowed execution envi-
ronments, and so on, all speed development of work-
ing code. Any language which has such antomated
development zids is assumed {o lead to increased
programmer productivity over languages that do not
have such aids (see Table 15-4}).

CASE tools frequently have built-in code
generators or have interfaces to other vendor’s code
generators, allowing you to mix and match the de-
velopment environment and the language generated.

The automated support tools include code gener-
ation tools, incremental compilers, and program gen-
eration cnvironments, All of these are loosely called
Lower CASE or Back-end CASE 100ls.

SUMMARY

In this chapter, a number of distinguishing charac-
teristics of languages were defined. These included:
data type definitions supported, data type checking,
operators supported. type of user processing sup-
ported, and processing for loops, conditional state-
ments, arrays, 1/0, and subprograms. In addition,
nontechnical characteristics included uniformity,

TABLE 15-4 Automated Support Tools for Code Generation

References 663

Product

Company

Technigue

ADW—Construction Workbench

C Drevelopment Environment,
O0SD/C++

Developer Assistant {or
Information Systems {DA1Syy),
Secure user Programming by
Refinement/DAISys

IEW

NeXTStep 3.0

ObjectMaker

Software Through Pictures

Svstem Architect

Teamwork, Ensemble

Visible Anabyst Workbench

Knowledgeware, Inc.
Atlanta, CA

Environments (TDE)
San Francisco, CA

SfCubed Ine,
Stamford, CT

Texas Instruments
Dallas, TX

NeXT Computer
Redwoad City, CA

Mark V Systems

Integrated Development

Popkin Software & Systems Inc.
New York, NY

Cadre Technologies
Providence, RI

Visible Systems Corp.
Newton, MA

Builds Pseudocode for
modulesthat can be used
1o Generate Code for
MsDOS, MVS

Object-oriented C++ code
development environment

Generates COBOL far IBM
mainframe, AS/4X), O8/2
Generates € Code for MSDOS,

05/2

Generates COBOL with
Embedded SQL

Generates C Code for MVS,
MsDOS, 05/2

Inferfaces to Telon and other
Code Generators

Object Oriented DB
development envitonment

Generates C or C++
Code for MsDOS, VM5,
Unix, AIX

Generates C or C++ Code
for Unix, AIX

Generates € Code for MsDOS,
0872

Generates C or C++ Code for
for Unix, 05/2, AIX

Generates C Code for MsDOS

ambiguity, compactness, locality, linearity, ease of

code translation, portability, compiler efficicney, and

availability of CASE, code generation, and testing
toels, Each of ten languages were described accord-
ing to the characteristics. Then the languages were
defined as appropriate for supporting diffcrent appli-
cation requirements and were discussed in terms of
their support for developruent of transaction, qucry,
data analysis, DSS, ESS, and ES applications.

REFERENCES

Ageloff, Roy, and Richard Mojena, Applied Fortran 77
Featuring Structured Programming. Belmont, CA:
Wadsworth Publishing, 1981.

Alcock, B., Hlustrating Pascal. New York: Cambridge
University Press, 1987.

Barnes, I. G. B, Programming in Ada, 3rd ed., Reading,
MA: Addison Wesley, 1989,

664 CHAPIER 15 Choosing an Implementation Language

Barnett, Eugene H., Programming Time-Shared Comput-
ers in Basic. New York: John Wiley, 1972,

Bjorner, D., and C. B., Jones, The Vienna Development
Method: The Meta-Language. New York: Springer-
Verlag, 1978,

Booch, Grady, Software Engineering with Ada, 2nd cd.,
Menlo Park, CA: The Benjamin/Commings Publish-
ing Co., Inc., 1987.

Bordillo, Donald A., Programmer s COBOL Reference
Manual. Englewood Cliffs, NJ: Prentice-Hall. 1978,

Clocksin, William, “A prolog primer,” Byfe, August,
1987, pp. 146-158,

Cooper, Doug, and Michacl Clancy, Oh! Pascal!, 20d
ed., New York: W. W. Norton & Company, Inc,, 1983,

Date, C. 1., and Colin Whilc, A Guide ro NB2, 2nd ed.,
Reading, MA: Addison-Wesley, 1988,

Friedman, Linda Weiser, Comparative Programming
Languages: Generafizing the Programming Function.
Englewood Cliffs, NJ: Prentice-Hall, 1991.

Gear, C. W., Programming and Languages. Chicago:
Science Research Associates, 1987,

Goldberg, Adele, Smalltelk-80: The Interactive Program-
ming Favironment. Reading, MA: Addison-Wesley
Publishing Co., 1984.

Higman, B. A, Comparative Study of Prograrming Lan-
guages, New York:; American Flsevier, 1967,

Information Builders, Inc., Focus Users Manmual.

New York: 1B, Inc., 1984,

Kernighan, Brian W., and Dennis M. Riichie, The C
Programming Language. Englewood Clills, NJ:
Prentice-Hall, 1978,

Martin, I., Fourth Generation Languages, Vols. 1-2.
Englewood Cliffs, NJ: Prentice-Hall, 1985.

S. Medema, C. H., P. Medema, and M. Bousson, The
Pragramming Languages: Pascal, Modula, Chill, and
Ada. Englewood Cliffs, NJ: Prenlice-Hall, 1983,

Nagrin, Paul, and Henry Ledgard, Basic with Style: Pro-
gramming Proverbs. Rochelle Park, K [ayden
Books, Inc., 1978,

Philippalis, A. 8., and Leonard J. Kazmier, Advanced
COBOL Programming, 2nd ed., New York: McGraw-
Hill, 1983.

Reps, Thomas W., Generating Language-Based
Environments. Boston, MA: MIT Press, 1984,

Stroustrup, Bjorn, “Dala abstraction in C,” AT< Bell
Labs Technical Journal, Vol. 63, Oclober 8, 1984,
pp. 1701-1732.

Warren, David, H. ., *““The SRI modcl for Or-parallel
execution of PROLOG—Abstract design and imple-
mentation issues,” Proceeding, 1987 Invernarional
Symposium on Logic Programming, August 31—
September 4, San Francisco, CA, JEEE, pp. 92-102.

KEY TERMS

Ada

ambiguity

array

array-oriented /O

automatic lype coercion

BASIC

bit data type

Booiean

C

case slatement

character string

COBOL

compactness

compiler cfficiency

conditional statement

control language
consiructs

data type

data type checking

date data type

dynamic memory
management

ease of code translation

exception handling

exit

Focus

Fortran

global data

input/output {1/0)

integer

language constructs

linearity

Tist-directed [/0

local dala

locality

logical dala type

EXERCISES

lnop
memoery management
mixed mode type
checking
modularization
object
operator precedence
Pascal
petsistent objeet
physical KO
pointer
portability
programming
PROLOG
PROLOG lactls
PROLOG poals
PROLOG rules
PROLOG subgoals
pseudostrong 1ype
checking
reentrant
real number
record-orienied [FQ
recursive
reusabilily
set-onented 10O
Smalltalk
S5QL
static memory
management
strong type checking
table
typeless checking
uaiformity
usce-defined data type

1. For any (or all) of the cases in the Appendix,
define the application concept as baich, on-line,
real-time, or a mix of these. For the applications
you choose, select an implementation language
and develop the reasons why the language you
recommend is best. What specific features and
characteristics of the language make it your pre-

ferred choice?

STUDY QUESTIONS

1.

9.

10.

11.

12.

13.

14.

15.

Define the following terms:
Boolean data type rcentrant
dynamic memory set-oriented 1/O

management static memory
lacal data magagement
modularization type checking
operator precedence user-defined data type
pointer

. Why should we concentrate on language selec-

tion rather than on programming?

. In your opinion, is programming going to dis-

appear as an activity? Justify your response.

. Whai is a data type and why is it important in

language selection?

. When is strong type checking important?
. Why do you think type checking is absent from

a language like COBOL?

. Why is type checking important in object-

oriented programs?

. Define three logic-related language constructs

and discuss their differences.

What is operator precedence? Why, as a pro-
grammer, must you be aware of uperator prece-
dence in a langnage?

In an idecal program, how many exits should a
module contain? Why?

Define the three types of arrays that are com-
monly supported in languages.

For SQL, COBOL, Fortran, Ada, C, and Pas-
cal, define the type of /O oricntation as record-
oriented, set-oriented, array-oriented, or
list-directed. What difference does the 1/O ori-
entation make?

What are the differences between local and
global data? How do they relate to properties
ot programs such as reusability, reentrancy,
and recursion?

Contrast static and dynamic memory
management.

Why is exception handling desirable in a lan-
guage? Why don’(all languages support excep-
tion handling?

16.
17.

18.

19.

20.
21.
22.

23.
. What arc the object-oriented languages? How

25,

Study Questions 565

What level of code sophisticalion is required lo
supporl multiple concurrent users? Why?

What is the relationship of recursion,
reentrancy, and reusability of programs?

List three nontechnical language characteristics
and describe why they are important in lan-
guage selection.

Define language portability. Is this property of
growing or decrcasing interest to businesses,
and why?

What is COBOL's appeal?

Why is C a potentially dangerous language?
Describe how and why PROLOG diflers so
much from the other nine languages in this
chapter.

How does PROLOG handle databases?

do they differ from the other languages?

Even though SQL and Focus both use implicit
I/O, they arc different. What is the main differ-
ence in the way they treat data? Which lan-
guage is ‘cleaner’ in guaranteeing the results of
a query?

* EXTRA-CREDIT QUESTIONS

1.

2,

PROI.OG is not the only logic-oriented, artifi-
cial intelligence programming language. Lisp is
also popular. Investigate the differences between
the two programming languages using the char-
acteristics discussed in this chapter.

Object orientation and artificial intelligence are
two characteristics of applications that are of
growing interest to businesses. Can a typical
COBOL (ransaction processing application in-
corporate object and Al tenets? Will COBOL
change or will other languages come to be used?
Can other languages be *gralled on’ or inter-
faced to COBOL gracefully? Be sure to docu-
ment your arguiments.

CHAPT EIR

~ PURCHASING
HARDWARE AND
~ SOFTWARE

INTRODUCTION

When PC software companies first created the end-
user market in the early 1980s, the number of PCs in
companies was about one per every 4,000 people.
By 1986, the number of PCs was about one per
every 100 people; companies had settled on stan-
dard, supported products for sprecadsheets, data-
bases, and word processing. In the intervening years,
there was a mad scrumble for market share during
which vendors’ claims were sometimes unfounded,
the notion of vaporware was created, and major
evaluations were done by buying companies, For
cvery new market that develops, a similar set of
activities takes place. In the 1990s, object-oriented
languages, experi systems, imaging systems, mulfi-
media, CASE products, and distributed databases
are the new markets thal will have developed rec-
ognized leaders by the end of the decade. At besi, a
company selects a product and vendor that will
weather the storms of industry growth and emerge
a leader. At worst, they purchase several products
before settling on one that works for their company.

The purchasing process trics to minimizc the
guesswork and provide a rational, objective method
of selecting hardware, software, or services. The
techniques can be used on products of any type.
There are two basic processes, one informal and one
formal. There is a great deal of overlap in the activ-

666

ities. The major difference is that the formal process
is usually conducted in 2 more open environment,
frequently for legal compliance. All governmental
contracting for goods and scrvices, for instance, 1s
subject to a formal procurement process that
includes the solicitation of proposals from vendors.
In this chapter, we discuss how to evaluate and
choose between alternatives for application use. The
trade-off between building the item in-house or pur-
chasing it elsewhere is commonly called a make-
buy decision. This name is notl always accurate,
however, because you might be comparing develop-
ment altcrnatives, for instance, having a consulting
company build a customized application versus pur-
chasing a software package. These alternatives ail
are considered in the make-buy decision process.
RFPs can be used for deciding between vendors that
have the same package but are selling turnkey prod-
ucts including all hardware and software in an
‘environment,’ or for hardware only, selltware only,
services only, or some combination of those three.
In this chapter, we first discuss the formal pro-
curement process, describing the steps performed in
the purchasing decision process. The informal pro-
cess is then described and compared with the for-
mal process. Then, the contents of each REFP section
are detailed. Next, we discuss the sclection process
and criteria that are important to it. Finally, auto-
mated support tools for RFP management and eval-

%
uation are presented. The ABC case is woven
throughout the discussion, providing examples of the
major points,

REQUEST FOR

PROPOSAL

PROCESS

A request for proposal, or RFP, is a formal, writ-
ten request for bids on some product. [n our context,
an RFP might rclate to hardware, firmware, soft-
ware, or services such as programiming or operations
management. Also called RFQ, for request for
quotation, an RFP provides formal rcquirements,
ground rules for responses, and, usually, a stan-
dard format for the proposal responses. The basic
stages of the request for proposal process, which
ar¢ discussed tn the ensuing sections, include the
following:

Develop and prioritize requirements
Develop schedule and cost

Develop requests for proposal

Receive proposals

Evaluate proposals and select alternative

MR ks =

Develop and Prioritize
Requirements

The initial stcp in all soffware engineering projects,
regardiess of whether it is going out [or bids or not,
is to determine the requirements. When proposals
are solicited, the requirements define the problem
and the features and functions of the solution that
will constitute the work of the bidding companies. In
general, the requirements provided in an REFP are
identical to those developed during analysis. If a
requirements specification is available, it should be
appended to the RFP and referenced in the docu-
ment. If ne requirements specification has been
developed, at a minimum, the topics summarized
below should be provided.

1. General instructions
2. Statement of werk

Request for Proposal Process 667

Technical specifications

Management approach

Financial requirements

Company information requirements
Vendor response guidelines

Standard ceniract terms and conditions

el B

The level of detail and specificity of the require-
menis varies with the context, situation, and
company. Some companies spell out every item in
excruciating detail, leaving nothing to the vendors’
imaginations. The advantage of such detail is that the
proposals can be easily compared to the list of
requirements to determine compliance with the basic
request. Also, the likelihood of misunderstanding of
requirements is lower when more detailed descrip-
tions are used. The disadvantage of detailed require-
ments is that, in information systems work, the
complex engineering naturc of the work frequently
requires creative design that might be stifled or over-
shadowed by too specific a requirements list. The
creative aspects of systcms design also provide for
cost differentiation that might not otherwise surface.
To overcome this problem, when creativity is de-
sired, it can be specifically identified as a sclection
criteria in the RFP.

There are four types of requirements: technical,
managerial, financial, and company. Technical
requirements address the specific hardware, soft-
ware, or scrvices to be provided. Managerial
requirements identify the level of detail at which
schedule, staff plans, and staff management should
be discussed in the proposal. Financial require-
ments list the type of bid desired and the expected
format for the financial portion of the response.
Company requirements list the type of vendor
information to be supplied to assure the client of
vendor ability to complete the work successfully.
The details of cach scction are discussed in the RFP
contents section.

Develop Schedule and Cost

The schedule and cost developed during an RFP
process are neither as detailed nor as refined as
if the item costs were devcloped in-housce. If the
in-house estimate is being compared to the vendors’

668

estimates in a make-buy decision, a detailed sched-
ule and cost should be developed. Tf the RETP is com-
paring only external purchase options, less detail and
precision are required. In this case, the schedule pro-
vides an estimated cnd-date for the item to be used in
comparing the proposais. The expected end-date
might be omitted and left as a proposal item, or
might bc listed as either required or desired in the
proposal.

QOccasionally, a user manager will mandatc the
desired completion date for a project. In that case,
the in-house estimates are developed to determine
the realism of the mandated date. If the date is
unlikely because it is very ditferent from the esti-
mate, the vendors can be asked in the proposal re-
quirements how they deal with completion date
problems and a tight schedule.

The planning process is the same as that followed
in Chapter 6, with the level of precision adjusted to
fit the sttuation. Requirements are converted into a
lask list. Each task’s development time is estimated
for the most likely outcome. Sophisticated estimates,
including optimistic, average, and pessimistic times,
may or may not be developed. During the proposal
evaluation process, vendor time estimales are com-
pared to the planned completion date.

A similar activity is done {or personne! cstimates.
A tough estimate of the number of people and their
skill levels should be developed, based on the lasks
and times for each task. During proposal evaluation,
the estimated project (cam skills are matched against
the skills of the people to be assigned to the project
by each vendor. The closeness of match indicates
several things. First, the closer the match, the more
confidence you can have that the vendor understands
the problem. Second, the closer the match, the more
likely the vendor’s reasoning is consistent with your
reasoning about the project’s needs. Third, the less
close the match, the more likely the vendor is staff-
ing the project with people who are learning new
skills and who, thercfore, will not be fully knowl-
edgeable aboul the technelogy or application area
of your problem. This third casc is not necessarily
bad, but it does imply that there will be one, or pos-
sibly two, key person(s) on whom the suceess of the
project resis. This places vou, as the client, in a
somewhat more vulnerable position because you

CHAPIER 16 Purchasing Hardware and Software

must rely totally on the key person(s), ensuring that
they remain on the project until it is operational.
Staffing estimates are used to develop personnel
costs for the project. If the proposal includes hard-
ware or softwarc, cach item should be priced at the
best retail prices available. For instance, MacWorld
and PC magazines include tear-out pages of adver-
tising by discount vendors for both hardware and
softwate. Professional data sources, such as Data-
Pro™ ! provide retail prices which can he used as a
basis to which proposed costs might be evaluated.

Develop Request for Proposal

The steps in developing the RFP are first, to deter-
mine likely vendors; second, select from the likely
vendors the few that best meet your require-
ments; and third, develop and send the proposal to
the vendors.

Determine Likely Vendors

Several stages of information gathering precede the
actuval bidding process. First, potential vendors are
identified. Vendor identification can be from a com-
mercial information service, such as DataPre'™, or
from trade magazine advertisements, for instance,
from PC Magazine, Computerworld, or Network
Week. This process should identify tem or more
vendors.

Narrow the Number of Vendors

When potential vendors are identified, they are con-
tacted and requested to send information. Depending
on the company and item, this can be an informal
telephone call or can be a farmal, written request
for information (RFI). Documentation on the prod-
ucts requested is reviewed to narrow the number of
alternalives 10 a manageable few, usually between
two and five.

The information review frequently identifies a
need for more information to differentiate between
products. Either requirements are refined or more
information is obtained, or both. Anecther round of

1 DataPro is a trademarked name of DataPro, Inc., Delran, NJ.

information gathering might then take place. At this
point, remaining vendors might be called in to pre-
sent their product(s) and demonstrate how they
work. Specific technical questions 1o provide miss-
ing information are asked.

The decisions after this round of infermation
gathering depend on the nature and use of the prod-
uct being purchased. If the number of wsers is small
and the product is inexpensive {¢.g., under $10,000),
a selection might be made. The more users and the
more expensive the product, the more extensive the
evaluation. Other companies that use the product
might be solicited for experience with the company
and product, and perhaps, are visited for an on site
demonstration. In these cases, when the field of ven-
dors is narrowed to between two and five, an RFP is
developed and proposals are requesicd.,

Develop and Send the Proposal
to Vendors

The RFP can be developed in parallel with vendor
identification. There is some risk that doing so, how-
ever, will produce a biuscd requirements set that
favors one particular vendor. The best approach,
therefore, 18 to develop the requirements first, then
search for vendors. When the vendor list hus becn
narrowed to between two and five, the RFP is final-
ized, vendors are notified that they will receive the
proposals, and the proposals are sent or delivered to
cach vendor, From this point, the requesting com-
pany begins to0 manage the proposal process.

Manage Proposal Process

The proposal process begins with release of an RFP
to vendors and continues until the proposals are
delivered and the selection process begins, The pro-
posal process might include one or more formal
meetings, informal meetings, inquiry sessions, or
other methods of information exchange between the
vendors and the requesting organization, The more
money invelved and the more complex the proposed
work producl, lhe more process management is
needed to ensure equitable treatment of atl vendors.
Equitable treatment means ensuring that all vendors
receive the same information. Firm compliance with

Reguest for Proposal Process 669

due dales and locations for delivery of proposals is
maintained. Lale or incorrectly delivered proposals
arc dropped from further consideration, providing
equitable treatment of alt vendors.

Assume a proposal is being let by the local
palice department for development of an applica-
tion that would deploy computer terminals in each
police car for interactive leok-up of license plates,
arrest warrants, and moving violatiens. The appli-
cation requires both hardware and sefiware to be
developed for 14,000 police cars in a large metro-
palitan area with over 3,000,000 inhabitants and
covering several jurisdictions. Examples might be
Washington, D.C., Los Angeles, New York City,
Houston, or Chicage. Hardware cost alone is over
$2,000,000. The databases ezch will have millions of
entries with issues to be resolved about how and
when infermation is removed from the files. [nter-
faces to several other applications for license plate
information and access to arrest warrants from mul-
liple local and national databases are desired.

The proposed application has several sources of
complexily, the least of which is that vendors prob-
ably know little about how a police officer spends his
day. When New York City let a similar contract for
its police force, they had a formal announcement of
the proposal to vendors. Vendors were selected and
invited to the presentation by mail based on previous
contract work or reputation. Nonsolicited vendors
were also welcome in response to announcements
of the RFP that ran in the local newspaper for scv-
eral days.,

At the formal presentation, each vendor was
inviled (o spend up to four hours travcling with an
officer to view the tasks firsthand, for which the
application would be built. A specific officer was
identified as the liaison for these tours.

In addition, the liaison officer was available for
questions at any time until proposals were submitted.
If questions were asked by a vendor, the question
and response were tecorded and a list of all such
queries was sent to all vendors attending the pro-
posal announcement meeting. The purpose of pro-
viding all queries and responses to all vendors was to
ensure that information inadvertently left out of the
RFP that might altcr the decision process could not
be used by one vendor o the detriment of the

670

others. By giving cveryone all responses, every ven-
dor had the same information.

Halfway through the two-month proposal pro-
cess, another meeting was held for vendors to come
ask morc questions and to clarify the requirements
from the document. That meeting was well attended
but contzined no real information. When one person
was asked why he bothered attending, he replied,
“To see what the competition asked.”

Each vendor presented his or her proposal on the
due date and left the written copy for NYC review.
Each vendot, then, heard the other vendors’ propos-
als and had some sense of the differences between
themn. [romcally, the company with the best solution
lost because the compuny was too small. One short-
coming of the REFP was that it had not identificd
company size as a selection criterion; if it had, the
vendor would not have wasted his time bidding.

Evaluate Proposals and Select
Alternative

The sections of the proposal responses are each eval-
uated separately, then summarized together. The
technical evalnation reviews that requirements are
met and scores the proposal based on the priority cri-
teria developed during the preparation of the RFP.
A benchmark, or comparison test, might be used (o
identify differences between hardware or software
packages.

The management approach is evaluated for the
type, quality, and nature of staff and vendor com-
pany resources proposed for the work. A financial
evaluation is developed to show the present valuve
of the proposed amount(s). Other analysis, such
as payback period, or average cost per vendor
employee, might be developed for comparison pur-
poses. Next, the vendor’s prior experience with the
firm, similar applications, and business reputation
are ranked to evaluate the vendor’s capability to do
the proposcd work. Finally, each section is weighted
again for comparative section importance, creating
a summary of the ratings and final weighted score for
each vendor. Objectively, the vendor with the high-
est, overall weighted score is selected for the work,
Each type cvaluation is discussed in the evaluation

CHAPTER 16 Purchasing Hardware and Software

sections. After selection, a contract is negotiated and
work begins.

INFORMAL
PROCUREMENT

Most of the same information requircd for the REP is
required for the informal procurement process. The
major diffcrence is in the approach. In the informal
process, few, if any, written documents are used for
vendor-client communications. Rather, telephone
calls, meetings, and document reviews are the
major sources of information. The process of selec-
tion 18 similar to that of the RFP process, including
trials and benchmarks for acceptance of the item
being procured. '

Negotiation is verbal and may go back and forth
between the principals for several weeks. Vendors
signify agreement with the negotiated terms via a
memo, A memo proposal summarizes the main
points of agreement, then lawyers are called in, as
with an RFP, to add the iegal terms.

CONTENTS OF RFP

RFP contents include 2 summary, information on
the technical, managerial, company and financial
aspects of the bid, a schedule of the process, selec-
tion criteria, vendor response requirements, and any
standard contract terms (e.g.. for EEO or OSHA
compliance). Each RFP section is detailed below to
identify optional and required information.

Vendor Summary

The Vendor Summary section provides a short, onc-
page summary of the work to be done (see Table
16-1). General terms and conditions of the proposal
process are usually first to allow vendors to quickly
decide whether or not they are interested in the
engagement. The contents of the general instructions
sections should include proposal instructions, loca-
tion and datc for proposal delivery, dates for bidders’
conferences, and contacts for status reporting and
inquiries.

TABLE 16-1 Detailed RFP Outline

1.00 General instructions

2.0) Statement of work
2.1 Description of work to be performed
2.2 Project milestones and deliverable products
2.3 Criteria for vender qualification

3.0 Technical specifications
Technical outlines arc in Tables 16-4, 16-5, and 16-7
for hardware, nctwork, or operating systern, and
customer software or package, respectively.

4.0 Management approach
4.1 Schedule and staffing
4.2 Support requirements of vendor
4.3 Repotting
4.4 Stalf reporting structure and problem
manage ment

3.0 Financial requirements
6.0 Company information
7.0 Vendor response guidelines

8.0 Standard contract terms and conditions

Required Information

The requirements tist details the requirements of the
work as described in the sections on hardware and
software. The section can refer to an attached docu-
ment that might have been developed in-house for
functiconal requirements of the application, hard-
ware, or software, In any case, requirements should
be listed and identified as mandatory or optional. A
set of prioritized weights for the requirements should
also be developed for use in scoring, but weights
should not be published in the RFP. There are four
general classes of requirements: technical, manage-
ment, corporate, and financial.

Technical Requirements
GENERAL REQUIREMENTS.

The require-

ments should place the company and problem in a
context for the vendors. First, a brief overview of the
industry, company, and work domain is appropriate.
Then, a summary of the problem being automated
is presented. The major complexity, such as geo-

Contents of RFP 671

graphic dispersion across 16 states, should be identi-
fied. Then, the details of work to be provided are
described.

DETAILED REQUIREMENTS. The work might
include hardware, software, programming services,
or other IS services. The criteria for each item should
be detailed as much as possible. In general, regard-
less of the type of procurement, the features and
functions of the equipment should be described in
sufficient detail to enable the vendor to design a
solution. Functional requirements—what—the item
is expected to do are described in detail. Volume
of data, throughput, response times, and growth
requirements are identified. The type, contents, tim-
ing, and format of intcrfaces also are provided. A
hardware interface might list, for instance, a network
interface connection to a fractional T-1 (cablc) ser-
vice for internetwork communication. A software
interface might list, for instance, a DBMS interface
connection to a SQL. server. An application inter-
face might list, for instance, clcctronic messages to
be sent lo an Accounts Receivable Application.

For services, the work description varies depend-
ing on the work. The two most common scrvice
RFPs request propesals for software development
and for outscurcing of operations. For software
services, the application requirements are the infor-
mation provided. For vutsourcing operations, the
business functions included and any existing job
descriptions relating to those functions should be
provided to the vendors.

Diagrams, tables, and lists should be supple-
mented by text to provide clarification of incom-
plete, misleading, or ambiguous diagrams. For
instance, a data flow diagram cannot describe timing
of processes or process interrelationships that might
be important. They also do not include constraints,
need for simultaneous processcs, and s on. Re-
gquirements for these items would be described in
text as requited.

AUDIT AND APPLICATION CONTROL RE-
QUIREMENTS. Reeall from Chapter 10 that
audit controls are frequently needed to prove
processing. The audit and control section of the
RFP identifics the minimum acceptable levei
of auditability required. If awdit controls are in

672

compliance with laws or other professional guide-
lings, the requisile laws und guidelines should be
referenced.

Vendors’ designs might assume human interven-
tions to ensure accurate application processing. A
reguirement should be developed to surface such
assumplions, For instance, controls might include
data inlegrity, data and process access, exception
management, and print control of prenumbered doc-
uments (e.g., checks). These examples usually
require manual interventions supplemented with
intcractive processing to recover from failures or to
fix hardware problems. For instance, a check might
jam in a printer after it is printed. Both softwarc and
human procedures are required to reprint the check
and to acecount for the damaged check. (See Chapter
10 for types of failures that should be planncd.) Ven-
dors should be required to identify and detait ali such
interventions as part of their proposal.

PERFORMANCE REQUIREMENTS. Perfor-
mance requirements include manuval, hardware, and
software performance. For instance, hardware per-
formance might define acceptable limits for down-
lime, precision for mathematical computation, or
cycle time.

CONVERSION REQUIREMENTS. Recall that
conversion requirements define the required changes
from the current environment Lo the new automated
environment (see Chapter 14 (o review this discus-
sion). The RFP typically identifies data for conver-
sion, including the current format, current volume,
and growth required. Conversion timing constraints
should be identified if any exist, The vendors’
designs should describe the target database for the
data and a migration path for conversion. The ven-
dors’ conversion plans also should cstimate conver-
sion impacts on users, computer operations, and
project staffing.

TRAININCG. Training to be provided as parl of the
contract should be listed as a required topic of
the vendors. Training options can be teft open to
vendor proposal or be specified as requirements.
Training might be provided tor users, software main-
tenance staff, operations staff, or user support staff.

CHAPTER 16 Purchasing Hardware and Soffware

The type of training can be one-on-one, pro-
grammed, individually self-paced, classroom,
computer-bascd training, or some variation of these.
Training information provided might inciude the
type, number of sessions, location, and audience for
training. The qualifications of expected trainers
should also be requested.

ACCEPTANCE. Acceptance criteria, specifying
the contents and timing of the acceptance test,
should be identified so the vendor knows how work
will be judged. Acceptance criteria might include
type and amount of test data, length of time for par-
allel and pilot runs, phased cutover approach and
speed desired (e.g., five locations per month for five
months), and performance criteria for success {(e.g.,
five consecutive days with all accounts in balance at
the end of daily processing).

Hardwarc and software packages are usuvally
benchmarked to verify that they perform as adver-
tised. A benchmark is & comparison test bebween two
or more configorations. The contents of the test are a
suite of application programs that are representative
of the expected work load of the production system.
A benchmark test provides you the ability to com-
pare throughput performance with the representative
work load. In addition to the benchmark which pre-
cedes installation, hardware and software packages
might also be run through a trial period similar to
that described above for acceplance.

Management Approach

SCHEDULE AND STAFFING. Vendors should
be required to develop a schedule for the proposed
work. Pert, critical path (CPM), Gantt charts, or
other graphical schedules might be required. Mile-
stones for the project and deliverable work products
should be identified as specific requirements. The
discusston of work should be required to include
number, timing, and skills of the expected employ-
ees. For contract software development, vendors fre-
quently attach resumes of the intended project
manager{s} and preject feam members for client
informalion. If the client wants the right of refusal on
all employees, a representative set of contractor statf
resumes should be provided for clicnt review.

PROJECT MANAGEMENT. Project manage-
ment is an important issue in an RFP because it fre-
quently identifies the one or lwo people the client
will work with most closely. The requirements can
include reporting structures, management of work,
and problem resolution policies of the vendor
firm. In general, vendors should identify an on-site
manager and a more senicr, vendor manager 10 over-
see and guarantee the guality and quantity of ven-
dor work. The resumes of one or both of those
contacts should he required in the response to allow
assessment of the qualifications of the managers for
the proposed work.

PROJECT REPORTING. Status reporting form,
content, and timing should be requested of vendors.
This can be left 1o the vendor to describe, or can be
stated as a requitement for compliance by the ven-
dor. Normally, status meetings arc held as required
or weekly, whichever is more often. A written sta-
lus report should be required to identify work com-
pleted, progress against the schedule, problems
needing resolution for project completion, and work
assignments for the next period.

VENDOR ASSUMPTIONS. Spccial vendor re-
quirements should be identified. The idca behind this
scction is that there should be no surprises because
of erroneous assumplions by a vendor after a selec-
tion is made. The vendor’s assumptions are stated
in the response to ensure that the client also shares
the same assumptions. Any hardware, configuration,
purchascd software, or facilities alterations assumed
by the vendor to be available for their use are
solicited. For instance, when vendors build custom
softwarc, they normally assume that their employees
work at the client site, use client computing equip-
ment and software, and follow the client’s cmploy-
ment practices.

The vendor’s expectations and type of support
required from the client should be identified. For
instance, copying, clerical, and secretarial support
might be expected. In addition, access to the users
should be identified with estimates of the num-
ber and expccted participants for data gathering
meetings.

Contents of RFP 673

Further assumptions about how application infor-
mation will be entercd inte the computer (e.g.,
kevboard entry by clerks, keyboard entry by pro-
grammers), the availability of computer resources
for testing, and the frequency of tests for each ven-
dor staff member should be identified,

Company Information

Information in this scetion should qualify the vendor
as viable to perform the work. Standard company
information required in an RFP includes the com-
pany history, ownaership, growth, current size, pre-
vious contracts with the requesting company, and
references for similar work. If the company performs
a specialized service, such as LAN installation and
service, it can be highlighted in this section.

Financial Information

The last of the requirements is (or a cost estimate of
the work. Cost estimates vary depending on whether
the work is for hardware or software or services (see
summary in Table 16-2). In general, the vendors’
respanses provide the opening for negotiation of the
financial aspect of & procurement. Except for fixed-
price bids defined below, the price quoted is rarely
nonnegotiable.

For purchased hardwarg, the options arc to lcase,
lo lease with an opiion to buy, or to purchase the
equipment. Under a leasc option, equipment is on
loin from the vendor and is paid under a monthly
leasing arrangement. In general, the more equip-
ment ledsed, the more flexible the vendor for lease
negotiation.

The lease with option to buy provides a basic
leasing arrangement with some percentage of the
lease payment applied to purchase of the equipment.
At the end of the lease period, the lessor has the
option of returning the equipment to the vendor or of
paying the vendor the residual price (i.c., the
remaining value of the cquipment) and purchasing
the itcms.

A purchase option idenltifies the toial current
cost of the equipment and the payment terms that
can bc offcred to entice a purchase. Freguently
the purchase of very expensive equipment (e.g.,

674

TABLE 16-2 Financial Options

Itcm Being
Acquired Financial Oplions
Hardware Lease
Lease wilh Option to Buy
Purchase
Software Base License Fee
Plus
Monthly/Annual
Muintenance Fees
Services Time & Materials (T&M)

Fixed Price
T&M with Ceiling

3250,000+) can span several years and the variations
between proposals can be great.

Software package purchases usually include a
one-time license fee with a monthly maintenance
fce, both of which are negotiable. The more sites and
higher namber of users, the lower the per copy price
of software. As the numbher of sites and uscrs
increascs, the average incremental cost per user
decreases. The goal, then, of the licensing options is
to have the vendor define available options from
which a negotiation begins.

For services, the financial options are a fixed
price, time and materials (T&M) estimate, or T&M
with a ceiling (i.c., semifixed). A fixed price bid
means that the work is contracted for a set price and
neither side is expected to renegotiate the terms
unless a major change in the contractual arrange-
tnents occurs. Fixed-price bids can be analyzed with
no change.

Time and materials bids (T& M) sum the total
cost of personnel time plus the cost of paper, scc-
retarial, copy, computer, and any other vendor-
supplied support in doing the work. T&M bids are
frequently presented as a range of times and costs,
Optimistic, realistic and pessimistic estimates might
be provided. The formula for determining the cost
to bc used in the financial analysis develops a
weighted average cost which favors realistic esti-
mates (see Figure 16-1).

CHAPTER 16 Purchasing Hardware and Software

Bids that are T&M with a ceiling purport to pro-
vide the best risk sharing between vendor and client.
Fixed-price bids put the risk of not completing the
work as scheduled on the vendor who loses any
moncys above the bid price. T&M bids place the risk
on the client who pays for all work until it is done
whether it is on schedule or not. T &M with u ceil-
ing tries to sharc the risk by allowing T&M, assum-
ing the work is on budget, or a ceiling with vendor
risk if the schedule is not kept. Whether this notion
works or not in reality is subjcct to dcbate. In any
case, the ceiling price is most commonly used in
comparisons since most projects tend to end up at
that price anyway.

Schedule of RFP Process

The schedule provides important dates throughout
the RFP process, including all dates and periods
of time for interaction between the vendors and
requesting company, and the due date for the RFP. In
addition, it should include the important dates for
requesting company action, especially the decision
date for the winning proposal.

Description of Selection
Processes

The more vendors know about the selection process,
the better able they are to determine if it is worth
their elfort to prepare a proposal. Specific require-

Weighted Avarage Cost = ({Optimistic + {2 * Realistic}
-~ Pessimistic) / 4)

Example:

4.2 Person Years
6.0 Person Years
10 Person Years

Total Optimistic Time
Total Realistic Time
Total Pessimistic Time =

WAC=((4.2+ (276} +10)/4)=262/4
= B6.55 Person Years

FIGURE 16-1
Formula

Weighted Average Cost

ments that might alter 4 vendor’s interest in bidding
arc especially important. For instance, if only com-
panies for which the proposed work is less than 10%
of net income will be considered, this should be
made known,

Other information that might be provided is a
brief description of the selection process in terms of
required and mandatory functions, and the relative
importance of the four major areas of information:
technical, management, financial, and company. The
individual weights should rever be identified ot the
responses will be written to get a good score rather
than to address the design issucs.

Vendor Response Requirements

An optional part of an RFP is the format for the ven-
dor’s response. The argument for requiring a set
responsc is that the comparison of multiple propos-
als is simplified when the responses all use the same
format. The disadvantage of a fixed response is that
some important area of consideration that might
have been overlooked in Lthe RFP or in the cutline for
the response, might never surface until after a vendor
1s selected. Some companies opt for requiring the
financial data to be identical but allow discretion for
the remainder of the vendors’ responses.

The major advantage of a standardized vendor
Tesponse is an easier comparison of responses. Uf
there is no standard format, you must first find the
answer to each piece of desired information in each
proposal, then create a cross-reference document,
or otherwisc identify cach item for casy reference.
Having no standard format also requires you to
be much more caretul in reading every document
to ensure that you have identified the requisitc
information.

The response outline should be tailored to fit the
specific proposal and to ease response evaluation.
In general, the seciions follow the requirements
above: Technical Response, Management Approach,
Corporate Information, and Cost/Price. A fuil
outline for a vendor response is provided in
Table 16-3.

One of the most important standard response for-
mats 1s for financial information. Each vendor usu-
ally provides his own information in his own format

Contents of RFP 675

TABLE 16-3 Vendor Response Outline

1.0 Technical response
1.1 Overvicw of the system
1.2 Diagramys) of processes and data
1.3 Configuration diagram(s)
1.4 Performance data
1.5 Detailed cxplanation of the system features
and functions
1.6 Compatibility {(with other client equipment.
applicalions, etc.)
1.7 Degree of risk in using proposed hardware,
software, or application
1.8 Maintenance estimates
1.9 Reliability
1.10 Quality assurance and control
1.11 Training
1.12 Deliverable products

2.0 Management approach

2.1 Organization

2.2 Personncl und manpower conirols

2.3 Vendor/subcontractor and client relationship

2.4 Delivery schedules and project plans

2.5 Proposed staffing

2.6 Consullanls to the vendor (e.g., subcontractors)
2.6.1 Subconiractor identification
2.6.2 Subcontractor relationship and

management strucrurc
2.7 Status reporting schedule and approach

3.0 Corporate information
3.1 Company background—QOwnership, size, age,
experience, capabilitics, products, services
3.2 Vendor previous experience with the client
COmpany
3.3 Vendor experience with similar projects

in such a way that his proposal is favorably pre-
sented. The risk is that information from several
vendors will not contain information in such a way
that it can be compared. The solution to this problem
is to tell the vendors exactly how to present finan-
cial information. A simple format that summarizes
all costs for easy usc and analysis is best. Figure
16-2 provides a sample financial summary for-
mat that includes all informatjon that you, as the
requesting organization, might need to compare
the proposals. In customizing the form for a

676 CHAPTER 16 Purchasing Hardware and Software

PRICE PROPOSAL FOR VENDOR

Application Name Murnber
Development Operating Expenses ____

ltern: Analysis Design Implemant Test Parallel Year1 Year2 Year3 Yeard Year5
. Hardware

1.

2

3

4.

TOTAL Hardware
Il. Software

1.

2.

3.

TOTAL Software
.

Labor (by Type) Rates: Base and Overtime
1.
2.
3.
4.
TOTAL Labor
IV, Other
1. Documentation
. Testing/Assurance
. Site Praparation
. Supplies
. Travel

. Maintenance

I A I

10.
TOTAL Other

TOTAL Project Price (Operating + Development) $_

FIGURE 16-2 Sample Financial Summary Form for Vendor Response

specific procurement, you omit sections not re-
quired. So, [or software-only procurement, omit all
hardware sections.

Standard Contract Terms

Finally, thc RFP should include any standard con-
tract terms and conditions that might be desired. For
instance, penalties for nonperformance against the
contract or conditions under which payments will
be made or withheld are terms of an agreement for
which companies frequently require standard con-
tract clauses.

HARDWARE

Hardwarc might be deseribed in detail, or more com-
monly, is described by its functionality. In this sec-
tion we discuss the hardware criteria that are usually
in an RFP, The main catcgorics of hardware infor-
mation in this section are functionality, operational
environment, and performance. Training and accep-
tance criteria were discussed above and also apply
to hardware.

Functionality

A technical requiremenis seclion outline for hard-
ware is shown as Table 16-4. Keep in mind that
the outline would be customized to fit the specific
components desired. If hardware requirements are
known, they should be specified in sufficient detail
to exactly identify needs. In this case. the vendors
are not selecting a solution to your problem; they
are bidding on a hardware configuration, For this
type of specification, if the configuration does not
meet all of your needs, the vendor is not liable
because you detailed specific hardware.

More often, you will not know the specific hard-
ware, but you do know the functions to be performed
by the hardwarc. In this case, the information pro-
vided is to detail the work environment closely
enough that the solution will work. For hardware,
this meuans that all work to be performed and the con-
straints for the work should be identified. The num-
ber of users, work profile for each user, timing of

Hardware 677

TABLE 16-4 Technical Requirements
Outline for Hardware

3.0 Technical Hardware Requirements
3.1 CPU eycle lime
3.2 Number of processors
3.3 Memory cycle time and proccssing
3.4 Number and type of registers
3.5 Number, type, and priority structure for
interrupts
3.6 Memory orgamization, maximum addressable
memory
3.7 Parallel operation capabilities
3.8 Math/graphics co-processors
3.9 Number, (ype, and transfer rate for data
channels
3.10 Channel control unit—type, maximum device
assignment, effect on CPU
3.11 Storage devices—number and type
3.12 Tape drives—density, speed, transfer rate,
tracks, size
3.13 Disk——access time (seek + search), rotational
delay, transfer rate, tracks and cylinders,
capacity per unit
3.14 Communications control capabilitics—
maximum rcmotes, lines, interfaces
3.15 Ability to connect to /O peripherals—bar
code, microform, imaging, graphics, multi-
media, and other special purpose equipment
3.16 Expandability
3.17 MTBF—mean time between failures
3.18 MTTR—mean time to repair
3.19 Suppotl
3.20 Software compatibility for operating systems
and specific packages desired
Site requirements—air-conditioning, electrical,
heating, cooling, efe,
322 Budgel limilalions
3.23 Throughput requirements
324 Delivery requirements

3.21

work, volume of inputs and printed outputs, types,
volume and contents of files, and softwarc are mini-
mal reguirements to specify,

More dcrailed requirements, such as CPU cycle
time or response time to a type of query, are pro-
vided for any critical requirements. Critical require-
meits, herc, mean those monitoring or relating
o human life (e.g., EKG monitor or space rocket

678

lilt-off). Error processing, error recovery, security,
types of human intcrvention, and so on are all spec-
ified if they are important considerations in the deci-
S10M Process.

Equipment #or desired should also be identificd.
For instance, most configurations can alternatc
between minicomputers or local area networks. If
minicomputers, for instance, arc not desired as a
solution, the requirements should be stated as: “This
proposal is for a local area networking solution to
support . . .” followed by a list of major applica-
tion functions. ABC’s RFP might finish that sen-
tence; “, .. a rent/relurn processing application for a
video store.”

Operational Environment

The operational environment includes the geo-
graphic, building, and room specifications for the
equipment, The extent of vendor responsibility and
information should be defined as explicitly as possi-
ble. If the vendor is responsible for the installation,
that information should also be included. 1f a loca-
tion is known, but the site is not improved for Lhe
equipment yet, the vendor should be required to
specify flooring, air, ventilation, clectrical, plumb-
ing, and other environmental requirements of the
instaliation. If a sile is already prepared for equip-
ment, it should be described in sufficient detail for
the vendor to know whether his configuration will
tolerate the environment or if further alteration is
required. Schematics of desk configurations should
be provided for multiunit RFPs.

Performance

Performance requirements identify the tolerance
limits for different types of problems. Hardware
performance requirements might include any of
the following:

= Acceptable limits of downtime

» Inguiry response time

= File update response time

» Muximum percentage of communication
errors

» Recovery times for hardware failures

CHAPTER 16 Purchasing Hardware and Software

w Maintenance and reliability requirements

» Peak and average transaction time
requirements

» Geographic or other environmental constraints
on cguipment

Frequently, in the absence of specific hardware
design requircments, performance requirements are
the basis for the RFP, A sampie outline for operat-
ing system or network performance requirements is
shown as Table 16-3. In the table, the list includes
support for all desired functions of the environment.
The implication is that hardware is less important
than the functional support to be provided by the
operating system. Table 16-6 shows an example of
performance requirements that might he used to
specify a local area network to support diverse work.

Vendor respoenses to hardware requests should be
required to include all operating system, program-
ming language, software, and interface require-
ments, growth capabilities, and limitations.

Software

The basic categories of software criteria are needs,
resources, performance. flexibility, and operating

TABLE 16-5 Technical Requirements
Quiline for Operating System or Network
Performance

3.0 Generic Operating System Requirements
3.1 Instruction set and types of numeric processing
3.2 Cache memory
3.3 Hardware comparibiliry
3.4 Software compatibility
3.3 Virwal and real memory requiremnents
3.6 Job, task, dala management structure

and function

3.7 Multiprocessing capabilities

3.8 Fixed system overhead

3.9 Variable system overhead
3.10 Conrrol language
3.11 Compilers supported
3.12 Packaged software supported
3.13 File access meihads supported

Hardwdare 479

TABLE 16-6 Example of LAN Performance Requirements

3.1 Software Requiremenlts
Must support and run DB2 or SQL Server software.
Must support and run Quattro or Lotus spreadsheet.
Must support and run ADW or TEF PC-based
CASE tools.
Must support and run Word Perfect.

Must provide multiuser support for simultancous
users of all software with lockout at the record or
data item level. File level ocking should he a
user-selectable option.

Must allow levels of security including at least
three levels for department, group, and user;
security assignment by software package,
directory, or minidisk; and by function (e.g., read,
write, ot both).

Must support transaction logging either in the
operating system ot by other packages, e.g., the
databasc server and CASE packages.

Must support rell-back processing or permit it by the
software in the environment.

3.2 Printing
Must support direct access to printers by all users.
Must provide printing of at least 100 pages per
minute (ppim).
Printer(s) must accommodate:
Onc-ply, preprinted forms,
842 x 11, 16-ib or 20-1b paper

3.2 Printing, continued
84 % 14, 16-1b or 20-1b paper
4 % 9 envelopes
7 % 10 envelopes
Transparencies for overheads
Graphics
Address labels

3.3 Processing

Interactive processing for up to 64 PCs at a time.

Growth to 120 PCs al a lime in five years.

Able to secommodale Word Perlecl—36 users,
SQL processing (see above)}—12 users, spread-
sheet {see above—10 users, und CASE tool
processing—six users simultaneously.

Able to accommodate doubling of users in all
categories within five years.

3.4 Benchmark Evaluation Critcria
Current and past workload data.
Current size and planned growth.
Future fiscal palicies that affect how computers are
charged o users.
Current and [ulure manpower for operations
support.

characteristics. These categories and the major re-
quirements specified in an RFP are summarized in
Table 16-7 and discussed below.

Needs

Needs identity context-specific requircments such as
file processing, maximum number of simultancous
users, number of bulfers, size of files and records
that can be handled, or precision of numbers for
mathematical computation.

In addition, environmental factors are extremely
important, The operating system, programming lan-
guage, and interfaces with other softwarc determine
whether the package can exist in your operational
gnvironment, even if your requirements are met.

Resources

Package resources idenlify the hardware configura-
tion requiremcnts for the software. The working set
is the minimal, real memory usage when the soft-
ware is running. All software is designed to have two
components, 4 real memaory component and a vir-
tual memory component. The virtual component is
swapped in and out of memory as it is accessed.
When it is out of memory il is stored on some
peripheral device, usually a disk. The real memory
component is that minimal core of the softwarc that
maintains the beginning and ending addresses for
buffers, qucucs, lists, arrays, and other memory the
software manages, and the task management soft-
ware to control the software’s execution.

680 CHAPTER 16 Purchasing Hardware and Software

TABLE 16-7 Technical Requirements
QOutline for Customer Sollware or Package
{(Section 3.0 of Detailed RFP Qutline
Table 16-1.)

3.0 Technical Specifications
3.1 Concept and overview
3.1.1 Diagrams of processes, entities,

configuration, elc. as appropriate

Functional requirements classified as

mandatory or optional

3.1.3 Dictionary delining all terms, items,

processes, entities, and relationships in
lhe diagrams and above sections in detail
sufficient to provide complete under-
standing of the nature of the work
expected

3.2 Audit and data integrity requircments

3.3 Security and recoverahility requirements

3.4 Performance requirements

3.5 Conversion reqoirements

3.6 Interface requircments

3.7 Special requirements, ¢.g., facilities alterations

3.8 Trdining

3.9 Acceplance criteria

)
[

In addition to the working sct, the peak usage real
memory component is important. When the maxi-
mum number of users are present on the sysiem,
maximum sizes of the working set and virtual mem-
ory requirements should be identified. If there is no
change to the memory requirements, but there is an
oplimum size for real memory for efficient process-
ing, that should be required information.

The third type of resource information required
is the amounl of disk space required to store the soft-
ware on disk, and the average storage requirements
for several standard sizes of files. An example of a
standard file is a 10,000 record file with 50 ficlds of
& characters each, and three multifield indexes.

Performance

The performance requirements should identify both
total throughput and individual transaction response
requircments if there are any.

Flexibility

Flexibilily 1ssues are of two types. Firs(, the pack-
ages” interconnectivity to other packages might be of
interest. Second, the potential for client modification
and customization might also be of interest. For
either type of flexibility, the ability of the package
to change, expand functionality, and loosen restrie-
tions {c.g., move from ten open files to 256 open files
at once) are a good indicator of how fast the pack-
age can change to accommodate different busi-
ness necds.

To asscss the vendor’s capabilities, you can re-
quire a list of packages with which the package
under review is compatible. Also, you can require
information about the type and frequency of new
releases of the software. If the new releases only {ix
old bugs, the software is more tisky than if the new
releases enhance package funclionality.

To assess the extlent Lo which you might be able to
customize the software, the requirements should
specify this as necessary. In general, many sofltware
companies will not honor warranties on so{tware il
any code is changed. Several mainframe software
vendors, for instance D&B-MSA™. 2 gpecifically
design their software for client customization.

Operating Characteristics

The operating characteristics requirements should
require identification of the hardware, operating sys-
tems, and compatible configurations of networks on
which the software can run. If inlerplatform connec-
tions are desired, such compatibility shouid be iden-
tified as a requirement.

A sccond opcerating characteristic is the form of
package code. Vendors typically supply a load mod-
ule form of package that cannot be examined for
errors. If package does not funclion, the vendor is the
only recourse for help. In this case, clients usually
request source code and have a contract clause that
specifies Lhat source code should be held in escrow
and made available at such time that the vendor

2 D&B-MSAT is a wholly owned subsidiary of Dun and Brad-
street, New Jersey.

company goes olf of business or the software ceases
to function. The same argument and requirements
should be written for access 1o data stared under pro-
prietary methods in a software package.

The iype of installation work required and vendor
assistance available are the other operating charac-
teristics of intcrest. Some installations require little
or no planning, with the installer simply running a
program that actually does the installation. Other
software inslallations require weeks of planning,
including both logical and physical design, and deci-
sions about how internal qucucs, buffers, and so on
will be stored. The amount of work is important for
operalions planning, but the type and amount of
vendor support during the installation are also
important.

RFP EVALUATION

(eneral Evaluation Guidelines

In general, the evalwalion procecds as follows. [n
each section, the required items arc scored using a
raling system previously decided. Vendor recom-
mendalions beyoend the requirements are identified
and evaluated. Through discussion and professional
judgment, the contribution of enhancements to the
quality of the finished work preduct is determined
and scored. The weighted scores for the individual
items are summed by vendor (o yield a section score.
For the financial section, formulae are applicd to the
bids and like numbers across proposals arc com-
pared and scored. The weighted scores for each sec-
tion are summaurized and summed to yield a single
score for each vendor. The vendor with the highest
overall score is selected.

Tt there is a tie or several vendors arc very similar,
the proposals are reevaluated for scoring mcthod,
weights, and relative importance of each type of
information 1o eventually sclect a winner. The
reevaluation is a form of sensitivity analysis that
determines where the scoring method is most sensi-
tive to between-vendor diffcrences and if the method
should be changed to removc the sensitivity, or if
one vendor is clearly superior in some area,

RFP Evcluction 481

Scoring Methods

The scoring for the technical evaluation requires
assessment of the extent 1o which the vendor com-
plies with requirements and addresses the required
features and functions in the proposal. An implicit
ranking of quality of proposed solution is included in
the technical assessment.

There is no cone right way to score a proposal.
Rather, three methods are most common. One scor-
ing mcthod ranks each item according to its relative
merit compared to the other vendors. I there are
three vendors the items are all ranked on a scale of
onte to three. The second common method is to use
a fixed scale, say zero to ten, and all items are eval-
uated and placed on that scale regardless of the num-
ber of proposals. The third scoring methed is to
simply list requirements of the application and sim-
ply score a zero if the requirement 1s not met and a
one if the requirement is met. The chosen scale is
then used for scoring technical requirements, man-
agement approach, and company history.

Figurc 16-3 shows the effect of the three meth-
ods on the same set of requirements. The second
method is most sensilive to qualitative differences
but is also the most subjective. The binary scoring
method is most objective but the least sensitive to
qualitative differences. The first method is both
objective and able to distinguish differences. There-
fore, the first method is recommended for your use
when vou are given a choice.

In the remaining example, we usc the ranking
method for the four vendors evaluated. Each item is
scored and enlered on the tist. When the list is com-
plete, the item scores are multiplied by the weights
to develop the weighted scores. The weighted scores
are summed 1o give a section evaluation score for
cach vendor.

The flaws of the methods are scen in the exam-
ple in Figure 16-3. According to the summary, we
would select vendor 3 using the first two scoring
methods and Vendor 2 with the binary method. How-
ever, let’s say we disqualify Vendor 3 for noncom-
pliance with the second requirement. Then, the first
two methods give us different answers. This exam-
ple highlights the need to do sensitivity analysis on

682

CHAPTER 16 Purchasing Hardware and Software

Requiremeants

Method 1
{Rank 1-3)

Vendor 1 Ranking

Method 2
{Rank 1-10}

Method 3
(Binary)

Provide for at least 10 relational
tilzs to be open simultaneously

Weight Rank
1 1

Weight Rank
5 1

Weight Rank
5 o

Provide at least three indexes Weight Rank Weight Rank Weight Rank
per relation 2 3 15 10 1.5 1
Provide user views that join up Waight Rank Weight Rank Weight Rank
to six relations 3 2 3 3 3 1
Summary
I {Weight * Rank) 13 24.5 4.5
Vendor 2 Ranking

Method 1 Method 2 Method 3
Requirements {Rank 1-3} {Rank 1-10} {Binary)
Provide for at least 10 relational Weight Rank Weight Rank Weight Rank
files to be open simultanesusly 1 2 5 9 R} 1
Provide at least three indexas Weight Rank Weight Rank Weight Rank
per relatian 2 2 15 10 1.3 1
Provide user views that join up Weight Rank Weight Rank Waeight Rank
In si¥ relations 3 1 3 4 3 1
Summary
3 {Weight * Rank) 9 s 5

FIGURE 16-3 Example of Requirements Scoring Methods

the scale used in scoring to cnsure balancing of
weights and scores,

Technical Evaluation

In ABC’s scoring example, the technical section
evaluation shows one page of technical requiremenis
that describe characteristics of a software coviron-
ment without specifying the software {see Figure
16-4). This list might be an additional $-10 pages
longer when complete. To get the ranks for cach
itcm, the vendor responses are reviewed and the
quality and completeness of cach responsc is rated.
The ranks are multiplied by the item weight and
weighted scores are summcd. The weighled score
cin then be normalized to account for between-

section differences in the number of items ranked
by dividing the weighted score by the number of
items, in the example, cleven.

In both scoring systems, raw and normalized,
Vendor 4°s solution meets more criteria with a higher
quality rating than the other vendors. Vendor 4 did
nol get the highest marks on all items, however. Ven-
dors 1 and 2 have low scores for the technical section
with more bottom ratings than the other vendors,
These vendors would probably not be chosen and
could be deleted from the remaining analysis if it
were extensive.

None of the proposed language solutions has all
required items with the highest rating. This means
two Lhings. First, the solution, whichever one is
selected, should be reevaluated before a final deci-

RFP Evaluation 683

Vendor 3 Ranking

Method 1 Method 2 Method 3
Requiraments {Rank 1-3) {Rank 1-10) {Binary)
Pravide for at least 10 refational Weight Rank Waight Rank Yeight Rank
files to be open simultaneously 1 3 5 10 5 1
Provide at least theee indexes Weight Rank Weight Rank Weight Rank
per relation 2 8] 1.5 0 15 o
Provide user views that join up Weight Rank Weight Rank Weight Rank
to six relations 3 3 3 10 3 1
Summary
Z {Weight - Rank) 12 35 35
Method Vendor 1 Vandor 2 Vendor 3
1 13 9 12
2 24.5 5.5 35
3 45 5 35

Selecied Vendor is shown in bold for each method

FIGURE 16-3 Example of Requirements Scoring Methods (Continued)

sion 1o ensure that the application can be done with-
oul (oo many design compromiscs because of flaws
in the proposed language. Second, more cvaluation
of possible languages for implementation can he
done and a language recommendation might be
made to the selected vendor. In other words, the lan-
guage for implementation becomes a negotiating
point for lowering the cost or for changing the pro-
posed solution.

Management Approach Evaluation

The section of the proposal on the management
approach includes all the information abouat how the
vendor will manage the staff and the process 1o the
satisfactory completion of the client. The schedule,
staffing, management reporting, and problem resolu-
tion should be included. In addition, the vendor dis-
cusses expected resources of the client company for
the work engagement.

There is no one right way to cvaluate the man-
agement approach. Rather, this section is reviewed

to determine the fit with clicnt expectations and the
realism of the approach. For instance, if there are
maorc than one vendor staff, one of the staff should be
designated the ‘senior’ person in charge of the work
products und problems of the other person(s). Any
personne] problems of vendor staff should not be
dealt with by the client; the senior person has this
responsihility. Also, a person from the vendor’s
management staff should be designated as responsi-
ble for guaranteeing the quality of work product by
the company’s statf. This person is usually the man-
agement contact for the clicnt and is the ultimate
manager for the vendor staft even though there may
also be an on-site, working manager.

Proposals should be assessed in a manner con-
sistent with that of the technical requirements. That
is, either a zero/one grading sysiem, or a ranking
system, is used, depending on which is used for the
technical requirements. The management tech-
nigues requested in the RFP for the management
approach should have been previously prioritized
and weighted. The items are listed, scored, and

684 CHAPITER 16 Purchasing Hardware and Software

Vendor 1 Vendor 2 Vandar 3 Vendor 4
Technical Requirements WWeight Rank Rank Rank Rank
3 files with 2,000—200
character records, 40 fislds 5 1 2 3 4
2 files with 50,000—40
character racords, 10 fields 5 2 1 4 . 3
Process up to sixX simultaneous
transactions 5 2 1 4 3
Up to six attributes in
compound key 5 1 2 3 4
Max text field length of
300 characters 3 2 1 3 4
Max integer length 15 digils 3 2 i 3 4
Max decimal number .2 3 1 2 3 4
Provide for at least
10 relational files to be open
simultaneously 4 3 1 2 4
Provide at least threg
indexes per relation 5 3 2 1 4
Provide user views that join
up to six relations 5 2 1 3 4
Supports bar code reader 4 2 4 1 3
Summary
T (Weight * Rank)
for tems shown - a0 77 129 174
MNormalized sccre - 8.2 7 1.7 15.8

FIGURE 16-4 ABC Technical Scoring

weighted, Finally, a weighted average score for man-
agement approach is computed for ¢cach vendor and
added to the financial summary shecet.

[n the example shown in Figure 16-5, Vendor 1
omitted resumes of the proposed staff and lost sev-
eral rating points as a result. Vendor 2 assumed many
more client resources than the company was willing
to commit and lost poinis as a result. Only Vendors 3
and 4 provided information that was complete. Their
scores reflect their proposals’ assessed quality
differences.

Financial Evaluation

The next analysis evaluates the financial aspects of
the proposals. The financial evaluation is indepen-
dent from the technical cvalnation und assumes that

all requircd features are present. In fact, the technical
and financial evaluations might be done by different
people in different departments. The project man-
ager and SEs usually perform the technical evalua-
tion, while the project manager and/or a financial
support group might do the financial evaluation,

RFF Evaluation 4685

Yendor Vendor 2 Vendor 3 Vendor 4

Management Reguirements Weight Rank Rank Rank Rank
Schedule and staffing 5 1 2 3 4
Project management 5 2 1 4 3
Status reparting 5 2 1 4 3
Problem management 5 1 2 3 4
Summary
X {Weight * Rank) - 30 30 70 70
Normalized score* — 7.5 7.5 17.5 17.5
*Nomalized Score = T (Weight * Rank) / # Hems

FIGURE 16-5 ABC Management Approach Scoring
Recall that for services such as custom software

development, there are three typces of financial pro- n

posals: fixed, time/materials (T&M), and T&M with NPV ? j;o (%Lf—?)-{—

a ceiling (semilixed). For hardware, there are three

types of proposals: leasc, lease with option to buy, Where: d = Discount interest rate

and purchase. And for software packages. there is a

n = Life of project in years

basic license fee plus a maintenance fee. The first
step in the financial analysis is to determine what
set of numbers to compare, The proposal should
specify the type(s) of financial bids solicited, but, if
not, the three types need to be equated for proper
COMparison.

After deciding on which numbers to compare, a
simple net present value (NPV) analysis may be
developed (see Chapter 6). Recall that NPV com-
putes the present value of multitime period expen-
ditures, assuming a specific inierest rate on money
{see Figure 16-6). If all vendors’ proposed expendi-
tures are in the same time period, NPV is not neces-
sary and a simple comparison is used. The final
value of each project is entcred on the summary
cvaluation sheet (see Figure 16-7). Other analyses
might include payback period, cost per vendor
c¢mployce, and so on, depending on company
convention.

In Figure 16-7, the present value of all hardware
options is listed and separated from the cost of
labor. Then, rankings for hardware and software are
applied based on the low cost. Both average and nor-

By = Valus of benefiis in period ¢

Ct = value of costs in pariod t

For instance, assume the life of the project is five
years, and the per period cost is $1,000,000 at .075
interest. The benefits of the project for the five years
are zero, $100,000, $250,000, $450,000, and
$2,000.000. The NPV is:

NPV = (-1,000,000)/1.075

+ (100,000 - 1,000,000)/1.075
+ (250,000 - 1,000,000)1.075°
+ (700.000 - 1,000,000)/1.075*
+ (2,000,000 — 1,000,000)/1.075°

=—930,232 - 576,923 — 443,548
- 223,880 + 680,855
=-$1,404,928

FIGURE 16-6 Sample Net Present Value
Computation

686

CHAPTER 16 Purchasing Hardware and Soffware

Financtal Surnmary Wendor 1 Wendar 2 Vendor 3 Vendor 4
Met Present Value Hardware Lease $22,000 $30,000 27250 $22,300
NPV Hardware Lease with Option 1o Purchase $30,000 $32,000 $31,750 $24,600
MNPV Hardware Purchase 545,000 $37,800 $37 500 $32,500
Total Cost TAM Labor $17.500 $22,600 $28,400 $27 500
Yendor 1 Vendor 2 Vendor 3 Vendor 4
Weight Rank Rartk Rank Rank
Harclware Rarnk 4 4 1 2 3
Software Rank 6 4 1 2 3
Summary ¥ (Waight * Rank) 40 10 20 30

FIGURE 16-7

malized scores can be generated as we have shown.
The normalized scores are used in the comparison
with the scores of the other sections. In the rankings,
the higher the score, the lower the cost. In this case,
Vendor 1 receives the highest cost scores for both
hardware and software. Vendor 4, the highest ranked
vendor in the technical section, was third on both
items, with a weighted score of 3. If hardware and
software are equally important, we could have aver-
uged the scores for each vendor. Using weights
which are somewhat highcr than the weights for the
other score categories increases the importance of
the financial evaluation relative to the technical and
other cvaluations.

Company Evaluation

One risk any client takes when contracting work to
others is that the vendor might not mecet the terms
of the contract for some reason. The company evalu-
ation is one way to define such risks and assign a
score to each vendor company.

In general, the longer the company has been in
business and the larger the size, the less likely the
company is lo go oul of business. Similarly, the
smaller a percentage of the total company’s work
this particular contract is, the less likely schedule

ABC Financial Evaluation Summary

problems, for fixed price work, for instance, arc to
severely humper the vendor’s ability to do business,
The first score assessed, then, is one of risk that the
vendor can do this work without straining his or her
oWwn organization.

The second type of evaluation gives credit for
past work with the client company. The idea is to
favor a company with sncecssful past experience
because their personnel are likely to know the
client's way of doing business and need less intro-
duclory time than vendors without that experience.
Other project managers who know the vendor should
be asked about the guality and quantity of work of
vendor employees, satisfaction with the vendor, and
compliance with contract terms. A high ranking
should be given for successful past projects and a
low ranking (e.g., negative) for unsuccessful past
work. Obviously, no ranking can be given for a cotn-
pany with no history at the client site. If this item is
the decision criteria for a proposal, then the technical
evaluation should be reevaluated to ensure that the
best proposal is being selected.

A similar evaluation gives vendors who have
developed similar work products credit for that
knowledge. Vendors who are already familiar with
the problem domain, and who need less start-up time
to learn the domain, are favored over thosc without
that knowledge.

Summary 687
Vendor 1 Vendaor 2 Vendor 3 Vendor 4

Vendor Company Critena Yireight Rank Rank Rank Rank

Age/Size 5 3 1 4 2

Similar work 5 3 1 2 4

Wark with ABC 5 0 0 0 0

Reputation 5 3 1 4 2

Summary

. (Weight * Rank) - 45 15 50 40

Normalized score 9 3.7 12,5 10

FIGURE 168 ABC Vendor Company Rating

Vendors who claim similar experience should be
checked by discussing the exXperience with reference
clients. Unless another firm gives a positive recom-
mendation, no credit for domain experience should
be given. A neutral or negative recommendation
does not necessarily mean a negative rating. Rather,
a negalive rating raises a flag that not all projects
are perfect but should not cause a vendor to be dis-
gualified. If all recommendations are negative, then
the vendor might be given a negative rating.

The scores for company cvaluation are entered
im the summary sheet which is completed. The final
scores in all areas are multiplied by the weight for
the scction and summed to develop a final weighted
assessment. The company with the highesl overall
score is selected unless some extenuating circum-
stance is present.

In Figure 16-8, all four vendors scored zero in
prior work with ABC, meaning thal none have
worked with ABC before. Vendor 4. the preferred
vendor based on technical scores, ranks low in
ape/size and low in reputation. These numbers can
be interpreted as identifying a small, fairly new com-
pany that has had some successes and some faifures.
This interpretation implies some risk in using Ven-
dor 4.

It we look at Vendor 3, who was ranked second
on the technical list, the age/size and reputalion are
the best of the four vendors. The problem here is thal
Vendor 3 has little experience with similar work,
thus, also identifying a source of risk.

The summary form (see Figure 16-9) shows the
proposals summarized on one page for a manage-
ment overview. The weighted and normalized
weighted scores should both be shown as an indica-
tor of thc sensitivity of the weighting system in
selecting the proposal winner.

AUTOMATED
SUPPORT TOOLS
FOR VENDOR
EVALUATION

Thete are ne automated tools that are advertised as
specifically for RFP use. Rather, there i general pur-
puse software that can bhe used for different parts of
the work. For inslance, spreadsheets can be used for
the financial analysis and for maintaining and moni-
toring the scores easily. Word processing and CASE
tools might be used in the preparation of the RIFP
docoment, but are of less use in evaluating the ven-
dor proposals. Table 16-8 shows the most popular
spreadsheets on the market at this time. Any of these
packages can be used in the REFP analysis.

SUMMARY

This chapter discusses the procurement of hardware,
software, or services for an IS organization. The for-
mal RFP process includes the development of work

688

CHAPTER 16 Purchasing Hardware and Software

Criteria

Vendor 1
Rank

Vendor 2
Rank

Vendor 3
Rank

Vendor 4
Rank

Technizal

Management approach

a0
30

77

30

129
70

174

70

Company A 45 15 50 40
Financial average rank 3 40 10 20 30
Cost of cheapast altemative $42 500 $42 800 $55,650 549,800
Vendor 1 Verdor 2 Vendor 3 Vendor 4
Total weighted score B85 41.3 76.6 96.6
Total weighted normalized score 14.6 10.2 19.2 242

FIGURE 169 ABC Vendor Summary Ratings

rcquirements, identification of vendors, development
of a Request for Proposal (RFP), management of the
RFP process, evaluations of the propoesals, and se-
lection of a vendor.

An RFP consists of a management summary,
statement of requirements, proposal process descrip-
tion with important dates, and standard contract
terms. Optional sections of the RFP include a defin-
ition of the vendor response.

Ranking RFP responses requires the definition of
the ranking scheme and of weights signifyving the

TABLE 16-8 Automated Tools for Vendor Evaluation

relative importance of the ranked items. The least
subjectlive, most informative of the three common
ranking schemes is one that uses the number of ven-
dors as the number of ranks. Other options arc a
binary system and a subjective ranking based on an
arbitrary number of ranks, such as 10.

All response areas—technical, managerial, com-
pany, and financial—arc ranked tuking caré to com-
pare like things across the vendors. When complete,
the weighted ranks are summed by section and
for the whole RFP, and the vendor with the highest

Product Company

Technique

COMNET, LANNET CACI

San Diego, CA

Excel, Multiplan MicroSolt

Redmond, WA
Lotus 1-2-3 Lotus Development Corp.
Quattro Pro Borland Corp,

Simulation of network
performance for different net-
work operating systems

Spreadsheet for financial
evaluation

Spreadsheet for financial
evaluation

Spreadsheet for financial
evalualion

score is selected. Do sensitivity analysis of the rank-
ing scheme 1o minimize obvious bias,

REFERENCES

Joslin, Edward Q., Computer Selection. Reading, MA:
Addison-Wesley Puhblishing Co., Inc., 1968.

King, John L., and Edward L. Schrems, “Cost-benefit
analysis in information systems development and
operation,” in Computing Surveys, Vol. 10, #1, March
1978, p. 25,

Lucas, Henry C., Jr., The Analysis, Design and Imple-
memation of Infarmation Systems, 4th ed., New York,
Mitchell McGraw-Hill, 1992,

Stamper, David, Business Data Commurnicarions, 3rd ed.,
Redwood City, CA: The Benjamin/Cummings Pub-
lishing Company, Inc., 1991.

KEY TERMS

acceptance criteria

benchmark

company requirements

data communications
nctwork

financial requirements

fixed price bid

lease option bid

lease wilh option to buy bid

license fee

make-buy decision

management approach

management
requirements

T

package purchase

proposal process

purchase bid

request for information
(RTT)

request for proposal (RFP)

request for quotation (RFQ)

residual price

T&M with ceiling bid

technical requirements

time and materials bid
(Té&M)

working set

EXERCISES
.|

1. Using the information provided for the ABC
Case in Chapter 16, develop a different way of
scoring the vendor responses that is plausible.
Defend the use of your method.

2. Develop an analysis of two well-known pack-
ages, such as Lotus and Quattro spreadsheets.
What features are the same? Which are differ-
ent? How would you choose between them?

3. Develop a list of issues for deciding what PC
software packages should be the standards for a
company. Are the criteria soltwarce features
organizational in nature? Why?

Study Questions 689
STUDY QUESTIONS
1. Define the following terms:

14.
11,

12.

13.

14.

15.

T&M

management approach
techmical requirements
working set

benchmark

fixed price bid
make-buy decision
RFI

. Is the process of selecting a product through

the RFP completely objective? Why or why
not?

. What is the purpose of an RFP?
. How does the RFP process differ from the

informal procurement process?

. List and describe the seven types of financial

proposals.

. Why arc there so many types of financial

proposals?

. List five criteria to be provided in a hardware

RFP.

. List five critcria to be provided in a software

package RFP.

. List five criteria to be provided in a software

development RFP,

What RFP criteria are provided for a network?
Describe the three types of scoring systems for
vender proposals, identifying the pros and cons
of each.

Why is a standard for vendor responses a geed
idea?

What formula is applied te develop the finan-
cial analysis? When is it not necded?

What is the purpose of a benchmark? For
which type(s) of procurement is benchmarking
used?

How can you determine a company’s
reputation?

W EXTRA-CREDIT QUESTION

1.

Take some application thai might be used at
ABC Video—accounts payable, general ledger,
payroll, renfal order processing—and perform a
software evaluation for two competing products.
Try to be objective in the criteria and weights
vou assign, What are the deciding factors in the
evaluation?

___ TESTING AND
~ QuALITY
~ ASSURANCE

CHAFT EIR

INTRODUCTION

Testing is the process (and art) of finding errors: it
is the uliimale review of specifications, design, and
coding, The purpose of testing is 1o guarantee that
all elements of an application mesh properly, func-
tion as expected, and meet performance criteria.

Testing is a difficult activity to accept mentally
because we are deliberately analyzing our own work
ot that of our peers to find fault. Thus, aller work-
ing in groups and becoming productive teams, we
seek to find fault and uncover mistakes through test-
ing. When the person conducting the test is not on
the project as, for inslance, acceptance testers, they
are viewed as adversaries,

Testing is a difficult activity for management to
accept because it is costly, time consuming, and
rarely finds all errors. Frequently, resources are
difficult to obtain and risks of not testing are inadc-
quately analyzed. The result is that most applica-
tions are not tested enough and are delivered
with ‘bugs.’

Rescarch studics show that software errors tend
to cluster in modules. As errors are found in a tested
unit, the probability that more errors are present
increases. Because of this phenomenon, as severe
errors are Tound, the lower the confidence in the
overall quality and reliability of the tested unit
should be,

690

In this chapter, we discuss useful strategies for
testing and the strategies which are most applicable
ta each level of testing. Then, we discuss each level
of testing and develop test plan examples for the
ABC rental system. Finally, anlomated tesl support
within CASE tools and independent test support
lools are defined and examples listed. The next sec-
tion defines testing terminology.

TESTING
TERMINOLOGY

As above, testing is the process (and arl) of linding
errors. A good test has a high probability of finding
undiscovered errors. A successful test is one that
finds new errors; a poor test is onc that never
finds errors.

There are two types of errors in applications. A
Type | error delines code that does not do what it
is supposed to do; these are errors of omission. A
Type 2 error defines code that does something it is
not supposed to do; these are errors of commission.
Type 1 errors are most prevalent in newly developed
applications. Type 2 errors predominate in mainte-

nance applications which have code "turned off’
rather than removed. Good tests identity both types
of errors.

Testing takes place at different levels and is con-
ducted by different individuals during the applica-
tion development. In this chapter we discuss the
testing performed by the project 1eam and testing
performed by outside agents for application accep-
tance. Project team tests are termed developmental
tests. Developmental tests include unit, subsysiem,
intcgration, and system tests, Tests by outside agents
are called quality assurance {QA) and acceptance
tests, The relationship between testing levels and
project life-cycle phases are summarized in Fig-
ure 17-1,

A unit test is performed for each of the smallest
units of cede. Subsystem, integration tests verify
the logic and processing for suites of modules that
perform some activity, verifying communications
between them, System tests verify that the func-
tional specifications are met, that the human inter-
face operates as desired, and that the application
works in the intended operational environmens,
within its constraints. During maintenance, testers
use a technigque called regression testing in addition
to other types of tests. Regression tests are cus-

Testing Terminology 6

tomized to test that changes to an application have
not caused it to regress to some state of unaccept-
able quality.

Finally, cutside agents perferm quality assur-
ance {(QA) tests of acceptance for the application.
The outside agent 15 either the user or a user repre-
sentative. The goal is to perform an objective, unbi-
ased assessment of the application, and an outside
agent is considered more objective than a team
member. QA tests are similar to system tests in their
makeup and objectives, but they differ in that they
are beyond the control of the project team. QA test
reports usually are sent to IS and user management
in addition to the project manager. The QA tester
plans his own strategy and conducts his own test
to ensure that the application meets all func-
tional requircments. QA testing is the last testing
done before an application is placed into produe-
tion status.

Each test level reguires the definition of a strategy
for testing, Strategies are either white box or black
box, and either top-down or bottom-up. Black-box
strategies use a ‘toaster mentality”: You plug it in,

Life-Cycie Phases

Scope and
Qbjectives

i

Functional Requirements’
Logicat Design

r

]
Pragram Structure
Module Specifications

l

Program/Mocdule
Code

]

Testing Types
QAvAcceptance
Test

System Test

]

Regression Test

I

Unit Test

FIGURE 17-1

Correspondence between Project Life-Cycle Phases and Testing

692

CHAPTER 17 Testing and Quality Assurance

™
_—F

Results

FIGURE 17-2 Black Box Data Testing Strategy

it is supposed to work (see Figure 17-2). Created
input data is designed to generate variations of out-
puts without regard to how the logic actually func-
tions. The results are predicted and compared to the
actual resolts to determine the success of the test.

White-box strategies open up the ‘box’ and look
at specific logic of the application to verify how it
works (see Figure 17-3). Tests use logic specifica-
tions to generate variations of processing and to pre-
dict the resulting ocutputs. Intermediate and final
output resulis can be predicted and validated using
white-box tests,

The second type of testing strategy defines how
the test and code development will proceed. Top-
down testing assumes that critical control code and
functions will e developed and tested first {see Fig-
ure 17-4). These are followed by secondary func-
tions and supporting functions, The theory is that the
more often critical modules are exercised, the higher
the confidence in their reliability can be.

Bottom-up testing assumes that the lower the
number of incremental changes in modules, the
lower the error rate. Complete modules are coded

and unit tested (see Figure 17-5), Then the tested
module is placed into integration testing.

The test strategies are not mutually exclusive; any
of them can be used individually and collectively.
The test strategy chosen censtrains the type of
emmors that can be found, sometimes necessitating the
use of more than one. Ideally, the test for the appli-
cation combines several strategies 1o uncover the
broadest range of ¢rrors.

Afier a strategy is defined, it is applied to the level
of test 1o develop actual test cases. Test cases are
individual transactions or dafa records that cause
logic to be tested. For every test case, all results of
processing are predicted. For on-line and real-time
applications, test scripts document the interactive
dialogue that takes place between user and applica-
tion and the changes that result from the dialogue.
A test plan documents the strategy, type, cases, and
scripts for testing some component of an application.
All the plans together comprise the test plan for
the application.

Testing is iterative until no errors, or some ac-
ceptable number of errors, are found. In the first step

White Box

FIGURE 17-3 White Box Logic Testing Stralegy

Testing Terminology 693

\\Q

o

B

s

First Tested

Second Tested

Third Tasled

Fourth Tested

[«
]

FIGURE 17-4 Top-Down Testing Strategy

of the testing process, test inputs, configuration, and
application code are required to conduct the actual
test. The second step is to compare the results of the
test to predicted resulls and evaluate differences
find errors. The next step is to remove errors, or
‘debug’ the code. When recoding is complete, test-
ing of changes ensures that cuch module works. The
revised modules are then reentered into the testing
cycle until a decision to end testing is made, This
cycle of testing is depicted in Figure 17-6 for a top-
down strategy.

The process of test development begins during
design. The test coordinator assigned should be a
capable programmer-analyst who understands the
requirements of the application and knows how to
conduct testing. The larger and more complex the

application, the more senicr and skilled the test
coordinator should be. A test team may also be
assigned to work with the coordinator on large, com-
plex projects. The testing tcam uses the functional
requircments from the analysis phase and the design
and program specificaiions from the design phase
as inpul to begin developing a strategy for testing the
system. As a strategy evolves, walk-throughs are
held to verify the strategy and communicate it to the
entire lesl team, Duties for all levels of testing are
assigned. Time estimates for test development and
completion ure developed. The test team works
independently in parallel with the development team
to do their work. They work with the DBA in devel-
oping a test database thal can support all levels of
testing. For unil testing, the test team verifies results

694

CHAPTER 17 Testing and Qudlity Assurance

p—————

L

Legend.

First Tested

Secand Tested

Third Tested

D Fourth Tested

FIGURE 17-5 Bottom-Up Testing Strategy

and accepts modules and programs for integration
testing. The fest team conducts and evaluates inte-
gration and system tests,

TESTING

STRATEGIES

There are two kinds of testing strategies. The tirst
type of strategy relates to how logic is tested in the
application. Logic testing strategics are either black-
box or white-box. Black-box testing strategies
assume that module (or program or system) testing

is concerned only that what goes in comes out
correctly. The details of logic are hidden and not
specifically analyzed. Black-box strategies are data-
driven, which means that all test cases are based on
analysis of data requirements for the test item.!
White-box approaches to testing assume that spe-
cific logic is important and to be tested. White-box
tests evalnate some or all of the logic of a test item ©
verify correct functioning. White-box straiegies are

1 Test item is the term usad throngh the remainder of the discus-
sion to identify some thing being tested. A test itemn might be
a module, group of modules, or the whole application.

Testing Strategies 695

Hardware/Software System JOL
Configuratlon Systam Scaffold Code
Program Siubs,
Test Criticat Logic,
Datafc:ase?‘\--. Anciliary Logic
A
Test
Expected Results Output
i
Evaluate
Problems
4
—
‘ Debug Error
Corrections

FIGURE 17-6 Testing Information Flow

logic-driven, which means that all test cases are leads to integration testing which leads to system
based on analysis of expected functions of the testing. The next section discusses variations of
test item. , black- and white-box testing strategies,
The second type of testing strategy relates to how
testing is conducted, regardless of logic testing strat- .
egy. These cenduct, or process, strategies are top- Black-Box TCStlI'lg
down and bottom-up. Both top-down and bottom-up
testing fit the project life-cycle phases in Figure
17-1; the difference is in the general approach. Top-
down is incremental; bottom-up is “all or nothing.’
Top-down testing assumes the main application
logic is most important. Therefore, the main logic
shouid be developed and tested first and continu-

Black-box testing attends to process results as evi-
denced by data. The test item is treated as a black
box whose logic is unknown. The approach is effec-
tive for single function modules and for high-level
system testing. Three commonly used methods of
black box testing are:

ously throughout develepment. Continuous success- = equivalence partitioning
ful testing raises confidence levels about code = boundary value analysis
reliability. Program stubs that contain minimal ® CITOr Quessing

functional logic are tested first with additional logic
added as it is unit tested. Top-down testing fre-
quently requires extra code, known as scaffolding,
to support the stubs, partial modules, and other
pieces of the application.

Bottom-up testing assumes that individual pro-
grams and modules are fully developed as stand- The goals for equivalence partitioning are to mini-
alone processes. These are fested individually, then mize the number of test cases over other methods
combined for integration testing. Bottom-up testing and design test cases to be representative of sets of
treats test phases as somewhat discrete. Unit testing ~ data. For the given level of test, the test item data

A fourth method that is less common in business,
cause-effect graphing, is also used. Each of these
methods are described in this section,

Equivalence Partitioning

696

inputs are divided into equivalent partitions each
representing some set of data. Then, test cases are
designed using data from each representative, equiv-
alent set. The theory is that by exhaustively testing
one item from each set, we can assume that all other
equivalent items are also exhavstively tested.

For instance, at the module level, field values
identify equivalent sets. If the field demain is a range
of values, then one set is allowable values and
the other set is disallowed values. The analysis to
define equivalent domain sets continues for each
data item in the input.

Equivalence partitioning gains power when used
at more abstract levels than fields, however. For
instance, interactive programs, for integration
tests, can be defined as equivalent sets at the screen,
menu selection, or process levels. At the system test
level, equivalence can be defined at the transac-
tion, process, or activity level (from Information
Engineering).

Test scripts for on-line applications can be black-
box equivalence partitioning tools. A test script is
anh entry-by-entry description of interactive process-
ing. A script identifies what the user enters, what the
system displays in response, and what the user
response to the system should be. How any of these
entries, actions, and displays takes place is not
tested.

Boundary Value Analysis

Boundary value analysis is a stricter form of equiv-
alence partitioning that uses boundary values rather
than gny value in an equivalent set. A boundary
vilue is af the margin. For example, the domain for
a month of the year ranges from one to 12. The
boundary values are one and 12 for valid values, and
zerg and 13 for the invalid values, All four bound-
ary values should be used in test cases. Boundary
value analysis is most often used at the module level
to define specific data items for testing.

Error Guessing

Contrary to its name, errer guessing is not a random
guessing activily. Based on intuition and experience,
it is casy for experis to test for many error condi-
tions by guessing which are most likely to occur. For

CHAPTER 17 Testing and Quality Assurance

instance, dividing by zcro, unless handled properly,
causes abnormal ending of modules. If a module
contains division, use a test that includes a zero
divisor. Since it is based on intuition, error guessing
is usually not effective in finding all errors, only the
most common ones. If error guessing is used, it
should always be used with seme other strategy.

Cause-Effect Graphing

One shortcoming of equivalence and boundary test-
ing is that compound field interactions are not iden-
tified. Canse-effect analysis compensates for this
shortcoming. A cause-effect graph depicts specific
transformations and outputs as effects and identifies
the input data causing those effects. The graphical
notation identifies iteration, selection, Boolean, and
equality conditions (see Figure 17-7). A diagram of
the effects works backward to determine and graph
all causes. Each circle on the diagram represents a
sequence of instructions with no decision or control
points, Each line on the diagram represents an equiv-
alent class of data and the condition of its usage.
When the graph is done. at least one valid and one
invalid value for each equivalent set of data on the
graph is translated into test case data. This is con-
sidered a black-box approach because it is concerned
not with logic, but with testing data value differences
and their effect on processing. An example cause-
effect graph for Customer Create processing is
shown in Figure 17-8.

Cause-effect graphing is a systematic way to cre-
ate efficient tests. The trade-off is in time to develop
the set of graphs for an application versus the time
consumed executing large numbers of less efficient,
possibly less inclusive test cases. The technigque is
used more in aerospace than in general business.

Cause-effect graphs are more readily created
from DFDs, PDFDs, and state-transition diagrams
than from Booch diagrams even though it is partic-
ularly useful for real-time and embedded systems.
Both 1ypes of systems use state-transition diagrams
to show the causes and effects of processing. A
cause-etfect graph can be superimposed on a state-
transition diagram or easily developed from the
state-transition diagram. Cause-effect graphing can
be used in place of white-box approaches whenever

Testing Strategies 697

O Sequence of Code
% Identity
“Do While"
v
&) I‘And"
“Case Logic”

FIGURE 17-7 Cause-Effect Graphical Notation

specific logic cannot be realistically tested because
of combinatorial effects of multiple logic conditions.

White-Box Testing

White-box testing evaluates specific execute item
logic to guarantee its proper functioning. Three types
of white-box techniques are discussed here: logic
tests, mathematical proofs, and cleanroom testing.
Logic coverage can be at the level of statements,
decisions, conditions, or multiple conditions. In
addition, for mathematically specified programs,
such as predicate logic used in artificial intelligence
applications, theorem proof tests can be conducted.

The newest development in white-box strategies is
the *clean room” approach developed by 1IBM,

Logic Tests

Logic tests can be detailed to the statement level.
While execution of every statement is a laudable
goal, it may not test all conditions through a pro-
gram. For instance, an jf statement tested once tests
either success or failure of the if. At least two tests
are required to test both conditions. Trying to test
all conditions of all statements is simply not practi-
cal. In a small module with 10 iterations through a
four-path loop, about 5.5 million test cases would

698 CHAPTER 17

Testing and Quality Assurance

Da Sereen

Na More Customers

Data Entry

Edil New
Customer
Data

Write
New Gustomer

Create Customer While More Cuslamers

Display/Print
New
Customer ID

» Exit

FIGURE 17-8 Cause-Effect Graph for Customer Create

be needed to try all possible combinations of
paths (i.c., 41"+ 4° + 4% . + 41). Obviously, some
other method of deciding test cases is needed. The
other white-box logic testing strategies offer some
alternatives.

Decision logic tests look at each decision in a
module and gencrate test data to create all possible
ouicomes. The problem is that decisions are not
always discrete and providing for compound deci-
sions requires a differcnt strategy. A problem with
logic tests at this level is that they do not test mod-
ule conformance to specifications, If the test is
developed based on the specification, but the specifi-
cation is interpreted differently by the programmer

(for better or worse), the test is sure to fail. The
solution to this issue is to require program specifi-
cations to detail all Jogic. While this may be practical
for first- and second-generation languages (i.e., ma-
chine and asscmbler languages), it defeats the pur-
pose of higher level, declarative languages,
Condition logic tests are designed such that each
condition that can result from a decision is exercised
at least once. In addition, multiple eniry conditions
are tested. Thus, condition tests are more inclusive
than decision logic tests. They still suffer from the
problem of ignoring compound decision logic.
Multicondition tests generate each cutcome of
multiple decision criteria and multiple entry points

to a module. These tests require analysis to define
multicriteria decision boundaries. If the boundaries
are incorrectly defined, the test is ineffective. When
designed properly, multicendition logic tests can
minimize the number of test cases while examining
a large number of conditions in the case. The use of
this technique requires practice and skill but can be
mentally stimulating and even fun.

Mathematical Proof Tests

When evaluating logic, the goal is zere defects. One
method of appreaching zero defects is to apply
mathematical reasoning to the logic requirements,
proving the correciness of the program. This method
requires specifications to be stated in a formal lan-
guage such as the Vienna Development Method
(¥DM). Formal languages require both mathemati-
cal and logic skills that are beyond the average busi-
ness SE's ability at the present time. An example of
a general process overview for a payroll system as
specified in VDM is shown as Figure 17-9. While 4
detailed discussion of these methods is beyond the
scope of this text, they deserve mention because they
are the only known way for atlaining zero defects
and knowing it.

Cleanrocom Tests

Cleanroom testing is an extension of mathematical
proof that deserves some comment. Cleanroom test-
ing is a manuat verification technique used as a part
of cleanroom developmenti. The theory of clean-
room development is that by preventing errors from
ever entering the process, costs are reduced, soft-
ware reliability is increased, and the zero defect goal
is attained. The process was introduced in IBM in
the early 1980s by Mills, Dyer, and Linger, and
applies hardware engineering techniques to soft-
ware. Formal specifications are incrementally devel-
oped and manually verified by walk-through and
inspections teams. Any program that is not easily
read is rewritten. All program development is on
paper until all verification is complete.

Cleanroom testing techniques are walk-throughs
and formal mathematical verification. The goal is to
decompose every module into functions and their
linkages. Functional verification uses mathematical

Testing Strategies 699

techniques, and linkage verification uses sef theory
whenever possible to prove the application design
and code.

After verification, an independent testing team
compiles and executes the code. Test data is com-
piled by analysis of the functional specification and
is designed to represent statistical proportions of data
expected to be processed by the live system, In
addition to normal data, every type of catastrophic
error is produced to test that the application does
degrade gracefully.

The success of cleanroom development and test-
ing is such that more than 80% of reported projects
have an average failure time of less than once every
500 software years. Software years are counted by
number of sites times number of years of operation.
For example, 100 sites for one year is 100 software
years. This is an impressive statistic that, coupled
with the 80-20 rule, can guide redevelopment of
error-prone modules. The 80-20 rule says that §0%
of errors are in 20% of modules. If those modules
can be identified, they should be redesigned and
rewritten. Modules for redevelopment are more eas-
ily identified using cleanroom techniques than other
techniques. The disadvantages of cleanroom devel-
opment dre similar to those of mathematical proof.
Skills required are beyond those of the average busi-
ness SE, including math, statistics, logic, and for-
mal specification language. We will say more about
the 80-20 rule later.

Top-Down Testing

Top-down testing is driven by the principle that the
main logic of an application needs more testing
and verification than supporting logic. Top-down
approaches allow comparison of the application to
functional requirements earlier than a bottom-up
approach. This means that serious design flaws
should surface earlier in the implementation process
than with bottom-up testing.

The major drawback to top-down testing is
the need for extra code, known as scaffolding, to
support the stubs, partial modules, and other pieces
of the application for testing. The scaffolding usu-
ally begins with job control language and the main
logic of the application. The main logic is scaffolded

700 CHAPTER 17 Testing and Quality Assurance

High Lavel Overview Process

f A
General Chart of Accounts D, Status,
Ledger [———————m
Employee File
Tirme
Card
Employes Error List
Pay File

Management

VDM Cverview Process

PAYROLL

gxt rg ti:Telst, rd di:EmpDb, rd al:ActLs!, wr el:EreLst, wr pl:Pelst
predb /= <» angd al /= <> gpd pl = <> and &l = <>

Rostlen tl = len pl + len el and for all i belonging to inds .
paidftgy.aldo.ply or error (ti).al.db.el)

LEGEND:
YDM Nameg Diagram Name
Actlst Chart of Accounts
EmpDb Ernployes File
ErrLst Error List
Pelst Payment Details
Telst Time Card

Adapted frem Gonger, Frager, Galiano, Kumar, McLean, Owen, and Vaishnavi, 1980.

FICURE 17-¢ Vienna Development Method (VDM) Formal Specification Langunage Example

and tested hierarchically. First, only the critical
procedures and control logic are tested.

For example, Figure 17-10 shows the mainline
logic for Customer Maintenance. The mainline of
logic is important because it will be executed every
time a maintenance request is performed. Since cus-
tomer creation is the most probable maintenance ac-
tiviky, it should be guaranteed as much as possible.
Further, if creation works, it is easily modified to
provide update and delete capabilities which are a
subset of creation functionality. Figure 17-11 i8 an
example of COBOL stub logic for Create Customer.

These two modules would be tested first, before any
other logic is verified.

When critical procedures are working, the control
language and main line code for less critical proce-
dures are added. In the example above, the stubs for
updating, deleting, and querying customers would be
tested second. These are tested and retested through-
out development as proof that the mainline of logic
for all madules works.

After stubs, the most critical logic is coded, unit
tested, and placed into integration testing upon com-
pletion. In our example, the code for Create Cus-

Testing Strategies 701

Procedure Division.
Main-Line,
Display Cust-Maint-menu.
Accept Cust-Maint-Selection.
If Cust-Maint-Selection ={“A™ or FE)
Call Create-Customner

else
If Gust-Maint-Selection ={*L1" or 7}
Call Update-Customer

8ls8
If Cust-Maint-Salection ={"D" or F8)
Call Delete-Customer

alge
If Cust-Maint-Selection =(*R" or F9)
Call Query-Customer

Bise
If Cusi-Maint-Selection ={*E" or F3)
Go 1o Cust-Maint-Exit

else
Display Selection-Emr
Go To Main-Line.

Cusl-Maint-Exit. Exit,

FIGURE 17-10 Mainlinc Logic for Customer
Maintenance

tomer would be tested next. The ‘critical’ code
includes screen data entry and writing to the file.
Finally, ancillary logic, such as editing input fields,
is completed and placed into testing. In our example,
the less critical code is the actual edit and validation
processing with error messages. Thus, in top-down
testing, the entire application is developed in a skele-
tal form and tested. As pieces of the skeleton are
fleshed out, they are added to the test application.

In theory, top-down testing should find critical
design errors earlier in the testing process than other
approaches. Also, in theory, top-down testing should
result in significanily improved quality of delivered
software because of the iterative nature of the tests.
Unit and integration testing are continuous. There is
no discrete integration testing, per se. When the unit/
integrated test is complete, further system tests are
conducted for volume and constraint tests.

Identification Division.
Program-1D.
CreateCust.

Environment Divisian,
Configuration Section.
Source-Computer. SBM.
Object-Computer. IBM.
File Section.

FD Customer-Screen

01 Cﬁstumer-Screen—Hecord.
... 5Creen description
FO Custamner-File

01 Customer-File-Record.
... customer record description
Data Division.
Working-Starage Section.
01 Cust-Screen.

81 Customer-relatiorn.

Procedure Division.
Main-Line.
Perform Display-Cust-Screen.
Perform Accept-Values.
Perform Edit-Validate.
Perfarm Write-Customer,
Display Continue-Msag.
Accept Cusl-Response.
If Cust-Resp =y
g0 1o main-line
else
go to create-customer-exit.
Display-Cust-Screan.
Write Cusi-Scresn from Customer-Screen-Record.
DCS-exit. Exit.

Accept-Values.
AV-Exit. Exit.

Edit-Validate.
EV-Exit. Exit.

Write-Customer,
Write Customer-Relatian from Custemer-File-Record
on error perform Cust-Backout-Err.
WUC-Exit. Exit.
Craate-Gustomers- Exit. Exit.

FIGURE 17-11
Customer Creatc

COBOL Stub Program for

Top-down easily supports testing of screen
designs and human interface. In interactive applica-
tions, the first logic tested is vsually screen naviga-
tion, This serves two purposes. First, the logic for
interactive processing is exhaustively exercised
by the time all code and testing is complete. Sec-
ond, users can see, at an early stage, how the final

702

application will look and feel, The users can test the
navigation through screens and verify that it matches
their work.

Top-dewn testing can alsc be used easily with
prototyping and iterative development. Prototyping
is iterative and follows the same logic for adding
code as top-down testing. Presenting prototyping,
iterative development, and top-down testing together
for user concurrence helps ensure that prototypes
actually get completed,

Bottom-Up Testing

Bottom-up testing takes an opposite approach based
on the principle that any change to a module can
affect its functioning. In bottom-up testing, the entire
module should be the unit of test evaluation. All
modules are coded and tested individually. A fourth
level of testing is frequently added after unit testing
to test the functioning of execute units. Then, exe-
cute units are turned over to the testing team for
integration and systems testing.

The next section discusses the development of
test cases to match whatever strategy is defined.
Then, each level of testing is discussed in detail with
ABC Video test examples to show how to design
each test.

Test Cases

Test cases are input data created to demonstrate that
both components and the total system satisfy all
design requirements. Created data rather than ‘live,’
production data, is used for the following reasons:

1. Specially developed test data can incorporate
all operational situations. This implies that
each precessing path may be tested at the
appropriate level of testing {(e.g., unit, inte-
gration, etc.).

2. Predetermingd test case output should be pre-
dicted from created input. Predicting results
is easier with created data because it is more
orderly and usually has fewer cases,

3. Test case input and output are expanded to
form a model database. The database should

CHAPTER 17 Testing and Quallty Assurance

statistically reflect the users’ data in the
amount and types of records processed while
incorporating as many operational processing
paths as possible. The database is then the
basis for a regression test database in addi-
tion to its use for system testing. Production
data is real, so finding statistically representa-
tive cases is more difficult than creating
them.

Each test case should be developed to verify that
specific design requirements, functional design, or
code are satisfied. Test cases contain, in addition to
iest case input data, a forecast of test case output.
Real or ‘live’ data should be nsed to reality test
the modules after the tests using created data are
successful,

Each component of an application (e.g., module,
subroutine, program, utility, etc.) must be tested with
at least two test cases: one that works and one that
fails. All modules should be deliberately failed at
least once to verify their *graceful degradation.’ For
instance, if a database update fails, the application
should give the user a message, roll back the pro-
cessing to leave the database as it was before the
transaction, and continue processing. If the applica-
tion were to abend, or worse, continue processing
with a cormpt database, the test would have caught
an erfor.

Test cases can be used 1o test multiple design
requirements. For example, a requirement might be
that all screens are directly accessible from all other
screens; a second requirerment might be that each
screen contain a standard format; a third requirement
might be that ail menus be pull-down selections
from a menu bar, These three requirements can all be
easily verified by a test case for navigation that also
attends to format and menu selection method.

The development of test case input may be facil-
itated by the use of test data generators such as
IEBDG (an IBM utility) or the test data generators
within some case tools. The analysis and verification
of processing may be facilitated by the use of
language-specific or environment-specific testing
supports (see Figure 17-12). These supports are
discussed more completely in the section on auto-
mated supports.

COBOL Language Supports:
Display
Exhikbit
Ready Trace
Interactive Traca
Snap Dump

Focus Language Supports:
Variabie Display
Transaction Counts
Cnlire Error Messages
Online Help

FIGURE 17-12 Examples of Language
Testing Supports

To insure that test cases are as comprehensive as
possible, a methodical approach to the identification
of logic paths or system components is indicated.,
Matrices, which relate system operation to the func-
tional requirements of the system, are used for this
purpose. For example, the matrix approach may be
used in

Testing Strategies 702

= unit testing to identify the logic paths, logic
conditions, data partitions or data boundaries
to be tested based on the program spe-
cification.

m integration testing to identify the relation-
ships and data requirements among interacting
maodules.

® system testing to identify the system and user
requirements from functional requirements
and acceptance critena.

An example of the matrix approach for an inte-
gration test ts illustrated as Figure 17-13. The
example shows a matrix of program requirements
to be met by a suite of modules for Read Customer
File processing. The test verifies that each modute
functions independently, that communications
between the modules {i.e., the message format, tim-
ing, and content) are correct, and verifies that all
input and output are processed correctly and within
any constraints.

The functional requirements of the Read Cus-
tomer File module are related to test cases in the

3. Greate Customear

4. Display Customer

Calltrom Call from
Retrieve Retrieve Getvalid GetValid
Good Bad Missing by Name by Name Good Bad Goog Bad Customer Customer
Cust-ID Cust-iD 1D {Good) {Bad} Credit Credit Data Data {Giood) {Bad}
1. X X X X X
2. X X
3 X X X
4 X X X X X
Legend:
1. Read Customer
2. Check Credit

FIGURE 17-13 Read Customer File Requirements and Test Cases

704 CHAPTER 17 Testing and Quality Assurance

matrix in Figure 17-13. The 11 requirements can be
fully tested in ar meost seven test cases for the four
functions.

Matching the Test Level to
the Strategy

The goal of the testers is to find a balance between
strategies that allows them to prove their applica-
tion works while minimizing human and computer
resource usage for the testing process. No one testing
strategy is sufficient to test an application. To use
only one testing strategy is dangerous. If only white-
box testing is used, testing will consume many
human and computer resources and may not iden-
tify data sensitive conditions or major logic flaws
that transcend individual modules {see Table 17-1).
If only black-box testing is used, specific logic prob-
lems may remain uncovered ¢ven when all specifi-
cations are tested; type 2 errors are difficult to
uncover. Top-down testing by itself takes some-
what longer than a combined top-down, bottom-up
approach. Bottom-up testing by itself does not find
strategic errors until too late in the process to fix
them without major delays.

In reality, we frequently combine al! four strate-
gies in testing an application. White-box testing is
used most often for low-level tests—maodule, rou-
tine, subroutine, and program testing. Black-box
testing is used most often for high-level tests—inte-
gration and system level testing. White-box tests find
specific logic errors in code, while black-box tests
find errors in the implementation of the functional
business specifications. Similarty, top-down tesis are
conducted for the application with whole tested
modules plugged into the control structure as they
are ready, that is, after bottom-up development.
Once modules are unit tested, they can be integration
tested and, sometimes, even system tested with the
same test cases.

Table 17-2 summarizes the uses of the box and
live-data testing strategies for each level of test. Fre-
quently black- and white-box techniques are com-
bined at the unit level to uncover both data and logic
errors. Black-box testing predominates as the level
of test is more inclusive. Testing with creaied data
atall levels can be supplemented by testing with live
data. Operational, live-data tests cnsure that the
application can work in the real environment. Next,
we cxamine the ABC rental application to design a
strategy and each level of test.

TABLE 17-1 Test Strategy Objectives and Problems
Test Strategy Method Goal Shortcomings
White-Box Logic Prove processing. Functional flaws, data sensi-
tive conditions, and errors
across modules are all diffi-
cult to test with white-box
methods,
Black-Box Data Prove results. Type 2 errors and logic prob-
lems difficult to find,
Top-Down Incremental Exercise critical code Scaffolding takes time and
extensively to improve may be discarded. Constant
confidence in reliability. change may introduce new
€rTOrs in every test,
Bottom-up All or nothing Perfect parts. If parts Functional flaws found late

work, whole should

work.

and cause delays. Errors
across modules may be diffi-
cult to lrace and lind.

TABLE 17-2 Test Level and Test Strategy

Testing Strategies 705

General Specific
Level Strategy Strategy Comments on Use
Unit Black-Box Equivalence Partitioning Equivalence is difficult to estimate.

Boundary Value Should always be used in edit-

Analysis validate modules.

Cause-Eflect Graphing A formal method of boundary
analysis that includes tests of com-
pound logic conditions. Can be
superimposed on already available
graphics, such as state-transition
or PDFD,

Emor Guessing Not a great strategy, but can be use-
ful in anticipating problems.

Math Proof, Logic andfor The best strategies for life-

Cleanroom mathematicat proof sustaining, embedded, reusable, or
other critical modules, but beyond
most business SE skills.

White-Box Statement Logic Exhaustive lests of individual
statements. Not desirable unless
life-sustaining or threatening conse-
quences are possible, or if for reus-
able module. Useful for ‘guessed’
error testing that is specific to the
operational environment.

Decision Logic Test A good alternative to statement
logic. May be too detaiied for many
programs.

Condition Logic A good alternative providing all
conditions can be documented.

Multiple Condition Desived alternative for program

Logic testing when human resources can
be expended.

Live-Data Reality Test Can be useful for timing, perfor-
mance, and other reality testing
afier other unit tests are successful.

Integration Black-Box Equivalence Partitioning Useful for partitioning hy module.

Boundary Value Analysis
Cause-Effect Graphing

Error Guessing

Useful for partitioning by module.

Useful for application interfaces
and partitioning by module.

Not the best strategy at this level.

{Table continues on next page}

706 CHAPTER 17 Testing and Quality Assurance

TABLE 17-2 Test Level and Test Strategy (Continued)

General Specific
Level Strategy Strategy Comments on Use
Integration Live-Data Reality Test Useful for interface and black-box
tests after other integration tesls are
successful.
System/QA-Application Black-Box Equivalence Partitioning Most productive approach 1o
Functional Requiremnents system function testing.
Test
Boundary Value Analysis Too detailed to be required at this
level. May be used to test correct
file usape, checkpoint/restart, of
other data-related error recovery,
Cause-Effect Graphing Can be useful for inlermodule test-
ing and when combined with equiv-
alence partitioning.
White-Box Statement Logic Not a useflul system test strategy.
Decision Logic Test May be used for critical logic,
Condition Logic May be used for critical logic,
Multiple Condition Logic May be used for critical logic.
System/QA- Black-Box Equivalence Partitioning Uscful at the level for screen and
Human Interface associated process and for screen
navigation.
Boundary Value Analysis Useful at screen level for associated
process and sereen navigation.
Uselul for QA testing.
TE ST PL AN FOR most highly skilled workers on a development tcam.,

ABC VIDEOORDER

PROCESSING

Test Strategy
Developing a Test Strategy

There are ne rules for developing a test strategy.
Rather, loose heuristics are provided. Testing, like
everything else in software engineering, is a skill
that comes with practice. Good testers are among the

A career can revolve around testing because skilled
testers are in short supply.

As with all other testing projects, the strategy
should be designed to prove the application works
and that it is stable in its operational enviromment,
While scheduling and time allotted are not most
important, when the strategy is devised, one subgoal
is to minimize the amount of time and resources
(both human and computer) that are devoeted to
testing,

The first decision is whether and what to test top-
down and boitom-up. There are no rules, or even

Test Plan for ABC Vidao Order Processing

707

TABLE 17-2 Test Level and Test Strategy (Continued)

General Specific
Level Strategy Strategy Comments on Use
System/QA- White-Box Condition Logic May be used for critical logic.
Human Interface
Multiple Condition Logic May be used for critical logic.
System/QA-Constraints Black-Box Equivalence Partitioning May be useful at the execute unit
level.
Boundary Value Analysis Should not be required at this level
but could be wsed.
Cause-Effect Graphing Might be useful for defining how o
measure constraint compliance.
White-Box Multiple Condition Logic Could be used but generally is too
detailed at this level of test.
Live-Data Reality Test Useful for black-box type tests of
consiraints after created data tesls
are successful.
System/QA-Peak White- Box Multiple Condition Logic May be used for critical logic, but
Requirements generally oo detailed for this level
of testing.
Live-Diata Reality Test Most useful for peak testing.

heuristics, for this decision. Commitment to top-
down testing is as much cultural and philosophical
as it is technical. To provide some heuristics, in gen-
eral, the more critical, the larger, and the more com-
plex an application, the more top-down benefits
outweigh bottom-up benefits.

The heuristics of testing are dependent on the lan-
guage, timing and operational environment of the
application. Significantly different testing strategies
are needed for third (e.g., COBOL, P1/1), fourth
(e.g., Focus, SQL), and semantic {e.g., Lisp, PRO-
LOG) languages. Application timing {sec Chapter 1)
is either batch. on-line, or real-time. Operational
environment includes hardware, software, and other
co-resident applications. Heuristics for each of these
are summarized in Table 17-3.

Package testing diflers significantly from self-
developed code. More often, when you purchase
package software, you are not given the source code
or the specifications. You are given user documen-

tation and an executable code. By definition, you
have to treat the software as a black box. Further,
top-down testing does not make sense because you
are presented with a complete, supposedly working,
application. Testing should be at the system level
only, including functional, volume, intermodular
communications, and data-related black-box tests.
Next, we consider the ABC test strategy.

ABC Video Test Strategy

The ABC application will be developed using some
SQL-based language. SQL is a fourth-generation
language which simplifies the testing process and
suggests certain testing strategies. The design from
Chapter 10, Data-Oricnted Design, is used as the
basis for testing, although the arguments are the
same for the other methodologies.

First, we need to decide the major questions:
Who? What? Where? When? How?

708 CHAPIER 17 Testing and Quality Assurance

TABLE 17-3 Test Strategy Design Heuristics

Condition
Critical Y Y - - N N N N N N
Large Y - Y - N N N N N N
Complex Y - - Y N N N N N N
Timing - - - - BS BE BS BE BE -
Language
Generation - - - - 2 2 34 3 4 Rule
Test Strategy
Top-Down/
Boettom-Up, Both Both Either Either Either Either Cont Either Both Cont
Both, or Either
T T
Mod Mod
B B
Black/Whiic/
Both/Either Both Both Cont Cont Both Either Either Both Cont Bl
W W or ar W
Mod Mod Both Bath Mod
Bl Bl Bl
Legend:
Y = Yes
N = No .
BS = Batch—stand-alone
BE = Batch—execute unit
Cont = Control Stycture
Mod = Modules
T = Top-down
B = Bottom-up
w = Whitc
Bl = Black

Who? The test coordinator should be a member
of the team. Assume it is yourself. Put yourself into
this role and think about the remaining questions
and how you would answer thern if you were testing
this application.

What? All application functions, constraints, user
acceptance criteria, human interface, peak perfor-
marnce, recoverability, and other possible tests must

be performed to exercise the system and prove
its functioning.

Where? The ABC application should be tested in
its operational environment to also test the environ-
ment. This means that all hardware and software of
the operational environment should be installed and
tested. If Vie, or the responsible project team mern-
ber, has not yet installed and tested the equipment,

they are now delaying the conduct of application
testing,

When? Since a 4GL is being used, we can begin
iesting as soon as code is ready. An iterative, top-
down approach will be used. This approach allows
Vic and his staff early access to familiarize them-
selves with the application. Testing at the system
level needs to include the scaffold code to support
top-down testing. The schedule for module coding
should identify and schedule all critical modules for
early coding. The tasks identified so far are:

Build scaffold code and test it.

Identify critical modules.

Schedule coding of critical modules first.
Test and validate modules as developed using
the strategy developed.

wo e

=

How? Since a top-down strategy is being used,
we should identify eritical modules first, Since the
application is completely on-line, the screen controls
and navigation modules must be developed before
anything else can bc tested. Also. since the applica-
tion is being developed specifically to perform
rental/return processing, rental/freturn processing
should be the sccond priority. Rental/return cannot
be performed without a customer file and a video
file, both of which try to access the respective cre-
ate moedules. Therefore, the creation mocdules for the
two files have a high pricrity,

The prierity definition of create and rental/return
modules provides a prioritized list for development.
The scaffolding should include the test screens, nav-
igation, and stubs for all other processing. The last
item, backup and recovery testing, can be parallel to
the others.

Next, we want to separate the activities into par-
allel equivalent chunks for testing. By having paral-
lel testing streams, we can work through the system
tests for each parallel stream simultancously, speed-
ing the testing process. For ABC, Custoner Main-
renance, Video Maintenance, RentaliReturn, and
Periodic processing can all be treated as stand-alone
processes. Notice that in Information Engineering
(IE), this independence of processes is ai the activ-
ity level. If we were testing object-oriented design
{Chapters 11 and 12}, we would look at processes
from the Booch diagram as the independent and par-

Test Plan for ABC Video Crder Processing 709

allel test units. If we were testing process design
(Chapters 7 and 8), we would use the structure charts
to decide parallel sets of processes.

Of the ABC processes, Rental/Return is the most
complex and is discussed in detail. Rental/Return
assumes that all files are present, so the DBA must
have files defined and populated with data before
Rental/Return can be tested. Note that even though
files must be present, it is neither impertant nor
required that the file maintenance processes be pres-
ent. For the two create processes that are called, pro-
gram stubs that return only a new Customer ID, or
Video ID [Copy ID, arc sufficient for testing.

In additien to parallel streams of testing, we
might also want to further divide Rental/Return into
several strecams of testing by level of complexity, by
transaction tvpe, of by equivalent processes to fur-
ther subdivide the code generation and testing pro-
cesses, We choose such a division so that the same
person can write all of the code but testing can pro-
ceed without all variations completed. For example,
we will divide Rental/Rerurn by transaction type as
we did in IE. The four transaction types are rentals
with and without returns, and returns with and with-
out rentals. This particular work breakdown allows
us to test all major variations of all inputs and out-
puts, and allows us to proceed from simple to com-
plex as well. In the next seetions, we will discuss
from bottom-up how testing at each level is designed
and conducted using Rental/Return as the ABC
example,

Next, we define the integration test strategy. The
IE design resulted in small modules that are called
for execution, some of which are used in more than
one process. At the integration level, we define
inputs and predict outputs of each module, using a
black-box approach. Because SQL <alls do not pass
data, predicting SQL set cutput is more important
than creating input. An important consideration with
the number of modules is that intermodular errors
that are created in one module but not evidenced
until they arc used in another module. The top-down
approach should help focus atiention on critical
maodules for this problem.

Because SQL is a declarative language, black-
box testing at the unit level is also appropriate. The
SQL code that provides the control structure is logic

710

and becomes an important test item. White-box tests
are most appropriate to testing the control logic.
Therefore, a mix of black- and white-box testing will
be done at the unit level.

To summarize, the top-down strategy for testing
the application includes:

1. Test screen design and navigation, including
validation of security and access controls.

2. Test the call structure for all modules.

3. Test rental/return processing.

4. Test create processing for customers and
videos.

3. Test remaining individual processes and file
contents as parallel streams.

6. Test multiple processes and file manipula-
tions together, inctuding validation of
response time and peak system performance,
The test will use many users doing the same
and different processes, simultaneousiy.

7. Test backup and recovery strategies.

Now, we develop and try a unit test to test the
strategy. If a small test of the strategy works, we
implement the strategy.

Unit Testing

Guidelines for Developing a Unit Test

Unit tests verify that a specific program, module, or
routine {all referred to as ‘module’ in the remaining
discussion) fulfills its requirements as stated in
related program and design specifications, The two
primary goals of unit testing arc conformance to
specifications and processing accuracy,

For conformance, unit tests determine the extent
to which processing logic satisfies the functions
assigned to the module. The logical and operational
requirements of each module are taken from the pro-
gram specifications. Test cases are designed to verify
that the module meets the requirements. The fest is
designed from the specification, not the code.

Processing accuracy has three components: input,
process, and output. First, each module must process
all allowable types of input data in a stable, pre-
dictable, and accurate manner. Second, all possible
errors should be found and treated acecording to the

CHAPTER 17 Testing and Quclity Assurance

specifications. Third, all output should be consistent
with results predicted from the specification, Qutputs
might include hard copy, terminal displays, elec-
tronic transmissions, or file contents; all are tested.

Therc is no one strategy for unit testing, For
inputfoutput bound applications, black-box strate-
gies are normally used. For process logic, either or
both strategies can be used. In general, the more crit-
ical to the organization or the more damaging the
possible errors, the more detailed and extensively
white-box testing is used. For example, organiza-
tienally critical processes might be defined as any
process that affects the financial books of the organi-
zation, meets legal requirements, or deals with client
relationships. Examples of application damage
might include life-threatening situattons such
as in nuclear power plant support systems, life-
suppert systems in hospitals, or test systems for car
or plane parts.

Since most business applications combine ap-
proaches, an example combining black- and white-
box strategies is described here. Using a white-box
approach, each program specification is analyzed to
identify the distinct logic paths which serve as the
basis for unit test design. This analysis is simplified
by the use of tables, lists, matrices, diagrams, or
decision tables to document the logic paths of the
program, Then, the logic paths most critical in per-
forming the functions are selected for white-box
1esting. Next, to verify that all logic paths not white-
box tested are functioning at an acceptable level of
accuracy, black-box testing of input and output is
designed. This is a common approach that we will
apply to ABC Video.

When top-down unit testing is used, control struc-
ture logic paths are tested first. When each path is
successfully tested, combinations of paths may be
tested in increasingly complex relationships until
all possible processing combinaticns are satisfacto-
rily tested. This process of simple-to-complex test-
ing ensures that all logic paths in a module are
performing both individually and collectively
as intended.

Similarly, unit testing of multiuser applications
also uses the simple-to-complex approach. Each pro-
gram is tested first for single users. Then multiuser
1ests of the single functions follow. Finally, multiuser
tests of multiple functions are performed.

Unit tests of relatively large, complex programs
may be facilitated by reducing them to smaller, more
manageable equivalent components such as

® transaction type:
e.g., Debit/Credit, Edit/Update/Report/Error
= functional component activity
e.g., Preparing, Sending, Receiving,
Processing
» decision option
eg. Iftrue. .. Il false . ..

Whern the general process of reduction is accom-
plished, boih black-box and white-box approaches
are applied to the process of actually defining test
cases and their corresponding output, The black-box
approach should provide both good and bad data
inputs and examine the outputs for correctness of
processing. In addition, at least one white-box strat-
egy should be used to test specific critical logic of
the tested item.

Test cases should be both exhaustive and mini-
mal. This means that test cases should test every

Test Plan for ABC Video Order Processing 711

condition or data domain possible but that no extra
tests are necessary. For example, the most common
errors in data inputs are for editfvalidate criteria.
Boundary conditions of fields should be tested.
Using equivalence partitioning of the sets of allow-
able values for each field we develop the test for a
date formatted YYYYMMDD (that is, 4-digit year,
2-digit month, and 2-digit day}). A good vear test will
test last year, this year, next year, change of century,
all zeros, and atl nines. A good month test will test
zeros, 1, 2, 4 (representative of months with 30
days), 12, and 13, Only 1 and 12 are required for the
boundary month test, but the other months are
required to test day boundaries. A good day test will
test zeros, 1, 28,29, 30, 31, and 32, depending on the
final day of each month. Only one test for zero and
one are required, based on the assumption that if one
month processes correctly, all months will. Leap
year and nonleap years should also be tested. An
example of test cases for these date criteria is pre-
sented. Figure 17-14 shows the equivalent sets of
data for each domain. Table 17-4 lists exhaustive test

Equivalent Data ltems for Year Tosis

Good Years Year Errors

1993-1993
! 1992, 2010
[2000 [j

Equivalent Data ltems for Manih Tesis
Good Months

1,35 78,

Equivatent Data ltems for Day Tesis

m

m 0‘ 29' an

Month Errors

G G

Good Days

Day Errors

FIGURE 17-14 Unit Test Equivalent Sets for a Date

112 CHAPTER 17 Testing and Quality Assurance

TABLE 17-4 Exhaustive Set of Unit Test Cases for a Date

Test Case YYYY MM DD Commenis
1 aaaa aa aa Tests actions against garbage input
2 L992* 0 0 Tests all incorreet lower bounds
3 2010 13 a2 Tests all incorreet upper bounds
4 1993 1 31 Tests correct upper day bound
4a 1994 12 3 Not required . . . could be optional test of

upper menth/day bound. Assumption is that if
month = 1 works, all valid, equivalent months

will work.
5 1995] 1 Tests correct lower day bound
i} 1996 12 1 Not required . . . could be optional test of

upper month/lower day bound. Assumption is
that if month = 1 works, all valid, equivalent
months will work.

7 1997 1 32 Tests upper day bound emor

8 1998 12 32 Not required . . . could be optional test of
upper month/upper day bound error. Assump-
tion is that if month = 1 works, all valid,
equivalent months will work.

G 1999 12 0 Retests lower bound day error with otherwise
valid data . . . Not strictly necessary but could
bc used.

10 2000 2 1 Tests lower bound . . . not strictly
necessary

11 2000 2 24 Tests leap yedr upper bound

12 2600 2 30 Tests lcap year upper bound error

13 1999 2 28 Tests nonleap year upper bound

14 1999 2 29 Tests nonleap year upper bound error

15 1999 2 0 Tests lower bound error . . . not stricthy
necessary

16 2001 4 30 Tests upper bound

17 200 4 31 Tesls upper bound error

18 2002 4 1 Tests lower bound . . . nol strictly
NCCCRRary

19 2003 4 0 Tests lower bound errot . . . not strictly
necessary

*Valid dates are between 1/1/93 and 12/31/2009.

Test Plan for ABC Video Order Processing 713

TABLE 17-5 Minimal Set of Unit Test Cases for a Date

Test Case YYYY MM DD Comments
1 aaaa aa ag Tests actions against garbage input
2 1592 0 0 Tests all incortect lower bounds
3 2010 13 32 Tests all incorrect upper bounds
4 1993 1 3t Tests correct upper day bound
5 1995 l 1 Tests correct lower day bound
6 1957 1 32 Tests upper day bound error
T(H 2000 2 29 Tests leap yvear upper bound
8(10y 2000 2 30 Tests leap year appet bound error
9(11) 1999 2 28 Tests nonleap year upper bound
10(12) 1999 2 29 Tests nonleap year upper bound error
11{14) 2001 4 30 Tests upper bound
12(15) 2001 4 3l Tests upper bound error

cases for each set in the figure, Table 17-5 lists the
reduced set after extra tests are removed.

Other frequently executed tests are for character,
field, batch, and control field checks. Table 17-6 lists
a sampling of errors found during unit tests. Char-
acter checks include tests for blanks, signs, length,
aml data types (e.g., numeric, alpha, or other). Field
checks include sequence, reasonableness, consis-
tency, range of values, or specific contents. Control
fields are most common in batch applications and are
used to verify that the file being used is the correct
one and that ail records have been processed. Usu-
ally the controf field includes the last execution date
and file name which are both checked for accuracy.
Record counts are only necessary when not using a
declarative language.

Once all test cases are defined, fests are run and
results are compared to the predictions. Any result
that does not exactly match the prediction must be
reconciled. The only possible choices are that the
tested item is in error or the prediction is in error. If
the tested item is in error, it is fixed and retested.
Retests should follow the approach used in the first
tests. If the prediction is in error, the prediction is
researched and corrected so that specifications

are accurate and documentation shows the correct
predictions.

Unit tests are conducted and reviewed by the
author of the code item being tested, with final test
results approved by the project test coordinator.

How do you know when to stop unit testing?
While there is no simple answer to this question,
there are practical guidelines. When testing, each
tester should keep track of the number of errors
found (and resolved) in each test. The errors should
be plotted by test shot to show the pattern, A typical
module test curve is skewed left with a decreasing
number of errors found in each test (see Figure
17-15). When the number of errors found ap-
proaches zero, or when the slope is negative and
approaching zero, the module can be moved forward
to the next level of testing. If the number of errors
found stays constant or increases, you should seek
help either in interpreting the specifications or in
testing the program.

ABC Video Unit Test

Above, we said we would use a combination of
black- and white-box testing for ABC unit tests. The

7114 CHAPTER 17 Testing and @wality Assurance

TABLE 17-6 Sample Unit Test Errors

Edit/Validate
Transaction rejected when valid
Etror accepted as valid
Incorrect validation criteria applied

Screen
Navigation faulty
Faulty screen layout
Spelling errors on screen
Inability to call screen

Data Tntegrity
Transaction processed when inconsistent with
other infermation
Interfile matching not correct
File sequence checking notl correct

File Processing
File, segment, relation of field not correctly
processed
Read/wrile data format emmor
Syntax incorrect but processed by inlerpreler

Report
Format not correct
Totals do not add/crossfoor
Wrong ficld(s} printed
Wrong heading, footing or other cosmetic error
Data proccssing incorrect

applicalion is being implemented using a SQL soft-
ware package. Therefore. all code is assumed to be
in SQL. The control logic and nonSELECT code is
subject to white-box tests, while the SELECT mod-
ules will be subject to black-box tests.

In Chapter 10, we defined Kent/Return processing
as an execute unit with many independent code
units. Figure 17-16 shows partial SQL code from
two Rent/Return modules. Notice that most of
the code is defining data and cstablishing screen
addressability. As soon as two or three modules that
have such strikingly similar characteristics are built,
the need to further consolidate the design 10 accom-
modate the implementation language should be
obvious, With the current design, more code is spent
in overhead tasks than in application tasks. Overhead
code means that users will have long wait times
while the system changes modules. The current

Mumber

Errors

1 2 K| 4 5 6
Mumber of Tast Runs

FIGURE 17-15 Unit Test Errors Found Over
Test Shots

design also means that debugging the individual
modules would require considerable work to verify
that the moduiles performs collectively as expected.
Memory locations would need to be printed many
times in such testing.

To restructure the code, we examine what all of
the Rent/Return modules have in common—Qpen
Rentals data. We can redefine the data in terms of
Open Rentals with a single-user view used for all
Rernt/Return processing. This simplifies the data part
of the processing but increases the vulnerability of
the data to integrity problems. Problems might
increase because the global view of data violates the
principle of information hiding. The risk must be
taken, however, to accommodate reasonable user
response time.

The common format of the restuuctured SQL
code is shown in Figure 17-17. In the restructured
version, data is defined once at the beginning of
Rent/Return processing. The cursor name is de-
clared once and the data is retrieved into memory
based on the data entered through the Gert Reguest
module. The remaining Rent/Return modules are
called in sequence. The modules have a similar
structure for handling memory addressing. The
problems with many prints of memory are reduced
because once the data is brought into memory, no
more retrievals are necessary until updates take
place at the end of the transaction, Processing is
simplificd by unifying the application’s view of
the data.

Test Plan for ABC Video Order Processing 715

UPDATE OPEN RENTAL FILE (BOLDFACE CODE IS REDUNDANT)

oCcL INPUT_VIDEO_ID CHAR{8});
oCcL INPUT_COPY_ID CHAR{2);
DCL INPUT_CUST_ID CHAR (8};
DCL AMT_PAID DECIMAL {4,2);
DCL CUsST_ D CHAR(9);

CONTINUE UNTIL ALL FIELDS USED ON THE SCREEN OR USED TG
CONTROL SCREEN PROCESSING ARE DECLARED ...

DCL TOTAL_AMT_DUE DECIMAL{5.2);
DCL CHANGE DECIMAL{4,2);
DCL MORE_OPEN_RENTALS BIT(1);
DCL MORE_NEW RENTALS BIT(1);

EXEC SQL INCLUDE SQLCA:; “COMMUNICATION AREA*/
EXEC SQL DECLARE CUSTOMER TABLE

{FIELD DEFINITIONS FOR CUSTOMER RELATION};
EXEC 50L DECLARE VIDEO TABLE

{FIELD DEFINITIONS FOR VIDEO RELATION);
EXEC 5QI. DECLARE COPY TABLE

{FIELD DEFINITIONS FOR COPY RELATION});
EXEC SOL DECLARE OPENRENTAL TABLE

{FIELD DEFINITIONS FOR OPENRENTAL RELATION};
EXEC SOL DECLARE SCREEN_CURSOR CURSOR FCR UPDATE OF

ORVIDEQID

QRCOPYID

ORCUSTID

ORRENTALDATE;
ORBER BY ORCUSTID, ORYIDEQID, ORCOPYID,
EXEC SQL OPEN SCREEN, CURSCR;
GOTAOLABEL
EXEC 5QL FETCH SCREEN CURSOR INTO TARGET

‘CUSTID

VIDEOID

COPYID

:RENTALDATE
IF SQLCODE = 100 GOTO GOTOEXIT;
EXEC SOL UFDATE OPENREMNTAL

SET ORCUSTID = CUSTID

SET ORVIDEQID = VIDEDID

SET ORCOPYID = COPYID

SET ORRENTALDATE = TODAYSDATE
WHERE CURRENT OF SCREEN CURSOR;
GOTO GOTOLABEL;
GOTOEXIT;
EXEC SOL CLOSE SCREEN_CURSOR:

{Figure continues on next page)

FIGURE 17-16 Two Modules Sample Code

716 CHAPTER 17 Testing and Quality Assurance

ADD RETURN DATE (Boldfaca code is redundant)

DCL INPUT_VIDEO_ID CHAR(B);
DCL INPUT_COPY _ID CHAR(2);
DCL INPUT_CUST_ID CHAR (8);
DeL AMT_PAID DECIMAL (5,2);
DCcL CUST ID CHAR(9);

CONTINUE UNTIL ALL FIELDS USED ON THE SCREEN OR USED TO
CONTROL SCREEN PROCESSING ARE DECLARED ...

DCL TOTAL_AMT_DUE DECIMAL{S,2);
DCL CHANGE DECIMAL(3,2);
DCL MORE_OPEN_RENTALS aIT(1);
DCL MORE_NEW _RENTALS BIT(1);

EXEC SQL INCLUDE SQLCA: "COMMUNICATION AREA*/
EXEC SQL DECLARE CUSTOMER TABLE

(FIELD DEFINITIONS FOR CUSTOMER RELATION);
EXEC SQL DECLARE VIDEQ TABLE

(FIELD DEFINITIONS FOR VIDEC RELATION);
EXEC SQL DECLARE COFY TABLE

{FIELD DEFINITIONS FOR COPY RELATION);
EXEC SQL DECLARE QPENRENTAL TABLE

{FIELD DEFINITIONS FOR OPENRENTAL RELATION);
EXEC 5QL DECLARE SCREEN_CURSOR CURSOR FOR

SELECT * FROM OPEN_RENTAL

WHERE VIDECID = ORVIDEQID
AND COPYID = ORCGPYID;

EXEC SQL OPEN SCREEN_CURSOR
GOTOLABEL
EXEC SQL FETCH SCREEN CURSOR INTO TARGET

CUSTID

VIDEOQID

COPYID

‘RENTALDATE
IF SQLCODE = 100 GOTO GOTOEXIT,
EXEC SQL SET :RETURNDATE = TODAYS_DATE

WHERE CURRENT OF SCREEN_CURSOR;
EXEC SQL UPDATE OFEN_RENTAL

SET ORRETURNDATE = TODAYS_DATE

WHERE CURRENT OF SCREEN_CURSOR;
GOTO GOTOLABEL;
GOTOEXIT,
EXEC SQL CLOSE S5CREEN_CURSOR;

FIGURE 17-16 TFwo Modules Sample Code (Continued)

The restructuring now requires a change to the the functional Reny/Rerurn processing. Top-down,
testing strategy for Rent/Return. A strictly top-down black-box tests of the SELECT code are done before
approach cannot work because the Rent/Returnmod- being embedded in the execute unit. Black-box test-
ules are no longer independent. Rather, a combined ing for the SELECT is used because SQL controls all
top-down and bottom-up approach is warranted. A data input and output. Complete SELECT statements
sequential bottom-up approach is more effective for are the test unit.

Test Plan for ABC Video Order Processing Nz

OCL INPUT_VIDEO_ID CHAR{8);

DCL INPUT_COPY 1D CHAR{2):

oCL INPUT_CUST_ID CHAR {9);

DCL AMT_PAID DECIMAL (4,2);

DCL CUST_ID CHAR{S):
continue until ail fields used on the screen or used to control sCreen processing are

declared ...

DCL TOTAL_AMT_OUE DECIMAL(E.2);

DCL CHANGE CECIMAL(4.2);

DCL MORE_GPEN_RENTALS BIT{1};

DCL MORE_NEW_RENTALS BIT{1};

EXEC SQL INCLUDE SQLCA: #COMMUNICATION AREA*/

EXEC SGL DECLARE RENTRETURN TABLE

(field definitions for user view including all fields from customer, video, copy,
open rental, and custemer history relations);

EXEC SQL DECLARE SCREEN_CURSOR CURSOR FOR
SELECT * from rentreturn
where {:videcid = orvideo_id and :copyid = crcopyid)
or :custid = orcustid)

EXEC SQL OPEN SCREEN_CURSCR

EXEC SQL FETCH SCREEN_CURSOR INTO TARGET

:Hequest
If :request eq “C?" set :custid = request
else set videoid = :requestt

set :copyid = rrequest2;

(At this point the memory contains the related relation data
and the remaining rent'return processing can be done.}

All the other madules are called and contain the following common format:

GOTOLABEL
EXEC SQL FETCH SCREEN_CURSOR INTO TARGET
:screen fields

IF SQLCODE = 0 next step; (return code of zero means no errors)

iF SQLCODE = 100 (not found condition) CREATE DATA or CALL END PROCESS;
IF SQLCODE < 0 CALL ERROR_PROCESS, ERROR-TYPE;

Sel screen variables (which displays new data}

Prompt next action

GOTO GOTOLABEL;
GOTOEXIT;
EXEC SQL CLOSE SCREEN_CURSOR:

FIGURE 17-17 Restructured SOL Code—Common Format

718 CHAPTER 17 Testing and Quality Assurance
Test Type
1. Tast SGL SELECT statement Black Box
2. Verily SCIL cursar and data addressibility ¥White Box
3. Test Gat Regues! White Box
4. Test Get Vafid Gustomer, Get Cpen Rentals Black Box for embedded SELECT statement, White Box for
other logic
5. Test Get Valid Video White Box for logic, Black Box for embedded SELECT
statement
. Test Process Payment and Make Change White Box

Test Update Opert Rental
. Test Create Open Asntal

[T R

. Test Update ftem
10. Test UpdateCreate Customner Higtory
11. Test Print Receipnt

Black Box for Uipdate, White Bax for gther logic
Black Box for Update, White Box for other logic
Black Box for Update, White Box for other logic
Black Bax for Update, White Box for other logic

Black Box for Update, White Bax for other logic

FIGURE 17-18 Unit Test Strategy

The screen interaction and module logic can be
tested as either white box or black box. At the unit
level, white-box testing will be used to icst inter-
module control logic. A combination of white-bax
and black-box testing should be used to test intra-
maodule control and process logic.

The strategy for unit testing, then, is to test data
retrievals first, to venfy screen processing, including
SQL cursor und data addressability second, and to
sequentially test all remaining code last (see Figure
17-18).

Because all processing in the ABC application is
on-line, an interactive dialogue test script is devel-
oped. All file interactions predict data retrieved and
written, as appropriate. The individual unit test
scripts begin processing at the execute unit bound-
ary. This means that menus are not necessarily
tested. A test script has three columns of information
developed. The first column shows the computer
messages ot prompts displayed on the screen. The
second column shows data entered by the user. The
third column shows comments or explanations of the
interactions taking place.

A partial test script for Rent/Return processing is
shown in Figure 17-19. The example shows the

script for a return with rental transaction. Notice that
the test begins at the Rent/Return screen and that
both error and correct data are entered for each field.
After all errors are detected and dispatched prop-
erly, only correct data is required. This script shows
one of the four types of transactions. It shows only
one return and one rental, however, and should be
expanded in another transaction to do several rentals
and several returns; returns should include on-time
and late videos and should not include all tapes
checked out. This type of transaction represents the
requisite variety to test returns with rentals. Of
course, other test seripts for the other three types of
transactions should also be developed. This is left
as an extra-credit activity.

Subsystem or Integration
Testing
Guidelines for Integration Testing

The purpose of integration testing is to verify that
groups of interacting modules that comprise an exe-
cute unit perform in a stable, predictable, and accu-

Test Plan for ABC Video QOrder Processing

System Prompt

User Action

Explanation

Menu

Rent/Return screen, cursor
at request fisid

Error Massage 1:

lllegal Customer or Video Code,

Type Request

Customer Data Entry Screen
with message:

llegal Customer 1D, enter new
customer

Rant/Return screen, cursor at
request field

Cursor at request fietd
Cursor al return date field
Curser al return date field

Cursor at request field

Cursor at request field

Cursor at Total Amount Paid
field

Cursor at Total Amount Paid
tield

Gursor at Request field

Cursar at Request field

Press molse, move o
Rent/Return, and release

Scan customer bar coda
1234567

Enter: 1234567 <cr=

<Cr>

Sean customer bar code
2221234

Scan 123123123
Enter yesterday's date
Enter today's date

Scan new tape ID—
123412345

Press <cr>
Enter <cr>
Enter 10 <cr>
Enter «Cr>

Enter P <cr=

Select Rent/Return from menu
Dummy bar code

Dummy bar code

Carriage return enfered 1o end Create
Customer process

Legal customer 1D. System should return
customer and rental information for M. A. Jones,
Wideo 12312312, Copy 3, Terminator 2, Rental
date 1/23/94, not returned.

Cursor moves to rented video line
Error message: Return date must be today's date.

Late fee compuled and displayed . . . should ba
£4.00.

New tape entered and displayed. Video
#12341234, Copy 5. Mary Poppins, Rental date
12594, Charge $2.00.

System computes and displays Tolal Amount Due
.. .should be $6.00.

Error Message: Amount paid must be numenic
and equal or greater than Total Amount Due.

System computes and displays Change Due . . .
should be $4.00. Cash drawer should open.

Error Message: You must enter P or F5 1o
requesl print.

System prints transaction

Go to SQL Query and verify Open Rental and Copy contents
Open Rental tuple for Yideo 123123123 contents should be:

719

22212341231231230123%940200012534040000000000000
Open Rental tuple for Yideo 123412345 should be:
222123412341 234501 25940200000000000000000000000
Copy tuple for Video 12312312, Copy 3 should be:
12312312311018200103
Copy tuple for Video 12341234, Copy 5 should be:
12341234511318010000
Verity the contents of the receipt.

FIGURE 17-19 ABC Video Unit Test Example—Rent/Return _

720

rale manner that is consistent with all related pro-
gram and systems design specifications.

Integration tests are considered distinct from vnit
tests. That is, as unit tests are successful, integration
testing for the tested units can begin. The two pri-
mary goals of integration testing are compatibility
and intermodule processing accuracy.

Compatibility relates to calling of modules an
operational environment. The test verifies first that
all modules are called correctly, and, even with
errors, do not cause abends. Intermodule tests check
that data transfers between modules operate as
intended within constraints of CPU time, memaory,
and response time. Data transfers tested include
sorted and extracted data provided by utility pro-
grams, as well as data provided by other applica-
tion modules.

Test cases developed for integration testing
should be sufficiently exhaustive to test all possible
interactions and may include a subset of unit test
cases 45 well as special test cases used only in this
test. The integration test does not test logic paths
within the modules as the vnit test does. Instead, it
tests interactions between modules only. Thus, a
black-box strategy works well in integration testing.

If modules are called in a sequence, checking of
inputs and outputs to each module simplifies the
identification of computational and data transfer
errors. Special care must be taken 1o identify the
source of errors, not just the location of bad data.
Frequently, in complex applications, errors may not
be apparent until several modules have touched the
data and the true source of problems can be difficult
to locate. Representative integration test errors are
listed in Table 17-7.

Integration testing can begin as soon as two or
more modules are successfully unit tested. When to
end integration tests is more subjective. When
exceptions are detected. the results of all other test
processing become suspect. Depending on the sever-
ity and criticality of the errors to overall process
integrity, all previous levels of testing might be
reexecuted to reverify processing. Changes in one
module may cause tests of other modules to become
invalid. Therefore, integration tests should be con-
sidered successful only when the entire growp of
modules in an execute unit are run individually and

CHAPTER 17 Testing and Quality Assurance

TABLE 17-7 Sample Integration Test
Errors

Intermodule communication
Called module cannet be invoked

Calling module does not invoke all expected
modules

Message passed to module contains extraneous
information

Message passed to module does not contain
correct information

Message passed contains wrong {or inconsistent)
data type

Return of processing [rom catted modulz is to the
wrong place

Module has no retum

Multiple entry points in a single module

Multiple exit points in a single module
Process errors

Input errors not properly disposed

Abend on bad data instead of graceful
degradation

Qutput does not match predicted results

Pracessing of called module produces unexpected
resulis does not match prediction

Time constrained process is over the limit

Module causes time-out in some other part of
the application

collectively without error. Integration test curves
usually start low, increase and peak, then decrease
(see Figure 17-20). If there is pressure to terminaie
integration testing beforc all errors are tound, the
rule of thumb is to continue testing until fewer errors
are found on several successive test runs.

ABC Video Integration Test

Because of the redesign of cxecute units for more
efficient SQL processing, integration testing can he
concurrent with unit code and test work, and should

Nurnbar
of
Errors
Number of Test Runs
FIGURE 17-20 Integration Test Errors Found

Over Test Shots

integrate and test the unit functions as they are com-
plete. The application control structure for screen
processing and for calling modules is the focus of
the test,

Black-box, top-down testing is used for the inte-
gration test. Because SQL does not pass data as
input, we predict the sets that SQL will generate dur-
ing SELECT processing. The output sets are then
passed to the control code and used for screen pro-
cessing, both of which have been unit tested and
should work. To verify the unit tests at the integra-
tion level, we should:

1. Ensure that the screen control structure
works and that execute units are invoked as
intended.

2. Ensure that screens contain expected data
from SELECT processing.

3. Ensure that files contain all updates and cre-
ated records as expected.

4. Ensure that printed output contains expected
information in the correct format.

First, we want to define equivalent sets of pro-
cesses and the sets’ equivalent sets of data inputs.
For instance, the high level processes from IE analy-
sis constitute approximately equivalent sets. These
were translated into modules during design and, with
the exception of integrating data access and use
across modules, have not changed. These processes
include Rent/Return, Customer Maintenar:ce, Video
Marintenance, and Other processing. If the personnel
are available, four people could be assigned to

Test Plan for ABC Video Order Processing 2

develop one script each for these equivalent sets of
processing. Since we mamed Rent/Return as the
highest priority for development, its test should be
developed first. The athers can follow in any order,
although the start-up and shutdown scripts should be
developed scon after Rent/Return 1o allow many
tests of the entire interface.

First, we test screen process control, then individ-
ual screens. Since security and access control are
embedded in the screen access structure, this test
should be white box and test every possiblg access
path, including invalid ones. Each type of access
rights and screen processing should be tested.
For the individual screens, spelling, positioning,
color, highlighting, message placement, consis-
tency of design, and accuracy of information are all
validated (sce Figure 17-21).

The integration test example in Figure 17-22 is
the script for testing the start-up procedure and secu-
rity access control for the application. This script
would be repeated for each valid and invalid user
including the cther clerks and accountant. The start-
up should only work for Vic, the temporary test
account, and the chief clerk. The account numbers
that work should ret be documented in the test

1. Define equivalent sets of processes and data
inputs.

2. Define the priorities of equivalent sets for testing.

3. Develop tesl scrips for Rent/Aeturn, Other procass-
ing, Custormer Maimtenance, Videc Maintenance.

4. For each of the abova scripts, the testing will pro-
ceed as follows:

a. Test screen control, including security of access
to the Rent/AReturn application.

b. Evajuate accuracy of spelling, farmat, and con-
sistency ot each individual screen.

¢. Test access rights and screen access controls.

d. Testinformation retrieval and display.

a. For each transaction, test processing
sequence, dialogue, error messages, and error
processing.

. Review all reports and file contents for accu-
racy of processing, consistency, format. and
spalling.

FIGURE 17-21

ABC Integration Test Plan

722 CHAPTER 17 Testing and Quality Assurance

Test Stantup Security

Systern Prompt User Acticn Explanation

Ci> StRent«cr> StRent is Exec to startup the Rental/Return Pro-
cessing applicakion

Enter password <Cr> Error

Passward must be alphanumeric
and six characters.

Enter Password 123856<Cr> Error—illegal password
Passward illegal, try again.
Enter Passward. Abcdelg Error—illegal password

Three illegal atternpts at
password. System shutdown

G StRent<cr> Error—3illegal attempts requires special starn-up.
llegal start-up attempt

Systermn begins to beep conlinu-
ously until stopped by system
admirstrator, No lurther prompts,

Single User Sign-on

Co> StRentecr> StRentis Exec to startup the Rental/Return
Processing apphcation

Enter Passward: <Cr= Error

Password illegal, try again.

Enter Passwaord: VACBE283 Termpaorary lagal entry
User Sign-on menu

Enter Initials: <ire Error

fou must enter your initials.

Enter Initizls: VAV Error

Initials not authorized, try again.

Enter Initials: VAC Legal entry (VAC is Vic)

Main Menu with all Options Begin Main Menu Test.

FIGURE 17-22 ABC Video Integration Test Script

script. Rather, a note should refer the reader to the after each transaction is entered to ensure that file

person responsible for maintaining passwords. updates and additions are correct. If the intcgration
In the integration portion of Lthe test, multiuser test is upproached as iteralively adding modules for
processing might take place, bul il is not necessarily testing, the final run-through of the test script should

fully tested at this point. File contents arc verificd include all functions of the application, including

start-up, shutdown, generation and printing of all
reports, queries on all files, ali lile maintenance, and
all transaction types. At least several diys and one
monthly cycle of processing sh_bul_d be simulated for
ABC’s test to ensure that end-of-day and end-of-
month processing work.

Next, we discuss system testing and continue the
example from ABC with a functional test that is
cqually appropriate at the integration, system, or
QA levels.

System and Quality Assurance
Testing

Guidelines for Developing System and
Quality Assurance Tests

The system test is used to demonstrate an applica-
tion’s ability 1o operate satisfactorily in a simulated
production environment using its intended hardware
and software configuration. The quality assurance
test (OA) is both a system test and a documentation
test. Both tests also verify that all of the system’s
interacting modules do the following:

1. Fulfill the user’s functional requirements as
comained in the business system design spec-
ifications and as translated into design
regquircments in the design spec and any
documents contrelling interfaces to
other systems,

2, The human interface works as intended,
Screen design, navigation, and work inter-
ruptability are the test objects for human
interface testing. All words on screens should
be spelled propetly. All screens should share
a common format that is presented consis-
tently throughout the application. This format
includes the assignment of program function
keys as well as the physical screen format.
Navigation is the movement between screens,
All menu selections should bring up the cor-
rect next screen. All sereens should return to
a location designated somewhere on the
screen. If direct navigation from one screen
to any other is provided, the syntax for that
movement should be consistent and correct.

Test Plan for ABC Video Order Precessing 723

If transactions are to be interruptible, the
manner of saving partial transactions and
calling them back should be the same for all
screens. System level testing should test all
of these capabilities.

. All processing is within constraints. General

constraints can relate to prerequisites,
postrequisites, time, strueture, control and
inferences (see Chapter 1}. Constraints can
be internally controlled by the application or
can be externally determined with the appli-
calion simply meeting the constraint. Inter-
nally controlled constrainds are tested through
test cases specifically designed for that pur-
pose. For instance, if response time limits
have been stated, the longest possible trans-
action with the most possible errors or other
delays should be designed to test response. If
response time for a certain number of users is
limited, then the test must have all uscrs
doing the most complex of actions to prove
the response time constraint is met. Exter-
nally controlled constraints are those that the
application either meets or does not. If the
constraints are not met, then some redesign is

probably required.

. All modules are compatible 2nd, in event of

failures, degrade gracefully. System tests of
compatibility prove that all system compo-
nents are capable of operating together as
designed. System components include pro-
grams, modules, utilities, hardware, database,
network, and other specialized software.

. Has sufficient procedures and code to provide

disasler, restart, and application error recov-
ery in bath the designed and host software
{e.g., DB2)

. All operations procedures for the system are

useful and complete. Operations procedures
include start-up, shutdown, normal process-
ing, exception processing, special operator
interventions, periodic processing, system
specific errors, and the three types of
recovery.

In addition, the QA tecst cvaluates the accu-
racy, consistency, format, and content of application

724 CHAPTER 17 Testing and uality Assurance

documeniation, including technical, user, on-line,
and operations documentation. Ideally, the individ-
ual performing the QA test does not work on the
project team but can deal with them cffectively in the
adversarial role of QA. Quality assurance in some
companies is called the acceptance test and is per-
formed by the user. [n other companies, QA is per-
formed within the 1S department and precedes the
User acceptaince test.

The system test is the final developmental test
under the control of the project tecam and is consid-
gred distinct from integration tests, That is, the
successful completion of integration testing of suc-
cessively larger groups of programs eventually leads
to a test of the entire system. The sysiem (esi is con-
ducted by the project team and is analogous to the
quality assurance acceptance test which is conducted
by the user (o1 an agent of the user). Sample system
test crrors arc shown in Table 17-8.

Test cases used in both QA and system testing
should include as many normal operating conditions
as possible. System test cases may include subsets of
all previous test cases created [or unil and inlegration
tests as well as global test cases for syslem level
requirements. The combined effect of test data vsed
should be to verify all major logic paths (for both
normal and exception processing), pretection mech-
anisms, and awdit trails.

QA tests are developed completely from analvsis
and design documentation. The goal of the test is
to verify that the system does what the documenta-
tion describes and that all documents, screens, and
processing are consistent. Therefore, QA tests go
beyond system testing by specifically evaluating
apptication information consistency across eaviron-
ments in addition to testing functional software
accuracy. QA tests find a broader range of errors
than system tests; a sampling of QA errors is in
Table 17-9.

System testing affords the first opportunity to
observe the system’s hardware components oper-
ating as they would in a production mode. This
cnables the projcet’s test coordinator to verify
that respense time and performance requircments
are satisfied.

Since system lesting is used to check the entire
system, any errors detected and corrected may

TABLE 17-8 Sample System Test Errors

Functional

Application does not perform a function in the
functional specification

Application does not meet all functional accep-
lance criteria

Human Interface
Screen format, spelling, conlent errors
Navigation does not meel user requirements
Interruption of transaction processing does not
meet uset requirements

Constraints

Prerequisites treated s sequential and should be
parallel . . . must all be checked by (x) module

Prerequisite not checked

Response Time/Peak Performance

Response time not within requircments for file
updales, starl-up, shutdown, query, etc.

Volume of transactions expected cannot be
processed within ihe specified run-time intervals

Batch processing cannot be completed in the time
allotted

Expected number of peak vsers cannot be
accommodated
Restart/Recovery

Program—Interrupted printout fails to restart at
the point of failure (necessary for check process-
ing and some confidential/financial reparting)

Software—Checkpoint/restart routine is not called
properly
Hardwarc—Printer cannat be accessed from main
terminal

Switches incorrectly set

System re-IPL called for in procedures

cannot be done without impacting
other users not of this application

Expected hardware configuration has
incompatible components

TABLE 17-9 Sample QA/Acceptance Test
Errors

Documentarion
Two or more documents inconsistent

Document does not accurately reflect system
feature

Edit/Validate

Invalid transaction aceepted
Valid transaction rejected

Screen

Navigation, format, content, processing inconsis-
tent with functional specification

Drata lotegrily

Multilile, multitransaciion, multimatches are
incorrect

File

File create, update, delete, query not present or not
working,

Sequence, data, or other criteria for processing not
checked

Report specification

Navigation, format, content, processing inconsis-
tent with functional

Recovery

Printer, storage, memory, software, or application
TeCOVEryY not correct

Performance

Process, response, vser, peak, or other perfor-
mance criteria not met

User Procedures
Do not match processing
Incomplete, inconsistent, incemprehensible

On-linc help differs from paper documents

Operations Procedures
Do not match processing

lncommplete, inconsistent, incomprehensible

Test Plan for ABC Video Crder Processing 725

require retesting of previously tested items. The sys-
tem test, thereforg, is considered successful only
when the entire system runs without error for all
test types.

The test design should include all possible legal
and illegal transactions, good and bad data in trans-
aclions, and enough volume to measure response
time and peak transaction processing performance.
As the test proceeds, each person notes on the test
seript whether an item worked or not. Tf a tested
interaction had unexpected results, the result ob-
tained is marked in the margin and noted for review,

The first step is to list all actions, functions, and
transactions to be tested. The information for this list
is developed from the analysis decument for all
required functions in the application and from the
design document for security, audit, backup, and
interface designs.

The second step is to design transactions 10 fest
all actions, functions and transactions. Third, the
transactions ar¢ developed into a test script for a sin-
gle user as a general test of system functioning. This
test proves that the system works for one user and all
iransactions, Fourth, the transactions are interleaved
across the participating number of users for multi-
user testing. In general, the required transactions ate
only a subset of the total transactions included in the
muliiuser test. Required transactions test the varia-
tions of processing and should be specifically
designed to provide for exhaustive transaction cov-
crage. The other transactions can be a mix of simple
and complex transactions at the designer's discre-
tion. If wanted, the same transaction with variations
to allow multiple use can be used, Fifth, test scripts
for cach user are then developed. Last, the test is
conducted. These steps in developing system/QA
tests are summarized as follows:

1. List all actions, functions, and transactions to
be tested.

2. Decsign transactions to test all actions, func-
tions, and transactions.

3. Develop a single-user test script for above.

4. Tmerleave the tests across the users partici-
pating in the test to fully test multiuser func-
tioning of the application,

5. Develop test scripts for each user,

726

0. Conduct the test,
7. Review test results and reconcile anemalous
findings.

Designing multiuser test scripts is a tedious and
lengthy process. Doing multiuser tests is equally
time-consumning. Baich test simulator (BTS) soft-
ware is an on-line test aid available in mainframe
environments. BTSs generate data transactions
based on designer-specified attribute domain charac-
teristics. Some BTSs can read data dictionaries and
can directly generate transactions. The simulation
portion of the software executes the interactive pro-
grams using the automatically generated transactions
and can, in scconds, perform a test that might take
people several hours. BTSs are not generally avail-
able on PCs or LANs yet, but they should be in
the future.

Finally, after the system and QA (esls arc suc-
cessful, the minimal set of transactions to test
the application are compiled into test scripts for a
regression test package. A regression test package
is & set of tests that is executed every time a change
is made to the application. The purpose of the
regression test is to ensure that the changes do not
cause the application to regress to a nonfunctional
statc, that is, that the changes do not introduce
errors into the processing,

Deciding when to stop system testing is as sub-
jective as the same decision for other tests, Unlike
module and integration tests, system tests might
have several peaks in the number of errors found
over fime (see Figure 17-23). Each peak might rep-

Numbar
of
Errors

Number of Test Runs

FIGURE 17-23 System Test Errors Found
Over Test Shots

CHAPTER 17 Testing and Quality Assurance

resent new modules or subsystems introduced for
testing or might demonstrale application regression
duc to fixes of old errors that cause new errors.
Because of this multipeak phenomenon, system
testing is the most difficoit to decide to end. If 2
decrcasing number of errors have not begun to
be found, that is, the curve is still rising, do not stop
testing. If all modules have been through the system
test at least once, and the curve is moving toward
Zero, then testing can be stopped if the abso-
lute number of errors is acceptable. Testing
should continue with a high numbcr of crrors
regardless of the slope of the linc. What constitutes
an acceptable number of errors, however, is decided
by the project manager, user, and IS managers; there
is no right number,

QA lesling is considered complete when the
errors do not interfere with application functioning.
A complete list of errors to be fixed is developed and
given to the project manager and his or her manager
to track. In addition, a QA test report is developed
to summarize the severity and types of errors found
over the lesling cycle. Errors that are corrected
before the QA test completes are noted as such in
the report.

The QA report is useful for several purposes, The
report gives [eedback o the project manager about
the efficacy of the team-testing effort and can iden-
tify weaknesses that need correcting. The reporis
are useful for management to gain confidence (or
lose it) in projcct managers and testing groups. Proj-
ects that reach the QA stage and are then stalled for
several months because of errors identify training
needs that might not otherwisc surface.

ABC Video System Test

Becanse ABC’s application is completely on-line,
the system test is essentizlly a repeat of the inte-
gration test for much of the functional testing.
The system test, in addition, evaluates response time,
audit, recovery, security, and multiuser process-
ing. The functional tests do not duplicate the inte-
gration tesl exactly, however. The first user might
use the integration test scripls. Other user(s) dia-
logues are designed to try to corrupt processing of
the first user data and processes and to do other

Test Plan for ABC Video Crder Processing 727

Trans # Rents Returns Late Fees Payrment Receipt
TN 2 0 - Exact Automatic
T112 -1 0 - Qver Automnatic
Ti13 1 1 (Total) No Qvar Automatic
T121 10 0 - Qvar Automatic
Ti22 a 2 (From T121) No - MNo
Tid Q 2 (From T121) 2, 4 days Qver Automatic
T151 4 2 (From T121} 2,5 days QOver Autamatic
T211 1 1 (Total) 1 day Exact Automatic
T212 0 1 (Total) No - N
T213 0 1 (Total) No - Requested
T214 0 1 (Total) 2 days Under, then exact Automatic
T221 2 0 - Under—abort No
T222—\Wait
requirad v 2 {From T121} No - Requested
a1 0 1 {Total) 10 days Over Automatic
T312 1 (with other o] - Over Automatic
open rentals)
T313 6 {with other 1 0 Exacl Automnatic
open rentals),
error then rent 5
T411=T311 0 1 (Total) 10 days Over Automatic
Err
TA12=T312 1 {with other 0 - Qver Autormatic
Emr open rentals)
T413=T313 & {with other 1 Q Exact Automatic
Err open rentals),
ermor then rent 5
T331 0 2 (From T121} 2, 2days Exact Automatic
T332 2 li] - Under—abort Mo
T511 5 (with other 2 1 tape, 3 days Cwver Automatic
open rentals)

MNOTE: Txyz Transaction (D% x = User, x = Day, z = Transaction number

FIGURE 17-24 ABC Video System Test Overview—Rent/Return Transactions

independent processing. If the total number of The first step is to list all actions, tunctions, and
expected system users is six people simultaneously, transactions to be tested. For example, Figurc 17-24
then the system test should be designed for six lists required transactions to test multiple days and
simultaneous users. all transaction types for each major file and process-

728 CHAPTER 17 Testing and Quality Assurance

User 1 User 2 Usear 3 User 4 Usar 5 User 6

Start-up— Stant-up— Start-up— Password— Logon—

SUCCESS Err Err Err Ere

Logon Logen Logon Logon Logon Logon

Rept—T111 Rent—T211 Cust Adld Cust Change— Video Add Shutdown—Err

Errs + Good Errs + Good Errs + Good Err, Abort Errs + Good

data data data data

Rent—T112 Rent—T111 Rent—T311 Cust—Change Copy Change— Try to crash

Err, abon Errs + Good data system with bad

trans

Rent-—~T113 Rent—T212— Rent—T312 Rent—T411 Rent—T511 Delete Cust—

Err Ermrs + Good

data

Rent—T14 Rem—71213 Rent—T313 Rent—T412 Rent—any Delete Video

trans Errs

Rent—any Reml—any Rent—any Rent—any Rent—any Delete Copy—

trans trans trans trans trans Errs + Gaod
data

END OF DAY, SHUT-DOWN, and STARTUP

Rent—T121 Rent—T221 Rant—any Rent—any Rent—any Rent—arny

trans irans trans trans
Hent—T122 Rent—T 111 Rent—any Rent—any Rent—any Rent—any
trans irans trans trans

ENC QOF DAY, SHUT-DOWN, and STARTUP

Cust Add Cust Change— Rent—T331 Copy Change— Try ta crash Rent—any

Errs « Good Err, Aborl Errs + Good system with trans

data data bad trans

Delete Cust— Delele Video Rent—T3232 Cust—Change Video Add Rent-—any

Errs + Good Errs trans

data

END OF DAY, SHUT-DOWN, and STARTUP

END OF MONTH

NOTE: Txyz Transaction |1D: x = User, ¥ = Day, z = Transaction number

FIGURE 17-25 ABC Video System Test Overview—Test Schedule

Then, the transactions are interleaved with other
erroneous and legal transactions for the other ABC
processes as planncd in Figure 17-25. Notice that the

ing activity lor Rent/Return. These transactions
would be developed into a test script for a single user
test of the application.

required transactions are onky a subset of the total
transactions included in the test. The required trans-
actions provide for exhaustive transaction coverage.
The other transactions in Figure 17-25 are a mix of
simple and complex transactions. Test scripts to fol-
low the plan for each user ure then developed; this
is left as a student exercise.

Last, the test is conducted. During each shutdown
procedure, the end-of-day reports are generated and
reset. The data may or may not be checked atter the
first day to verify that they are correct, If errors are
suspected, the files and report should be checked to
verify accuracy. When one whole day is run through
without etrors, the entire set of test seripts can be
executed. After an entite execution of each test script
completes, the test team convenes and reviews all
test scripis logether to discuss uncxpected results.
All data from the files are verified for their predicted
final contents. That is, unless a problem is suspected,
intermediate intraday results are not verified during
system testing. Etrors that are found are reconciled
and fixed as required. The test scripts are run through
repeatedly until no errors are generated. Then, the
test team should take real transactions for several
days of activity and do the same type of test all over
again. These transactions should also have file and
report contents predicted. This “live-data’ test should
be successful if system testing has been successlul.
Tf it is not, the errors found should be corrected and
transactions to cause the same errors should be
added to the system test. After the test is complete,
the regression test package is developed for use dur-
ing application mamtenance.

AUTOMATED

SUPPORT TOOLS

FOR TESTING

Many CASE teols now support the automatic gen-
eralion of test data for the specifications in their
design products. Thete are also hundreds of diflerent
types of automated testing support tools that are not
related to CASE, Some of the functions of these
tools include

Automated Tool Support for Testing 729

m static code analyzers

dynamic code analyzcrs

asserlion generators and processors
test data generators

test driver

output comparators

In Table 17-10, several examples of CASE testing
tools arc presented. Many other types of testing sup-
port toals are available for use outside of a CASE
environment. The most common test support tools
are summarized below and sample products are
listed in Table 17-11.

A code analyzer can range trom simple to com-
plex. In general, static code unalyzers cvaluate the
syntax and execulability of code without ever cxe-
cuting the code. They cross-reference all references
to a lin¢ of code. Analyzers can determine code that
is never execuled, infinite loops, files that are only
read ence, dala type errors, global, common, or
parameter errors, and other common problems.
Another output of some static analyzers is a cross-
reference of all variables and the lines of code on
which they arc referenced. They are a useful tool, but
they cannot determine the worth or reliability of the
code which are desired functions.

A special type of code analyzer audits code for
compliance to standards and structured program-
ming {or other} guidelines. Auditors can be cus-
tomized by each using company to check their
conventions for code structure.

A more complex type of code analyzer is a
dynamic tool, Dynamic code analyzers run while
the program is executing, hence the term dynamic.
They can determine one or more of: coverage, lrac-
ing, tuning, timing, resource use, symbolic execu-
tion, and assertion checking. Coverage analysis of
test data determines how much of the program is
exercised by Lhe sel of test data, Tracing shows the
exccution path by statement of code. Some tools
list values of key variables identificd by the pro-
grammer. Languages on PCs usually have dynamic
fracers as an execute option. Tuning analyzers iden-
tify the parts of the program executed most fre-
quently, thus identifying code for tuning should a
timing problem occur. Timing analysis repotts CPU

730

TABLE 17-10 CASE Test Tools

CHAPTER 17 Testing and Qudlity Assurance

Tool Name Vendor

Features and Functions

Teamwork

Providence, RI

Telon and other praducts
Lisle, IL

Cadre Technologies, Inc.

Pansophic Syslems, Inc.

Testing Software

Code Generation,
Test Management

time used by a module or program. Resource usage
software reports physical 1/Os, CPU time, number of
database transactions, and other hardware and soft-
ware utilization. Symbolic executors run with sym-
bolic, rather than real data, to identify the logic paths
and computations for programmer-specified levels
of coverage.

An assertion is a statement of fact about the state
of some entity. An assertion generator makes facts
about the state the data in a program should be in,
based on test data supplied by the programmer. If the

assertions fail based on program performance, an
error is generated. Assertion generators are useful
testing tools for artificial intelligence programs and
any program langiage with which a generator can
work. Assertion checkers evaluate the truth of pro-
grammer-coded assertions within code. For instance,
the statement "Assert make-buy = 0.7, might he eval-
uated as true or false.

A test data generator {TDG) is a program that
can generate any volume of data records based on
programmer specifications. There are four kinds of

Features and Functions

TABLE 17-11 Other Testing Support Tools
Tool Name Vendar

Aassist

Adlast

Ambherst, MA

Automatic Test Data TRW Systems, Inc.

Generator {ATD() Redondo Beach, CA
Autoretest TRW, Defense Systems Dept.
Redondo Beach, CA
/Spot/Run Procase Corp.

Santa Clara, CA

University of Massachusetts

Coverage analysis, logic
flow tracing, tracing, symbaolic
exccution

Coverage analysis, test data
generation, data flow analysis,
automatic path sclection, con-
straint analysis

Test data generation, path
analysis, anomaly detection,
variable analysis, constraint
evaluation

Comparator, test driver, test data
management, automated com-
parison of test parameters

Syntax analysis, dependency
analysis, source code filtering,
source code navigation, graphi-
cal representation of function
calls, error filtering

Automated Tool Support for Testing 731

TABLE 17-11 Other Testing Support Tools (Conatinued)
Tool Name Vendor Features and Functions
COBOL Optimizer Softool Corp. COBOL testing, path flow
Instrurnentor Goleta, CA tracing, tracing, luning
Cotune Coverage analysis, timing
Datamacs Management & Computer Services, Inc. Test file generation, 1/0 spe-
Valley Forge, PA cification analysis, file structure
testing
DAVE Leon Osterweil Static analyzer, diagnoslics,
University of Colorado data flow analysis, interface
Boulder, CO analysis, cross-reference, stan-
dards enforcer, documentation
aid
DIFF Software Consulting Services File comparison
Allentown, PA
FACOM and Fadebug Fujitsu, Eid. Output comparator, anomaly

Fortran Optimizer Softoul Corp.

Instrumentor Goleta, CA

McCabe Toals M. McCabe & Associates
Columbia, MD

MicroFocus Cobol MicroFocus

Workbench Palo Alto, CA

Softool 80 Softoal Corp.
Goleta, CA

UX-Metric

Muline, OR

Quality Tools for Software Craftsmen

detector

Coverage analysis Fortran
testing, path flow tracing,
tracing, tuning

Specification analysis, visnal
path testing generates conditions
for untested paths computes
metrics

Source navigation, interactive
dynamic debugging, structure
analysis, regression tesling,
tuning

Coverage analysis, tuning,
timing, tracing

Static analyzer, syntax
checking, path analysis, tuning,
volume testing, cyclic tests

test data generators: static, pathwise, data specifica-
tion, and random. A static TDG requires program-
mer specification for the type, number, and data
contents of each field. A simpie static TDG, the
IEBDG utility from IBM, generates letters or num-
bers in any number of fields with some specified
number of records cutput. It is useful for generating

volumes of test data for timing tests as long as the
records contain mostly zeros and ones. Unless the
test data generator is easy to use, it quickly becomes
more cumbersome than sclf-made test data.
Pathwise TDGs use input domain definitions to
exercise specific paths in & program. These TDGs
read the program code, crcate a representation of the

732

control flow, selcct domain data to create represenia-
tive input for a programmer-specified type of test,
and execute the test. The possible programmer
choices for test type include all feasible paths, state-
ment coverage, or branch coverage. Since these are
whitc-box techniques, unless a programmer is care-
ful, a test can run for excessively long times.

Test drivers are software that simulate the exc-
cution of module tests. The tester writes code in the
test driver language to provide for other module
stubs, test data input, input/oulput parameters, files,
messages, and global variable arcas. The driver uses
the lest data input to execute the module. The other
tester-defined items are used during the test to exe-
cute pieces of code without necding physical inter-
faces to any of the items. The major benefits of test
drivers arc the case of developing regression test
packages from the individual tests, and the forced
standardization of test cases. The main problem with
drivers is the need to learn another language to use
the driver softwarc.

On-line test drivers are of several types. Batch
simulators generate transactions in batch-mode
processing to simulate multi-user, on-line process-
ing. Transaction simulators copy u test script as
cntered in single-nser mode for later re-execution
with other copied test scripts to simulate multi-user
interactions.

Qutput comparators compare two files and
identify differences. This makes checking of data-
bases and large files less time-consuming than it
would otherwise be.

SUMMARY

Testing is the process of finding errors in an appli-
cation’s code and documentation. Testing is a
difficuit activity because it is a high-cost, time-
consuming activity for which the returns diminish
upon success. As such, it is frequently difficult for
managers to understand the importance of testing in
application development.

The levels of developmental testing include unit,
integration, and system. In addition, an agent, who is
1ot & project team member, performs quality assur-
ance testing to validate the documentation and pro-

CHAPTER 17 Testing and Quality Assurance

cessing for the uscr. Code tests are on subroutines,
modules, and programs to verify that individual cede
units work as expected. Integration tests verify the
logic and processing for suitcs of modulcs, verify-
ing intermodular communications. Systems tests
verify that the application operates in its intended
environment and meets requiremenis for constraints,
response time, peak processing, backup and recov-
ery, and security, access, and audit controls.

Strategies of testing are either white-box, black-
box, top-down, or bottom-up. White-box tests ver-
ify that specific logic of the application works as
intended. White-box strategies include logic tests,
mathematical proof tests, and cleanroom tests.
Black-box stratcgics include equivalence partition-
ing, boundary value analysis, and error guessing.
Heuristics for matching the test level to the strategy
were provided.

REFERENCES

Curritt, P. A, M. Dyer, and H. D. Mills, “Certifying the
reliability of sofiware,” IEEFE Transactions of Sofi-
ware Engineering, Vol. SE-12, 1986, pp. 3-11.

Dunn, Robert H., Software Qualitv: Concepts and Plans.
Englewood Cliffs, NJ: Preatice-Hall, Inc., 1990,

Mills, H. D., M. Dycr, and R, Linger, “Clcanroom soft-
ware engincering,” Software, Vol. 4, #5, 1987,
pp. 19-25,

Musa, I. D, and A. F. Ackerman, “Quantilying soliware
validation; When to stop testing?™ Software, Vol. 6,
#3, May, 1985, pp. 19-27.

Myerts, Glenford L., The Art of Software Testing. NY:
John Wiley & Sans, 1979

Selby, R. W., V. R. Basili, and F. T. Baker, “Cleanroom
soltware development: An cmpirical evaluation,”
IEEE Transactions of Software Engineering, Vol.
SE-13, 1987 pp. 1027-1037.

BIBLIOGRAPHY

D Millo, Richard A., W. Michael McCracken, R. J.
Mactin, and John F. Passafiume, Software Testing and
Evaluation. Reading MA.: Benjamin Cunimings Pub-
lishing Co., 1987,

This text describes testing and evaluation for military
contracts and compliance with Department of Defense
standards such as 2167a which describes the phases

and docoments required of all government sponsored
software developmenl projects. Il includes a rich
description ol dillerent 1vpes of testing, in particular
formal verification.

Byer, M., Cleanroom Software Development Methiod.
IBM Federal Systems Division, Bethesda, MD, Octo-
ber 14, 1982,

This monograph is a detailed deseription of the clean-
room development mcthod.

Mills, H. ., M. Dver, and R. Linger, “Cleanroom soft-
ware engineering,” Soffware, Vol. 4, #3, 1987,
pp. 18-25.

This is a brief description of the methodology of
cleanroom development which includes a description
of testing.

Musa, John D., Anthony Iannino, and Kazuhita
Qkumoto, Saftware Refiability: Measurement, Predic-
tion, and Application. NY: McGraw-Hill Book Co.,
1987.

This text takes a quantitative approach to proving pro-
Eram COrTeciness.

Musa, J. D, and A. F Ackerman, “Quantifying software
validation: When to stop testing?” Software, Vol. 6,
#3, May, 1989, pp. 19-27.

Musa and Ackerman’s article discusses the trajectory
of error linding over test shots and when the risk of
stopping begins to diminish.

Myets, Glenford 1., The Art of Software Testing. NY:
John Wiley & Sons, 1979,

This is the best book I have ever read on testing. Tt is
short, clear, and easy to follow. The only drawback is
that real-time systems were not prevalent enough to
have been included in the hook.

Selby, R. W, V. R. Basili, and F. T. Baker, “Cleanroom
software development: An empirical evaluation,”
JIEEE Transactions of Software Engincering, Vol.
SE-13, 1987 pp. 1027-1037.

This article reviews cleanroom projects and develops
statistics about rcliability of the sofiware.

KEY TERMS

acceptance test
assertion

assertion checker
assertion generator
batch simulator
black-box strategy
bottam-up testing
boundary value analysis

T
cavse-effect graphing
cleanroom development
coverage analysis
developmental test

dynamic code analyzer
equivalence parlitioning
CITOT gUCssing

integration test

oulpul comparator

pathwise lest data
generator

program stub

quality assurance (QA)
{est

regression test

repgression test package

resource usage

scaffolding

static code analyzer

static test data generator

subsystem test

symbolic execulor

system test

test case

test data generator (TDG)

EXERCISES

Study Quiestions 733

test driver

test plan

test seript

lest slrategy

lesling

timing analyzer

top-down testing

tracing

transaction simulator

tuning analyzer

type 1 error

typc 2 crrors

unit test

Vienna Development
Method (VDM)

while-box strategy

1. Describe the process of test development for an
application. What are the roles, activities, docu-
mentation, and procedures followed by partici-
pants to testing?

2. Develop a test script for user 1 for the system
test.

STUDY QUESTIONS

1. Define the following terms:
scaffolding test strategy
white box testing test casc
black box testing test plan
integration test

2. What is testing and why is it important?

How do you know when a test resulf is right?

4. Why do managers sharten the time allotted to
testing?

5. Why do SEs and programmers sometimes
resent testing?

6. What is the purpose of predicting results? Do
the results have to be exact or can they be
approximated? Why?

7. What is the purpose of a unit test? How is it met
through test strategy selection?

8. When is it appropriate #ot to test all program
logic? How do you decide what fo test?

W

734 CHAPTER 17 Testing ond Quality Assurance

9. What are the different test strategies? Define * EXTRA-CREDIT QUESTIONS

each and discuss how they diffcr.

10. How many test cases does a program need? 1. Develop the test plan for Customer Maintenance
11. What is the purpose of an integration test? in the ABC rental application.
What test strategy(s) arc usually used in inte- 2. Develop test scripts to unit test the other three
gration testing? Why? transaction types for ABC Video. Use the screen
12, What is the purpose of a systems test and how design from Chapter 14 o help you visvalize the
dees it differ from the other test types: unit and data and processing requirements. The three
integration? transaction types are rentals without returns,
13. Why is top-down testing by itself not a good returns without rentals, rentals with returns
idea at the system level? (i.e., Customer ID is entered first rather than
14. Why is top-down testing a good idea at the sys- Video ID).
tem level? 3. Develop a tcst stratcgy for testing the entire
15. At which test levels are bottom-up and top- application for a case in the appendix. Keep in
down most appropriale? How do the top-down mind that testing that involves users should min-
and bottom-up pieces get integrated? imize their time commitment whilc obtaining
16. At which level of testing does the human inter- essential information from their involvement.
face pel tested? Specifically define roles, responsibilities, timing,
17. How does prototyping fit with testing? Does and test strategy for each level of testing.
prototyping also require a testing strategy? 4. Develop a presentation to senior user and IS
Why or why not? managers to justify the time and resources re-
18. What is the role of users during testing? Can quired to do application testing. Present the dis-
users conduct the systems test? the integration cussion to your class,

tests? the unit tests? For each, why or why not?
19. For each level of testing, when can you end
testing?

CHANGE

CHAPTE

MANAGEMENT

ik

INTRODUCTION

Nothing is rarcr in information systems development
than an application without changes. Uscrs forget
requirements and remember them late in the design.
The business changes. Bugs get fixed and require
documentation. Change occurs in all phases and all
levels of application development. Procedures to
manage change, therefore, are necessary to main-
tain sanity and order on the project team.

The three major types of change in an applica-
tion’s life cycle—requirements, software, and docu-
mentation—are discussed in this chapter. For each,
the importance of the change management iech-
niques is discussed. Then, for each, technigues for
managing changes are developed. At the end of the
chapter, uutomated tools are identified for collabora-
tive work, documcntation, reverse engineering, and
code management. First, we discuss the importance
of designing for maintenance, regardless of the envi-
ronment, architccture, or item being developed.

DESIGNING FOR

MAINTENANCE

Applications are usually in production for an aver-
age of eight years. Many applications are much
older, having been patched and modified regularly

for 10 or even 20 years. Applications that are flexible
enough to withstand vears of modification are de-
signed with change in mind. That is, regardless of
the methodology, independent modules with local
effects arc developed.

Programs with 10,000 lines of, for instance,
COBOL procedure code, rarely are modified casily.
Usually, they are such spaghetti, that if they ever
work, it is due to good luck. Frequently, change is
precarious and likely to cause problems in un-
touched parts of the program.

In this section, we discuss the techniques used in
designing for maintenance. The first, reusable
libraries, have been uscd widely in the aerospace
industry. Because cost savings can now be demon-
strated from reusable libraries, they are moving into
other industry segments. Reusable modules are
complete programs that perform some compleie
function. The next section relates methodology 1o
maintcnance effort and discusses how cach method-
ology attempts to provide for maintcnance. Finally,
CASE tools are related to maintenance and change.

Reusability

Reusability is a property of a code module such that
the module can be used, as is, by several applica-
tions. In designing for reuse, the goal is lo identify
medules for potential reuse. The two most popular

735

736 CHAPTER 18 Change Management

methods of implementing code reuse are program
templales and reusable modules,

Program templates consist of standard code that
performs a simple function. For instance, there are
three basic types of business programs: report, edit/
validate, and file update. For a report, therc arc stan-
dard sections for reading file data, formatting the
data, and writing the reporl (see Figure 18-1). Read-
ing and writing can be standardized regardless of the
data definition for input. The formatting of data must
be customized. In writing the report, there are sec-
tions of code for beginning-of-page, body-of-page,
and end-of-page. There may be sections for begin-
ning-of-report and end-of-report, too. The repoct
program might or might not have an internal sort
routine that changes the sequence of the input file.

Templates can be developed to describe the 12 or
50 most common variants of the three basic types of
programs. For instance, a report program is devel-
oped with and without sorts. COBOL or some other
procedural language is used to define the stan-
dard versions and the only ilems left to the appli-
cation programmer are procedures specific to the
application.

The templates are stored as read only modules
in a library. When a new use is defined, the module
to be used is copied and given a new name. The
newly named module is then modified and cus-
tomized for its current use.

The advantage of a template is that a finitec num-
ber of variations ar¢ develeped and then are modi-
fied as needed for a specific use, There is little or no
maintenance on the templates once they arc devel-
oped, and only a few new templales per year would
ever be developed. The number of support staff
could be close to zero.

A template is a partial program thal is completed
tor a particular application. A reusable module is a
small, single function, well-defined, and standard-
ized program module that can be used as a called
routine, or as & copy book in COBOL, For instance,
a date edit routine might be developed as a reusable
module (see Figure 18-2).

When a reusable module 1s desired, a library of
reusable modules is siudicd to determine which
oncs fit the application’s needs. For reusable mod-

ules that do fit an application. the individual module
code 15 examined (o verly Lhat it performs as
required. Then the module is called at the appropri-
ate place in the application’s processing.

Each application team delermines which modules
it might have that could be rcused in its own or in
other applications. Then the modules are singled out
for special development as independent routines,
The finished module is quality assurance tested by
the librarians to ensure that it performs as docu-
mented. The librarian is an experl in reusable
standards, quality assurance testing, and code man-
agement lechniques. Eventually, the code 15 stored in
a reusable library whose contents are published for
application developers’ use.

Publication of reusable library contents can be
awkward. Paper might be too volurineus w be use-
ful or cost-ctfcetive. Electronic publication requires
indices to assist users in identifying potential
modules for their use. The indices might include
keywords to describe function, langnage, date of
development, type of input, and so on, If indices are
not coded to capture the essential characteristics of
the modules, they are useless.

The amount of organizational support required
to maintain reusable libraries has been the major
impediment to reusable library adoption in most
industries. Librarians test, store, and maintain refer-
ences to the medules in the reusable library, A large
number of modules, for instance over 1,000, makes
maintenance of the library integrity and accuracy a
major task. Locating modules for use is also a
major task. Librarians become specialized in per-
forming these functions. Without proper organiza-
tional support, reusable libraries soon become
unuscd and uscless.

The arguments for reuse are substantial. As much
as 75% of all code on a typical business applicalion
is redungant, and therefore, a candidate for reuse.
Dalabase descriptions, program procedure (em-
plates, and mdividual modules are all candidates {or
reuse that can save companies time and money in
application development. The more reused code, the
less extensive the custom code developed, the less
extensive the testing required, and the less the cost of
the application,

Designing for Malntenance 737

Identification Division.
Frogram-D. ABCVIDADD.
Environment Division.
Configuration Section.
Source-Compuier, 1BM-3080.
Oject-Computer. IBM-3080.
File Section.
Select Input-File from UR-DO00T as RPTIN.
Select Repert-File from UR-PO01 as RPTOUT.
File Division.
Input Section.
FD Input-File
Block contains 100 records.
Record containg 400 characters.
01 Input-File-Record Pi x{400).
FD Report-File
Block containg 1 record.
Record contains 132 characters.

o1 Repon-File-Record Pic x{132).
Working-Storage Division.
01 Miscellaneous-counters.
05 Page-Count Pic 99 value zero.
05 Ling-Count Fic 99 vale zero.
03 Input-record-ceunt Pic 9{7) value zero.
as Output-record-count Pic 9(7) value zero.
05 End-of-file-marker Pic 9 value zero.
a8 End-of-file valug 1.
83 Mot-end-of-file value 0.
o Copy Input-File-Description statement goes here.
RELI AT)
m Repont-Headars.
05 Header-01,
10 Filler pic x(45) WValue spaces.
.10 H1 pic %(23) value
‘Company Standard Header'.
10 Filler pic x{15} value spaces.
10 Dats pic x(B) value spaces.
a5 Header-2.
10 Fillar pic x{45) Value spaces.
10 H1 pic x(23} value
‘Report Standard Header'.
10 Filter pic x(15) value spaces.
10 Time
15 Hour pIC %X value spaces.
15 Fillar pic x walue .
15 Hour pic X% valug spaces.
15 Filler pic X vaiue .
15 Haur pic Xx value spaces.

FIGURE 18-1 Partial COBOL Program Templale for a Report

738 CHAPTER 18 Chonge Management

Linkage Section.

Move zeros 1o Errs,
Check-Numerics.

If in-Date-Mo

If In-Date-Day

If In-Date-Year

Check-values.
If In-Date-Day = 0
continue
else
move 1 1o err(4).
If In-Date-Year » 1992

continue

01 In-Date.
05 In-Date-Maonth pic xx.
05 In-Date-Day pic xx.
05 In-Date-Year PIC KX.
n Errors,
05 Err-table occurs x times.
0 Emr pic 9 comp.
Frocedure Division,
Link.
Enter linkage.
Entry Link-date-edit using in-date, erors
Enter COBOL.
Initialize.

not numeric move 1 to errf1).
not numeric mave 1 io arr{Z).
nat numeric move 1 to err{3).
IFerr{1) = 1 orem(2) = 1 orarm (3) = 1 go to End-Test.

and In-Date-Year < 2015

FIGURE 18-2 Reusable COBOL Module for Date Edit

Methodology Design Effects

In this section, we discuss the suitability of reusable
libraries and program templates to the three classes
of methodologies. Because of the encapsulation of
data and functicn in object arientlation, ohject meth-
ods are best suiled to the large scale development of
reusable modules. The other methodologies, process
and data, can use program templates and reusable
modules, but such modules are not identified as nat-
urally as with objects.

Object methods are best suited to reusable com-
ponents because the design methed results in small,
single function modules automatically. The method
assumes 1hat only data needed for a function will he
available 10 it when it is called. Thus, the entire
mcthod assumes and strives for modules that are
potentially reusable. When a module is identified in

ohject analysis as being invoked from multiple cafl-
ing objects, 1t 13 automalically targeted as potentially
reusable. Further analvsis determines if the function-
ality is identical for all users. If the functionality is
the same, the module becomies locally reusable.
The step trom loczl reuse to organizational reuse
is small, with the criteria being the number of other
applications needing the function. Here too, object
methods are more amenable to identifying reusable
functionality at the analysis stage than the other
methodologies. Think back to Chapter 11, in which
we deveioped the table of actions (or functions) and
the objects to which they were attached (see Table
18-1). It is at this stage that reuse is wdentilied. When
an action has more than one object attached, they are
examined to determine whether the same action is
performed for each. If both objects use the action
identically, they are labeled potentially reusable.

Designing for Maintenance 739

olse
move 1 1o arr5).
If In-Date-Month =2

If In-Date-Year = (1992 or 1996 or 2000 ot 2004 or 2008 or 2012)
If In-Date-Day < 30
go to End-Test
else mave 1 to err(6)

else
if In-Date-Day < 29

go to End-Test
else move 1 1o err{7)

else

If In-Date-Month = {4 or& ar 9 or 11}

If In-Date-Day « 31

go to End-Test
else move 110 err{8)

elsa

If In-Date-Month ={(1or3orS5or7or10or 12)

If In-Date-Day < 32

go to End-Test
else rmove 110 err(9)

else
move 1 toerr(10).
End-Test.
Enter linkage.
Return.
Enter COBOL.

FIGURE 18-2 Reusable COBOL Module for Date Edit (Continued)

Then, the potentially rensable actions are used to
search the reusable library to see if similar actions
in reusable form already exist. When a match is
found, the reusable module code is examined to
determine its fit to the current need. Based on the
closeness of fit. the designers choose to design their
own module or use the reusable module. The
reusable module can be used as it exists or can be
customized to exactly fit the application. The point is
that the analysis action is matched to a rcusable
action at the fogical level. Only when the logical
actions maich, the physical implementation is
then examined for its appropriateness. When many
such logical level matches are found, the time sav-
ings in analysis, design, and implementation can
be considerable.

It has long been held that structured and modular
design reduces maintenance effort by facilitating the

definition of understandable chunks of analysis and
designs. Modular design, in turn, is then applied to
program meodules. The designer uses his or her
experience, applying the principles of information
hiding, minimal coupling and maximal cohesion, to
develop single function modules. In this manner, the
nonobject methodologies are more brute force meth-
ods of developing modules with objecet-like proper-
ties. While the nonobject methodologies rely on
personal designer knowledge, such knowledge
also is more important in object methods than is
commonly recognized at present. The results in
nonobject methodologies, though, are less uni-
form and less likely to cause ready recognition of
reusable components than object methods. There-
fore, rcusable component libraries are most likely
to be effective and widely used in object-oriented
environments,

740 CHAPTER 18 Change Managemernit

TABLE 18-1 Sample Actions with Related Objects

Verb from Paragraph Space Process Name Objects—Action™
is enlered 5 EnterCustPhane Customer, Dala entry (DE)
to create S CreateOrder Order (R)

are displayed 5 DisplayOrderVOO Order, VOQ (D)
are entcred 5 EnterBarCode VOO (DE)

are refrieved 5 Retrievelnventory Videolnventory (R}
are displayed S DisplayInventory Videolnventory {D)
computes 5 ComputeOrderTotal Order (Process)

is ¢ntered 5 EnterPayAmt Order (DE)

is computed 5 ComputeChange Order (P}

*Actions are (R)ead, (W)rite, Data Entry (DE), (D)isplay (P)ocess in memory, (PR)int

The opposite situation is true of program tem-
plates. The nonobject methods, because they are
used mostly for COBOL applications, can take
advantage of program template libraries easily and
effectively. As much as 60-80% of all COBOL code
is boilerplate, that is, code which does not vary from
one program to another. The boilerplate can be stan-
dardized and provided as program templates.

With object methods, the beilerplate in an object
package is minimal hut still can be standardized. The
remaining code is either reused or customized. The
types of COBOL template programs, for instance, a
report with a sort, do not exist in the same form as
objects. There might be a report object and there
might be a sort object, and both might be rensable,
but the code for using either object is most likely
provided by custom developed code.

Role of CASE

Computer Aided Software Engingering (CASE)
tools are critical to maintaining applications at the
functional lcvel rather than at the code level. The
argument for CASE runs something like this. The
40-20-40 rule applies to software engineering appli-
cation development. The rule states that 40% of the
work is performed during feasibility, analysis, and
design; 20% is during coding; and the remaining
40% is during testing (sce Figure 18-3).

The 80-20 rule also applics (see Figure 18-3).
According to this rule, 20% of the decvclop-
ment work is performed during the original applica-
tion development. The other 81% is performed
during maintenance. This ratio holds because main-
tenance is a much longer period of an application’s
life,

Putting these two rules together, to gain substan-
tive praductivity increases we need to reduce time
spent on coding, testing, and maintenance more than
we need to reduce the time spent on analysis and
design. CASE that covers analysis and design only
reduces the time spent on documentation and main-
tenance of documents. CASE that includes databasc
schema gencration and code generation further
reduces the coding, testing, and maintenance activi-
ties. Fully integraied CASE tools, [-CASE (sec
Chapter 3 and Automated Tools section of this chap-
ter), that interface with code gencrators, support all
of these productivity improvements. With I-CASE
tools, maintenance changes are reflected in the
requirements for an apptlication. The requirements
are, in turn, used to regenerate the database schemas
and code for the application. Thus, the changes take
place at the logical level and are automatically gen-
erated by the CASE tool at the physical level, The
capability to do ali application maintenance in this
way is not here yet but should be before the new
century.

Application Change Management 741

Development
Time—20%

Tesling—d40%

Maintenance

Time—8&0%

FIGURE 18-3 Application Life Cycle Time Distribution

A morc futuristic feature of CASE tools will be
the ability of the 100l to recognize reusable analysis
and design fragments, rather than relying on humans
o recognize reusable code fragments. Purchasable
options of the CASE tools will include intelligent
options to detect feature and function similarilies
across applications. The fragments would then be
imporled from the oniginal library to the using
application library (or repository). Very intelligent
CASE will be able to recognize a design fragment,
logically link to the base definition of the reused
item, and usc already operational code modules.
This level of intelligent CASE that could manage the
use of reusable code may surface in ovur lifetimes,
but not soon.

APPLICATION

CHANGE

MANAGEMENT

Importance

Applications frequently undergo redesign. Three
tvpical conditions for redesign are assignment of a
new management team, a projeci thal is chronically

over budget, late, and full of bugs, and the loss of the
user-awner confidence that the SEs understand their
needs. Even without drastic redesign, reviews (e.g.,
for user agreement or quality assurance) frequently
turn up ilems that were originally compromised or
rethought several times before final version agree-
ment. The history of deccisions and the reasoning
ubout decisions is rarely kept as part of project notes.
But, any project manager and SE can tell you that
they frequently rehash the same argumecnts and
reasonings over and over, even reaching the same
conclusions.

In a paper-based work environment, keeping
track of the history of decisions is not practical; so
much paper would be gencrated that finding any-
thing becomes impossible. In a CASE environment,
or in an imaging environment, maintaining the his-
tory of application decisions electronically becomes
a manageable, and sometimes desirablc, activity.
The ability to recall reasoning through a decision,
whether it is logical or political, can save time and
provide continuity between managers,

Finally, changes in the business, legal require-
ments, or stakcholders in the application can all
necessitate legitimate changes to application de-
signs. Knowing the history of decisions sometimes
makes them more palatable and easicr to convey to

742 CHAPTER 18 Change Management

staff, For instance, being able to relate a change of
design to a developing business situation helps those
who must cope with the change appreciate the busi-
ness of the application. 1f the change is to keep a val-
ued customer or increasc competitiveness in a new
ared, the systems developers are more likely Lo be
enthusiastic about shifting design.

Changes can be to requirements, designs, pro-
grams, interfaces, hardware, or purchased software.
Mosl changes arc initiated from within the organi-
zation developing the application, but might be
motivated by some outside event, such as a change
in laws. Using change controls protects the devel-
opment team from user whims while allowing for
action on legitimate requests. The idea that a speci-
fication is frozen, meaning not changeable after it is
accepted as complete, motivates users to be as com-
plete in their thinking as possible.

Designs do not stay frozen forever. Usnally, once
an application begins coding, no changes are imple-
mented unlil the applicalion becomes operational.
Then the project manager, SE, and user review the
backlog of requests to develop priorities and plan the
changes. Some changes may b so critical that the
design is unfrozen to add the crucial functionality,
regardless of the phase of development.

Change Management
Procedures

Change control management is in effect from the
time the work product is accepled s complete until
ihe project is retived. First, baseline work products
that arc to be managed are identified. A baseline
work product is a product thal is considered com-
plete and that is the basis for other, current work by
the project developmient team. A baseline decument
would be, for instance, the functional requirements
specification after it is accepted by the uscr.

A history of change request file actions for a func-
tional specification are listed here as an example.

1. Create Open Request

2. File Impact Staternent

3. Filc Approval of Schedule and Cost signed
by User/Owner

4, Complete Project Manager’s Check Lisi for
the Change

5. File Documentation refating to changes.
If documentation or programs changed,
identify date and items updatcs completed.
If procedures or training changed, iden-
tify dates at which revisions were
operationalized.

6. File Close Request Form Approved by
User/(Owner

7. Summarize Dates, Durations, and Casts

First, the baseline document is frozen, then
change requests are added, but no action is taken.
The fourth request, for example, might be urgent and
receive immcediate attention. When the functional
specification is updated te accommodate the change,
it is again frozen and the work continues. The three
previous requests might have been added to the
application if they did not significantly alter it. They
may just as likely be ignored until aficer the applica-
tion is implemented.

Changes can be classified in several ways. First,
they can be classificd by type as eliminating defects,
improving performance, or changing functionality.
Second, changes can be classified as required or
optional. Third, change can be classified by priority
as cmergency, mandatory with a required end date,
mandatory with an open end date, or low priority,
Usually, eliminating defects is a required emergency,
while changing functionality is requircd mandatory
maintenance, and improving performance is optional
and might have any priority.

Knowing the change request classification deter-
mines whether it is subject to change control or not,
Emergency changes usvally circumvent the change
control procedures in that the activities might all be
followed but they are documentied after the change is
complete. All other change types should be required
to comply with change controls.

For example, changes to [unclional requirements
can occur at any time, but once the functional
reguirements specification is approved, it is frozen
until the application is eperational. Changes are sub-
ject to change control: they are added to a change
request list for future consideration unless given an
emergency designation,

Application Change Management 743

Project #
Project Name e -
CHANGE CONTROL REQLEST
Inittiator Date
Cepartment Request #
Reason for Request
Description n
Documents Affected:; Category of Change
Func. Spec. A. Reqts.
Interface B. Design _
Design C. Code
Mod. Spec. D. Interface
Code E. Hardware
Operaticns F. Other _
User Doc.
Class of Change
Emergency
Mandated .
Enhancement R
Other
Initiatar Date
Owner Date Prroject Manager Date

FIGURE 18-4 Sample Change Request Form

A procedure for change control (listed below)
requires that a formal request for a change is sub-
mitted by the uscr to the project manager (PM).

1. User sends the project manager and owner (if
different person) a Change Request form (see
Figure 18-4).

2. Project manager and SE develop an impact
statement. At this time, the project manager’s
Check List is used to identify all work
actions and changes relating o the request,

3, The Change Request is discussed with the
User/Owner to establish priority, schedule,
and cost changes.

744 CHAPTER 18 Change Management

4. Agrecment is formalized and User/Owner
approval of schedule and cost changes 15
oblained.

5. Using the impact statement, application and
all related documentation are changed.
[mplement the change. As tasks are com-
plete, check off the task on the project man-
ager’s Check List.

6. User/Owner approval to close the request is
obtained and the request is closed.

The PM and SE define the schedule and cost
impacts of the change {see Figure 18-5). The
changes are then discussed with the user. Based on
the negotiation with the user, the change is assigned
a priority for action, and the cost and schedule are
changed.

The request, expected date of action, schedule
change, and cost increments arc added to a project
history file, The changes may be monitored by a
Change Control Clerk. a pcrson charged with
maintaining project history and change control
rccords, and with issuing a monthly change control
report. A Change Control File contains all requests,
correspondence, and documentation about changes.
An Open Change Request is created when the
request 1s made and a change number is assigned.
The open change request stays on file until the
request is completed, closed, and reported.

As the change is made, affected items are up-
dated, including the appropriatc documentation,
cade, training, and so forth {see Figure 18-6). A proj-
ect manager’s check list is used to check off required
actions. The new documentation is filed with the
Change Control Clerk who distributes it to all inter-
ested parties,

The completion date for the change is entered in
the Change Contral File, The change is identified as
closed in the next status report and the open request
is removed from the Change Control File.

Depending on the organization, the IS executive
might want to track change requests for projects Lo
identify success in meeting requests. Overall costs of
changes for a year arc used as one indicator that an
application is a candidate for either retirement or
reengineering. In such cases, both costs and volumes
of chunge requests are tracked through the change

control process. Summary reports by project of the
changes over a given period, or comparing periods
(e.g., a current period compared to the same period
last ycar) can be developed. Three such reports are
shown as Figures 18-7 through 18-9 for total cost
by type, cost and schedule impacts, and change
requests, respectively.

Historical Decision Logging

Al the beginning of the project, the project manager
and SE decide to use tools to store the decision
process, This mcans that either clectronic group
meetings are used or that a written version of meet-
ings and decisions is maintained and stored in word
processed form, With electronic meetings, the elcc-
tronic transcripts are maintained. With manual
recording, the old version is updaled and renamed
when a document changes. For instance, functional
specifications for ABC might be named ABCFS-
mmddyy, where ABC is the company, FI$ abbreviates
Functional Specification, and mmddyy is the date.
The date portion of the name would change for every
major change of the document, The change man-
agement procedure in the next section would be
followed.

Documentation Change
Management

Documentation changes should be identified by a
change table of contents at the beginning of each
document. The change table of contents includes the
eflective date, affected sections of the document, and
a summary of the change (see Figure 18-10). The
purposc of the change table of contents is to sum-
marize all changes for the reader.

Changes should be redlined in the text to iden-
tify the changed portion. If the old information is
important, it may be moved te a footnote, dated, and
labeled as a previous version. An example of this
type of documentation change is shown in Figure
18-11, Keep in mind that you also keep the old ver-
sion of the document for history.

{Text continues on page 749)

Application Change Management 745

Project #
Project Name
H TROL IMPACT ASSESSMENT
Date
Requesi #
Impact of Change Request:
Impact
Persocn Business
Type Cost ~ Days Days Budget Control
A Initiation Date
B. Reguest # -
C. Amount
D. Approval Date
E.
F.
Total _
Scheduled Actual
STATUS Completion Completion
Initiated Date
Analysis Date — e —
Developrment Date
Testing Cate
fmplementation Date
Comments:
Initiator Date
Owner Date Prroject Manager Date

FIGURE 18-5 Sample Change Request Impact Form

746

CHAPTER 18 Change Management

8 = ;oth A o S

O o

Project #

Project Name ____

© B - @ oo

PROJECT MANAGER CHANGE CONTROL CHECK LIST

DEVELOPMENT
Required

. QA/Documentalion Review o
. Update Scurce Documentis)

. Update Baseline Documentis}

. Update Program Specifications

. Revise Code

. Update User Documentation

. Update Opsrations Documentation

. Other:

IMP TATION
Required

. Baseline Documents Update -
. Requiremant Change

. Dasign Changes

. Programming Changes

Pgm #'s)

4 JR—

R S, J—

. Unit Testing
. System/Regression Testing
. Interface Changes

. Operalions Changes il

Other:

Commeants:

Request #

Completion Date

Coempletion Date

Initiatar Dale

Qwner Date Prroject Manager

Date

FIGURE 186 Project Manager’s Change Check List

CHANGE CONTROL ANALYSIS BY TYPE

PROJECT-TO-DATE

Number and Cost of Change by Type

Month of: May, 1994

C
Cost

E
Cost

Cost

Total
#

Cost

$40.7

64

$ B8O

29

58.1

16 $11.0

$10.0

23

ar.4

Application Name: # gcst

1. Branch Pilot 60 $45.6

2. Securities Transfer 17 -

3. Settlements 16 36.0

4. Float Allocation - -
Total 93 3$81.6

18 $11.0

$41.1

$10.5

135

$171.4

Change Type Legenc

Requirements/Design
Application Programs/Testing
Bocumentation

Hardware

Purchased Software
interfaces.

Application Support

GTMOO®»

Notas: Costs in thousands

Changes with no cost are planned maintenance.

FIGURE 18-7

LpL

Summary Report of Change Costs

748 CHAPTER 18 Change Management

CHANGE CONTROL COST/SCHEDULE IMPACT® Month of May, 1994
Current Month Year-to-Date Project-to-Date
Application Cost Schedule Cost Scheduls Cost Schedule
1. Branch Pilot - - $ 488 24 $ 88.9 39
2. Securities Transfer $ 15.0 8 15.0 8 250 14
3. Settlements 1M11.0 &4 111.0 &4 2250 140
Totat §126.0 72 $174.8 86 $330.9 193

*All data based on change Submission Date
Cost in thousands

Schedule in business days

FIGURE 18-8 Summary Report of Cost and Schedule Impacts

CHANGE CONTROL ACTIVITY Month of May, 1994
Current Month Year-to-Date Project-1o-Date
Project Name s P A D O C|S8 P A D O C |5 P A D O C
1. Branch Filot - - - - - - & 1 4 1 1 3 84 1 51 12 25 28
2. Securities
Transfer 3 1 2 - 1 1 22 1 18 3 &6 12 22 1 18 3 6 12
3. Settlements 6 9 ¥ - 3 4 |16 8 7 - 3 4|16 9 ¥ - 3 4
Total |19 10 9 — 4 5 42 11 25 4 10 1¢ (102 1 76 165 34 42
" LEGEND:
5 Submitted
P Pending
A Approved
D Disapproved/Cancelled
(@] Open
C Cormnpleted

FIGURE 18-9 Summary of Change Requests

Software Management 749

CHANGE PAGE
Page No. Reason forfdescription of change Date
1-48 Criginal issue 1174193
All Audit review and Revisions 1/3/84
1-2, 22 Corrections and revisions to reflect organization changes 216194
6,9, 37-44 Describe imaging interface 6/3/94

FIGURE 18-10 Sample Document Change Table of Contents

SOFTWARE

MANAGEMENT

Introduction

Two of the roles of the SE in software management
are to recommend what type of maintenance should
be performed and to scloct code maintenance soft-
ware. These are discussed in this section,

Types of Maintenance

The types of maintenance arc minor modifications,
restructuring, reengineering, or rebuilding.! Minor

1 This discussion is based on Martin, 1990,

muodifications are changces to cxisting code and can
be any of the project manager classifications dis-
cussed sbove, Restructuring is the redevelopment
of a portion of an application with a bridge to the
old application. Reengineering is the reverse analy-
sis of an old application to conform to a new
methodoiogy, usually Information Enginccring or
object orientation. Reengingering is also known as
reverse engineering. Rebuilding is the retirement
and redevelopment of an application.

To select the appropriate type of maintenance,
several questions are asked (see Figure 18-12). First,
ask if the software works. If the answer is no,
you retire the old application. Then you reengineer
and rebuild it using a methodology. If the answer
is yes, you continue o the next question: Does the

750 CHAPTER 18 <Change Management

Functional Specification Setflements 1/15/94
Page 22

The settlements system uses relational database design techniques and fully normalized data entities.’ The database
design is fully documented in Figure 2-1. The diagram shows the 17 enlilies used in setlements processing and the
relationships between them. Each entity and its descriptive attributes are fully described in the data dictionary attached as
Appendix 1; they are also available on-line through both IEF, the CASE tool being used for the application, and Project-
Notes, the on-line help 1ool.

1 Prior ko January, 1994, a nonnormalized, relational approach to the data was used. This resulted in a loss of data
integrity that necessitated strict enforcement of relational theary to comply with audit requirements for the application.

FIGURE 18-11 Sample Documentation Change with Old Contents

Restructisre parts that do not
work; reengineer the application
as part of oh-going maintenance.

&

Is the maintenance
cost high?

Does the
software

Revise existing code
wiork?

Reengineer
and
rebuild

FIGURE 18-12 Decision Tree for Selecting the Maintenance Type

application have a high maintenance cost? If the
maintenance cost is low, the answer is no; then do a
simple revision. If the answer is yes, immediately
restructure the parts that de not work, and reengineer
the entire application as part of on-going work.

Reengineering

Reengineering is the analysis and design of an
existing application to bring it into conformance
with a methodology. When the application conforms
to a methodology, it is rebuill. To reengineer pro-
gram code, the code first must be structured. Code
restructuring can be done by antomated tools. The
restruclured code from all programs in an applica-
tion is entered into a CASE tool with reverse engi-
neering capabilitics.

Code restructuring also can be done manuatly. 1[
no CASE products are used, the code is analvzed and
the underlying data and process slruclures are
mapped into a methodology, Tf Tnformation Engi-
ncering is used, for instance, an entity relationship
diagram (ERD) and a process data flow diagram
(PDFD) are first developed for each program. Then,
the diagrams are consolidated across programs to
develop application ERDs and PDFDs. A data dic-
tionary to documenlt diagram contents is developed.
The ERD is normalized and compared to the auto-
maled data to determine the extent of deviation from
the normalized state. If the denormalized state was
for performance purposcs (this is an ¢xample of the
importance of a historical file of design decisions),
then problems with data integrity resulting from the
denormalization should be noted for correction.
Finally, the detailed process diagrams are wsed to
develop a process hicrarchy diagram. The hierarchy
diagram is matched to the real organizational func-
tions to determine the extent of application function
redesign required.

If the methodology is object-oriented, the code
modules are classified by object type and funclion.
If multiple objects call a function, it is classified
as reusable and sct aside for further analysis. After
module classification, the extent to which the
code matches a true object design is determined.
Reuwsable modules arc cvaluated to cnsure that they
perform single functions, hide information, and use

Configuration Management 751

minimal coupling techniques. For minor deviation
from the objcct method, individual modules or
object types are reengineered to bring them into con-
formance with object tenets. For major deviation, the
application is reengincerced and redeveloped vsing
object techniques,

CONFIGURATION
MANAGEMENT

Introduction

In the mainframe world, one disk storage device can
hotd 10,000 or more different data files; large proj-
ects develop hundreds of proegram medules every
year; and programmers may manage several differ-
ent versions ot code modules at one time. 'Fo support
multiple users across diffcrent platforms might
require multiple operational versions and variations
of code modules, and they all have to be maintained.
Configuration management is the identification,
organization, and control of modifications to soft-
ware buill by a programming team. Code library
management software provides a means to identify
and manage the baseline for program code modules.
The baseline is the official version of a code med-
ule that is in production use at any time, Two types
of code libraries and the application types they sup-
port are discussed in this scetion, Derivations, which
identify each module’s history, are included in the
discussion,

Configuration management addresses problems
originally present in large COBOL applications but
are equally useful for the more complex environ-
ments of object and distributed soltware. A pro-
grammer might kecp several copies of a program
and personally track which is in production at any
one time. The problem with individual programmers
maintaining their own copics is that eventually their
multiple copies will diverge and knowing which is
the mast current can be a problem:. Trusting individ-
uals to be good librarians is asking for errors.

Assume next that one official version of programs
exists, If several people are performing maintenance
tasks on the onc version of a program, a high prob-
ability exists that the changes ol ore person will

752

CHAPTER 18 Change Management

interfere with the changes of the other person.
Either the changes of one will be cancelled by being
overwritien by the other, or one person will have to
wait while the other mukes the changes. Both situa-
tions lead to delays and are error prone.

In the complex world of distributed systems and
multiplc hardware/software platforems, different ver-
sions of the same software might be present. The
only differences might be to accommodate platform
idiosyncrasies, but such differences imply multiple
versions of software (hat can cause maintenance
problems, When a general change is made, somchow
it must be verified as being made to all versions for
all platforms. Specific chunges for each platform
must also be accommodated to allow fixing of bugs
or changes that only affect one type of hardwarc.

Configuration management that consists primar-
ily of code library munagement software plus man-
ual procedures supports both single and multiple
versions of programs to control for difterent plat-
forms, evolving functionality, and debugging of soft-
ware changes.

Types of Code Management

The most common code management procedure is
the creation of derivations. The two code munage-
ment types are for versions and variations. They can
all be supported in the same software library or cun
be in separate libraries. Each type serves a differ-
ent purpose.

Derivation

A derivation is a list that identifies the specific ver-
sions of muitiple modules that were linked to create
2 load medule or joint memory resident work unit,
The purpose of a derivation is to allow tracing of
errors that might be due to vendor software. All soft-
ware used to create a load unit are specifically iden-
tified with vendor, version, and last installation date,
The sample shown in Figure 18-13 identifies specific
platform, operaling system, compiler, for crea-
tion of a work unit, and the dates of the creation of
each stage. If a problem were found, tor example, a

rounding error occurs in computing interest, the
error is traced backward through the development
software to find the problem. The program is
checked first, then the compiler, then the operating
system, and so on. Let’s say, for instance, that a
new version of the compiler was installed one
week before this module’s creation. and that, upon
inspection, the rounding algorithm used only
allowed four decimal places to real numbers. If more
than four places are needed, a new compiler would
be required.

The diflerence between a load module and joint
memory resident work unit is in the dynamism of the
processes. A load module is a compiled version of
one¢ or more source code modules that have heen
compiled and link-edited together, forming the load
maodule. Compilation translales a module {rom
source code to object (assembler) code. Linkage
editing rcsolves references to other modules by
replacing Cefl references with relalive memory
addresses, thus joining related modules for process-
ing as a single work unit (see Figure 18-14).

A joint memory resident work unit is a series of
load modules that work wegether in a dynamie, real-
time environment. Linkage editing creates static
modules that are fixed until the next linkage edil
process. In real-time application envitonments, one
goal of the procedures is to relieve the need to frecze
specific module references unltil they are needed in
operation. This liberates programmers from the link-
age editing process but can create chaos when an
error oceurs and must be traced. Both situations
require maintenance of derivations,

Recording of derivations requires precise identifi-
cation of the software, option, code inpuis, respon-
sible person, and date that a load module was created
{(see Figure 18-15). The level of detail for derivations
should match each process a module undergoes from
source code to load unit. This means that il the trans-
lation is from source codce to load unit, there are two
derivations, If the translations are from source to
object to load unit, there are three derivations. Al
software used in creating the derivation s recorded,
including the compiler, linkage-editer, and so on,
and their versions. Derivation mainlenance provides
an audit trail for softwarc and is the only way that
errors can be guaranteed to be traceable,

Configuration Management 753

Work Unit Name: -
Creation Date:
Date Time Software Options Code Module Person
241793 2:53a Cob 88, 2.1 Defaults STLAO01 A. Bryon
2/1793 2:543 Cob 88, 2.1 Defaults STL1002 A. Bryon
2/1793 2:56a Coh 88, 2.1 Detaults STL10023 A. Bryon
211793 2:58a Cob 88, 2.1 Defaults STL1004 A, Bryon
2/1/93 2:593 Cob 88, 2.1 Deafaults STL1005 A. Bryon
2/1/93 3:00a LinkEdit 88, 3.7 Defaulis STL1001, A. Bryon

STL1002,

STL1003,

STL1004,

STL10OS

object
Comments:

FIGURE 18-13 Sample Derivation

Delta Version

Delta means differcnce. A delta file is a file of dif-
ferences between versions of a program. Versions
are multiple copies of a single program that represent
incremental changes.

When a dehta version is kept, the main program
logic is maintained once. Then, the delta version is
applied to the main logic, with specific lines of code
being replaced to derive the delta (see Figure 18-16).
The advantage of using a delta strategy is that
changes in functionalitly affect only the original

754 CHAPTER 18 Change Mancgernent

Program Source
Code
Madule 2

Compiler
Software

Obiject Code Object Code Object Code
todule 1 Moduie 2 Macule 3

Link Edit

oftware g

Maodiulg

Load

FIGURE 18-14 Compile and Link Edit

code. The disadvantages are that loss or corruption
of the original atso affects all deltas, and that delta
references based on code line numbers can lead to
errors when the original changes.

Many softwarc librarians and operating svstem
editors work on the delta version principle. For
instance, the Unix editor maintains delta versions of
changes to text files, which includes program code.
Using line numbers as the reference point, the origi-
nal is stored. As changes are made, changed lines are
kept plus new line numbers are appended in a delta
file. When the file is referenced, the original is
loaded into memory, then the deltas are applied
until the memory version reficcts all changes.

When using a delta version, then, it is important
to create a new file periodically to save storage and
processing time for delta overlays. This minimizes
the extent to which you are making changes to

changes. To create the new file, yon save the old file
with a new name. Renaming modules is nccessary to
create a permanent version of the program with
deltas incorporated into the saved version. Maintain-
ing many renamed vcrsions can causc cITOTS in
remembering the most current version, too.

Variation Storage

Variations are alternative, interchangeable program
modules created for multiple environments or pur-
poses. For instance, you might create an 1BM PS/2
version of a program and a Novell Netware 386 ver-
sion of a program. The functionality is the same, but
specific modules are different to support the specific
hardware/software platform.

Variations in a COBOL environment, for in-
stance, might have a different interface for wsers in

Item Definition

Date Date when tha derivalion was
created

Time Time of day when the derivation was
created

Software Specific software used to crzate the
derivation

Qptions Software options selected or defaults

Code Module Name of input module{s)

Person Ferson executing the derivation
create

Hardware Machine 1D if there are multiple
machines

Instalkation Lacation or other installation 1D

when there are multiples

FIGURE 18-15 List of Requirements for
Recording Derivations

the United States and users in South America, Vari-
ations in an Ada environment, as ancther example,
might be [or performing the same process using
integers or using real numbers,

Variations are named rather than numbered
because there 1s no meaningful relationship between
variations (see Figure 18-17}. The name of each
variation should reflect what makes it different. For
instance, the names PS2SORT (for PS/2 sort routine)
and N386SORT (for Nctwarc 386 sort toutinc),
would be good variation names because they
identify both the platform and the function of
the variation,

Configuration Management
Procedures

Strict configuration management requires that one
person {or group} on each development and mainte-
nance project be assigned as the project librarian.
The project librarian is the only person authorized
to write into the baseline library for the project. The
procedure 18 summarized below.

Configuration Management 755

1. File baseline code module.

2. Allow checkout for read-only putposes to
individuals needing access. For instance, test
tcam needs access for testing,

3. Allow chargeout for update to anthorized
PTOZTAMIMETS.

4, Monitor that chargeout items are returncd.

Notify testers of chargein items for testing.

6. Verify that the text preamble to code identi-

fies the change, date, programmer, and lines

of code aflected.

Chargein the item, refiling the module.

8. Tf derivations are used, file the derivation
with project documentation,

LA

~

When a project is in the code and unit test stage,
the project librarian establishes an application
library. As cach module is unit tested and movces into
subsystem and integration testing, the programmer’s
final version is given to the project librarian for
addition to the library.

Error fixes, changes during testing, and mainte-
nancce changes are all managed the same way. The
programmet tells the librarian she or he is checking
the modale out for update, and the librarian keeps
track of this fact. The code is copied out of the
library and into the programmer’s own workspace.
The chariges are made and unit tested. Upon com-
pletion of the unit Lest, the programmer gives the
modile and documentation to the librarian for
reentry to the library.

The librarian checks that no other changes have
been made during the time the programmer has the
module out for update. If not, the module is rewritten
into the library.

Depending on the library software used, addi-
tional features allow the librarian to issue a charge-
out against a module. A charge-ont causes a lock
to be placed on the module such that no other char-
geouls [or update may be performed untii the lock
is removed, When the changed version of the code
module is reentered into the library, a charge-in
oceurs. A charge-in is the updating of a charge-out
module to remove the lock. The more intelligent the
software, the morc actions taken during charge-in.
For instance, some library software packages initiate
a regression test when a chargein action is taken.

756 CHAPTER 18 Change Managerment

Program
Source
Code

Edit Session #2

Delate 1520 |
Change 342/s/as/ |.

Save

Ediil Session #1

Add line 23

FIGURE 18-16 Delta Version Development

The disadvantage to having a formal project
librarian is that the librarian becomes indispensablc.
The risk is that the fibrarian might become a bottle-
ncck to updating the production library, For instance,
if one person is the librarian, he or she might be
called for jury duty und be out of work for several
weeks, During that time, unkess another librarian is
named, no updates can be performed.

AUTOMATED TOOLS
FOR CHANGE

MANAGEMENT

There are different classes of automated tools for
each type of change management. Each class of tools
is discussed scparately in this section.

Collaborative Work Tools

Collaborative work tools support group decision
making and facilitate the development and histori-
cal maintenance of project decisions. Collaborative
toels have developed out of research programs in
group decision making at the Universities of Arizona
and Minnesots in collaboration with IBM. Relatively
primitive software of the 1980s for facilitating mect-
ings has blossomed into a new industry for facilitat-
ing group work. Xerox Palo Alto Research Center
(PARC) is a major contributor of new technology to
this industry.

The specific technologics involved range from
the relatively familiar, like electronic mail, or
e-mail, to the exotic, for instance, media space
clear boards that change our conceplis of being there
(see Table 18-2). Many of the technologics arc
emerging, but the emergence is at such a rapid

Automated Tools for Change Management

757

Variation 1

Common
Program
Source
Code
b i
Compile Compile /
LinkEdit LinkEdit
1 Y
Load Module Laad Madule
Variation 1 Variation 2

FIGURE 18-17 Variation Development

rate that by the new century we will routinely
use many ol these lechnologies at work, if not at
our homes.

Media space technology allows several partici-
panis to sit on opposite sides of a clear glass board
display that has clectronics imbedded in it. The
board can display computer images, text, and
graphics as well as reflect hand-drawn notes and
graphics of thc mccting participants. The most
effective use at the moment is between two people
who both have clear access to the board. Clear
boards allow people to sce both the work and the
co-worker, minimizing attention shift time. At the
moment, the technology Tequires the people to be
co-located, that is, in the same room; but the inten-
tion is to provide video conferencing capabilities
using clear boards that are mirror images, thus sirm-
ulating the face-to-face experience with the added
clectronic board interface. Thus, the user sees both

the face of the other participant(s} and the contents
of the board simultaneously. By removing the limi-
tations of both time and geography our concept of
being there is altered. By removing these limitations,
clear board technology facilitates group work. This
technology was developed, in this country, at Xcrox
FARC.

A different type of product provides a text-based
communication environment that supports group
passing of messages with storage of reader com-
ments. Such a product, Notes,? provides an e-mail
feature with the capability of user-built discussion
forums and other data-sharing features. These prod-
uets allow the development of decisions, history of
the process, and easy sharing of information within
and between work groups.

2 Notes@ is a product of Lotus Development Corp,

758 CHAPTER 18 Change Management

TABLE 18-2 Collaborative Wark Tools

Tool Vendor Functions
Cruiser®@™ Bellcore A video windowing system that
Morristown, NJ allows the user to cruise offices visually
and, perhaps, initiate a visit. Uses tele-
phone and video technologies.
Grevboard NeXT Computer Multiuser drawing program
Mountain View, CA
Groupkit Dept. of Computer Science Real-Time Conferencing Toolkit;
University of Calgary requires Intervicws Software, Unix
Calgary, Alberta, Canada running X-Windows
Notes Lotus Development Corp. E-mail, group builetin board, data sharing

Oracle Mail, Alert, Toolkit,
and Glue

MA

Oracle Corp.
Redwood City, CA

E-mail, application development, and
application programming interfaces

Timbuktu™ Farallon Computing, Tnc.
Berkeley, CA

Video Whitcboard ACM SIGCHI Proceedings
91, pp. 315-322

VideoDraw ACM SIGCIII Proceedings

*90, pp. 313-320

Windows for Workgroups Microsoft, Inc.

Belleview, WA

Tor LANs

Sharing of single-user software among
several users

Wali-mounted whiteboard that portrays
shadow of the other user

Multiuser drawing program

LAN-based windows sharing

Documentation Tools

Word processing tools, such as WordPerfect, are
rapidly being replaced with more sophisticated and
intelligent products for document development and
muintenance (see Table 18-3).

In the old days of the 1980s, word processors
became sophisticated enough to support such func-
tions as redlining, the identification of changes in
documents by means of a vertical linc drawn in the
margin of the change area. "Fypical word processors
that merely autemate the document preparation, such
as redlining, still require significant text manipula-
tion and creation of multiple documents with redun-
dant information. Newer tools are beginning to
emergce in the workplace that will eventually become
as umportant as word processing has been.

Oune drawback of serial, word-processed text is
that ideas that interrelate to many different topics
either have to be replicated or cross-referenced in
some way. Hypertext software eliminates that need
by allowing any number of associative relationships
to be defined for a given text item. Hypermedia
c¢xtend hypertext 1o support audio, video, image,
graphics, text, and data. In hypermedia, these multi-
ple technologies may all be interrelated and co-
resident in one environment. In addition, because
these tools do not restrict the number of connecticns
an item may have, and because they use mainstream
computer technology, application documcntation
remains on-line and interactively available to all
users. Of course, interactive availability also implies
a need for hyperlibrary management to control
changes to library contents.

Summary 759
TABLE 18-3 Documentation Maintenance Tools
Tool Vendor Functicns
Folio Views Folio Works with Word Perlect to provide
Provo, UT multimedia support, highlighting and
post-it type document annotation.
Hyperlext™ Apple Computer Associative management of text and
Cupertino, CA graphics
M3/ Word Microsoft, Inc. Word processing
Belleview, WA
Word Perfect and Word Perfect Corp. Word processing plus grammar checking
Word Perfect Mac Orem, UT

with Grammatik

Words and Beyond
Alameda, CA

Lundeen and Associates

Documentation production including
text and graphics

Tools for Reverse Enginecring
of Software

Reverse engineering tools are rapidly becoming so-
phisticated enough that the needs for human inter-
vention and extensive training to understand them
are diminishing. Several CASE products support
Teverse engineering through the analysis of code to
determine data and process structures that underlie
the code (see Table 18-4). Individual programs ure
analyzed at this point. By the next century, whole
applications will be able to be analyzed with intelli-
gent functions pointing out inconsistencies and
errors across the old ‘spaghetti’ code. All tools rep-
resented in this section are available in the market
and are rated as usefully working products.

Tools for Configuration
Management

Configuration management tools, commonly called
software libraries or code libraries, have been around
since the early 1970s (see Table 18-5). The merc
sophisticated, newer models make version and vari-
ation management simpler by supporting complex
functions, such as conditional compilation.

SUMMARY

To increase productivity in the application life cycle
and reduce time spent in the code, test and mainte-
nance phases are important. To reduce the effort in
these phases, applications should use change control,
design for maintenance, use reusable libraries, and
use code templates. Object methods are best suited
to reusable libraries; nonobject methods are best
suited to program templates,

[-CASE is critical in reducing coding and testing
through automatic code generation. [-CASE is also
required to build intelligence to support reusable
designs.

If managing application change, change control
procedures and management are critical. Require-
ments, designs, programs, interfaces, hurdware, or
purchased software are all subject to change. Change
management procedures track requests from initta-
tion through implementation and aliow management
reporting of cost, types, and impacts of changes.

Logging and management of historical decisions
can be wvseful in volatile environments in which
applications are subject to redevelopment. A histor-
ical decision log keeps track of arguments, reason-
ing, and rationales for decisions as they are made.

After an application enters operation, documenta-
tion is still subject to change to reflect the current

760 CHAPTER 18 Change Management

TABLE 18-4 Reverse Engineering Tools

Tool Vendor Functions
ADW/Maintenance KnowledgeWarg, Ing, Reverse engineering for informalion
Workstation Atlanta, GA engineering: Entily-relationship

Bachman Series

Design Recovery

Ensemble

Hindsight

RE for IE

Smartsystem

Via/Renaissance

Bachman Information Systems, Inc.
Burlington, MA

Intersoly, Inc.

Cadre Technologies, Inc.
Providence, RI

Advanced Soltware Automation, Inc.

Santa Clara, CA

Texas Instruments, Inc, with
Price Waterhouse
Dullas, TX

Pracase Corp.
Santa Clara, CA

Viasofl, Inc.
Phoenix, AZ

diagrams
Process data flow diagrams

Reverse engineering of data structures

Reverse engineering of program
structure

Reverse engineering charts, metrics,
and design

Reverse engineering of C-lanpuage
code: documentation, structure charts,
complexity analysis

Reverse engineering for information
engineering: Entity-relationship
diagrams

Process data flow diagrams

Reverse engineering of C-language
code: function call graphing, syntax
and consistency checking

Reverse engineering of data siruclures

TABLE 18-6 Software Configuration Management Tools

Tool Vendor Functions
Copylib IBM Software code library for IBM and
Armonk, NY compatible mainframes
Data Expedilor Data Administralion, Inc. Data management software—Allows
viewing of file definitions from Librarian,
Panvalel, and Copylibs, to locate occur-
rences and variations of data.
Librarian Pansophic Sysiems Software code library for IBM and
Lisle, IL compatible mainframes
Panpvaler Pansophic Systems, Inc. Software code library for [BM and
Lisle, IL compatible mainframes

state of the application. A documcnt table of con-
tents summarizes all changes and the parts of the
document affected by each change. Similarly, soft-
ware documentation is kept in derivations to sum-
marize the actual software and steps used to develop
a load module or work unil. Configuration manage-
ment is the use of software code libraries to manape
the official, operational code modules of an applica-
tion. Dclta version and variation management are the
principle techniques.

REFERENCES

Babich, Wayne A., Software Configuration Management.
Coordination for Team Productivity. Reading, MA:
1986,

Baecker, Ronald M., ed., Groupware and Computer-
Supported Cooperative Work: Assisting Human-
Human Collaboration. San Mateo, CA: Morgan Kauf-
mann Publishers, Inc., 1993,

Collofello, James 5., and Jeffrey J. Buck, “Software
qualily assurance for maintenance,” IEEE Software,
Seplember, 1987, pp. 46-51.

Figlar Consulting, Inc., “Automating the reengineering
process,” presented 10 New York City Data Adminis-
tration Management Association (DAMA), May 21,
1992,

Ingram, Ray, “Application reengineering for productivity,
performance, and cost effectiveness,” Course Hand-
out, Multi-Soft, Becember 10, 1991,

Licntz, B. P. and E. B, Swanson, Software Maintenance
Management: A Srudy of Maintenarce of Computer
Application Software in 457 Data Processing Orgoni-
zations. Reading, MA: Addison-Wesley, 1980,

Martin, James, Information Engineering, Vol 3: Design
and Construction. Englewood Cliffs, NJ: Prenlice-
Hali, 1990,

Nash, Kim §., “Whipping worn-out code into new
shape,” Computerworld, August 17, 1992, p. 69.

BIBLIOGRAPHY

Babich, Wayne A, Software Configuration Monagement:
Coordination for Team Productivity. Reading, MA:
1986,

Babich is a recognized authority on the use of
different types of libraries for configuration
management.

Exercises 761

Baecker, Ronald M., ed., Groupware and Computer-
Supported Cooperative Work: Assisting Human-
Humarn Collaborarion. San Mateo, CA: Morgan Kauf-
mann Pubtishers, Inc., 1993,

This book reprints groupware articles from periodi-
cals, proceedings, and edited texis that might not
otherwise be accessible (o a reader.

Lientz, B. P. and E. B. Swunson, Software Meintenance
Management. A Study of Maintenance of Computer
Application Software in 487 Data Pracessing Organi-
zations. Reading, MA: Addison-Wesley, 1980.
Idenlifies the applicability of the 80-20 rule in the
application life cycle with this study of software
maintenance in business organizations.

Mantei, Marilyn, and Ronald M. Baecker, eds., Proceed-
ings aof CSCW *92: Sharing Perspectives. NY: Associ-
ation for Computing Machinery, 1992,

This annual conlerence discusses trends and research
in computer-supported cooperative work {CSCW),
The proceedings of the most recent conference iden-
tify many emerging technologies that will alter the
way we work,

KEY TERMS

baseline

boilerplate

change centrol clerk
change contro] file
changes

charge-in
charge-out

code library

I
load module
media space technology
memory resident

wark unit
minor modifications
open change request
program template
project librarian

compile rcad only moedule

configuration rehuilding
management redlining

delta reengineering

delta file restructuring

derivation reusability

frozen specification reusable module librury

hypermedia reusable module

hypertext FEVETSE engineering

librariun variations

linkage edit version

EXERCISES

1. Della Insurance Company has a pelicyholder
subsysiem that is causing them fils. Over the

762

CHAPTER 18 Change Management

years, the application evolved from using fixed
length, multirecord type files to using a hierar-
chic database to using relational database. The
programs did not change much, but the data
structures changed radically. Program code was
patched to provide for the new data structurc.
The amount of people-time allocated to policy-
holder maintcnance grew 15% per year over the
last five years and is now costing as much per
year as it did in 1980 to develop the original
application. No one ever considered reevaluat-
ing the subsystem for redevelopment, but they
would like to now. Upon inspection, the docu-
menlalion was found to be up-to-date and
includes flow charts and data flow diagrams.
There are no current diagrams of the data struc-
ture. There are also no historical files of deci-
sions or of changes. What should the company
do 1o get this application in order? What type(s)
of muintenance should they consider for the next
set of changes?

. Discuss the ethies of group work tools. If 4 his-
tory is kept, does it violate anyone’s privacy?
Whalt issues are involved in privacy versus open
access to information in group work? Is there a
right solution to these issues?

. Discuss the implications of group work teols for
global organizations. If you consider cultural
differences in, for instance, comfortable distance
between acquaintances, how tight cultural dif-
ferences impact the use of group tools? How
might companies and cultures need 1o change to
avoid misunderstandings with new tools?

STUDY QUESTIONS
1. Define the following terms:
delta restructuring
derivation rebuilding
frozen specification variation
reengineering version

reverse engineering
. Why is designing for maintenance important?
. Describe how determining reusability of a
madule works,

10.
11.

12.

13.

14,

15.

16.

17.

18.
19.
20.

. How can program templates reduce code

created?

. Which methodologies are best suited for

reusable libraries and program templates?
Why?

What is the significance of [-CASE product
recognition of design fragments?

Discuss the change management procedure
recommended for applications undergoing
development.

Why is it importaat to have a baseline product?
What happens to a baseline when the product
changes?

Write a job description for a Change Control
Clerk.

Describe the life cycle of a change request.
What types of reports are useful to managers in
tracking maintenance requests?

What is the purpose of renaming documents
when major changes take place?

List the four types of maintenance actions that
cun be taken. Discuss the reasoning process for
deciding which action to take.

How 15 reengineering dotie in a manual
environment?

What is a code library? What are the variations
in how a code library works?

When a delta management system is used, why
do you periodically need to create a renamed
copy of the code?

Describe the contents of a derivation. Why is
cach item necessary?

Compare code versions to variations.

What is chargeoul and why is it important?
What is the purpose of collaborative work
tools?

W EXTRA-CREDIT QUESTIONS

1.

Research collaborative work tools and develop a
15-minute presentation to the class about tools
on the market, or tools that should be available
in the next five years.

Get a sample demonstration copy of some
emerging software that can be used for configu-

Study Questions 763

ration management, group work, decision 3. Develop the pros and cons of keeping a decision
history tracking, and so on. Show the demon- history. What legal or governmental require-
stration to the class and spend some time brain- ments might impact the decision to keep a his-
storming about how the product might change torical log? What political and organizational

work practices. issues impact the decision?

~ SOFTWARE
ENGINEERING
_ As A CAREER

CHAPT E|R

INTRODUCTION

In every student’s path lics a career they will pursue.
Nowhere are there as many varied opportunilies as
in information technology related professions. This
chapier examines possible career paths for achieving
software engineer stats, maintaining job skills, and
pianning [or your next job. After vou have identified
your own job requirements, we show one way to
determine the likcliheod of your job search success
and a way to determine when you need to broaden
your job requircments.

EMERGING

CAREER PATHS

Software engineering used to be thought of as the
province of computer scientists. Over the years,
computet scientists tended to migrate into scientific
and defense programming, operating systcms sup-
port, and software package development. In those
areas, they applicd engineering methods to design-
ing and developing efficient and effective software.
In contrast, business organizations used the term
systems analyst 1o describe the person who applied
computer skills to the development of business
transaction processing applications. Computer sci-

764

cntists tended to build ene-of, real-time applications
while information systems (IS) specialists tended to
build batch business transaction applications. As IS
moved to on-line applicatlions, the technology gap
that somewhat fueled the split between the disci-
plines got smaller,

Compuler science (CS) SEs increasingly study
the same topics as IS 8Es. The term systers analyst
is giving way to the term software engineer as engi-
neering techniques increasingly are used in business
application development. The differences between
the two groups are mainly in the emphasis on fech-
nelogy for CS and en application of technology in
business for IS. The C8S majors still tend to work

in the traditional CS industrics—dcfense, scientific

organizations, and software development firms. The
IS majors still lend Lo work in finance, manufactur-
ing, government, and retail.

As teaching emphasis moves away from the ‘one
right way’ approgch to an ¢ver growing sct of theo-
rics from which wec choosc the most appropriate, CS
and IS will canverge even more. The two groups
probably will not be melded completely, however.
There is a need for both types of training that will
continue to grow throughout the 20th century. The
goal of both programs is to teach theories and
approachcs to problem solving with ways to apply
them that prepare you for continuous change in the
IS body of knowledge.

For the last decade, the radical changes in appli-
cations development coupled with changes in the
types of applications businesses build are resulting
in a split of duties in the development environment.
The first type of carcer is more technical. This
SE will build ever more complex state-of-the-art
upplications using new technologies. The second
type of carcer is less techaical. These SEs work as
liaisons to user departments and act as chauffeurs for
computer usage to assist users who are not inclined
to become computer literate themselves. Within a
genetration, most business people will be computer
literate, and these jobs will evolve to developing and
managing DSS and EIS for managerial staft,

The issue over whether to get a degree in CS or IS
is 1ot too important from an employability perspec-
tive. There are careers for hoth types. Both types are
uscful and valuable to adding to our store of knowl-
edge about how to build applications. In this chapter,
first job levels and types of jobs available are
defined. Then, an approach to defining a first job (or
next job if you are already employed) is developed.
Finally, means to maintaining your competence in
the ever-changing world of IS and information tech-
nologies are presented.

CAREERS IN

INFORMATION

SYSTEMS

Job opportunities in information systems can be
classified by level and job type. Job levels are gen-
erally classified as junior, intermediate, senior, lead,
techuical specialisl, and manager. Each level is
defined in terms of how much supervision is pro-
vided at the level and how much information and
expertise the individual is expectled to possess. Job
type identifies the nature of the work performed.

Level of Experience

In this section, we discuss the job levels to which
you might aspire. The levels are junior, intermediate,
senior, lead, technical specialist, and manager. When
times in a level and starting years of experience are

Careers In Information Systems 745

menlioned in each section, they imply vears of dif-
ferent, changing experiences. Many people simply
do the same thing over and over; this is not gaining
experience.

Junior

A junior staff member is directly supervised, but is
expected to work on his or her own on some aspecis
of a job. This is an entry-level position. Juniors are
cxpected to have basic skills and ability to find
information to enhance skills. They are in a icamn-
ing mode most of the time. The time you might
expect to perform in a junior-level position is about
two years.

Intermediate

An intermediate staff member works independently
most of the time, requiring direction on some activ-
ities. A mid-level person possesses a range of skills
and experience but is still in a learning mode much
of the time. Starting intermediatc people have two
to four years of experience. The average time at the
intermediate level is from two to five years.

Senior

Seniors work unsupervised most of the time; they
possess 4 wide range of both job and technical
expericnce that is used to train and aid others.
Senior-level staff supervise others, depending on
the size and complexity of the project. Frequently,
seniot-level jobs are generally a prerequisite to lead
or specialist titles,

A starting seniot-level staff member has from five
to seven vears of experience. Expect to stay at this
level at least three years. Many people end their
careers at this level and stay on rclated projects
throughout, becoming expert in both a technology
and an application type.

Lead

A lead person works on his or her own, performing
all levels of supervision. A lead person might also
be called a projecr leader. Project leaders are a
step above scniors and aspire to managerial posi-
tions. The lead skill levels are similar to seniors,

766 CHAPTER 19 Software Engineering as a Career

but a lead person has morc managerial/supervisory
responsibility.

A lead person might end a career at this level,
hecoming totally responsible for small projects but
never reaching a managerial level in charge of mul-
tiple projects.

Technical Specialist

A technical specialist is a person who has exten-
sive experience in a number of diffcrent areas. The
intcgration skills needed to develop distributcd data-
base networked applicalions exemplify the exper-
tise of such a person; the skills of an integration
specialist include application development, network-
ing, database, and operating systems. The specialist
is at the same level as a manager, having many of the
same duties and capabilitics without the personnel
and budge! responsibilities of a project manager.
Specialisis typically have been in IS positions for
10 years or mere and might remain at the specialist
level until retirement.

Manager

Managers work independently, performing person-
nel evalvation, budgeting, progress reporting, and
managing projects, Managers may or may not be
technical in orientation; they have a wide range of
job experience and mostly managerial responsibility.
For technical managers the distinguishing features of
their jobs are the planning, budgeting, monitoring,
personnel management, and liaison activities dis-
cussed in Chapter 3.

The levels are shown with logical earcer moves
from junior through manager in Figure 19-1. As the
figure shows, there is little choice in level movement
for junior through senior positions. Once someonc
is fuliy knowledgeable about several types of jobs,
they can choose to remain technical and become a
technical specialist, or to move into management,
usually becoming a project teader, then manager.
Keep in mind that this career ladder identifies only
level of expertise, not area. Movement between job
types is possible al all levels and often is required to

intermediate

Lead

Technical
Speciaiist

™ '

k j

Manager

)

FIGURE 19-1

Carcer Path for Different Levels of Jobs

Application Developmeant
Frogrammer
Soltware Engineer (Includes Analyst
and Diasigner)
Knowledge Engineer

Application Suppert
Application Specalist
Drata Admininstrator
Database Administrator
Al Engineer
Consultant

Technical Specialist

Communicatians Analyst
Communications Engineer
LAN Specialist

Systams Programmer
Software Support Specialist

Staff

Security Specialist

EDP Auditer

Trainer

Standards Developer
Technical Writing

Quality Assurance Specialist
Technology Planner

Other

Product Suppart
Product Marketing
End User Specialist

FIGURE 19-2 Summary of IS Jobs

move to specialist and lead positions. Job type defi-
nitions are in the next section,

Job Type

Within a given tevel of experience, job lype identi-
fies the job content and nature. Job types are dis-
cussed in terms ol the areas of speciulization:
application development, application support, tech-
nical specialties, staff positions, and others. The jobs
are summarized in Figure 19-2. Keep in mind
that these are representative of the specialities in
large organizations; the smaller the organization, the
more likely multiple skills are required of individ-
ual staff members,

Careers in Information Systemns 7467

Application Development

The main application development jobs arc pro-
grammer, software engineer, and knowledge engi-
neer. Keep in mind that there are entry-level
positions all the way through technical specialist
positions in many of these jobs. There is great
variety across development jobs depending on the
hardware and software environments. Hardwarc
platforms include personal computers, workstations,
and mainframes as well as equipment for communi-
cations, robotics, process control, office automation,
imaging, and microforms. In addition, applicalion
cnvironments are increasingly diverse. The software
environment might include database, communica-
tions, programming language, hypermedia manage-
ment, computer-aided software engineering (CASE),
fourth generation languages, and expert systcm
shells, just to name a few, With this diversity in
mind, we discuss application development jobs.

PROGRAMMER. Programmers translate design
specifications into code modules that they design
and unit test themseives. Programmers might rotate
duties between development and maintenance
applications.

Senior programmers pertorm other duties besides
programming. For instance, they participate in
analysis, design, or testing activitics for the entire
application.

Beginning programmers specialize in one lan-
guage, while more senior programmers are conver-
sant and experienced in multiple languages. The
main gencrations of languages that apply here
include

2GL—Asscmbler

IGL—COBOL, Fortran, Pascal, Ada. C, C++

A4GL—Focus, Lotus, Paradox, dBase, Oracle,
SQL

5GE—Lisp, PROLOG.

SOFTWARE ENGINEER. An SE performs the
functions of analysts, designers, and programmers.
Analysts define and document functional require-
ments of applications. Senior analysts also par-
ticipate in organizational-level 1S planning and
feasibility studics. Designers translate functional

768 CHAPTER 19 Software Engineering as a Career

requirements into physical requirements of appli-
cations. These traditional titles still exist and
frequently are combined in the title analyst. Pro-
grammers develop and test code modules as dis-
cussed above. SEs may do all three—analysis,
design, and programming—as well as acting as proj-
cct Icader or project manager, as needed. The differ-
ences are in job emphases. A junior SE would spend
most of the time programming, while a senior SE
would concentrate more on planning, feasibility,
analysis, and design.

KNOWLEDGE ENGINEER. Knowledge engi-
neers elicit thinking pattcrns from experts for
building expert and artificial intclligence systems.
Knowledge engineers are similar in status to SEs,
but have specialized skills applyving to Al problems,
Developing medels and programs of knowledge
structures requires observation, protocol anal ysis,
in-depth interviewing skills, the ability to abstract
in arcas that arc not areas of personal expertise to
make sense of reasoning and information needs, and
the capability to develop uncertainty predictions
about the information and its accuracy with experts.

Application Support

Application develapers require cxpertise [rom &
number of different specialties in developing even
the most routine applications. The jobs that most
often support application development include
application specialist, data administration, database
administrator, artificial intelligence engineer, and
consultant. These jobs are not all distinct and may
overlap with cach other in many organizations; the
areas of overlap are mosl noticeable for consultants
who may do all of these speciallies. This overlap is
ignored for the moment for purposes of defining the
essential skills of these support functions.

APPLICATION SPECIALIST. Application spe-
cialists have the problem domain expertise that
allows them to consult te project teams for specific
types of applications. For instance, a scnior analyst
in real-time money transfer might split time between
domestic and international money transfer projects,
overseeing compliance with all the rules and regu-

lations of the Federal Reserve Bank as well as the
various money transfer organizations, (¢.g., Bank-
Wirc, Swift, NYCHA, c1e.)

Frequently applications specialists are members
of external standards setting organizations. In this
capacity, the specialist is a liaison between his or
her company and other companics in the industry.
Standards are set by consensus development of what
shouid be done and how to do it. The standards get
highly detailed, for instance, specifying the nurnber
of characters in a header of a bank wire message and
the mecaning of cach character. The major skills
needed for this type job are communications-
oricnted diplomacy, technical application, and prob-
lem domain knowledge.

DATA ADMINISTRATION. Data admiristra-
tors (IDA) manage information as a carporate re-
source. In this capacity, data administrators hclp
users define all data used in the company, ideatifying
the data that are critical to the company’s function-
ing. DAs establish and maintain standards and
dictionaries for corporate data. These on-line dic-
tinnaries, or repositories, are used by on-line ‘help’
software to provide users with data definitions as
they are using a computer.

Once data are defined, a DA works to define and
structure subject databases for usc by applications.
They also track application usc of data. For new
project development, DAs work with the applica-
tion developers to locate data that is alrecady aute-
mated, and with DBA staff to provide the application
£rolp £asy access 10 automated databases.

DATABASE ADMINISTRAT()R. Database ad-
ministrators (DBA) munage the physical data
environment of an organization. DBAs analyze,
design, build, and maintain databases and the soft-
ware database environment, Working with DA defi-
nitions of data, DBAs define physical databases and
ioad actual information inle thern.

A DBA works with application development
teams to provide access 10 already avtemated data,
and to define the specific database needs for infor-
mation to be automated.

ARTIFICIAL INTELLIGENCE ENGINEER. Ar-
tificial Intelligence {(AI) engineers work as consul-
tants tc project teams to define, design, and
implement intelligence in applications. At present,
Al is in its infancy and its use in applications is
sparsc. Most Al work takes place as part of an expert
system development. Al engineers work with
knowledge engineers to translate and test problem
domain data and reasoning information in a specific
Al language, such as Lisp. As Al matures and its
use Increases, this position mav move trom a support
location tc application development location in
organizations.

Al engineers have attained a higher level of
expertise than KEs. As Al experts, they participate in
software and hardware snrveillance, evaluation,
planning, and implementation on a company-wide
basis. As experts, they are usually involved in hir-
ing decisions for other AT experts and KEs.

CONSULTANT. Consultants are jacks-ol-all-
trades and practitioners of all, The higher the number
of years experience, the greater the knowledge
is expected to be. The areas of expertise would
likely include several of the job types discussed in
this section.

Consultants are hired most often to supplement
staff or to provide exotic skills not available in-
housc. When hired because of exotic skills, they fre-
quently train the in-house staff during the work
engagement. Consultants are expected to have
specifically identified skitls when they are hired, and
to apply those skills in performing the consulting
engagement.

Consultanls are sometimes preferred to perma-
nent hires because they get no benefits and do not
require raises from the hiring organization; they
already have the desired skills and need no career
path planning; they have their own managers
and require less personnel-type management, Con-
sultants are easier to hire and fire than full-time
staff, too.

Technical Specialists

Other technical specialiies are common in organiza-
tions but do not always interact with application

Careers in Information Systems 769

developers on a regular basis. Some of these special-
ties include communications analysts and engineers,
LAN specialists, systems programmers, and soft-
ware suppaort specialists.

COMMUNICATIONS ANALYSTS AND ENGI-
NEERS. Communications analysts and engi-
neers analyze, design, negotiate, andfor install
communications-related equipment and software.
They are required to be fully conversant with com-
munications technologies and may work on main-
frame or PC-based communication networks.

Integration of voice, data, graphic, and video sig-
nals via telecommunications retworks is growing in
importance to every organization. Certainly, integra-
tion of data and voice is commonplace. As the inte-
gration levels of information delivery increase, this
specialty becomes crucial to organizational success,

To start in communications al an entry-level
position, educational backgtound might be in
electronics, engineering, applications, computer
science, or telecommunications. To transfer into a
communications-related position requires intelligent
positioning and career planning once you are within
the company.

LAN SPECIALISTS. Local Area Network
(LAN) specialists plan, oversce installation, man-
age, and maintain local area network capabilities.
There is no essential difference between u LAN spe-
cialist and a communications specialist except scale.
A communications specialist works with multiple
nelworks including mainframes; a LAN specialist
works on geographically limited networks that are
comprised of personal computers (PCs).

The educational hackground can be in 1S or CS
with a concentration in telecommunications. 1n addi-
tion, many EAN specialists have certification by a
vendor, such as Novell, which certifies its engineers
as having basic knowledge as a Cerrified Novell
Engineer (CNE).}

LAN administrator is an entry-level position in
many companics. A LAN administrator creates new

2 Certified Novell Engincer™ is a trademark of the Novell Cor-
poration, Provo, Utah.

770

users, implements or changes security levels and
codes, installs new versions of the LAN operating
software, installs new versions of databasc or other
LAN-based software, oversces the resources pro-
vided through the LLAN, provides backup and recov-
cry capabilities to the LAN, and manages the LAN
configuration. Troubleshcoling the LAN when prob-
lems arise Is a valuable skill that frequently quali-
fies the individual for increasing responsibility
beyend an entry level position.

SYSTEMS PROGRAMMER, Systems pro-
grammers install and maintain operating system
and application support software used in mainframe
installations. For instance, an IBM 309x class main-
frame machine contains several million lines of code
in i1s operating system (08). At any given time,
50-100 ‘bugs’ might be outstanding and need to be
fixed. ‘Fixes’ are ‘patched’ into the operating system
software until a new level of the operating system is
released. If no problems occur in your installation,
the fixcs are not needed. Evaluating the new features
and whether they are necessury at the time is a skill
system programmers develop. Monitoring all of the
hundreds of applications to determine whether their
problems relate to &S problems is a major task. In
addition, applying a fix might cavse another prob-
lem, so the systems programmer needs to be fully
conversant with normal operations to determine any
ripple elflects.

SOFTWARE SUPPORT SPECIALIST. Applica-
tion software support is a similar, but different, type
of syslem programming. Software support special-
ists install and maintain software packages used by
both applications developers and by users. Databasc,
query language, backup and recovery, spreadshect,
disk space management, telccommunications inter-
face, and any other nonoperating system software
are in this category.

Application software support programmers and
specialists work with application developers and
with technology surveillance staff to define the needs
of the organization. Then, they woik with vendors
to obtain and instal} the product. Finally, they main-
tain the product on an on-going basis, providing the

CHAPTER 19 Software Engineering as a Career

application development staff with usage support for
the product.

System software support (585) programmers
and specialists work with systems programmers to
maintain the software provided as a shared resource
for others in the company to usc. For instance, in a
[LAN environment, an SQL Server might be used,
The SQL Server software is supported by an S8§
person, while the network eperating system (NOS) is
supported by a systems programmer,

Staff Positions

Most organizations have one or more persons
performing these functions, even if they do not
have a title to go along with the dutics. The tasks
thut are most often given titles include security
specialist, EDP audit, training, standards and tech-
nical writing, quality assurance, and technology
planning.

SECURITY SPECIALIST. A security specialist
is responsible for sccurity and for disaster recovery
readiness. For security, a specialist establishes stan-
dards for data security, assists project teams in deter-
mining their security requircments, and establishes
standards for data center security. Similarly, for dis-
aster recovery, the scourity specialist assists man-
agers and project teams in identifyving critical data
needs of the organization. Then, the specialist assists
data centers and project teams in developing and
testing disaster recovery plans. This is a valuable
specialization that is most often found in large orga-
nizations but is needed in all companics.

Rescarch by IBM and others has shown that com-
panies without any backup and recovery plan will go
out of business in event of a disaster. The studies
looked at different geographic areas, different types
of disasters, and spanned several years, The resull
was always the same. If a company could not recre-
ate the data critical to its continuing in business, it
could not survive a disaster,

Most disasiers are {rom weather {tornados, hurri-
canes, and earthquakes), but they can also include
acls ol lerrorism, fires, and other nonweather means
of losing a data center. In addition to loss of a data
center, security specialists plan for less severe losses,

such as loss of disk drives or malicious tampering
with data.

EDP AUDIT. EDP auditors perferm accountabil-
ity audits on application designs. Any application
that maintains legal obligations, fiduciary responsi-
bilities, or books of (he company, must be able to
recreate any transaction and trace its processing,
EDP auditors ensure thal company exposure to
losses or law suits is minimized through good appli-
cation design. The design aspects evaluated by
anditers are audit trails, recoverability, and security.

TRAINING. A technical trainer Icarns new tech-
nologies, vendor products, new language features,
and so on, then teaches their use to others in the
organization. Training might be done within a com-
pany, or in a specialized training company, or as a
consultant in a short-term assignment.

Training is often considered a temporary or rota-
tional assignment for people whose career path or
job assignments allow them 1o perform a staff func-
tion for some period. The thinking is that training is
more casily related to current job assignments in an
organization when it is done by someone who is
helding, or has recently held, such an assignment.
Teaching forces the trainer to organize thoughts,
make presentations, answer questions, and develop
good communication skills. Therefore, training
assignments are one way to allow someone who is a
valued employee, but who lacks good communica-
tion skills, to develop and practice those skills in a
work setting that is not too threatening.

STANDARDS AND TECHNICAL WRITER,
Standards developers work with managers to
define what aspects of work they want to standard-
ize, and to [ormalize the requirements into standard
policics and proccdures for the organization. The
most important skills for standards developers arc
verbal and written communications,

Company standards vary in level of detail and
breadth of activities covered. Some companies stan-
dardize their complete methodology, providing
minute detail on all of the steps to developing a proj-
ect, guidelines on the tasks performed, required sig-
natures and approvals for project work, detailed lists

Careers in Information Systems 771

of liaison departments that must be consulted, and so
on. Other companies provide 1oose guidelines with
checklists to be consulted to ensure that all needed
tasks are considered for inclusion in the project’s
work plan. Both types require the ability to run meet-
ings, obtain the siandards’ requirements, negotiate
between managers, and wrile accurate descriptions
of desircd rules.

Standards development and technical writing are
rclated activities. A technical writer takes informa-
tion about software products, applications, or other
information technology products and develops doc-
umentation to describe their features, functions, and
use, A technical writet needs to have good technical
and nontechnical communication skills, The writer
uses the technical commusnication skills in talking
with and developing an understanding of the product
being documenled. He or she uses the nontechnical
communication skills in writing about the products
for a user audience.

QUALITY ASSURANCE. Quality assurance is
an IS function that performs quality audits on appli-
calion feasibility, analyscs, designs, programs, test
plans, documentation, and implementations. QA is
usually functionally separate from the development
groups it is auditing; however, in a small company,
QA may be an analyst’s, or SE’s, tempotary assign-
ment,

The form of the aundit differs by the product
being reviewed. A QA analyst is assigned to a
development project as it is initiatcd. He or she has
little involvement until the first work products from
the development team are available. Then, as docu-
ments become available, the QA analyst reviews
them for consistency, completencss, accuracy, and
feasibility. Any problems found during the review
are documented in a memo to the project manager.
The problems must be responded to by either
explaining why the issue is not a problem or by cor-
recting the erroneous item,

As you can see from the description of this task,
QA is a natural adversary to application developers
since the QA analyst’s job is to find fault with the
work of the project team. QA work is usually
assigned to senior staff who are respected enough to
be listened to and taciful enough not to cause revolis

772

by the project teams. QA analysts need senior tech-
nicul, communication, and problem domain skills to
perform a quality review. They need experience in
all aspects of project development in order to know
how it should be done and where problems might
arisc. At the same time, tact and skill at identifying
only critical issues is important, No on¢ likes 1o be
told publicly they have made a mistake, even though
they might know intellectually that the project work
will benefit from the criticism. The QA analyst needs
to be sensitive to both the politics and the problems
identified,

TECHNOLOGY PLANNING. Technology sur-
veillance specialists monitor technology develop-
ments (o identify trends, select technologies that are
appropriale for experimentation in their organization
and, eventually, champion the implemeantation of
new technologies in the organization. These senior
staff are liaisons to the outside world and vendor
community for the company. Junior-level staff in
technology planning might work with a senior per-
son who guides the work, while the junior person
does some coordination and technology monitoring.

Other

Numerous other positions relating to ITs and 15
development are avaiiable for students of IS. Some
of these include product support, product market-
ing, and end-user specialist.

PRODUCT SUPPORT. Product support staff
work for an end-user group or vendor to provide
product-related technical expertise or other “hot-
line” support. kn addition to technical knowledge
about the product(s) supported, the individuals
in this job require excellent phone skills and must
be able to talk nonjargon language to users with
problems.

PRODUCT MARKETING. Marketing support
staff work for vendors o provide tcchnical
information to sales represcntatives in marketing sit-
uations. This type of job requires excellent commu-
nication and people skills, with some knowledge of
marketing tactics, such as narrowing focus of con-

CHAPTER 19 Software Enginsering as a Career

versation and closing techniques, to effectively work
with a sales representative. All software, hardware,
and consulting companies have pcople to perform
these functions. Usually, this job is for senior-level
people, but if you have a particular area of cxpertisc
and support in that area is needed, then you might
qualify for such a job without being a senior staff
person,

END-USER SPECIALIST. End-user specialists
translate user requirements into 1echnical language
for developers to use. In some companies this s the
function of the systems analyst or SE. In other com-
panies, there are end-user liaisons in the user depart-
ments to perform this function.

In summary, every company needs many ditfer-
ent combinations of job characteristics in all deparl-
ments of the organization. The challenge to
graduates is to decide which aspect of the work fas-
cinates you most. The career is there for the mak-
ing. To further your chances of a succcssful entry
into the job market, your undergraduate courses
should concentrate on core knowledge of application
development, programming, database, and telecom-
munications. Then concentrate elective courses in
one or more specialties from the above array of jobs,

PLANNING
A CAREER

Defining your next job is the first step to determining
what to ask for when you talk to personnel recruiters.
You must have a goal that is fairly well defined yet
realistic for the job market you wish to enter. Once
you begin work, you need to know how to plan the
next job, and so on. Also, one degree and job in 1S
does not gualify as a ‘career.” Rathet, continued
growlh and development in depth and in breadth of
knowledge is required. In this section, we discuss
how to plan your first job and extrapolate from that
to plan your career. In the next section, we discuss
how you keep current to continue to grow as # pro-
fessional SE. As vou read through this section, as-
sess your job wants. The more honest you are about
your skills and desires, the mose useful you will find
this exercise.

Decide on Your Objective

The first activity is to decide on an objeclive or goal.
Where do you want (o be in five years? Try to be as
specific as possible. Do you want to be making
$60,000 a year? Do you want to have a title of Proj-
ect Manager? Do you want to be a specialist in
software engineering? Your objective might be
money-related, litle-rclaled, or job content-related,
or all three, or something clse.

Make sure your ohjective relates to jeb crileria.
For instance, if your objective is to own a house,
decide how much you anticipate spending, then
translate that into a salary. Once you have identified
an vbjective, use the following sections to determine
the company and job characteristics that are most
likely 10 help you mect your goal. Try to franslate the
money into a position and title, working backward to
identily a starting job. If your goal is title- or job-
related, use the following sections to identify the
most likely tasks, job characteristics, and compa-
nies 1o help you meet your goal,

Define Duties You Like
to Perform

Once you have a tentative goal, begin to think about
how to reach thal goal through one or more jobs dur-
ing the five-vear period. What are likely starting
jobs? How do those starting jobs relatc to you? In
performing this evaluation, you need to do an hon-
est assessment of dotics you like to perform, Bvalu-
ate the list below, making your own list of tasks and
placing a percentage next to each item you are in-
terested in doing in your next job. Make sure that
all of the percentages add to 100%.

s Programming (i.c., new development and
maintenance)

Analysis

Testing, Quality Assurance

Technology Surveillance

= Consulting

= User or Technical Training

= User, Help Line, or Product Support

= Standards Development

Planning a Career 773

= Technical Writing
s DBA or other specialized technical position,
and 50 on

Keep in mind that, while this exercise is to find
your idcal next job, the work tasks should also be
realistic. About 50-70% of newly minted under-
graduates begin a8 programmers. Another 10-15%
begin as LAN managers, with an cqual percentage
beginning as programmer-analysts or SEs. A few
hegin as technical writcrs, help line support, and
trainers.

Define Features of the Job

After job tasks are identified, evaluate the external
features of jobs you prefer. There are two types of
job features you should define: technical and non-
technical. The technical features are whal this text
is all about, Choose from the following list those
characteristics that appeal to you.

Project type—Maintenance, development, or a
mix

Technology type—Mature, or state of the art, or
experimental, leading edge

Type position—Project, staff, operations, sales,
support, or other

Phases of project work—Planning, feasibility
analysis, design, maintenance, programming,
or all

Methodology—Process, data, ebject, semantic

Hardwaure plalform—DMainframe, micro, work-
station

Technologies—DBMS, lunguage(s), package(s),
CASE tools, LAN

Be as specific as you can in defining each of these
job componcnts. This information is used to select
target-specific jobs for your job seurch. Be equally
specific about job funclions you do not want to learn,
if therc are any. The nice thing about defining the
ideal job for yoursell is that there is no wrong
answer, only ones that fit you better than others.

Next, assess the type of dutics you want to per-
form. Do you want narrowly-defined, specific as-
signments, or broadly-scoped and less well-defined

774

assignments? In general, the larger the company, the
more gsoteric and specific your requirements can be,
but there is no standard. Also, in general, the smaller
the company, the more casual and broader the
assignments. This means that a person defined as a
programmer might have entirely dilferent time allo-
cations depending on the size of the company. Ina
large company, a programmer will spend 40-60%
of his or her time coding and unit testing program
specifications developed by an SE or designer,
Remaining time is spent in nonproject work such as
reading manuals, attending meetings, learning, and
communicating about the work. In a small company,
a programmer is likely to spend 20-40% of his or
her time developing the specifications with the ana-
lyst or 8E, 20-40% programming and vnit testing,
and the remaining time in other activities. Which
scenario do you prefer? The larger the cornpany, the
morc specialized and the narrower the job. Also, the
larger the company, the more likely you will be
paired with a senior meafor who is responsible for
MONItoring your progress,

Think about how you like to learn new things. Do
you like to be given a book and an assignment for
completion? Or do you prefer to attend classes and
have somecne to answer your questions? The first
Jearning approach is one used most by consulling
and smaller companics. The ¢lassroom approach is
used more by large companies.

Next, evaluate nontechnical features of a job,
including title, salary, working hours, autonomy, and
travel, Title is a more important issue in some
industries thar others. For instance, in manufactur-
ing institutions, being an ‘officer” of the company is
significant. But in a bank, about 25% of the staff will
be officers, Of this 25%, 60% will be assistant trea-
surets, or the lowest level officer; 25% will be sec-
ond vice presidents; 10% will be seme level of vice
president; and the remaining 5% are executive vice
presidents or higher. The titles arc morc for external
prestige and to compensate for low pay than any-
thing else. [f title is important, then, financial ser-
vices and consulting arc the most status-conscious of
the industries listed. In contrast, a private con-
sulting company might have two to five priacipals
and 2(H)-300 consultants, and thosc arc the only
two titles.

CHAPTER 19 Software Engineering as a Career

What salary would you like to be making in five
years? Target the five-year time frame because vour
first salary is relatively inelastic if you are not
already working in IS, By inelastic, we mean that the
salary range for new, inexperienced hires is rela-
tively narrow: $28,000-%34,000 for undergraduate
IS degrees, and $30,000-$38,000 for graduate IS
degrees, in 1994, and the salaries are relatively
invariant across industries.

Take the midpeint of the range that describes your
situation and assess the ideal raises you might
receive to derive your salary in five years. [f you
expect to double vour salary in five years, you need
a compounded growth of about 15% annually to
meet that goal. You might get 15% raises in consult-
ing, but it is unlikely anywhere clsc. Realistically,
companies give regular raises that keep a third of all
sularies even with inflation. If you are in the top
third, you might qualify for merit increases which
mighl be 2-4% over the inflation rate, If you want
a six-figure income within five years, then you
are either thinking of your own company, or arc a
genius, or are unrealistic. It is nice to dream, but
thinking of salaries requires hard reality.

The next nontechnical issue is the number of
hours you want to work, This is an ideal that you
might never actually reach, but each industry has dif-
ferent intrinsic demands about hours of work that
should be considered. The normal work week is
40 hours in the United States. This time is spent from
Monday to Friday with few organizations requiring
weekend work.

In addition to the number of hours, which hours
might alse be important, There are two issucs here:
flextime and shilt work. Can you get up and maintain
a schedule that requires you to be in an office at a
fixed time every day? What if the hours are 7 A.M.
to 4 p.a.? low about 9 a. 10 6 Bv.? If a company
has flextime, you choose the time of your arrival,
within limits, and work a regular seven- to eight-
hour day once you are at work. Most companies in
large metropolitan areas use flextime to cope with
the vagarics of traffic and transportation preblems.

You might consider a jeb in an industry that
works at night. Do you mind shift work? Can you
cope with a schedule that requires you to sleep dur-
ing the day? Kcep in mind that you might be a night

owl at college, but all of your friends will probably
get day jobs. Will night work shut you off from your
social life? How important is that to you?

The last time issue is overtime. Do you mind
overtime? How often is overtime acceptable? Could
you work for a company that expected a 60-hour
week even though the advertised required number of
hours is 40? Can you deal with midnight phone calls
when you are ‘on call” for application problems?
Some companies will teli you that you are expected
to work until the job is done, and if that means over-
time, then you work overtime. Can you live wilth
such an agreement? If not, what are your time
requirements for work? If you cannot deal with any
overfime, you need io search for a low pressure, staff
job or a maintenance job that requires little or no
overtime, If vou can deal with overtime, then all jobs
are open for you. The longest hours are usually in
consulting, but most development projects in most
companies end up requiring some overtime work.

Next, consider the extent to which you want to
work autonomously. As an catry-level person, you
most likely will be coupled with a senior person who
would be responsible for helping you with problems,
bugs, or other issues you are not sure how to deal
with. But each company has its own levels of auton-
omy that its employees are allowed. Do you want
leeway in figuring out your own answers or do you
want close supervision, al least for a while? In gen-
eral, the smaller the company, the more autonomy
vou will be given, and the greater the breadth of the
jobs you will be assigned. If you like working alone,
then sclect a smaller company.

Finally, consider the amount of travel you want as
part of your job. Be realistic. Travel is demanding,
rewarding, and wearing, It requites extreme organi-
zation because once the plane leaves you cannot
return to the office for that forgotten piece of paper.
It also decmands family and personal sacrifices
because you are frequently on a plane during birth-
days and holidays. You may find that you want to
travel for awhile and cut back after a few years.
After all, someone else is paying the bills. That is
also an acceptable scenario, just be prepared for the
action when it arises. Several industries, cspecially
consulting, require significant travel and trequent
temporary relocation for project work. You might

Planning o Career 715

need to leave [or months at one or twao days’ nofice
in this covironment, The rewards are commensurate
with the sacrifices: The pay ia consulting is the high-
est after successful entrepreneurship.

Define Features of
the Organization

Even though this section is for defining features of
the crganization, vou arc still asscssing your needs in
a job. In this section, you assess how “hard’ you want
to work, how ‘smart” you want to work, and how
much ambiguity and stress you can cope with. To
some extent you have already answered some of
these questions; they have not been phrased in just
this way.

When you define how many hours a week, and
what type of work you desire, you are, to some
gxtent, answering the "hard’ and “smart’ questions,
Several different hievarchies of organizations can he
developed for you to position vourself in different
industries and different company types. The first
hierarchy is based on industry. Based on several dif-
ferent salary surveys over the last 10 years, a hicrar-
chy of industries in uverage salary order is shown in
Figure 19-3. This hicrarchy shows that you are most
likely to make the most money owning your own
company, and are most likely to make the least
money working in acadernia or nonprofit organiza-
tions. This hierarchy also translates into a “hard’
work hierarchy. The amount of time and personal
sacrifice cxpected of cmployees is directly propor-
uional to the amount of money paid. That is, the com-
panies that pay the best expect the most. If you
cannot stand stress and long work days, then remove
ownership and consulting from your list. If you want
the least possible stress and least possible work, tar-
get your search in nonprofit, retail, government, and
academic organizations.

Keep in mind that these are general roles of
thumb at work herc. All companies have positions of
all types. The generalizations drawn here identify the
majority of positions.

A sccond hierarchy can be developed based
on the position of a given company within its in-
dustry. Figure 19-4 shows one industry, soft drink

774

CHAPTER 19 Software Engineering as a Career

Highest-to-Lowest

Salary Industries™ Example
Your own company
Consulting
Big 4 Accounting Firm Ernst & Young,
Arthur Andarson

Large I3 Consulting Cap Gemini (CGA)

Internal Consulting in

Large Company
Private Consulting
Company
Vendors Novell, Microgoft,
ATT, Pacific Bell, Bell
Labs
Conglomerate Headquaners Boeing, Mobi!

Financial Services and
Insurance

American Express,
Citibank, Prudential

Giovernment, Transportation,
Utilities

LS. Department of
Agriculiure, Amarican
Airlines, Brooklyn
tnion Gas

Manufacturing Whirlpool, Babcock &

Wilcox

Retail, Publishing, Medical Macy's, Any large

metropolitan hospital

Nonprofit, Small business United Way
of any type
Education School Digtricts, High

Schaols, Colleges,
Universities

“"Based on numerous articles in Computerworid, Data-
mation, Waff Straet Journal, Datlas Morning News and
The New York Timas.

Largest to Smallest industry Position:

Coca-Cola
PepsiCo
Dr. Pepper/7-Up
Shasta
Snappie
Others

FIGURE 19-3 Salary-Based Hierarchy of
Industries

manufacturing, with the major contenders, As the
figure shows, Coca-Cola is closcly followed by
PepsiCo, Dr. Pepper/7-Up, and all others. This in-
dustry is fiercely competitive and marketing driven.
To be in this industry is to be competitive. Therefore,
when you select an industry, try to think of a char-

FIGURE 19-4 Industry Position for Soft
Drink Companies

aclerization for the industry and how it fits your
personality.

Next, try to match your personality to the com-
pany style. Do you want to work for the leading
company and be the one to beat? Or do you want to
work harder at #2 which is trying to become #1? Or
are you more comfortable being at some other level
company with less stress? There is nothing wrong
with working at any of the levels. The idea is to
choose the one that fits vou best.

Keep in mind that all of these statements about
compeanies are generalizations. Many companics are
not even close to the top of their industries but arc
in a turnaround position that requires maximum
effort from everyone. Such turnaround companics
are sometimes the best of places 1o work and some-
times arc the worst of places to work. Similarly, a
large. longtime company that is first in its industry
might be ready to take a fall. [BM, in 1990-1994
was not a fun place to work,

We identify industry leaders because they are
generally more innovative than other companies and
have more money to spend (and spead it) on new
technologies. Not all is positive for large industry
leaders. In some cases, the larger and more leading
the company, the slower to promote people to new
positions and the more likely to be results-oriented
without being people-oriented. Also, not all compa-
nies, regardless of industry position, recognizc the
importance of information technologies to meeting
their mission. Ideally, you want 1o [ind & company
that has a culture that is compatible with your per-
sonality, that is as people-oriented as you need, that
Tecognizes the imporlance of information technolo-

gies, and that will help you reach your personal
goals.

Finally, if you have prior experience in some
industry, try to leverage that knowledge. Problem
domain expertise takes two to four years to learn. 1f
you already have experience and can target [S jobs in
your old field, vour starting salary shouid be 5-10%
higher than new employees in the same industry.

Define Geographic Location

Next, consider the ideal geographic location for you.
You may want to stay near where you are from. That
is perfectly reasonable. If vou waant Lo live some-
where else because of weather, life-style, or some
other crileria, now is the time to choose where you
want Lo live and work.

In the United States, there has been a 30-year
migration toward the southern half of the country,
but the jobs have not always followed. According
to salary surveys covering 1992-1993, the best pay-
ing and highest number of jobs are in Alaska. Both
New York City and Culifornia, traditionally high
growth, high-income arcas, follow Alaska. Other
large, diversified-industry, metropolitan arcas also
top the list (see Figure 19-5).

The lowest paying and lowest number of posi-
tions are in the South and Southcast, particularly
Flerida.? The center of the country has not faired so
well either. In 1992, St. Louis and Philadelphia
graced the bottom of the salary list.?

Define Future-Oriented Job
Components

The last job-related components relate to job secu-
rity, benefits, and speed of advancement. You won’t
use these until you are interviewing, but it is a good
idea to have some goals in mind for these job com-
ponents when selecting companies and industries.
Also, if you are looking for security in a volatile

2 Based on Robert Half 1992 Salary Gutde, and 1993 Salary
Cuide, San Francisco, CA: Robert Half International, Inc.

3 Computerworld publishes ap “Industry Snapshot” highlight-
ing hiting trends in 3 specific industry in cach weekly issue.

Planning a Career 777

Highest Salary Locations:

Alaska, New York metro area, Califormia,
Dallas—Fort Worth, Minneapolis-St. Paul
Chicago, Danver

Boston

Lowest Salary Locations:
St Louis
Last: Sputheast and South

Based on Robert Hall, International 1992 and 1993 Salary
guides and anticles in Datamation, Gomputerworid and
The New York Times

FIGURE 19-5
United States

IS Salary by Location in the

industry, like stock brokerage finance, then you necd
10 Teassess your reguirements o align more closely
with reality.

Security relaics to the stability of the industry, For
over 30 years, the United States had relative stability
in industry, with only companies that had fallen on
hard times resorting to layoffs. Many companies
(e.g., Chase Manhattan Bank and IBM) used to brag
that they had never had a layoff in the company’s
history. The late 1980s and early 1990s changed ali
that. The recession during the early 1990s was
decper and longer than many since the Great Dc-
pression of 1929, and had the added problem of
being worldwide in scope. Virtually every company
over $100 million in salcs went through some
reassessment of company structure and size, laying
off and eliminating millions of jobs. As we slowly
recover from that period, stability is an issue on
which we all share concern.

Financial success is one indicator of likely sta-
bility. Companies that have higher percentages of net
income and profits compared to competitors are
more likely to be stable. But, at the moment, there
are no guarantees. If security is very important to
you, target compunies that are successful relative to
their competition, regardless of the industry, and tar-
get companies in relatively inflation-proof indus-
Lries, such as office products.

Benefits include vacation, relirement, medical
support, dental support, child support, aging parent

778

support, and so on. The average starting benefits
include two weeks’ vacation after one year, with
some medical and dental supporl. Retirement bene-
fits are in a statc of flux. In 1993, most large compa-
nies still offer retirement benefits, but the vesting
period (that is, the time at which the money becomes
legally yours), varies considerably. If you plan to
stay with a company a long time, vesting periods are
mouot. If you foresee some movement betwecn com-
panies in your future, the vesting period becomes
important (0 your consideration of how long yvou
might be tied to a specific company.

The more progressive and larger the company, the
more likely they are to also have programs providing
some type of support for child or parent care. Decide
how important these benefits arc to you and keep
this information in mind wien you are evaluating
companies. When you begin interviewing, use your
ideal benefits and sceurity necds as one crileria to
separale the companies you are interested in from
those you are not.

Speed of advancement may be an important fac-
tor to you. Do you expect to be promoted every year,
assuming that you have excceded all job require-
ments? Some companics have average time in grade
figures that they might share with you during the
interviewing process. In general, consulting compa-
nies have the most career mobility; they arc also
organizations in which you either succeed or you
are out, Following this generalization, the indusirics
that pay mote, cxpect more and reward more.

Search for Companies That Fit
Your Profile

The next step in targeting companies for jobs is to
map the geographic, job, and salary requirements
with your intended market area. For the target city or
location, map your industry and company charac-
teristics with those of specific organizations in the
area. This step requires library searching of busi-
ness reference guides, Business Week, Forbes, For-
tune, Money and other business magazines that
publish annual reviews of companies by industry.
Look for the geographic region that matches
yours, then research the industries in that region. All

CHAPTER 19 Software Engineering as a Career

of this can be done at a globai level in an ency-
clopedia. Next, look at an annual review (e.g., For-
tune’s ‘5007, and locate companies in your indus-
try(s) and geographic area. If the headquarters are
noed in the area, you will need further research. Read
company annual reports to locate subsidiaries and
their locations. Research companies and industries in
each of vour target slates and metropolilan areas
by contacting Betler Business Bureaus or Chambers
of Commerce. Read reference materials from trade
associations and the government to find target
companies.

The major warning in this scarch is to be realistic.
If you target, for instance, the chemical and phar-
maceutical industries to take advantage of your sum-
mer jobs {n a small chemical company, the ideal
geographic area is the state of New Jersey. Every
major pharmaceutical company in the world main-
tains some sort of facility in New Jersey or New
York City. At least four major pharmaceutical com-
panies have regional or worldwide headquarters in
the area (i.e., Merck, Pfizer, Hoffman-LaRoche,
Warner-Lambert). If you target that industry and
begin looking in, for instance, Mississippi and
Louisiana, you will find only small companies and
less than a handtul of large ones.

Assess the Reality of Your Ideal
Job and Adjust

When vou have found the population of companies
from which you expect to have a job, evaluate how
realistic your chances are. The realism of your prob-
able job is a function of industry turnover and the
nurnber of jobs of the type you want in the arca in
which you want to live. The IS profession has, on
average, 159 turnover per year. This means that
15% of the people in IS professions change jobs
CVETY year.

In addition, software engineering is the holtest
growing job classification in the 1990s.* In the same
book, Krantz rates computer systems analyst as sec-

4 The growth of software engineering is documented in Les
Kramiz’ The Jobs Rated Afmanac, 2nd ed., NY: Pharas Pub-
lishing, 1992,

ond; computer service technician as fifth; computer
programmer as 25th; and technical writer as 147th
[Krantz, 1992, p. 218].

If you are choosing an analysl, programmer, or
SE position, and you are targeting a geographic arca
with a large number of target companies, you prob-
ably do not need to go through this exercise. If you
choosc any nonmainstream job, or a limited geo-
graphical area, then this exercise might belp you
assess the reality of your goals. The steps to assess-
ing the reality of vour ideal job are:

1. Estimate the number of entry-leve! jobs
available,

2. Estimate the number of people compcting for
the jobs.

3. Assess the ratio of available jobs to job
applicants and adjust vour expectations as
needed,

Estimate Number of Entry-Level Jobs

First, in assessing the number of potentially avail-
able positions, the items of interest are the number of
people in IS jobs in an area, the percent of jobs of the
type that you want, the average turnover in IS posi-
tions, and the percent of entry-level positions. The
number of people in IS jobs is one which you must
unearth through library and other research, Figure
19-6 shows the major IS job types and estimated per-
centages of people with that title. Average IS turn-
over is historically between 15% and 18%. The
average number of entry-level positions varies from
2% to 5% per year. When in doubt, use the conserv-
ative numbers for your calculations,

The formula for computing the number of likely
jobs is ay follows:

Number of IS jobs in area

x Percent jobs for your ideal

x Average [S turnover

X Percent of entry level positions
= Number of available jobs

Let’s look at an example. I you target the phar-
maceutical industry in the New Jersey/New York
area, there are approximately 8000 IS jobs. Using
the target jobs of programmer or DBA, the total
number of likely jobs is 2000 (i.e., (.20 x 8000)

Planning a Career 77e

Estimated
Percentage

Pagitian of Staff

Administration 1% per company

Application Programmer 15-20%
Technical Support,

Systems Programming,

System Software Support 3-5%
Data Base Administrator 3-5%
Analysts/Designers/

Software Engineers 10-15%
Project Managers 5-10%
Chperaticns 25-35%
EDP Audit 3-5%
Consulting 3-5%
PG/User Support,

Help Desk,

Information Center 3-5%
Telecommunications 8-10%
Data Administration 3-5%
Other 3-5%

FIGURE 19-6 Estimated Percentage of Major
IS Jobs

+ (.05 x 8000)). Multiply this by the 2% to 5%
entry-level positions, and you have approximately
44 to 10 programmer and DBA entry-level posi-
tions in the pharmaceutical industry in the New Jer-
sey—New York area available in any one year,

Estimate the Number of Competitors

Next, evaluate your competition. The competition
is all graduating IS majors from lecal colleges and
universities. The number of people moving into and
oul of the area arc not considered here. According
10 Computerworld, the average number of computer-
related majors is approximately 2.5% of entering
freshman classcs. For our purpose, we will use this

5 SBee Computerworld, Vol 27, #17, Apnl 26, 1993, p. 105.

780

percentage to extrapolate to graduates. The formula
used is:

Total number of graduates from four-year
institutions

% Percent of IS graduates

= Number of competitors for IS jobs

For our example, the average number of gradu-
ates per year in the New Jersey—New York area is
about 16,(00. Multiply this by .025 and you find
there are about 400 other entry level people against
whom you will compete. Since pharmaceuticals
employs less than 30% of the 1S people in the met-
ropolitan area, your competition should be {400 x .3)
or about 120.

Assess Ratio

After computing the number of likely jobs and likely
competition, compure the two. If the ratio of jobs to
applicanis is high, begin your job search. If the ratio
of jobs to applicants is low (i.e., less than 1:10), vou
need to reassess the reatism of your goals. In the
example, there are 40 to 100 jobs in the industry and
job desired. There are about 400 total competitors
for all jobs and, on average, about 120 competilors
for the same jobs desired. In a growing economy,
there is a reasonable likclihood (about 83% proba-
bility) of your getting the job you defined. In a weak
or falling economy, fewer jobs will be available and
the probability of success would be less.

Adjust your Expectations for an
Unfavorable Ratio

If you reasscss, decide how realistic this job is. You
might broaden the geographic area or job description
you are searching to greatly increase your likelihood
of success, If the absolute number of jobs is very low
(i.e., under ten per year}, then you may need to
broaden your view of jobs you are willing to per-
form. If vou want a rcally specialized job, such as
computer game designer, then there might not be
many full-time oppottunitics, but there may be other
alternatives and issues to asscss. For instance, what
is the likelihood of part-time work? What are hir-
ing practices in this industry? Are they different

CHAPTER 1¢ Software Engineering os a Career

1 any way that vou can exploil to your advanlage?
Hew willing are you to look vntil you find exactly
this jub?

If there are only @ fow jobs, but you have your
heart sct on one of them, plan your job campaign
carefully. Why should a company hire you? List the
skills and attributes that make you one of the top twa
candidates out of a ficld of hundreds. What unique
skills or personality characteristics do you possess
that you could exploit in this position? Make sure
vour resumme highlights all of your attributes and suc-
cinctly summarizes all of your capabilities enough to
make a persennel representative want to bring you in
for interviews,

Keep in mind that companies are looking for pro-
fessionals who know how to work, teamn players who
can get along in groups, and self-motivated, domain
specialisis who know how (o find information when
they need it.* What sells you to a company is your
potential and attitude about work. If you present a
professional demeanor and appear competent, your
probability of success increases.

This section summarizes an approach to locating
the ideal job by defining your ideal, then matching
it to realistic estimates of the number of likely jobs
avatlable in your target geographic area. Keep in
mind that the percentages of industry representation
for jobs is constantly in a state of change and that
you need to do some research to have accurate fig-
ures. Fifteen years ago there were no PC-support
groups, PC software developers, or LAN managers,
Now, those and related jobs are the fastest growing
segments of IS professions, just as software engi-
neering, is the largest growth pesition in 1S,

MAINTAINING
PROFESSIONAL
STATUS

Above we mentioned that continuons learning is a
requirement [or a career in IS, With over 1,000 prod-

6 These traits have been discussed numerous times in The
New York Times, Computerworld, Datamation, and other
trade periodicals over the last ten years.

uct announcements and introductions a week, the
field is everchanging and is changing at an ever-
increasing rate, Change is a way of lile. You, as a
professional SE, must also change and grow to con-
tinue to be a valued employee of a company. In this
section, we discuss how to develop as a professional
through educational, prefessional, and other types of
organizations. Eventoally, you need to develep a
‘spiral’ appreach to your knowledge in which you
are constantly building on what vou have already
learned to both reinforce and fix old knowledge
morc strongly in your mind, and to add nwances and
new information that broaden the scope of your
knowledge.

Education

As a novice in IS, an undergraduate degree is suffi-
cient for most entry-level positions. If you aspire 1o
managerial or technical specialist positions, how-
ever, you should consider obtaining an MS or MBA
in either computer science or 18, depending on how
technical vou wish to be.

The undergraduate degree gives you basic knowl-
edge about the ficld and a quick survey of theory in
developing applications and programs. The empha-
sis in undergraduate programs is on providing both
a skill set to get vou a job and a theoretical basis for
continued learning in the field. The graduate pro-
gram emphasizes decision making, problem analysis
and solution, and theory of information systcms
more. The enlry-leve]l positions of people with
advanced degrees is somcewhat higher than that of
eniry-level undergraduates. The normal masters
entry-level position is at an analyst or a first line
manager level.

Graduation from a degree program is not suffi-
cient to maintain your growth in the ever-changing
field of information systems work. New technole-
gies, new ways of working, new methodologies,
and new organizaticns all demand that you main-
tain some currency in the ficld. Many politicians
and educators are calling for a learning-for-life
approach. Using this approach, you take formal
degrees and supplement them with continuous edu-
cation throughout your life. The learning-for-life
approach is appropriale to any job in information

Malntaining Professional Status 781

systems, especially jobs of software engineers. You
are the expert in the deployment ot new technologies
for your company. As the expert, you must learn
where and how to find information about any subject
required. As the expert, you must try (o develop
some level of expertise in many fields that are
not your specialization. In short, vou should fry
to become a jack-of-all-trades and an expert of
several.

Professional Organizations

One¢ method to provide you continuous learning
experiences while having fun at the same time is to
participate in professional organizations. Every
organization has conferences or conventions at least
annnally if not more often. Every specialty has its
ow1 organizations or special interest groups (SIGs)
as part of a larger, general group. You should seek
to be on panels, present papers, o1 simply partici-
pate in at least one conference or convention each
vear. Many companics pay for their employees to
attend such conventions because it is in their inter-
est to have you remain current, too.

Professional organizations are good for a variety
of personal goals: keeping current, knowing what
other companies are doing. and developing a net-
work of {riends for future job possibilities. It is not
nceessary 1o belong to every organization; rather,
you should pick the one that maps to your goals most
closely, provides the lilerature yon most want to
keep current with, and is most active in your geo-
graphic arca. Each organization is discussed in terms
ot their membership proliles, Lypes of professional
activitics sponsored, and chances for involvement
of industry professionals. Some of these organiza-
tions are profiled in this section,

General Technical Organizations

There are many worthy prolessicnal organizations
in which SEs can participate. Two of the oldest
and largest are featured here: ACM and IEEE Com-
puter Society. The addresses for these and other
organizations arc included in Figure 19-7 for your
convenience in contacling them for membership
information.

782

ACKM
New York, MY

American Society for Information Science {ASIS)
Washington, DC

Association for Syslems Management (ASM)
Cleveland, OH

Computing Professionats for Social Responsibility
{CPSA)
Washington, D.C.

Data Processing Management Association (DPMA)
Park Ridge, IL

Graphic Gommunications Computer Asscciation
(GCCA}
Arlington, VA

IEEE
Washington, DC

The Institute for Management Sciences (TIMS)
Providence, Rl

Society for Information Managerment (SIh)

Chicago, IL
Women in Computing {WIC)
New York, NY
FIGURE 19-7 Professional [S Organizations

The Association for Computing Machinery
(ACM) is the oldest and largest organization specif-
ically for IS professionals, The ACM was founded in
1947 and has grown to over 81,000 members, The
membership ranges from beginning IS students te
experienced professionals in induséry, education,
government, and research. ACM publishes 12 ma-
jor periodicals with Communicarions of the ACM
(CACM) included in the price of membership.
CACM i3 generully recognized by academic re-
searchers as she premier journal in computing.

Over 30 special interest groups (SIGs) whose
specialtics span the computing field also have their
own ncwsletters, conferences, and symposia. The
S1Gs are active organizations that are constantly
looking for infusions of new idcas, welcoming new
mecmbers, Many of the conferences represent both
industry and academic members with hundreds of
active participants. A representative sample of SIGs

CHAPTER 19 Scftware Engineering as o Career

includes SIGCHI—cemputer and human inleraction,
SIGOIS—officc information systems, SIGMOD—
management of data, SIGSOFT—software engi-
neering, SIGPLAN—programming languages,
SIGGRAPH—graphics, SIGBIT—busincss infor-
mation technology, and SIGCAS—computers and
society.

Opportunities for involvement include initiating
local chapters of SIGs or ACM, participating in one
or more of the 30-50 conferences sponsored by
ACM each year, participating in any of the SIGs’ or
ACM’s management. Almost all of the work done
for ACM 1s voluntary and requires a time commit-
ment, but the professional recognition and personal

benetits are worth the effort.

Another organization, the Institute of Electrical
and Electronics Engineers (IEEE}, is a 300,000
member organization, of which about one third arc
members of the Computer Socicty. The original
organization, the American Institute of Electrical
Engineers, was founded in 1884 by Thomas A.
Edison, Alcxander Graham Bell, and Charles P.
Steinmetz to foster the development of the engineer-
ing profession. Over the years the organization’s
name changed several times before becoming the
TIEEE in 1963. Tn the 194()s, the IEEE established a
Committee on Computing Devices that cvolved into
the Computer Society.

The [EEE is active in all phases of engineering
and computing for new and established technologies.
Over 30 conferences each year are sponsored by the
organization. [EEE Computer Society is known for
its guality publications which include tutorials on
every major technological development in recent
years. The tutorials are compilaiions of articles
exploring the issues, research directions, and likely
market cutcomes for new technologies and tech-
niques {e.g., object orientation).

IEEE publications are both technically and non-
technically oriented. TEEE Compuier and Software
are specifically oriented to professionaly working in
industry who are trying to maintain current knowl-
edge in the field. Other more technical publications
are special intcrest publications with two of speeial
interest to SEs: IEEE Transactions on Software
Engineering (¥YSEy and FEEE Tramsactions on
Knowledge and Data Engincering (KDE). The TSE

provides basic rescurch papers on specification,
design, development, maintenance, measurement,
and documentation of applications. TSE is one ol the
best publications for early discussion of emerging
techniques. Its research erientalion may make it *too
technical’ for some readers. KDE 18 a similar publi-
cation aimed at applicaticns’ methodologics, storage
techniques, Al modeling, and development,

[EEL is subdivided into technical committees
(TCs) which participate in industry standards devel-
opment, conterences, and publications. There are
over 20 hardware, software, and interdisciplinary
TCs. The software TCs, for instance, include sofi-
ware engineering, computer languages, data engi-
neering, operating systems, real-time systems, and
security and privacy.

Conferences are a major TC activity with cach
group sponsoring one of more major conferences
each year. The TC on software engineering coordi-
nates the International Conference on Software
Engineering (ICSL), which attracts about 1,500
worldwide participants annually. The major topic
arcas of ICSE include design, modeling, analysis,
and application of software and sofiware syslems,
The conference usually includes a ‘tools fair” which
provides vendors an oppertunity to feature proto-
typing languages, CASE environments, language
generators, and other software development sup-
port tools,

IEEE is more actively involved in standards
development than most other organizations. For
instance, the 802 commitiee is the sponsor of many
LAN standards in this country. Subcommittees
define, for cxamplc, the 802,3 cthernet standard. Par-
ticipants in the technical standards committees are
voluntcers who arc sponsored by their business
organizations to participate in the intensive and time-
consuming, but personally rewarding, standards def-
inition activities.

Like all of the professional organizations.
IEEE strives to involve all of its members in activi-
ties. Almost all of the work is veluntary and
might include local chapter participation, or par-
licipation in national conferences, publications,
Or organizations.

There are many other equally rewarding organi-
zations listed in Figurc 19-7 that are too numerous to

Maintaining Professional Status 783

detail here. There is significant overlap between the
interests of «!f of the organizations, and there is room
for you in one or more of them. Keep in mind that it
is not necessary to join all of the organizations, but
one o1 two help you maintain current knowledge of
1S developments.

User Organizations

In addition to industry organizations, there are many
prolessional user organizations that are sponsored by
vendors for their users, or by intcrested individuals
who share common interests,

Hardware User Organizations

Hardware user organizations are vendor-sponsored
groups that are convened [or users to share their use
of the hardware, develop solutions to probiems, and
io provide guidance and requests to the vendors for
future services or capabilities. The erganizations are
alf very active and use voluntcers from vsing orga-
nizations whose participation is sponsored by their
companies, All major vendors sponsor user groups,
including 1BM, DEC, Unisys, CDC, Iloneywell,
AT&T, Sun, Apple, and so on.

IBM, for instance, has two such user organiza-
tions: GUIDE and SHARE, GUIDE is an organiza-
tion of several thousand business and government
instailations whose use of computers is primarily
for business applications, such as transaction pro-
cessing or decision support applications, SHARE
was founded by scientific businesses to support their
special needs. Over the years, the missions of the
two organizations have come to be similar, but the
two organizations remain distinct. Each organization
sponsors conferences and workshops several times
cach ycar. The conventions are like any professional
convention, composed of general sessions in which
presentations on lopics of interest are made, and
working scssions where commitments to work on
projects or to present at future meetings are made.
The working groups are completely voluntary and
first time participants are recommended to attend the
meetings of many working groups to get a fecl for
what they do.

784

Working group areas includc hardware, operating
syslems, telecommunications, applications, CASE,
database, data management, language (e.g.,
COBOL), sccurity, audit control, and disaster recov-
ery, to name a few.

Software User Organizations

Similar to hardware vendors, major software ven-
dors provide user group support for their uscrs. All
uscr participation is voluntary and at the expense of
the user’s company. Software vendors include, for
instance, Information Builders, Inc. for its 4GL
FOCUS, Novell for its network operating system,
and all major databasc vendors, such as Software
AG for its Adabas. Each vendor schedules an
annual meeting of its user group, providing the lacil-
ity. Presentations by users center around vsing the
product in their organizations and discussing innova-
tive product nse or problems and how they are aver-
come. The vendors also make presentations at these
meetings, including tutorials about using their prod-
uct and new fealure announcements.

Birds-of-a-Feather Groups

Rirds-of-u-feather groups are semiformal groups of
[5 and nonlS profcssionals who share an interest in
some area. The topic matter might be technically
specific. For instance, the Data Administration Man-
agemnent Association (DAMA)) is a support group for
people who are interested in or perform the functions
of data administration in business organizations.
Similar groups exist for the insurance industry, spon-
sored through the Life Operations Management
Association (LOMA),

For some groups, the topic matter is less spe-
cific, For instance, the Boston PC Users Group
which number about 15,000 mcmbers, is inter-
ested in supporting and networking PC users in the
Boston metro area. Every metro area has its own
user groups that are loosely organized by the type
of computer or operating software they own—PC,
Macintosh, Pick operating system, Unix operating
system, and so on.

CHAPTER 19 Software Engineering as o Career

Professional Educational
Organizations

Another approach to keeping current is to attend
seminars that are organized and presented through
professional education organizations. There are
many noled speakers who reach their audisnces
in this way, for instance, James Martin, Carma
McClure, and Grady Booch, just fo name a few.
Most such training is company sponsored because of
the expense. Expect to pay $600+ per day for these
Courses.

When attending professionally sponsored (rain-
ing, several important issues should be monitored.
Ounly choose seminars that specifically address your
concerns. If you choose, for instance, object-oriented
analysis, hoping to hear information about object-
oriented languages, you might be disappointed,

Also, beware of the instructor. Review the entire
outline of a multiday seminar to make surc that the
‘name’ person who is to speak actually speaks for a
good portion of the time. Review the credentials of
all speakers and instructors to cnsurc that they arc
qualified to teach the course. If you cannot tell from
the brochure, call for more information about the
person and the class.

Review outlines of courses for content to ensure
that vou are attending the course you think vou arc
attending. Sometimes the names and the content
are not congruous. Stay away from courses that are
programming without any hands-on. If hands-on
sessions are planned, assistants (or the instructor)
should be present during the session, cuch student
should have a PC, and there should be additional
time available at might.

Finally, ask questions aboul seminar size and
maximum number of participants to get a sense of
vour ability to interact with the instructor. Avold ses-
sions that have no maximum or minimum or that

have maximums over 30 participants except for
high-level topic introductions. You know from your
own classes that class sizes over 30 are presented
differently and have less intimacy between instructor
and class. Similarly, less than ten people is not con-
ducive to sharing either. In small groups, it is easier
for one individual t0 monopolize discussion times,

making the instructor’s job one of personality man-
agement rather than class interaction.

Rescarch and Academic Organizations

The last type of organization in which you might
participate focuses on research and teaching of IS-
related subjects. Academics have their own conven-
tions that may serve as a forum for debate and pre-
sentation of the latest techniques and research on
emerging areas of interest. They also provide an out-
let for research presentations on a wide variety
of topics.

The largesl such conference is the International
Conference on Information Systems (ICIS) which
is held annually in ¢arly December. The location of
the conference rotates uround the world with the
majority of conferences currently held in North
America. The conference locations for the next
several years include Vancouver, British Colum-
bia—1994; The Netherlands—1995; Cleveland,
Ohio—1996; and Atlanta, GA—1997.

Topics of interest at recent ICIS confcrences
include globalization of IS, object orientation, ethics
and IS professionals, use of ITs in business organi-
zations, CASE, and computer-supported diversity
of organizations. Although about 90% of attendees
at ICTS are academics, the remaining 10% of pro-
fessionals is increasing. Panel scssions frequently
include practitioners from industry. Key note
addresses are mostly by local CEQs or CIOs who
discuss the future of IS from their perspective.

ICIS is not a conference that all practitioners necd
to attend regularly. Rather, if the theme of the con-
ference matches an interesl in your organization,
ICLS is a good place to hear abowt the latest rescarch
in the arca, and to meet the people doing the re-
search. Occasional attendance al a conference such
as [CIS once every three to five years is probably
enough to maintain contact with academia.

Accreditation

Professional organizations help you keep current in
the field with new developments in new areas and
with updates on areas you already know. Accredila-

Maintaining Professional Status 785

tion is one method 1o prove to the world that you
indeed are expert in some area. You take an exam
which is given once or twice cach year, and, if you
pass, you obtain a certificate that you know a partic-
ular technical area. The major propanents of gen-
eral IS accreditation are professional organizations,
such as DPMA, which sponsors the exams for Cer-
tificd Data Processor (CDP), Certified Systems Pro-
fessional (CSP) and others.

A different type of accreditation is managed and
provided through vendors to certify the knowledge
base of people who suppert their preducts. Novell’s
Certified Netwarz Engineer (CNE), for instance,
requires the passing of an exam that follows com-
pletion of a networking and telecommunications
course. The courses may be intensive one 1o two
week events that are sponsored by the vendor, or
they may be offered through a continuing education
program at a local university and span several
months of part-time study.

The motivation for acereditalion is simple: Many
people profess to be IS professionals, few really are.
Those few should be rewarded by having the recog-
nition of their knowledge and expertise. Then, when,
for instance, consultants advertisc their ability to
perform a job, the credentizals they ofter have some
instant credibility when they include acereditation
ratings. The word some is cmphasized here becanse
passing an exam is still not the same as performing
on a job. The point of accreditation is to scparate
those who have detailed knowledge about the ficld
from thosc who do not. Having accreditation is no
guarantce of work performance.

Read the Literature

Reading s fundamental to maintaining currency in
methodologies, technologiss, and industry with
changes that take place as rapidly as in the informa-
tion systems field. When selecting periodicals, news-
papers, and/or books for keeping current, you shoutd
have a clear idea of why you are spending your hard-
carned money on each purchase. For each type of lit-
crature, this section discusses what you should try
to keep current on, why you should be current, the
general lone and content of articles and/or chapters

786

for the type of lilerature, and what you should get
from reading this type of writing. The three general
types of literature discussed are practitioner jour-
nals and newspapers, books, and academic research
journals,

Practitioner journals/papers allow you lo main-
tain awareness of the market place and vendors.
When reading joumals and newspapers, always keep
in mind how applicabic the praoducts might be to
your organization. These periodicals are good for
finding out the latest announcements and abont prod-
uets that are already on the market. They provide
the following:

= product introductions

= product comparisons

= case studies or descriptions of other crganiza-
tions” product use

Some periodicals that are in this category include
Computerworld, Datamation, CIQ, CASE Trends,
PC Week, PC World, MacUser, MacWorld, Info-
World, Byte, PC, LAN, LAN Week, and 50 on.

Books arc the next type of reading material you
should maintain and read. Books provide summarics
of what is currently known on a subject. Read books
to increase your knowledge, learn new techniques,
find out about a new area, or get ideas to try in your
own company. Begin to build a library of reference
materials you can usc throughout your career. To
de this requires careful selection of topics and au-
thors. Seek books that provide information on the
following topics as well as others of your interest
and read them!

» New methodologies (e_g.. object arientation
such as Peter Coad & Ed Yourdon, Object
Oriented Analysis, second edition)

= New techniques (e.g., normalization or entity-
relationship diagramming such as Peter Chen,
Entity Modeling Techniqiies)

» Intellectual development of one person’s
rescarch (c.g., artificial intelligence such as
Roger Schank, Tell Me a Story)

» Interesting approaches to solving a problem
(c.g., a 37¢ mistake in a Unix LAN billing
report led to a spy ring in Germany in Clifford
Stoll’s, The Cuckoo s Egg)

CHAFTER 19 Software Engineering as a Career

= New ways of combining disparate technolo-
gies that will change future ways of comput-
ing (e.g., how (o combine database, object
oricntation, and artificial intelligence in
Parsaye et al.’s, fntelfigent Database Systems)

n Well-written and comprehensive text books on
all IS topics {(e.g., costing, cstimating, and
CoCoMo use by Barry W. Boehm Software
Engineering Economics)

» Classics that describe the intellectual growth
ot [S professions {¢.g., Ed Yourdon, Writings
from the Revolution, or ACM, Turing Award
Lectures 1966—1985)

Finally, research journals discuss the latest theo-
ries about technology nse and how it impacts orga-
nizations. Many studies are empirical, that is, using
a large enough sample to apply statistical tech-
niques in analyzing the theorized behavior. You may
not understand all of the statistics in such research,
but vou should be able to evaluate the quality
of the research and assess its applicability to your
organization.

Sample journals you might read periodically
includc IEEE Transactions on Software Engineer-
ing, Compiiter, Software, Commumication of the
ACM, TOOIS, MIS Quurterly, Information Systems
Research, and the IBM Systems Journal.

AUTOMATED
SUPPORT TOOLS
FOR JOB SEARCH

Two types ol automaled tools for job search are
available and growing in use. First, universitics arc
going on-line in their support of jobs databascs that
are accessible to students. Gone are the days of
Icafing through volumes and volumes of randomly
orpanized paper job notices. Instead, the jobs are cat-
egorized by seniority, location, salary, job classifi-
cation, and other demographics. You use a query
system to narrow the search and find leads for jobs in
which you are intercsted.

Sccond, computer bulletin boards for jobs arc
available in a number of local markets and on the

TABLE 19-1

Surnmary 787

Automaied and Other Support Tools for IS Career Definition

Title

Author/Source

Content

Looking for Work: An Interactive
Guide to Marketing Yourself

Frank L. Greenagel,
InterDigital Inc.
25 Water 51.

Under $30, provides workshects
and tips to finding the right job
for you,

Lebanon, NJ 08833
{908} 832-2463

No Specific Shareware Title

Software Lahs

Many diskettes available at

100 Corporate Point under $4 each that offer tips on
Suite 195 1S jobs.
Culver City, CA 90231

(800} 569-7500

Bootstrappin’ Entrepreneur:
The Newsletter for Individuals With
Great Ideas and a Litle Bit of Cash

Kimberly Stansall
Suite B261
8726 5. Sepulveda Blvd.

A free booklet of tips for
beginner enfreprencurs.

Los Angeles, CA 90045

Internet. Internet is a network of networks that links
academic, government, and busingss organizations
worldwide. At last count, there were over one mil-
lion nodes on the network and many millions of
users. Internet and local bulletin toards provide
local, almost free access to information about a wide
range of subjects. Those relating to job search offer
applicants seeking to work in small companies a
means to find a cormnpany with minor effort. The use
of bulletin boards, automated starch systems, and
other freely available information (e.g., via Inter-
net} will grow considerably in the future.

In addition to automated advertising, tools and
booklets are available to help you set your job search
course. Several recent publications are listed in
Table 19-1.

SUMMARY

In this chapter we discussed emerging career paths
for software engineers. Computer science and infor-
mation systems education are converging due to
increasing overlap on arecas of emphasis to both
groups, While IS SEs will still predominate in busi-
ness enterprises, and CS SEs will continue to be
more technically oriented, both will apply systernatic

engincering skills and methods to the development
of applications.

Next, careers int IS are classified by level and
type. The levels of experience are junior, intermedi-
ate, senior, lead, technical specialist, and manager.
Job types differ depending on area of specialization,
including application development, application sup-
port, technical specialization, staff positions, and
other positions.

Application development includes programmer,
software engineer, and knowledge engineer. Appli-
cation support positions include application special-
ists, data administration, database administration,
artificial intelligence engineering, and consult-
ing. Technical specializations are communications,
LANSs, systems programmming, and software support.
Staff positions include security, EDP audit, training,
standards and technical writing, quality assurance,
and technology planning. The other positicns
include product support, marketing, and end-user
specialists.

Next, one approach to career planning was
described. The steps in obtaining your next job
are to decide your objective, search companies that
fit your profile, assess the likelihood of your attain-
ing the ideal job and, if necessary, adjust your
cxpectations.

788 CHAPTER 19 Software Engineering as o Career

Keeping current is important to continued growth
as an IS professional. Several methods of maintain-
ing currency were discussed. First, continuous
education is imporiant to IS which undergoes con-
tinnous change. Professional organization member-
ship and active participation are also useful to
maintaining current knowledge of IS developments,
Establishing your credentials through accreditation
can help you attain credibility with potential em-
ployers. Continuous reading of books, periodicals,
and research journals can help you continue to grow
as 4 professional software engineer.

REFERENCES

EE—]

“Computerworld 1992 salary survey,” Computerworid,
Vol. 26, May, 1992.

Kennedy, Joyce Lain, “Getting a fair share: Shareware
that can help you find a job,” Dallas Morning News,
Sunday, April 18, 1993, Section D, page 1.

Krantz, Les, The Joby Rated Almanac, 2nd ed, NY;
Pharos Publishing, 1992.

Robert Half International, Inc., 7992 Salary Guide.

San Francisco, CA: Robert Half International, Inc.,
1991.

Robert Half International, Inc., 1993 Saiary Guide.
San Francisco, CA: Robert Half [nternational, Inc.,
1992,

KEY TERMS

analyst
application specialist

E—
lead staff member
local area network (LAN)

artificial intelligence (Al) specialist

engineer manager
communications analyst marketing support staff
consultant product support staff

data administrator (DA}
database administrator

programmers
quality assurance

(DBA) security specialist
designer senior staff member
EDP auditor software enginger (SE)

software support specialist

standards developer

system software support
specialist

systems programmer

end-user specialist
junior staff member
intermediate staff
member
knowledge engineer

technical specialist
technical trainer

technology surveillance
specialist

technical writer

EXERCISES
1.

STUDY QUESTIONS

E—
Plan vour job search. Identify the type of job,
the kind of company, location, and benefits you
want. Do research to locate specific companies
and to determine your competition. Then, com-
pute the likelihood of getting your ideal job.
Discuss your plan with the class or in small
groups to assess how realistic your plan is.

. Research the professional and user organizations

that you might join and define a rationale for
yourself ta choose one or two in which you are
interested. Join those organizations.

Select one or two periodicals that are of interest
to you and further your professional goals. Sub-
scribe ta them if you do not already.

‘When you have decided your career goal, go to
the library and perform a book search to identify
potential books for your personal library. Scan
five of the books, then share your information
with the class, identifying the one or two of the
books you intend to buy. Go buy the books and
begin to build your library.

Choose four technologies for which you would
like 10 become expert. Map a strategy for jobs,
reading, and professional group involvement
that will help you become an expert within five
fo ten years. Discuss your strategy in class or

in small groups to assess how realistic it is and
to obtain suggestions for other ways to reach
your goal.

1. Define the following terms:

analyst software engineer

DA technology surveillance
DBA specialist
programmer

2, How do computer science majors and informa-
tion systems majors differ in the approaches

taken by their academic programs? How do
they complement ¢ach other?

What are the levels of experience gencrally
used in titles to separate different levels of
expertise?

. How do the duties of a lead person differ from

thosc of a manager?

. How do the duties of a lead person differ from

those of a technical specialist?

In application development, the job types are
programmer, sollware engineer, and knowl-
edge engineer. Define each job and describe
how their job content differs.

How do the functions of a DA and DBA dif-
fer? How do they complement cach other?
Why and how do companies use consultants?
What ate companies’ expectations of consul-
tants’ knowlcdge?

How does an Al specialist differ from a knowl-
edge engincer?

10.
1.

13

14,

15,

16.

17.

18.

Study Questions 789

What are the duties of a systems programmer?
Why are security specialists needed in
organizations?

. Why is quality assurancc in an adversarial role

with application development project teams?
In what types of companies do product and
markct support people work?

Define the steps to planning a career.

Why is it important to have an objective when
looking for a job?

How do you compute your chances of getting
the job you desire in the type of company vou
want?

What are the types of organizations you might
join to continue growth as an SE professional?
Which type appeals the most to you?

Why is continued growth of both knowledge
and cxperience important to a professional SE?
What happens if you do not continue to learn?

~ CASES
~_FOR
_ ASSIGNMENTS

APPENDIX

ABACUS PRINTING

COMPANY

This case describes a currently manual process. Your
job is to automate the order processing, scheduling,
and customer service functions. Make sure you list
any assumption you make during analysis and
design,

Abacus Printing Company is a $20-million busi-
ness owned and operated by three longtime friends.
They are automating their order processing for the
first time. Abacus Printing is located in Atlanta,
Georgia and employs 20 people full-time.

The owners are the sales force. The company
is set up so that each owner sells for a differ-
ent, wholly-owned subsidiary (A Sub, B Sub, and
C Suob) to separate commissions and expenses [or
tax purposes. Below is a description of the work to
be automated.

Three clerks do order entry and customer service.
An order is given to one of the three clerks to be en-
tered into the order entry part of the system. Orders
are batched by subsidiary for processing in the sys-
tem. There is at least one batch per clerk per day.
When a batch is complete, orders are printed. After
crders are printed, the system should maintain indi-
vidual orders for processing (i.e., the integrity of
the batch is no longer needed).

790

Orders are printed and hecome internal job tickets
which are used to schedule and monitor work
progress. All order/job tickets go to the scheduler
who sorts and prioritizes them to develop a produc-
tion schedule. Each Monday, he gives the first person
in the work chain (there are three possible sequences
of processing) the job tickets for completion that
week. As the week progresses, he adds to or changes
the schedule by altering the order and adding new
tickets to the stack of each person beginning a work
chain. Each job goes through the same basic steps:

Step 1. Perform requested manufacturing (i .,
the engraving or printing work)} accord-
ing to the job ticket instructions.

Step 2. Verify quality of printed items and count
output, that is, actual printed sheets of
paper or envelopes. Wiite the actual
count of items to be shipped on the job
ticket.

Step 3. Update the order/job ticket with actual
shipment information; print shipping
papers and invoices which reflect actual
shipments.

Step 4. Bundle, wrap, and ship the order.

The updating of the order with actual shipment
information may be done by either the shipping clerk
or by the same person who entered the order. The

second printing ‘closes’ the order from any other
changes and results in a multipart form being
printed. Two of the parts are copies of the invoices,
showing all prices and other charges with a total
amount due. One invoice copy is scnt to the cus-
tomer; the other is filed for further processing by
accounts receivable. The third part of the set of
forms is the bill of lading, or shipping papers, that
shows all information except money amounts. The
fourth part of the form is filed numerically by
invoice number in a scquential history file. The fifth
part is filed in a customer file which is kept in
alphubetic sequence.

The system must allow order numbering by sub-
sidiary company, and must be able (o print different
subsidiary name headers on the forms. The clerks
batch orders so that only orders from onc subsidiary
are in each batch. Order types include recurring
orders, blanket orders (which cover the year with
shipments spaced out over the period), and orders
with raultiple ship-to addresses that differ from the
sold-to addresses.

When customers call to change or determine the
status of an order, the clerk tuking the call first
checks the customer file to see if the order is com-
plete. Then, he or she checks with the scheduler to
see if the order is in the current day’s manufacluring
mix. Ii the order is not complete or scheduled, he ot
she manually searches current orders to find the
paperwork. About 15% of customer calls are
answcered while the customer is on the phone. About
80% require research and are answered with a call
back within 30 minutes. The remaining 5% requirc
trucking, which results in identifying an order taken
verbally by a partner and never written down. Cus-
tomers have been complaining of the lost orders and
threatening to go elsewhere with their busincss.

The curreni compuier syslem is a smart type-
writer and storage facility. The owner wants to pro-
vide personal computer access via a local area
network for the three partners, three clerks, two
shipping staff, and one scheduler. He would like to
eliminate the numerical and alphabetical paper filing
systcms but wants to maintain the information
on-line indefinitely for customer service quories.

The managers want ad hoc reporting access to the
information at all times. The senior clerk is also the

AOS Tracking Systemn 791

accounling manager and, along with the owner,
should be allowed access to an override function to
correct errors in the system, The other clerks should
be allowed to perform data entry for order process-
ing and actual goods shipped, and to print invoices/
shipping papers. The shipping clerk should be al-
lowed to perform order updates with actual goods
shipped and 1o generate shipping papers with a final
invoice. The scheduler should be allowed access to
all outstanding orders to alter and schedule work for
the manufacturing processes. No one clse in the
company should be allowed access to the system or
to the data.

AQOS TRACKING
SYSTEM

The AOS cuse is a logical deseription of a desired
application that also includes manual problems to
be corrected.

The manager of Administrative Oflice Services
(AOS) wants to develop an automated application
to track work throngh ity departments. The depari-
ments and services provided include: word process-
ing and proofing. graphic design, copving, and
mailing. Work can come into any of the departments,
and any number of services might be combined. For
inslance, word processing and proofing can be the
only service. Word processing, proofing, and graphic
design might be combined. Another job might
include all of the services.

The current situation is difficult becanse each
manager has some knowledge of the work in his or
her own areu, but not where work is once it leaves
their area. Overall coordination for completing jobs
using multiple services requires the AOQS manager to
give each department a deadline. Then, the AOS
manager must track the jobs o ensure that they are
completed and moved along properly.

The basic work in each department is to receive
a job, check staff availability based on work load and
skills, assign staff, priority, and due date, and up-
date job information (for instance, if the work is
reassigned). Jobs are identified by a unique control
number that is assigned to each job. Other job
information mainlained includes: requestor name,

792 APPENDIX Cases for Assignments

requestor phone, requestor budget code, manner of
receipt {either fax, paper, or phonc dictation), man-
ner of delivery {either fax, paper, or phone dictation),
and dates and times work is received, due, com-
pleted, canceled, notified, and returned to requestor.

A job consists of requests for one or more 1ypes
of service. For each type of service, information
must also be kept. Scrvices include word processing
and proofing, copying, graphic design, and mailing.

Information kept for word processing and proof-
ing scrvices includes a description of the job, type
of request (letter, memo, statistics, legal document,
special project, chart, manual, labels, eic.), other ser-
vices included with this request (i.e., copying,
graphic design, mailing), software to be used (Word-
Perfect, Harvard Graphics, Lotus, Bar Coding,
Other}, type of paper (loge, plain bond, user pro-
vided, envclope, other), color of paper (white, pink,
blue, green, buff, yellow, other), paper size (8.5" x
11", 8.5" x 14", other), special characteristics
(2-holc punch, 3-hole punch, other), type of enve-
lope (letter, legal, tetter window, legal window, bill,
kraft 9" < 12", kraft 1) x 13", supplicd by requestor,
other), number of copies requested, user control
number, dates/times required, started, completed,
reassigned, proof started, proof completed, revisions
started, and revisions completed.

Information kept for copying includes the above
except software and dates/times relating to proofing
and revisions. In addition, keep requirements for col-
lating, stapling, one-side or two-side, special formats
(e.g., reduced 60% and put side-by-side in book
format).

Information kept for graphic design and mailing
includes that for word processing, excepl lype of
cnvelope. The code schemes for type of request,
paper, software, and special characteristics are dif-
ferent from those used for word processing. For
instance, paper for graphics refers to tvpe of output
media which might actually include slide, trans-
parency, papet, enveiope, video still, photograph,
moving video, and so on. The type of request must
be cxpanded to include the numbecr of colors, spe-
cific color selections, intended usage (intracompany,
external, advertising, public relations, other) and
level of creativity (i.e., user provides graphic and
this department automates the design; user provides

concept and this department provides several alter-
native designs, etc.).

Information kept for mailing includes requested
completion date, and the dates and times requests
were received, compteted, and acknowledged back
to requestor as complete. Other information includes
whether or not address labels were provided, mailing
list to be used (choice of four), number of pieces,
method of mailing (e.g., zip+four, carrier ronte code,
bar code, bulk, regular, special delivery, ete.), ma-
chinery required (e.g., mail inscrter, mail sorter,
etc.). and source of mailing (e.g. word processing in
AOS, user, other).

As a dcpartment’s staff gets an incoming job, it
should be logged into the system, assigned a log
number, and the job information should be entered
into the system, In addition, the receiving depart-
ment completes their service-specitic information
(e.g., typing) and identifies the sequence of depart-
ments which will work on the job. As the individual
departments get their task information, they com-
plete the service-specific fields.

Each department manager assigns a person to the
task based on skills and availability. First, informa-
tion matching service requests to staff skills should
be done. Then, the staff with required skills should
be ordered by their earliest availability date for
assignment to the task. The system should allow
tracking (and rctrieval) of a task by job, department/
task, person doing the work, date of receipt, due
date, or user.

The manager of AOS would like to receive a
monthly listing of all commeats received (usually
they are complaints) and be able to query details of
the job history to determine the need for remedial ac-
tion. Comments should be linked to a job, service,
user, and staff member,

THE CENTER
FOR CHILD
DEVELOPMENT

This case describes a currently manual process. The
analysis and design task is to develop a rew work

TABLE 1 Client Card File Information

Last Name
Firsi Name
Middle Initial

Fiscal Year

Medicaid Number
Family [dentifier
Ling/Person Identifier
Sex
Year of Birth
Diagnosis Code (NA)
Issue Date

Dates of Visits

Fees per Week

Amount Paid

Bulance Due (Updated Monthly)

flow and autemated system for as much of the Medi-
caid payment process as possible,

The Center for Child Development (CCD) is a
not-for-profit agency that provides psychiatric coun-
seling to children, serving approximately 600 clients
per vear. Each client has at least one visit to CCD per
week when they are in therapy. Mosl often, the client
has multiple visits to the center and to other agencies
in one day {e.g., to CCD and, say, to a hospital).
Medicaid reimburses expenses for only one such
visit per day. This means that multiple appointments
at CCD for a given day will have one appointment
reimbursed; multiple claims on the same Medicaid
number for the same day are paid on a first-in, first-
paid basis by Medicaid. The current claims process-
ing takes place monthly; for CCD to remain
competitive, Medicaid processing must be done
daily. To provide daily Medicaid processing, au-
tomation of the process is required. The Medicaid
Administration has arranged with personal computer
owners to take claims in automated form on disk-
cttes, provided that they conform to the information
and format requirements of paper forms.

To develop Medicaid claims, the business office
clerk reviews the client card file 1o obitain Medicaid
number and visit information for each client (sce
Table 1 for Client Card File Information and Table
2 for Visil Card File Information recorded). Based

The Center for Child Development 793

on the card file information, Medicaid forms are
completed: one per client with up to four visits listed
on each form (see Table 3 for Medicaid information
requircd). Most clients have multiple forms pro-
duced because they have more than four visits to the
center per morth. Each form must be completed in
its entirety {i.c., top and bottom) for Medicaid to
process them (the forms cannot be batched by clicent
with only variable visit information supplied).

COne copy of each form is kept and filed in a
Medicaid—Pending Claims File. The other copies
of the forms (or disks) are mailed to Medicaid for
processing, .

About four to six weeks after submission of
claims, Medicaid sends an initial determination
rgport on each claim. The response media is either
diskette or paper. Reconciliation of all paid amounts
is don¢ by manually matching the Medicaid report
information with that from the original claim. If
automated, report entries are in subscriber (i.e., CCD
client) sequcnce. The paid claims are then filed in a
Medicaid—Pzid Claims File.

Claims that are disputed by Medicaid (almost
90% are pending on the initiak report; of pending
claims, 10-20% are uvitimately denied) are re-
searched and followed up with more information as
required. Electronic reconciliation in other compa-
nies reduces the 90%-pending to as few as 10%, thus
speeding the reimbursemenrt process. CCD has a
contact at Medicaid with whom they werk clesely
to resolve any problems.

TABLE 2 Visit Information

Day

Date

Type Appointment (i.e., Inlake, Regular)
Client Name

Time of Appeintment
Single/Group Visit
Amount Paid
Amount Owed
Insurance Company
Medicaid {¥/N)

Last Date Seen
Therapist

794 APPENDIX Cases for Assighments

TABLE 3 Medicaid Claim Form Information

Permancntly Assigned Fields

Information Completed by CCD

Company Name (CCD)

[nvoice Number (Assigned by Medicaid, preprinted
on Lhe forms)

Group 1D Number (Not Applicable, i.e., NA)
Location Code {03)

Clinic (827)

Category {0160)

Number of Attachments (NA)
Office Number (NA)

Place of Service (NA)

Social Worker Type (NA)
Coding Method (6)
Emergency (N, i.e., Na)
Handicapped (N}

Disability (N}

Family Planning (N)
Accident Code (0)

Patient Stutus (0)

Referral Code (0)
Abort/Sterile Cade (0)

Prior Approval Nomber (NA)

Ignore Dental Insurance (Y)

Billing Drate (must be within 90 days of service)
Recipient ID NMumber {Client Medicaid Number)
Year of Birth

Sex

Recipient {Client) Name

Social Worker License Number

Name of Social Worker

Primary/secondary diagnosis {Table lock-up, 120 entries)
Date of Service

Procedure Code (This is a rwo-line entry to identify first
the treatment payment on the first line and the treatment
code on the second line.)

Procedure Description

Times Performed

Amount

Name of persen completing the form

Date

([Information in paremheses is the permangnt valve of that field for CCDH

COURSE

REGISTRATION

SYSTEM

This case is a logical description of the desired
application. Your task is to analyze and design the
data and processes to develop an automated apphi-
cation to perform course registration.

A student completes a registration request form
and mails or delivers it to the registrar’s office. A
clerk enters the request into the system. First, the

Accounts Receivable subsystem is checked to ensure
that no fees arc owed from the previous quarter.
Next, for each course, the student transcript is
checked 1o ensure that the course prerequisites are
completed. Then, class position availability is
checked. If all checks are successful, the student’s
social security number is added to the class list.

The acknowledgment back to the student shows
the result of registration processing as follows: If
fees are owing, a bill is sent fo the student; no regis-
tration is done and the acknowledgment contains the
amount due. If prerequisites for a course are not

filled, the acknowledgment lists prerequisites not
met and that course is not registered. If the class is
full, the student acknowledgment is marked with
‘course closed.’ If a student is accepted into a class,
the day, time, and room are printed next to the course
number. Total tuition owed is computed and printed
on the acknowledgment. Student fee information is
interfaced to the Accounts Receivable subsystem.

Course enrollment reports are prepared for the
instructors.

DR. PATEL’S

Dr. Patel’s Dental Practice 3ystem 795

TABLE 1 Patient History Information

DENTAL PRACTICE

SYSTEM

The dental practice uses a manual patient and billing
system to serve approximately 1,100 patients. The
primary components of the manual system are
scheduling patient appointments, maintaining
patient dental records, and recording financial infor-
tmation. Due to increased competitive pressure,
Dr. Patel desires to automate his customer records
and billing.

New patients must complete the patient history
form. The data elements are listed in Table 1. Then,
at the first visit, the dentist evaluates the patient and
completes the second half of the paticnt history in-
formation with standard dental codes (there are
2,000 codes) to record recommended treatments.
The data elements completed by the dentist arc listed
as Table 2. The patient history form is tiled in a
manila folder, with the name of the patient as iden-
tification, along with any other documents from sub-
sequent visits.

A culendar of appointments is kept by the secre-
tary, who schedules follow-up visits before the
patient leaves the office. The calendar data elements
are shown as Table 3. Also, before the patient leaves,
any bills, insurance forms, and amounts due are
computed. The client may pay at that time, or may
opt for a monthly summary bill. The secretary main-
tains bill, insurance, and payment information with
the patient history. Financial data elements are
shown in Table 4. Every week, the secrelary types
mailing labels that are attached to appointment

Patient name

Address

City

State

Zip

Home telephone

Date of birth

Sex

Parent’s name (if under 21) or emergency contact
Address
City, state, zip
Telephonc number

Known dental problems (room for 1-3)

Known physical problems (room for 1-3)

Known drog/medication allergies (room for 1-3})

Place of work name
Address
City
State
Zip
Telephone number
Insurance carrier
City, state, zip
Policy number

I.ast dontist name
Address
Clity, state, zip

Physician name
City, state, zip

TABLE 2 Dentist Prognosis Information

Dentisl performing evluation
Date of evaluation
Time of evaluation
Recommended treatment (rocm for 1-10 diagnoses
and treatments)
Procedurc code
Date performed (completed when performed)
Fee (completed when performed)

reminder cards and mailed. Once per month, the sec-
retary types and sends bills to clients with ontstand-
ing balances.

796 APPENDIX Cases for Assignments

TABLE 3 Appointment Calendar

Patient name
Home telephone number
Work telephone number
Date of lasl service
Date of appointment
Time of appeintment
Type of treatment planned

TABLE 4 Patient Financial Information

Patient name
Address
City, state, zip
Home telephone number
Work telephone number
Prate of service
Fee
Payment received
Date of paymenl
Adjustment
Date of adjusiment
Outstanding balance
Date bill sent
Date overdue notice sent

THE EAGLE

RocK GOLF

LEAGUE

This is a logical description of a desired application.
The task is to analyze and design the data and pro-
cesses required to track golfers and rounds of golf,
including computation of match rankings.

The members of the Eagle Rock Golf League reg-
ularly compete in malches to determine their com-
parative ability. A match is played between two
golfers; each match either has a winner and a loscr,
or is declared a tie. Each match consists of a round of
18 holes with a score kept for each hole. The person
with the lowest gross score (gross score = sum of
ull hole scores) is declared the winner. If not a tie, the

cuilcome of a match is used to update the ranking
of players in the league: The winner is declared bet-
ter than the loser and any golfers previousiy beaten
by the loser, Other comparative rankings are leli
unchanged.

The application should keep the fellowing infor-
mation about each golfer: name, club 1D, address,
home phonc, work phone, handicap, date of last golf
round, date of last golf match, and current match
ranking,

Each round of golf should also be tracked includ-
ing golfer’s club ID, name, scores for all 18 holes,
total for the round, maich indicator (i.e., Yes/No),
match opponent 1D (if indicator = Y}, winner of the
match, and date of the match. The application should
allow golfers 1o input their own scores and allow any
legal user to query any information in the system.
Only the system should be allowed to change rank-
ings. Errors in data entry for winters or losers should
be corrected only by a club employee.

GEORGIA BANK
AUTOMATED TELLER
MACHINE SYSTEM

Georgia Bank describes an application to be devel-
oped. The functional requirements are described at
a high level of abstraction and the lask is Lo do more
detailed analysis or tc begin design.

The Georgia Bank is automating an automated
teller machine {ATM) network 1o maintain its com-
petitive position in the market. The bank currently
processes all deposit and withdrawal transactions
manually and has no capability to give up-to-the-
minute balance information. The bank has 200,000
demand-deposit account (DDA, ¢.g., checking ac-
count) customers and 100,000 time deposit {e.g.,
savings account) customers. All customers have the
same account prefix with a two-digit account type
identifier as the suffix.

The ATM system should provide for up to three
transactions per customer. Transactions may be
processed via ATM machines to be installed in each
of the 50 branches and via the AVAIL™ network of

Georgia banks. The system should accepl an ATM
identification card and read the ATM card number.
The ATM card number is used (o retrieve account in-
formation including a personal ID number (PIN) and
balances for each DDA and time account. The sys-
tern should prompt for entry of the PIN and verify its
correctness. Then the system should prompt for type
of transaction and verify its correctness,

For DDA transactions, the system prompts for
amount of moncy to be withdrawn. The amount
is verified as available, and it vatid, the system
instructs the machine to dispense the proper amount
which is deducted from the account balance. If the
machine sesponds that the quantity of money
required is not available, the transaction is aborted.
A transaction acknowledgment (customer receipt)
is created. If the amount is not available or is over
the allowable limit of $250 pcr day per account, an
error message is sent back to the machine with
instructions to reenter the amount or to cancel the
transaction.

For time depostt transactions, the system prompts
for amount of moncy to be deposited and accepts an
envelope containing the transaction. The amount is
added to the account balance in transit. A transaction
acknowledgment is created.

For account balances, the system prompts for
type of accounl—DDA or time—and crecates a report
of the amount. At the end of all transactiens, or at the
end of the third transacticn, the system prints the
transaction acknowledgment at the ATM and cre-
ates an entry in a transaction log for all transactions.
All ather processing of account transactions will
remain the same as that uscd in the current DDA and
time deposit systems.

The customer file entries currently include cus-
tomer 1D, name(s), address, social security number,
day phore, and for cach account: account ID, date
opencd, current balance, link to transaction file
(rccord of most recent transaction). The transaction
file contains: account ID, date, transaclion iype,
amount, source of transaction (i.e., ATM, teller ini-
tials) and link to next most recent transaction record.
The customer file must be modified to include the
ATM 1D and password. The transaction log file con-
tains ATM T3, account ID, date, time, location,
{ransaction tvpe, account lype, and amount.)

Summaer’s Inc. Sales Tracking System 797

SUMMER'’S INC.
SALES TRACKING
SYSTEM

This case describes a manual syslem for sales track-
ing. Your design sheuld ineclude work procedures
and responsibilities for all affected users.

Summer’s Inc. is a family-owned, retail office-
product store in Ohio. Recently, the matriarch of the
family soid her interest to her youngest son who is
automalting as much of their processing as possible.
Since accounting and inventory management werc
astomated lwo years ago, the next area of major
paper reduction is to automate retail sales to floor
processing.

The sales floor has four salespersens who to-
gether serve an average of 100 customers per day.
There are over 15,000 items for sale, each available
from as many as four vendors. The sysiem should
keep track of all sales, decrease inventory for each
item sold, and provide un interface to the A/R system
for credi sales.

A sale proceeds as tollows. A customer selects
items from those on display and may request order-
ing of items that are not currently available. For
those items currently selected, a sales slip is created
containing at lgast the item name, manufacturer’s
item number (this is not the same as the vendor’s
number), retail unit price, aumber of unirts, type of
units (¢.g. cach, dozen, gross, ream, etc.), extended
price, sales tax (or sales exemption number), and
sale total. For credit customers, the cuslomer name,
ID number, and purchaser signature are also
included. The sales total is entered into a cash regis-
ter for cash sales and the money is placed into the
register. A copy of the sales slip is given to the cus-
tomer as a receipt, and a copy is kept for Summer’s
records. For orders or credit sales, the information
kept includes customer namc, 1D number, sale date,
salesman initials, and all details of each sales slip.
For credit sales, a copy of credit sale information
should be in an electronic interface to the accounting
system where inveices are created.

In the automated system, both cash and credit
sales must be accommodated, including the provi-
sion of paper copy receipts for the client and for

798 APPENDIX Cases for Assignments

Summer’s. The inventory database should be up-
dated by subtracting quantity sold from units on
hand for that unit type, and the wotal sales amount for
the year-to-date sales of the item should be increased
by the amount of the sale. The contents of the
inventory database are shown in Table 1.

TABLE 1
Database

Summer’s Inc. Inventory

General Iterm Information

Itern Name (e.g. Flair Marker, Fine-Point Blue; Flair
Marker, Wide-Point Blue, etc.)}
Item Manufacturer
Date began carrying item
Units information®
Unit type (e.g., each, dozen, gross, cic.)
Retail unit cost
Unils on order
Units on hand
Total units sold in 1993

Vendor-Item Information*
Vendor 1D
Vendor jtem ID
Vendor-units information*®
Unit type {e.z., each, dozen, gross, etc.)
Last order date
Dhscount schedule
‘Wholesale unit cost

Vendor General Information

Yendor ID

Vendor name

Vendor address

Terms

Ship method

Delivery lead time
Item-Information
¥Vendor item 1D
Unit type (e.g., each, dozen, gross, etc.}
Last order date
Discount schedule
Whaolesale unit cost

(Note: Primary keys are underlined,; repeating groups are identi-
fied with a boldface name and an astensk.)

TECHNICAL

CONTRACTING,
INC.

Technical Contracting, Inc. (TCI} describes a man-
ual process to be automated. The data and processes
are approximately equally complex; both require
some analysis and design before the automated
application can be designed. First, decide what
information in the problem description is relevant
to an automated application for client-contractor
matching, then proceed with the assignment.

TCl is a rapidly expanding business that contracts
IS personnel to organizations that require specific
technical skills in Dallas, TX. Since this business 1s
becoming more competitive, Dave Lopez, the
owner, wants to automate the processing of person-
nel placement and resume maintenance.

The files of applicant resumes and skills are
coded according to a predefined set of skills. About
10 new applicant resumes arrive each week. A clerk
checks the suitability of the resume for the services
TCI provides and returns unsuitable resumes with a
letter to the applicant. The applicant is invited to
reapply when they have acquired skills that are in
high demand, several of which are listed in the letter.
High-demand jobs are determined by counting the
type of requests that have been received in the last
month. Resumes of applicants are added to the file
with skills coded from a table. There are currently
200 resumes on file that are updated every six
months with address, phone, skills, and project
experience for the latest period. Most of the resume
information is coded. There is one section per proj-
ect for a text description. This section is free-forrm
text and allows up to 2,500 characters of description.

Client companies send their requests for special-
ized personnel to TCI either by mail, phone, or per-
sonal delivery. For new clients, one of TCI’s clerks
records client detatls such as name, [D, address,
phone, and billing information. For each require-
ment, the details of the job are recorded, including
skill requirements (e.g., operating system, language,
analysis skills, design skills, knqwledge of file struc-
tures, knowledge of DBMS, teleprocessing knowl-
edge, etc.), duration of the task, superviser name,

supervisor level, decision authority name, level of
difficulty, level of supervision required, and hourly
rate. For cstablished clicnts, changes are made as
required.

Once a day, applicant skills are matched to client
requircments. Then Dave reviews the resumes and,
based on his knowledge of the personalities in-
volved, selects applicants for interviewing by the
client company. When Dave selects an applicant, the
resume is printed and sent with a cover letler. Dave
follows up the letter with a phone call three days
later. If the client decides to inlerview the appli-
cant{s), Dave first prepares them with 4 sample
interview, then they are interviewed by the client.

Upon acceptance of an applicant, two sets of con-
tracts arc drawn up. A contract between TCI and the
client company is developed to describe the terms
of the engagement. These contracts can be compli-
cated because they might include deseriptions of dis-
counts in billings that apply when multiple people
are placed on the contract, or might include
longevity discounts when contractors are engaged
over a nepotiated period of time. A contract between
TCI and the applicant is developed to describe the
terms of participation in the engagement. Basically,
the applicant becomes an employee of Dave’s orga-
nization for the duration of the contract.

TCI keeps information on demand for each type
ol skill, whether they provide people with the skill or
not. Dave also monitors TCI performance in filling
requests for each skill and evaluating lost contracts
due to nonavailubility of applicants (to raise his fees
for those services, and to advertise for those skills).
TCI advertises for applicants with specific skills
when clicnt demand for new skills reaches three re-
quests in any onc month, or when demand for skills
already on file increases to such an extent that the
company s losing more than three jobs per month,

XY University Medical Tracking System 799

XY UNIVERSITY
MEDICAL
TRACKING
SYSTEM

The XY University case is a bricf legical description
of a simple tracking system with a complex data
structure, The key to a good design is to analyze and
define the data and services properly.

XY University student medical center serves a
student population of 60,000 students and faculty in
a large metropolitan area. Over 300 patients receive
one or more medical services each day. The univer-
sity has a new president who wishes to overhaul the
existing medical support structure and modernize the
facilities to improve the services. In order to plan
for these changes, more information on which ser-
vices are in fact used is required. The university
wishes o develop a patient tracking system that
traces each patient throughout their stay in school for
each visit to the facility.

Students and faculty arc identified by their identi-
fication numbers. They should be logged into the
system (i.e., date, time, and 1D) when they enter the
facility. They may or may not have appointments.
Then, some means of recording and entering infor-
mation inio the computer system must be provided
for each of the following: station visited, medical
contact person, type of contact {i.e., consultation,
treatment, follow-up check, routine checkup, emer-
gency, etc.), length of contact, diagnosis, treatment,
medicine prescribed (i.e., name, brand, amount,
dosage), and follow-up advised (yes/no). All infor-
mation must be available for query processing and
ail queries must be displayed either at terminals or
on printers.

GLOSSARY

abstract data type In object orientation, the user-
defined data type that encapsulates definitions of object
data plus legal processes for that data.

action diagram In information enginecring, a graphical
reptresentation of procedural structure and processing
details suitable for automated code gencration.

activity In information engineering, some procedure
within a business function that can be identified by its
input data and output data which differ.

afferent flows In structured design, the input-oriented
processes which read data and prepare it for pro-
cessing.

affinity Attraction or closeness.

affinity amalysis In information engineering, a cluster-
ing of business processes by the closencss of their func-
tions on data entities they share in common.

analysis The act of defining what an application will do.

application The set of programs that automate some
business task.

application characteristic Descriptive information that
is common Lo all applications and includes data, pro-
cesses, constraints, and interfaces,

application complexity Tundamental application diffi-
culty which comes from several sources, including man-
agement of the number of elements in the application,
the degree and 1ypes of inleractions, support, novelty,
anct ambiguity,

application type The business orientation of the appli-
cation as transactional, query, decision, or intclligent.

architecture A snapshot of some aspect of an organiza-
tion, e.g., data, business processes, technology, or com-
munications network.

associative data relationships lrregular entity relation-
ships, dictated by data content rather than abstractions
such as normalization.

atomic process A sysiem process that cannol be further
decomposed without losing its system-like qualities.

attribute In object orientation, a named field or properly
that describes a class/object or a process.

audit contral Application design components that prove
transaction processing in compliance with legal, fidu-
ciary, or stakcholder responsibilities.

backop The process of making extra copies of data o
ensure recoverability.

baseline A product that is considered complete and

which is the basis for other current work hy the project
devclopment team.

batch applications Computer applications in which
transactions are processed in groups,

benchmark A comparison test vsed to identify differ-
ences between hardware or software products.

benefit Some improvement in the work product or pro-
cess that resulis from a specific alternative.

bid The financial response to an RFP. Bid types for
hardware are lease, lease with option to buy, or pur-
chase. For software, bid types are time and materials
{T&M), T&M with a ceiling, or fixcd price.

binding In object orientation, the process of integrating
the code of comsunicating objects. Binding of objects
to operations may be static, pseudo-dynamic, or
dynamic.

black box A testing strategy that determines correct-
ness of functioning by creating input data is designed
to gencrate vanations of outputs without regard as o
how the logic aclually functions. Black-box strategies
include equivalence partilioning, boundary value analy-
sis, and error guessing.

body of screen The large middle part of a screen con-
laining application-specific variable information.

boilerplate Code that is invariant from one program io
another, repardless of program function.

Booch diagram In object orientation, a graphical repre-
sentation of all objects and their processes in the appli-
cation, including both service and problem domain
objects.

bottom-up testing A lesting straiegy that tests complete
modules, assumning that the lower the number of incre-
menigal changes in modules, the lower the error rate.

bracket In information engineering, a graphical struc-
ture on an action diagram.

business activity In information engineering. some high
level set of procedures within a business function.

business area analysis In information engineering, a
tabular clustering of processes which share data creation
authority for an entity.

business function In information cngineering, a group
of activities that accomplish some complete job that is
within the mission of the enterprise.

husiness process Details of an activity, fully defining
the steps taken to accomplish the activity.

801

802 Glossary

cardinality The number of an cntity relationship; can be
one-to-one, one-to-many, OF Many-to-many.

CASE integration The absence of barriers between one
graphical or tex1 form and athers. '

central transform In structured design, processes hav-
ing as their major function the change of information
from its incoming state to some other state.

champion A manager who actively supports and sells
the goals of the application to ethers in the organization,

change control Project management techniques for
dealing with changes 1o specifications, application func-
tions, documentation, etc.

class In object orientation, like objects that have exactly
the same properties, attributes, and processes.

class hierarchy In object orientation, the basic hierarchy
ol telationships between classes of objects that also
accommodates lattice-like network relationships.

classfobject In object orientation, a set of items which
share the same atiributes and processes, and manage
the instances of the collection.

client object In object orientation, an object that re-
quests a process from a supplier object.

code The low-level program elements of the soltware
product created from design documentation; procedural
computer instructions.

code generator A program that reads specifications and
creates code in some target language, such as Cobol
or C,

coding The stage of application development during
which computer code is generated.

cohesion A measure of internal strength of a module
with the notion that maximal or functional cohesion is
the goal.

command language High-level programming lan-
guages that communicate with software to direct its
execution.

composite cost model (CoCoMo} A combination of
estimating techniques based on thousands of delivered
source instructions.

compromise of requirements A change to application
functions to rescope, manipulate, drop, or otherwise
change them to fit the environment’s limitations.

computer-aided software engineering (CASE) A
computer application thal automates the development of
graphics and documentation of application design.
CASE can be intelligent and include verification capa-
bilities to ensure syntactic correcuness of information
entered.

concurrent processes In object orientation, processes
that operate at the same time and can be dependent or
independent.

configuration management Management of software
code libraries.

constraint Limitations on the behavior and/or process-
ing of entities, including prerequisite, postrequisite,
time, structure, control, or inferential.

context A seiting or environment.

context diagram A graphic developed during structured
analysis to define the inleractions of the application with
the external world.

contingency planning The identification of tasks de-
signed to prevent risky events and tasks to dcal with
the events if they should occur.

control peint A location (logical or physical) in a proce-
dure {automated or manual) where the possibility of
errors exists,

controlled redundancy The deliberate duplication of
data for control purposes,

conversion The placing of a computer application into
production use; includes direct cutover, functional, geo-
graphic methods,

cost The amount of meney or other payment for obtain-
ing some benefit.

cost/henefit analysis The comparison of the financial
pains and payments that would resuit from selection of
some alternative.

coupling A measure of intermodule connection with
minimal coupling of the goal (i.e., less is best).

critical path The sequence of interrelated tasks during
application development that takes the most Lime to
develop.

critical success factor Some busincss activity or func-
tion that is crucial to the organization’s success.

CRUD matrix See entity/process matrix.

cutover A method of conversion such that, on a set day,
the old way of work is abandoned and the new way
begins to be used.

data The elements in raw material—numbers and let-
ters—thal relate to each other Lo form fields {or attri-
butes) which define entities.

data administration (DA) The management of data to
support and foster data sharing across multiple divi-
sions, and to facilitate the development of database
applications,

daia characteristics Descriprive information about data
including ambiguity, completeness, semantics, struc-
lure, time-orientation, and volume.

data collection techniques Metheds of obtaining infor-
mation and application requirements, including inter-
views, meeting, observation, questionnaires, temporary
job assignment, document review, and external source
review.

data dictionary In structured analysis, a compilation ol
detailed definitions [or each element in a DED,

data distribution choices In data distribution analysis,
possible designs include data centralizing, repli-
cating, vertical partitioning, subsel partitioning, or
federating.

data flow diagram In structured analysis, a graphic rep-
tesentation of the application’s compenent parts.

data methodology Those development methods that
begin defining functional requirements by first evaluat-
ing data and their relationships to determine the under-
fying data architecture,

data model A conceptual description of the major data
entities of interest in an organization for reengi-
neering, ot in an application for subject area database
definition. ’

data self-sufficiency A property of application target
organizations such that 70% (or more) of data used in
performing the business functions originates within the
subject organizations.

data type A language-fixed definition of darta, e.g.,
integers.

data warehouse The means to store unlimited, continu-
ously growing databases.

data-oriented methodology Approaches to developing
applications that assume data are fundameniaily more
stable than processes and should, therefore, be the focus
of activities.

database administration (DBA) An organization cre-
ated to maintain and monitor DBMS use, including re-
sponsibility for physical DB design, disk space alloca-
ticn, and day-to-day operations support for the actual
database.

denormatization The process of designing storage
items of data to achieve performance efficiency.

decision support applications (DSS) Applications
whose purpose is to seek to identify and solve problems,

depth of hierarchy In structured design, the number of
levels in the diagram.

derived field Fields/attributes for which the application
is the source, i.e., computed fields.

design The act of defining how the requirements defined
during analysis will be implemented in a specific hard-
ware/fsoftware environment.

developmental tests Testing conducted by the project
development team, including unit, subsystem, integra-
tion, and system tests.

dialegue In object orientation and information engineer-
ing, -interactive communication that takes place be-
tween the user and the application, usually via a termi-
nal, to accomplish some work.

Glossary 803

dialogue flow diagram In infermation engineering, a
diagram summarizing allewable movement between
entries on a menu structure diagram.

direct manipulation Screen interactions during which
the user performs am action directly on some display
object.

display The screen portion of a computer.

distributed computing A sitwation in which multiple
processors share respensibility for managing pieces of
an application,

divide and conquer The principle in structured analy-
sis by which a complex application problem is divided
into its parts for individual analysis. A technique to sim-
plify management of application complexity.

document A general analysis and design task that is per-
formed to create useful documenis from graphics and
supporting text either manually or with computer-based
1o0ls.

domain A conceptual area of interest. In organizational
reengineering the domains are data, process, network,
and technology; in database, a domain is the set of
allowable values for an individual attribute.

downsizing The shifting of processing and data from
mainframes to some other, less expensive environment,
usually 10 a multiuser midsize machine, such as an IBM
AS400, or 1o a LAN of PCs.

efferent flows In structured design, the output-oriented
processes which write, display, and print data.

elaboration A general analysis and design task that is
petformed to define the details of each thing identified.

elementary process See atomic process.

encapsulation In object orientation, a property of pro-
grams that describes the complete integration of data
with legal processes relating 1o the data,

entity [n information engineering, some person, object,
concept, application, or ¢vent from the real world about
which we want to maintain data; includes attributive,
associative, and fundamental entity types.

entity relationship diagram In information engineer-
ing, a praphical representation of the nommalized data
environment and data scope of the application.

entity/process matrix (CRUD) A two-dimensional
table of entities and business processes that identifies
the functions each process is allowed to perform on
data, including create, retrieve, update and delete (e.g..
CRUD).

equifinality Many paths lead to the same goal.

estimating Use of expertise 1o define project work
effort. including use of algorithms, models, delphi tech-
niques, expert opinion, function peints, top-down, and
bottom-up technigues.

04 Glossary

ethical dilemma Any situation in which a decision
results in unpieasant consequences requiring moral
reasoning,

ethies The branch of philosophy that studies moral judg-
ment and reasoning.

exception handling The extent to which programs can
be coded to intercept and handle program crrors without
abending a program.

executable units In structured design for non-real-time
languages an execute unit is a link-edited Ioad module.
For real-time languages, an execute unit identifies mod-
ules that can reside in memory at the same time and are
related, usually by mutual communication,

executive information system {EIS) A spinoff from
DSS. EIS applications support executive decision mak-
ing and provide automated environmental scanning
capabilities.

expert systems (ES) application Computer applications
that automate the knowledge and reasoning capabilities
of one or more experts in a specific domain,

external entity In structured analysis, a person, place
or thing with which the application interacts,

Facilitator A specially trained individual who runs JAD,
fast-track, JRP, or walk-through sessions,

factoring In structured design, the process during which
net outputs from a DFD are used to determine the
initial structure of the structure chart.

fast track A different name for JAD.

feasibility The analysis of risks, costs, and benefits
relating to technology, economics, and using orga-
nizations,

field format The characteristics of individual fields or
values of fields on a screen display, including size, font,
style, color, and blink for individual field values, and
ceding options for field labels.

flash rate Blinking speed for a screen display item.

flicker fusion A physical phenomenon that causcs us o
see constant light when the fash rate is very high.

footer The lower portion of a screen.

form follows function A principle from architecture
which, when applied to structured analysis, defines
application functions that transform data as the defin-
ing characteristic of applications.

frozen specification A specification that cannot be
changed without specific user/sponsor approval with
accompanying modification of budget and cost.

function A small program that is self-contained and per-
forms a well-defined, limited procedure.

function key A programmable computer keyboard key
used to provide a shorcut command.

function peint analysis A method of defining the com-

plexity of an application by systematic definition of
global application characteristics.

functional decompaosition The division of processes
into modules.

functional screen A screen at which the application pro-
cesses are performed,

generalization class In object orientation, defines a
group of similar objects.

global data Data variables and constants that are acces-
sible 1o any module in the application.

globalization The movement of otherwise local busi-
nesses o world markets.

goals of software engineering To build a quality prod-
uct through a quality process.

group decision support systems {GDSS) A special
type of DSS applications. GDSS provide an historical
memory of the decision process in support of groups
of decision makers who might be geographically
dispersed.

hardware installation plan A plan identifying work
required, environmental changes (e.g., air conditioning),
work responsibilities, titning of materials and labor, and
scheduling of tasks as they relate to the instatlation of
computer and other information technology equipment.

hierarchical structure chart In structured design, a
graphical input-process-output view of the application
that reflects the DFD partitioning.

human interface The means by which an application
communicates to its human users.

Humphrey’s maturity framework A framework
adapted to compare methodologies as having reached
initial, repeatable, managed, defined, or optimizing lev-
els of sophistication.

hypermedia Software that allows any number of asso-
ciative relationships (o be defined for a given item; sup-
ports audio, video, image, graphics, text and data.

I/0 bound In structured design, a structure chart in
which the skew is equally balanced between input and
outpul, but processing is a small part of the application.

identification A general analysis and design task that is
performed to find the focal things that belong in analy-
sis and how logical requirements will work in the target
computer environment in design.

implementation The period of lime during which a soft-
ware product is integrated into its eperational environ-
ment and is phased inte production use. implementalion
in¢ludes the completion of data conversion, instaliation,
and training.

information engineering (IE) A data-oriented method-
ology that borrows from both practice and theoretical
research to support the development of enterprise level

plans through to individual project developments. 1E
concentrates on business understanding, assumes user
nvolvement, and covers more phases of the SPLC than
maost other methodologies.

information hiding A program design principle by
which only data needed to perform a funclion is made
available te that function,

information systems architeclure framework (ISA)
Zachman's method of defining distinct architectures
relating business context to application context at pro-
gressively mare detailed levels.

information systems methodology framework A stan-
dard for comparing methedologies based on their rep-
resentation forms and Lypes of infermation supported.

information systems plan {ISP) An enterprise level
analysis of data, processes, and technology that includes
manual or automated work to capture a snapshot of the
enterprise in order to define and prioritize applications
for developmenit.

inheritance In object orieniation, a property that allows
the generic description of objects which are then reused
by retated objects.

input-bound In structured design, a structure chart in
which the skew is on the input side.

instance [n informaiion engineering, 4 specific occur-
rence of an entity, e.g., entity = customer, instance
= Sam Jones.

integration test Tests that verify the logic and process-
ing for suites of modules that perform some activity,
verifying communicalions between them.

interdependence A way of describing the intereslation-
ships between organizations; includes pooled, sequen-
tial, and reciprocal relationships,

interface Some person, application, or organizalion with
which an application must communicate,

iterative project life eycle A cyclic repetition of analy-
sis, design, and implementation activities.

joint application development/design (JAD) A special
form of simuctured meeting during which user represen-
talives, application developers, and a facilitator meet
continuously over several days to define the functional
requirements of an application,

language constructs Features of computer languages
that determine what and how eperations on data arc car-
ried oul.

learn-as-you-go project life cycle An approach to the
development life cycle that assumes every project is so
unique that it has no prior precedent upon which to base
activities.

legacy data Darta vsed by outdated applications that are
required to be maintained for business records.

Glossary 805

legacy systems Applications that are in a maintenance
phase but are not ready for retirement,

leveled sct of DFDs Verified balanced sert of entitics,
data flows and processes within a hierarchic DFD dia-
gram set.,

leverage point Some business or application activity
from which a compelilive advuntage can be gained.

librarian A person working with an application devel-
opment or maintenance team to provide librarian ser-
vices relating to maintenance of documentation, code
ohjccts, reusable modules, cte.

local data Data variables and constants that are used
only within a given module.

logical data model An abstraci definiton of data
in an organization that describes the way a user views
data

maintenance The changes made to the logic of the sys-
tem and programs to fix errors (perfective), provide for
business changes (adaptive), or make the software more
efficient.

make/buy decision The tradeoff between building the
item in-house or purchasing it elsewhere.

memory management The ability of a program 1o alle-
cate motre computer random-access memory (RAM) ay
required.

menu Lists of options on a screen from which a selec-
tion is made.

menuy structure [n informaion engineering, a diagram
translating process altemmatives into a hierarchy of menu
selection options for an application.

message In object orientation, the unit of commmunica-
tion between two objects.

meta-class In object oricntation, classes whose instances
are other classes.

meta-data Data aboutr data that gives meaning to
data and is information about data, e.g., data type=
integer.

meta-meta-daia Information about the meta-data that
describes its allowable use to the application, e.g..
type=hardware.

methodology Procedures, policies, and processes used
to direct the activities of each phase of a software lifc
cycle, including process, data, object, semantic, or none,

modet A conceptual definition of something, e.g., logi-

cal data, physical data, business processes, efc.

modularity The structured design principle that calls for
design of small, self-contained units that should iead to
maintainability.

module See program package.

morphology Form or shape. In structured design, mor-
phology refers to the shape of a structure chart.

8086 CGlossary

multimedia A tcrm that describes the integration of
object orientation, data base. and storage technologices
in one environment.

multitasking In object orientation, the simultancous
execution of sets of processes.

multitasking objects In object oriemiation, objects that
track and control the execution of multiple threads of
control,

multiple inheritance In object orientation, the ability
to share attributes and processes from multiple class/
objects.

net present value (NPVY) A mathematical method of
comparing multipetiod projects that cqualizes the cost
estimates by accounting for the time value of money.

normalization The refinement of data relationships to
remove repeating information, partial key dependen-
cies, and nonkey dependencies.

ohject In object orientation, an instance of the class
definition,

object-based A design that is based on object thinking,
but is not object-onented in its implementation,

ohject-oriented analysis A methodology for analyzing
data objects and their allowable processes as encapsu-
lated and having inheritable properties.

object-oriented methodology An approach to system
life cycle development that takes a top-down, encapsu-
lated view of data objects, their allowable actions, and
the underlying communication requircment te define
an application architecture.

off-site storage A location usually 200+ miles away
from the main computing site used to siore buckup
copies of databases, soflware, etc.

on-line application Applications that provide interac-
tive processing to the user with or without immcdiale
file updare,

operations
cation.

option selection The choice for application navigation
from among menus, command languages, and windows
used to get to a functional screen.

organizational reengineering An evaluation of an orga-
nization’s data, processes, technologies, and communi-
cations needs to ensure that its goals as stated in its mis-
sion statement are met.

out-of-the-box thinking Examining a problem or issue
without respect to the current context to determine
novel approaches to resolving the issue,

output-bound In structured design, a structure chart in
which the skew is on the output side.

package specification [n object orientation, defines the
public interface for both data and processes for each

The daily processing of a computer appli-

ohject, and the private implementations and language to
be used, Similar to a program specification in non-
ahject methodelogies.

packages In object orientation, a set of modules re-
lating to an object which might be modularized for
execurion.

part class In object orientation, defines a component of
a whole class.

partitioning The basic activity of dividing processes
into medules.

peer-to-peer nmetworking A computer communications
network in which intelligent sharing of resources and
data across multiple processors is taking place.

persistent object An object that is maintained over time,
a database item.

physical data model The physical definition of data,
describing its layout for & particular hardware device.

physical database design The actions required to map a
logical database to storage devices in a specific DBMS
implementation envirenment.

physical input and output The movement of data be-
tween external computer (e.g., disk} storage and ran-
dom-access memory (RAM). [/O statements {e.g.,
read/write) may be record-oriented, set-oriented, or
array-oriented.

polymorphism In object orientation, the ability to have
the same process take different forms when associated
with different objects.

presentation format The method chosen for summa-
rizing information for screen display, including analog,
digital, binary graphic, bar chari, column chart, point
plot, pattern display, mimic display, lext, and text forms.

primary key A unigue set of values comprised of one or
more attributes identifying an cntity, an object, or a
darabase item, depending on the context.

private part (of a class/object) In object oricntation,
defines local, object-only data and the speeific proce-
dures each action takes.

problem space [n object orientation, identifies objects/
precesses that are required to describe the problem, but
are not required 1o describe the solution,

problem-domain objects In object orientation, the
class/cbjects and objects defined during analysis and de-
scribing the application functions.

process The sequence of instructions or conjunction of
events that operate on data.

process data flow diagram (PDFD)
engineering, a graphical representation of processes and
the data and event triggers that initiate processing. The
PDFD is the basis for action diagrams in 1E design.

process dependency diagram In information engineer-

In information

ing, a graphical representation of the sequence and types
of relationships among processes.

process diagram In object otientation, graphical repre-
sentation of the hardware environment showing process
assignments to hardware.

process model A conceptual description ol the business
processes of an organization.

process-oriented analysis A method of analyzing appli-
cation transformation processing as the defining charac-
teristic of applications.

process-oriented methodology Methodologies that take
a structured, top-down apptoach to evaluating problem
processes and the data flows with which they are
connected.

process/location matrix In data distribution analysis, a
table containing processes and, for each location under
analysis, the major and minor involvement in perform-
ing each process.

program package In structured design, one or more
called modules, and functions, and in-line code that will
be an execute unit to perform some atomic process.
Alsa called a program uani.

program specification A description of a program’s
purpose, process requirements, the logical and physical
data definitions, input and output formats, screen lay-
outs, constraints, and special processing considerations
that might complicate the program.

program template Standard code that performs a sim-
ple function.

program nnit See program package.

programming The process of designing and describing
an ajgorithm to solve a class of problems.

project life cyele The breakdown of work for initiation,
development, maintenance, and retirement of an appli-
cation.

project manager (PM) The person with primary re-
sponsihility for organization liaison, project staff man-
agement, and project monitoring and coutrot. The PM
also performs activities with the SE including project
planning, assigning staff to tasks, and selecting from
among application approaches.

project plan A summarty of the projeet planning effort
that identifies the work breakdown tasks, their interrela-
tionships, and the estimated timc to complete cach task,

prototyping The building of a subset of an application
to assist in requirements definitkon, to test a proof of
concept, or to provide a partial solution to a particular
problem.

pseudo-code Specification of processing using the syn-
tax from a programming language in abbreviated form
for easy translation.

Glossary 807

public part (of a class/object) In object orientation,
defines what data are available in the object and the
allowable actions of the object.

quality assurance (QA) Any review of an application
development work product by a person who is not a
member of the praject team to determine whether or
not the analysis requirements are satisfied.

quality assurance (QA) test A test by an outside agent
to determine that functional requirements are satisfied,
The outside agent can be a user or a user rcpresen-
tative.

query application
applications.

question Words phrasing an asking sentence that can
be open-ended, without a specific answer, or closed-
ended and requesting a yes/no or very short specific
Answer.

reentrant A property of a module thai allows it to be
shared by several tasks concurrently.

real-time application Applications that process transac-
tions andfor events during the actual time that the
related physical (real-world) process takes place.

recovery The process of restoring a previous version of
data (or software) from a backup copy to active use fol-
lowing some damage to, or loss of, the previously active
copy.

recursive A properry of modules such that they call
themselves or call another module that, In turn, calls
then.

regression test Customized tests to check that changes
to an application have not caused it to regress to some
stale of unacceptable quality.

relationship In entity-relationship diagrams, mutual
association between two or more entities. It is shown
as a line connecting the cntities; includes one-1o-one,
one-to-many, and many-to-many relationship cardi-
nalities.

repository A dalta dictionary in a CASE environment
that contains not only dala. file, process, entity, and data
flow definitions, but alse contains definitions of all
graphical forms, their contents, and allowable defini-
tions (e.g.. entity-relationship diagram, process decom-
position, etc.)

request for information (RFI) A formal request for
information on some product that usually precedes the
RFP process.

request for proposal (RFP) A written request for bids
on some product, providing formal requirements,
ground rules for responses, and, usually, a standard for-
mat for the proposal responses. .

request for quotation (RFQ) See request for proposal.

Another term for data analysis

808 Glossary

responsiveness The underlying time orientation of the
application as batch, on-line, or real-time.
retirement The period of time in the software life cycle
during which support for a sofiware product is termi-
nated.
reusability Also called serial reusability, a property of
a module such thal many tasks, in sequence, can use
the module without its having to be reloaded into mem-
ory for cach use.
reusable components Programs, functions, or program
fragments that are specially designed for use in more
than one program.
reusable module A small, single function, well-defined,
and standardized program module that can be used as a
called routine or as a copy book in COBOL.
reverse engineering See software reengineering,
review A general analysis and design task that is to ana-
lyze quality of the reviewed product.
risk Events that would prevent the completion of, in this
case, an applicarion development altemative in the man-
ner or time desired.
risk assessment A method of determining possible
sources of events that might jeopardize completion of
the application.
round-trip gestalt In object orientation, an iterative
approach 1o detailed design mn which prototypes are
built in an incremental development life cycle.,
scaffolding Exira code to support the stubs, partial mod-
ules, and other pieces of the application, usually cre-
ated to support top-down testing.
scheduling In object orentation, the process of assign--
ing execution times to a list of processes.
scheduling objects In object orienation, objects that de-
finc sequential, concurrent-asynchronous (i.e., indepen-
dent}, or concurrent-synchronous (i.e., dependent)
pTOCCSSCS,
scope Definition of the boundaries of the project: what is
in the project and what is outside of the project.
scope of effect In structured design, the collection of
modules that are conditionally processed based on
decisions by the module under review,
screen formats The general layout of a screen display
including definition of the menu/selection format, the
presentation format, and individual ficld formats.
security plan A plan identifying the physical, data, and
application means used to protect corporate information
and technology assets.

semantic methodology Methodologies used in the

automation of artificial intelligence (AT} applications,
including recognizing. reasoning, and learning appli-
cations.

sequential development life cycle (SDLC) A subeycle
of the SPLC, including phases for analysis, conceptual
design, design, implementation, testing. installation and
checkout, and ending with delivery of an operational
application,
sequential project life cycle (SPLC) The period of time
from inception to relirernent of @ computer application.
Phases in SPLC inctude: initiation, problem definition,
feasibility, requirements analysis, conceptual design,
design. code/unit test, testing, installation/checkour,
operations and maintenance, and retirement.
server object In object orientation, an objeet that per-
forms a requested process {i.e., client/server pro-
cessing).
service objects In ubject orientation, manage applica-
tion operations, including synchronizing, scheduling ot
multitasking objects, as required.
skew In structured design, a term to describe the lopsid-
edness of a program structure chart.
social methodology An approach to SDLC that attends
to social and job-related needs of individuals who sup-
ply or receive or use data from the application being
built.
software engineer Skilled professionals who have a
variety of skills that they apply using engineering-like
techniques to the definition, design, and implementation
of computer applications.
software engineering Systematic development, opera-
tion, maintenance, and retirement of software.
software reemgineering The reverse analysis of an
old application to conferm 10 a new methodol-
ogy. usuvally information engineering or object ori-
entation.
solution space In object orientation, identifies cbjects/
processes that are required both to describe the problem,
and to develop a solution.
specialization class In object orientation, a subclass that
reflects an is-a relationship, defining a more deiailed
description of the gen class.
sponsor A manager who pays for the project and acts
as its champion.
stakeholders People and organizations affected by an
applicaticn,
state In object orientation, a specific configuration of
attribute valucs of an object.
state transition diagram In object orientation, defines
allowable changes for data objects.
structure chart In structured design, a hierarchic, inpul-
process-output view of the application that reflects the
DFD partitioning.
structured decomposition A technique for coping with

application complexity through the principle of “divide
and conquer.”

structured design The art of designing system com-
ponents and the interreiationships among those
components in the best possible way to solve some
well-specified problem.

structured English Language-independent specification
of processing using a restricted subset of English.

structured systems analysis A process-vriented analy-
sis methodology that defines a top-down methed of
defining and graphically documenting precedural
aspects of applications.

subsystem design Subphase of the design phase dur-
ing which the application is divided into relatively inde-
pendent chunks for detailed specification.

subsystem test See integration test.

subdomain In object orientation, application design is
seen as taking place in four distinct domains: human,
hardware, software. and data. Encapsulated class/
objects (or a subset of them) are assigned to one of the
subdomains during design.

snbject area data base In information engincering, a
database that supports one or more business functions.

supplier object In object orientation, an object that per-
forms a requested process.

synchronizing The coordination of simultaneous cvents.

synchronizing objects In object orientation, objects that
provide a rendezvous for two or more processes to come
together after concurrent operations.

synthesis A general analysis and design task that is per-
formed to build a unified view of the application, rec-
onciling any parts that do not fit, and representing
requirements in graphic form.

system test A test to verify that the functional specifi-
cations are met, that the human interface operates as
desired, and that the application works in the intended
operational environment within its constraints.

systems theory A theory defining inputs as fed into
processes to produce outputs with feedback providing
a check on the process.

task profile A description of the job(s) o be performed
using a computer application.

technology transfer The large-scale introduction of a
new technology to some previously nontechnical envi-
ronment.

test case Individual transactions or data records that
cause logic to be tested.

test plan Docoments the strategy, type, cases, and
scripts for testing some component of an applicatien.
All of the plans together cormprise the test plan for the
application.

Glossary 809

test script Documents the interactive dialogue that takes
place between user and application, and the changes that
result from the dialogue for on-line and rcal-time
applications,

test strategy The overall approach to testing at some
level, used to guide the tester in developing test cases.
Test strategies are white-box, black-box, bottom-up or
top-down. They are not mutually exclusive and are usu-
ally used in combination,

testing A phase of the SDLC during which the ap-
plication is exercised for the purpose of finding
ETTOIS.

thread of control In object orientation, a set of poten-
tially concurrcnt processes. Usually, a single thread of
control relates o a single user or a single application-
level transaction.

time evenis In object orientation, the business, system,
or application occurrences that cause processes 10 be
activated.

time-event diagram In object orientation, a diagram
depicting the relationships among processes that are
triggered by related events or have constraints on pro-
cessing time.

top-down A perspective that begins the activity (e.g.,
analysis or design) at an abstract level and proceeds to
more detailed sublevels.

top-down development A way of thinking about prob-
lems that begins at a high level of abstraction and works
through successively more detailed levels,

top-down testing A testing strategy that assumes that
critical contrel cede and functions will be developed
and tested first and followed by secondary functions and
supporiing functions.

transaction analysis In structured design, a method of
analyzing generic activities by transaction iype to
develop structure charts of processing.

transaction processing application (TPA) Applica-
tions that support the day-to-day operations of a busi-
ness, e.g., order processing.

transaction volume matrix In data distribution analy-
sis, a table summarizing volume of transaction traffic by
location. _

transform analysis In structured design, a method of
identifying the central transform through analysis of
afferent and efferent flows.

trigger In information engineering, some data or event
that causes a business process (o execute.

type 1 error Defines code that does not do what it is
supposed to do; errors of omission.

type 2 errors Defines code that does something it is not

supposed to do; errors of commission.

810 Glossary

type checking The extent to which a language enforces
matching of specific data definitions in mathematical
and logical operations; includes typeless, mixed-mode,
pseudo-strong, and strong,

unit test Tests performed by the auther on each of the
code units.

user-managed application development The overali
management of application development by the user/
sponsor of the project 1o foster a business partner rela-
tionship with IS staff and te improve the quality of the
finished product.

user profile A description of the user(s) of a computer
application.

utility object See service object.

validation A review to establish the fiiness or quality
of a software product for its operational purposc.

vendor response A proposal in response to an RFP,

verification A review to establish the correctness of cor-
respondence between a software product and its speci-
fication.

walk-throngh A formal, structured meeting held to
review work products and find problems,

white box A testing strategy that uses logic specifica-
tions o generale variations of processing and 1o predict
the resulting outputs. White-box strategies lock at spe-
cific logic to verify how it works, including various lev-
els of logic tests, mathematical proofs, and cleanroom
testing.

whole class
cbject type.

windows A form of direct manipulation of the environ-
ment that combines full screen, icon symbols, menus,
and point-and-pick devices to simplify the hurnan
interface by making it represent a metaphorical desk
environment.

work around A rethinking of an application design
caused by limitations of the language, package, or target
environment.

working set The minimal, real random-access memory

In object orientation, defines a composed

{RAM) required by software when it is running.

INDEX

3NF, 480

3x5 approach, 524

4GL, 540

40-20-40 rule, 185,224,740
¥U-20 rule, 115, 699, 740

Abacus Printing Company. 780

ABC Video Rental Processing case, 45,
50-54

abslraction, 281

acceptance criteria, 672

acceptance rest, 691

access, 116,312,413, 415,420,422

ACM Code of Ethics, 103

action diagram, 392, 306, 401-402, 424,
429432

action type, 527,529

activity, 333, 356, 362

Ada. 653-655, 659, 660, 661, 661

adaptive maimtenance, 27

Administrative Office Services (AQS)
tracking systern, 791

advantages and disadvantages of
cslimating vechnigques, 174

ADW, 134, 387

afferent flows, 280

affinity analysis, 133, 336, 381, 383

algorithmic estimating, 173

ambigoity, data, 86

analog display, 605

analogy, 48, 188, 179

analysis, 25-26,42, 199, 631

analysis and design, general activities
summary, 41, 206

analysis and design. summary, 225

analysis domain, 47

analysis phase activities, 200201

application alternative approaches, 49

application boundary, 234

application change management, 741

application characteristics, 5

application configuration requirements,
445

application conversion, 626, 627

application development as a translation
activiry, 202, 205

application error recovery, 723

application generator, 632, 633

application leverage point, 1458

application life cycle time distribotion,
741

application maintenance, 749

application reengineering, 752

application responsiveness, 13

application supporl, 768

application wehnologics, comparisen of
15

application training, 422

application type, 23, 663

application type and decision type, 22

archiiecture, 115, 133, 150, 328

arrays and tables, 643

artificial intelligence {Al} applications,
37,565, 605,769

artificial intelligence {Al) in CASE, 565

artificial intelligence enginzer, 762

artificial intelligence research, 46

assertion processing, 729-730

ussigning stafl to tasks, 62

Asgseciation for Computing Machinery
{ACM), 103, 780

associative data relationship, 570

associative entity, 330, 339, 344, 348

atommic process, 292

attribute(s), 268, 331, 348, 373 474,
485, 4849, 533,627

auribute, status, 434

artributive entity, 330, 339, 349

audit controls, 392, 308,401, 410,415

audit trail, 423

automated interface, 12

automated support tools, 6. 79-R0.
144-145, 270,275,497, 498, 534,
632, 635, 602. 687, 729-731,
759760, 786-757

BAA. See business arca analysis

backup, 311, 401, 413415, 421

bar chart digplay. 607

baseline, 742, 751, 755

BASIC, 651-653, 636, 662

batch, 14, 707

batch test simulator (BTS), 726, 732

henchmark, 670

benefits, 149, 153 171, 188, 194

binary display, 606

hinary message, 503

binding, 507, 508

hlack-bax testing, 691, 694, 696, 704,
FOH—T11, 714, T18. 721

hady of form, 610

hody of screen. 390

boilerplate, 740

Booch, Grady, 459, 487, 501, 509, 524,
555,360, 564, 563

Booch diagram, 504, 506, 521-523,
323,532, 534,547, 550, 696

bottom-up analysis, 243

boltom-up estimating, (80, 182

bottom-up testing, 692, 695, 702, 706,
709,716

boundary value analysis, 696

busmess and technology trends, impact
on application development, 569

business area analysis (BAA). 328-330,
338, 356, 358, 362, 387

businass event, 557

business function, 213, 332, 356, 452

business function decomposition, rules
for, 356

business leverage point, 148

business partners, 39

business process, 334

C, 653635, 657,661, 662

C++, 539, 540, 542,547, 550, 662

called abject, 526

calling object, 526, 528

candidate for template definition, 398

cardinality, 343, 486,

career path plasming, 72, 764

CASE, See computer-aided softwars
enginesring

CASE architecture, 223

CASE comparison, 565

CASE repository, 223, 348

case statements, 643

case-based reasoning, 48

caseworkers, 114, 115, 117

cause—eifect graphing, 696

Center for Child Development {CCD),
792

central transform, 280

centralization/distribution, 407

champion, 67, 120, 172

change control, 742-744

change management, summary, 759

change management procedures, 742

characteristics of languages, 640

charge-in—charge-out, 755

Chen, Peter, 343

chunking, 613

class, 6,47, 64,468, 486, 487,494, 521,
530, 540, 459

class analysis, rules for, 486

classiobject, 462, 468, 483, 486, 487,
489,494 507, 528, 533

classroom instruction, 588

cleanroom development and testing, 699

client/server, 569, 571

clock-driven, 513

closed-ended question, 9, 96

811

812 Index

Coad, Peter & Yourdon, Edward, 459,
487, 490, 501, 509, 555, 564

COBOL., 651-653, 656, 662

CoCoMo. See Composite Cost Model

code analyzers, 729

code and unit test, 27

code fragments, 741

code penerator, 398

code library, 751, 752

code management, 735, 752

cognitive psychology, 46

cohesion, 246, 280, 281, 286, 292

collaborative work, 733, 756, 758

color spectrum, 624

column chart display, 607

command tanguage, 590, 602, 604

command manager, 547, 550

comtmand object, 543, 545

common class/object, 489

communications analyst, 769

company requirements, 667

comparison of languages, 630655

compilation, 752

compiler efficiency, 650

completeness checking, 247

complcxity managetnent, 559, 560

Compesite Cost Model {CoCoMo), 173,
175, 176, 181, 182

compromise of requirements, 209

compuler-aided software engincering
({”ASE}, 2, 6, 113, 142-145, 185,
194195, 210, 214, 222, 268, 270,
275,319, 322-323_ 387, 450, 489,
508, 534, 554, 565, 567, 568, 569,
632, 640, 650, 636, 657, 652-663,
687, 729~731, 740, 751, 756,
738760, 767, 786187

computer-based training (CBT), 420,
SR8

conceptual design, 26

conceptual foundations of object-
oriented analysis, 459

conceptual levels of architectures, 126

concurrency decisions, 542

concurent process{es), 425, 503

condition bracket, 425

condition logic test, 698

conditional stalements, 643

confidentiality, 103

configuration, 446, 452

configuration management, 28, 751-755

Confucius, 50

conservatism, 49

consistency checking, 247

Constantine, Larry, 279

constraint{s), 9, 11-12, 23, 483, 454,
312, 513, 542, 557, 559, 573, 701

consultant, 769

context diagram, 228, 233-235, 240

contingency planning, 149

control couple, 282, 284, 307, 308§

control language constructs, 643

controd logic, 714

control point, 415

control struciure, 710

controlled redundancy, 415

conversion, 391, 392, 625-633

carmective maintenance, 27

correctness checking, 247

comrespondence between praject life-
cycle phases and testing, 69t

cost-benefie analysis, 140, 149, 172,
187, 188

conpling, 279, 246, 281, 286, 288, 293,
310

Course Registration System, 794

courtesy, 103

coverage analysis, 729

critical applicaticns, 415, 584

critical data, 218

critical modules, 709

critical path method (CPM), 60, 183,
185,672

critical success factor (CSF), 113, 124

CRUD matrix. See entity/process matrix

cutover, 627

data, §, 115, 503

data administration (DA}, 218,
221-222, 235, 3128, 768

data analysis, 329, 392

data analysis applications, 19

data architecture, 115, 131, 130, 218,
397

data authorization, 423

data collection technigque, 87, 88, 98-09,
101

data collection techniques summary, 88,
107-108

data completeness, 86, 422

data conversion, 453, 626627, 632

data couple, 282, 284, 305, 308, 315

data dictionary, 230, 232, 234, 260-268,
582, 627. See also repository

clata distribution, 402, 403

data flow, 228, 234-237, 2309, 240, 245,
258, 306, 373, 375

data flow diagram (DFD), 1, 152, 228,
231, 240, 241, 244, 260, 270

data flow diagram, nules for, 241

data location, 626

data management, 519, 342, 543, 546

data methodelogies, 34-33, 353, 539,
364, 139-140

data modeling, 325, S¢e afso data-
oriented analysis

data object, 548

data retneval, 5

data scrubbing, 183

data security, 392, 400

data self-sufficiency, 122,123

data semantics, 86

data source, 579

. data storage. 5

data stores, 228, 244

data structure, 281

data subdomain, 540, 546

data trigger, 335, 373

data type and application type, 99—100

data type checking, 641-642

data tvpes. 86, 640642

data usage analysis, 401

data usape by location, 404

data volume, 86

dara warchouse, 20, 570

data-priented analysis, 328390

data-oriented design, 3914535

data/location matrix, 392

database administration (DBA), 310,
311, 318, 401, 453, 626, 693, 709,
768

database design, 126, 311, 392, 557,
360

databasc management software
{DBMS), 414, 419, 420, 452, 508,
508, 510, 519, 549, 581, 569, 571,
66

DBA. Ser database administration

DBMS. See database management
software

decision history, 741, 744

decision logic test, 698

decision support applications {DSS), 20,
100101, 604, 605

decision tables, 313

decision trees, 313

decision type, 23

declarative knowledge, 43

declarative language, 19

decomposition, 254, 375, 442

deep structures 49, 308

delta file/version configuration
management, 753

DeMarco, Tom, 227, 230, 244, 5535, 568

denormalization, 392, 548

depth of a hierarchy, 284

derivation, 754

derived clags, 539

design, 26, 197

design change, 742

design decisions, historical file, 751

design fragments, 741

design phase activities, 203-204

desired CASE features and functions,
566

development life cycle {(DLC), 182

developmental tests, 691

device, 532

DFD. See data flow diagramn

DFD Semantic Rules and Heuristics,
257

DFD syntax rules, 244

dialogue, 502

dialogue Mow, 401, 438, 439, 440, 445

dialogue flow diagram, 396, 442

dictionary, 270

digital and binary data, guidelines, 607
digitaj display, 606

direct identification, 242

direct manipulation, 601, 604

direct normalization, 331, 344

directed lines, 494

disaster recovery, 420, 723

distributed applications, 573
distributed computing, 556

distributed environment, 532
distribution analysis, 401

distribution ratio formulae, 409

divide and conguer principle, 279
document, 204, 209, 735

document review, 89, 97, 100-101, 151
documentation change, 743

domain, 127

downsizing, 571

Dr. Patel’s Dental Practice System, 793
DSS. See decision support systems

Eagle Rock Galf League, 796

ease of data conversion, 628

economic feasihility, 23

edit and validate criteria, 627

EDP auditor, 771

efferent, 280

elaboration, 204, 208

elementary components, 228

elementary process, 334

emnbedded systems, 22, 174

embedded-system rules for drawing a
time-event diagram, 510

encapsulated objects, 501

encapsulation, 45%, 463

end-user specialist, 772

enlarged jobs, 114

enterprise analysis, 143

enterprise architecture, 115, 151

enterprise level planning, 109, 113

entity, 5, 136, 344, 347,374, 381, 382,
397,582

entity atiribuie, 339

entity structure analysis, 331

entity type, 330

entity-relationship disgram (ERD), 115,
122, 129-131. 151, 329, 339-343,
348, 356, 362,373, 374, 381, 397,
486, 751

entity/process (CRUD) matrix, 122,
134, 336, 381, 383, 387, 392, 402,
527, 546

entity/technology matrix, 142

eguifinality, 573

equivalence partitioning, 695, 696

equivalent sets of processes, 721

erTor correction cost, 84

eITor guessing, 606

essential system analysis, 202

estimating techniques, 162, 172

ethics and software engineering, 39,
103-109, 408

event diagram, 520, 557

event wigger, 333, 373

evenl-driven, 513

exception handling, 646

execute unit, 202

executive information system (EIS), 20,
100, 102

expert. 48. 49, 128, 604, 603

expert judgment, 176, 178

expert systems applications (ES), 20,
100, 102, 104, 606, 607

expert/novice diffarences in problem
solving, 48-49

explanation subsystem, 21

external entities, 228, 234, 235, 238,
258, 261

external event, 372, 373

facilitator, 210, 218

factoring, 281, 296

fan-in, 283, 308

fan-aut, 286, 308

Fast-Track, 210

feasibility, 25, 150-151, 172, 193

feasibility activities, 150

feasibility analysis, 24, 25, 235

feasibility analysis and planning
summary, 195196

feasibility study, 109, 148-151, 234

federation, 393

field format characterstics, 616, 620,
621,623,624, 718

tile, 228, 244, 373

financial feasibility, 187

financial requirements, 667

firmware, 511

tixed message type, 540

tixed price bid, 674

Hexibility, 161, 680

tlicker fusion, 624

flowchart symbols for structured
constructs, 291

Focus, 651-653, 656, 660, 662

footer, 592, 610, 625

forgotien analysis and design activities,
summary of, 633

form-flling screen, 601, 609

form screen sections, 612

formula for determining schedule time,
61

Foriran, 650, 631-633, 657

friend function, 540

frozen specifications, 742

full backup, 414

function, 5, 228, 292,313, 539

function point (FP}, 180, 181, 182, 184,
563, 564

functional decomposition, 129-131,
279,288, 329, 333, 356

Index 813

functional requirements, 199, 375, 724
functional screen design, 393, 601-602
fundarnental entity, 330, 339

Gane, Chris, 565

Gantt chart, 185

GDSS, See group decision support
systems

generalization, 48

generalization class, 462

generalization-specialization, 487

generic life cycle, 33

generic message, 547, 550

generic module, 540

Georgia Bank Automated Teller
Machine System, 796

global data, 313, 645

globalization, 572, 573

goals of a software engineer, 3

goals of structured design, 279

graphics user imerfaces (GUT}, 13

group decision support systems
{GD5S), 21, 100, 102, 103

group meetings. 88

hardware and software purchasing
summary, 687

hardware change, 742

hardware configuration, 529

hardware plan, 401

hardware planning, 392

hardware subdomain, 502, 546

hardware/software installation plan,
guidelines for, 445

header, 590, 609, 625

help packages, 633

heuristics, 63

hicrarchic input-process-output
diagrams (HIPD), 289

hietarchic logical data models, 6

hierarchic, lattice-like relationships, 462

horizontal pull-down menus, 598

human interface, 12, 392, 442, 510, 511,
562, 579, 580, 701, 723

human interface subdomain, 502, 346

Humphrey, Watts, 554, 563, 564

Humphrey’s maturity framework, 562

hypermedia, 758

hyperteat, 758

[-CASE, 452, 740

/O bound, 286, 308

L/O manager, 519, 550

[0, See inpulfoutput

icons used in state transition diagrams,
495

[E. See Information Engingeering

1EF. See Information Engineering
Facility

814 index

imaging technology, 152

implementation, 27, 41

implementation environment, 63

implementation language chaice,
summary of, 562

implementation plan. 64, 140, 142,172

implementation stratcgy sclection, 64

in-ling ¢code, 292, 313

incremental backup, 414

incremental development, 501

informal procurcment, 670

Information Enginecring (IE), 328, 343,
356, 387, 391, 392, 401, 434, 486,
354, 555, 557, 560, 561, 564, 566,
567, 568, 569

Information Engineening Facility (IEF),
387, 569

information gathering, 150

information hiding, 279, 281

information systemns (15) experience
lewels, 765766

infotmation systems methodology
framework, 555

information systems plan (18P, 109,
L3, 555, 557

information technology, 115

information technology plan, 142

information, structore, 84

infrastructure, 573

inheritance, 459, 463, 487, 439

initial level, 562

initiation, 25

input, 5

input bound, 286, 308

inpur message, 526, 528

inputfeutput (1/O), 542, 545, 645

input-process-cutput (1PO) mulel, 279

installation. 446, 450, 452

Institute of Electrical and Electronic
Engincers {LEEE), 13, 778-779

integration test, 691, 701, 703, 7¥-T21

inmellectual property, 104

interactive processing, 14

interdependence, 141

interface, 60, 293, 590, 604, 742

interleaving. 251

internal rate of return (IRR), 150, 193

interobject intetface, 525

interview(s), 87, 88-92, 102, 151

interview behaviors and interviewer
response, 93

IS jobs, surmmary of, 767

1S managernent, 69

1S-managed applications, 217

iterative development, 29-31, 391, 702

iterative testing, 692

JAD. See joint application development
job design, 136, 140

job management, 518

job types, 767

Jjoint application design /development
(JAD}, 39, 92,93, 182, 210, 214

Joint IS-uscr team and responsibilities,
211

joint requirements planning (JRP), 118,
210

jeint structured process, 213

JRP. Sew joinl requirements planning

keyword message., 505
knowledge-based systemns, 21
knowledge development stages, 46
knowledge elicitation, 102
knowledge engineer, 768
knowledge engineering, 102
Knowledgeware, 391

language characteristics, 647

language matched to application type,
660

lunguage maiched to methodelogy. 661

learn-as-you-go project life cvcle
{LAYG), 31-34

learning, 46

leaming application development.
summary of, 54

lease options, 673

legacy, 570

legacy data, 570

legacy systcms, 370

level 0 DFD. 244, 229, 245, 247

level] DFD, 229

level of effort. 118

leveled set of DFDs, 234

leverage points, 152

liaison, 67

librarian, 736, 754, 755, 756

license fee, 674

life cvele, 63, 362

linkage editing, 752

live-data testing, 704

load module, 752

lacal area network (LAN), 571

local area network (LAN) specialist,
769

local data, 645

local mental model, 4%

location/process matrix, 403

logic test, 697

logical data model, &

logical datgbase design, 312

logical description, 126

logical design, 126, 3112

logteal process flow, 529

long-term memory (LTM), 613

Lotus-style horizontal pop-up menu, 594

main (3, 539
maintuning professional status, TRO-TE6

maintenance, 2, 745750

maintenance type, decision tree for
selecting, 750

make-buy analysis, 149, 193, 666, 668

manuai interfaces, 17

many-to-many relationship, 342, 344

marketing support, 772

Martin, James, 109, 343, 391, 565

mathematical proof test, 699

mathermatical veritication, 699

McClure, Carma, 565

McMenamin, Stephen, 227

Mealy model, 492

mean time between failures {MTBF),
417,419

media space technology, 757

meeting, 92, 102

metnery, 542, 545

memory management, 545, 645, 646

memory resident work unit, 752

mental model, 49

menu design, 438, 500, 592, 393, 60X

menu structure, 393, 395, 401, 438,
442

message definition, rules for, 525

message design, 462, 504, 522-525,
529, 532, 547,550

meta-class{es}, 462, 487, 489

mdeta-data, 224

methodology, use of no, 34-39, 66

methodology and project life cycle, 65,
66

methodolegy comparisons, 554, 556,
558, 361, 564

methodology design effects, 738

milestone. 60

mimic display, 609

mission statement, 124, 129

modularty, 279, 28], 645

module, 292, 313

module designation format, 425

module structure diagram, 521

Maore, Gary, 233

Moore model, 492

morphology, 283

motivating, 72

multicondition test, 508

muliimedia, 572, 573, 574

multiple inheritance, 460

multiple-thread management, 519

multitasking, 504, 320, 332, 542

multiuser CASE, 566

multiuser support, 567, 646

Murphy’s Laws, 162, 163, 563

Nassi, 1., 290

Nassi-Schneiderman diagrams, 289

navigation cheices, 592

net inflows and outflows, 245

net present value (NPV), 149, 192, 194,
685

network architecture, 116, 129-130,
131, 132, 137, 140

no methedology, 38-39

normalization, 332, 339, 344, 345-346,
392, 560

novice, 48, 49, 240, 420, 440, 441, 492,
568, 595

object atreibute definition, 479

object-based, 508

object-oricnted anatysis (Q0A),
456-500

abject-orictted analysis documentatior,
464

object-oriented design (00OD), 501-553

object-onented logical daia models, 6

object-oriented methodology, 35-37

observation, 88, 94, 101-102, 151

off-site storage, 413

Olle, et al. framework, 554, 556

on-line applications, 14, 707

on-the-job training {(3JT), 588

one-to-many relationships, 342

one-to-one relationship, 342

OO0A. See object-oriented analysis

00D, Ser object-onented design

QOODBMS, 509

open change request, 744

open system iterface (0313, 13

open-ended question, 90, 85, 96

operating characteristics, 680

operational environment, 678

aperations, 2, 24, 27, 69, 723

aperations and maintenance, 27

aperator precedence, 643

aptimnizing level, 563

opticnal relationship, 343

organic project, 172

organizational feasibility, 25, 171

organizational reengingeting, 113

organizational reengineering
methodology, 118-123

out-of-ihe-bwox thinking, 209

output, 5

output-bound, 286, 305

oulpul comparators, 729, 732

oulpul message(s), 527, 329

overlapping window system. 598

averloading, 540

awner, 743

ownership, 104

package purchase, 674

package resources, 679

package specification, 504, 506, 533,
534, 5350

package testing, 707

Paimer, fan, 227

parallel execution, 627

Parkinson's Law, 179

part class, 462

partitioning, 280G

Pascal, 653-655, 657, 660, 661, 662

pattern display, 608

payback period analysis, 130, 193

PDFD. See process data flow diagram

peer-1o-peer networking, 572

percentage of reengineering elfort by
task, 122

perfective maintenance, 27

performance, 678, 680

persistent object, 510, 659

personal manner and responsibility, 105

personnel management, 7)-72

Pert chart, 672

phases of application development,
2428

physical database, 312, 391

physical database design, 290, 310

physical data model, 7

physical security, 400

plan implementation, 142, 172

planned data redundancy, 221

planning a career, 772780

point plot display, 607

politics, 104

polymorphism, 462, 463, 506, 508, 534,

540

portability, 161

precision requirements, 581

presentation format design alternatives,
605

Pressman, Roger, 565

Price-to-win, 179

primary key, 339, 479, 480

primitive level, 229

privacy, 104, 106

private mterface, 504

private package part, 457, 531, 537

problem domain, 48, 503, 324

problem-solving strategies. 49

problem space, 469

procedural template, 397

process, 9, 46, 136, 228, 244, 258, 260,
336, 358, 362, 373, 374, 375, 382,
462, 473, 483, 486, 489, 494, 511,
533,539

process allocation to subdomain, 511

process analysis and design
methodolegies, strengths and
weaknesses, 322

process architecture, 115, 130

process attribute(s), 483, 484

process control, 605

process database, 563

process data flow diagram (PDFD), 151,

152, 330, 334, 335, 372, 375, 381,
396, 432, 438, 606, 751
process decomposition, 150, 362, 381
process dependency, 330, 364
process dependency diagram (PDD),
334, 363,372,373

Index 815

process diagram, 506, 529, 532, 534,
751

process hierarchy diagram, 122, 132,
143, 393, 432, 438, 439, 751

process idendification rules, 479

process relationship, 334

process-bound, 286, 308

process-object assignment, 487, 520

process—oriented analysis, 227-278

process-onented design, 279-327

process/data analysis. See entity/process
analysis, 136

process/data interaction mapping and
analysis, 330

processfentity matrix, 142

process/location matrix, 392

processor, 532

production database, 311

professionalism, 102-103

program change, 742

program morphology, 281

program package, 290}, 312-313

program specitications, 279, 293, 317

program stub, 693

progtam template, 736, 738, 740

program unit, 290

progtammer, 757

project assumptions, 52

praject control, T4

praject initiation, 40, 109

praject librarian, 755

project life cycle, 23, 40

project management, summary of,
80-81

project manager {PM), 57, 59, 743, 744

project mode, 174

project monitoring and reporting, 74,
T6-79

project plan, 38, 149, 181, 194

project sponsor, 120

PROLOG, 650, 653655, 658, 660, 661

proposal evaluation, 668670

protected part, 539

protocol, 94

prowtype, 29, 279, 312, 445, 501, 511,
348, 702

pseudo-code, 264, 315, 534

public interface, 506

public part, 459, 533, 539

purchase, 673

purchased software change, 742

purchasing process, 666

Q& A, See question and answer

(JA. See quality assurance

QA report, 726

QA test, 691, 724, 726

QA/acceptance test, sample errors, 725

quality assurance (A}, 27, 563, 691,
723,771

query applications, 19, 100, 101, 603

816 Index

query language, 625
question and answer (Q&A), 602, 604,
605

questionnaire, 89, 95, 96, 101, 102, 151,
170
queues, 540

range of artificial intelligence
applications, 37

Rayleigh curve of staffing estimates,
178

real-time, |7, 707

recovery, 392, 39%, 400,401, 410, 413,
421

recursiveness, 646

redling, 744, 758

reenginecring, 109, 113, 114, 115, 116,
128, 129, 131, 134, 136, 143144,
328, 749,751

reengineering architectures, summary
of, 125

regngineering assumptions, 116

reengineering levels and architecture
domains, 127

reengineering project planning, L17

reengineering staff assignmerus, 121

reengineering targets, 114

reentrancy, 646

regression test, 691, 726

relational database, 329, 391

relational logical data models, 6

relationship, 331, 339, 342, 348, 486

relationship entity, 331

relationship types and cardinality for
object class diagram. 489

reliability, 95, 161

repetition bracke, 425

replication, 393

report design |, 625

repository, 222, 570

request for mnformation (REI), 668

request for proposal (RFP), 70, 666683

request for quotaton (RFQ), 667

required/optional ERD relationship, 343

requirements change, 742

research on analysis, design and
methodologies, 568

research on learning and sofware
engineering, 45

residual price, 673

resource usage, 730

responsiveness, 5, 14

restan, 723

Testructuring, 749

retirement, 2, 27

return ohject, 527

reusahility, 398, 429, 436, 320, 523,
613, 646, 735, 736, 738, 730, 751

reusable analysis, 741

reverse engingering, 735, 749

RFP. See request for proposal

risk, 162

risk, sources of, 163

risk assessment, 140, 149, 163, 171,
194, 414

round trip gestait, 5041

Rumbaugh, et al., 439

Sanden, Bo, 368

satisticing, 49

scaffolding, 695, 699, 709

scheduling, 504, 522, 542

scheduling service object, 50, 520, 525

Schneiderman, B, 241)

scope, 126, 228, 234, 238

scope of effect, 286

screen contyel structure, 721

screen design, 302, 579-623, 701, 723

screen diglogue, 391-392

scrolling element, SY7

SE. See software engineer

SE product, 3

SE responsibility, 59

SE skill, 560, 563, 569

security. 106, 312, 398, 400, 401, 410,
411,413,420, 439

security, recovery, and audit controel
planning. guidelines for, 410

security specialist, 770

selection bracket. 425

semantic methodologies, 37

semantics, ¥6

semidetached project, 174

sensitivity analysis, 681

sequence bracket, 424

sequential project life cyele (SPLO),
13-20

service cbject{s), 303-504, 507, 517,
M), 522, 542, 544, 548, 333, 5334

service object requirements, decision
table, 520

shutdown. 342, 546

simple sequence bracket formar, 424

simple-to-complex testing. 710

skew, 285, 308

Smalltalk, 653-633, 639061

socio-technical systems (STS), 39

Software Development Life Cycle
(SDLC), 25

software engineer (SE), 1, 57, 38, 54,
743,744,764, 767

software engineering, 1, 3, 40, 98, 706,
764

software enguieering Careers, Sununary
of, 787

software enginecring overview. 4142

software enginesring process, 3

software failures, 420

software librarian, 754

software management. 749

software plan, 401

software reengineering, 747

software review, 88

software subdomain, 503, 546

software support specialist, 770

solution space, 469

saphistication in explicit design
decisions, 5605601

sources of complexity, 557

span of control, 284

specialization, 462, 489

specification, frozen, 742

spomsor, 67

SQL, 312, 315, 419, 452, 453, 508, 525,
540,342, 547, 550, 643, 650,
631-653, 660, 662, 709, 714, 720,
721

stack, 519, 540

stakeholder, 25, 78, 106, 113, 124, 1249,
412,741

standard contract terms, 677

standards developer, 771

startup, 542, 546.

state transitior diagram, 231, 492, 443,
493, 696

static function, 540

stepwise refinement, 252

structure chart, 279, 281, 303, 303, 306

structured anmalysis, 566, 567, 568

structured decomposition, 229

structured design, 280

stuctured English, 264

structured interview, 90-21

stpctured problem, 20

stuctured programming constructs, 315

stub logic, 700

subclass, 348, 460

subdomain, 509, 540, 546

subject area database, 136, 338, 391,
402

subset partitioning, 393

subgystem design, 26

subsystem test, 692

Sullivan, Eouis, 227

summary paragraph, 464, 483

Summer’s Inc. Sales Tracking Svsteni.
797

superset class, 480

suppher object, 462

surface features, 49

symbolic executor, 730

synchronizing object. 503, 520, 522,
542

systems analysis, design, and
methodologies, fulure of, 574

systems architecture {ISA), 125

systems model, 227

systems programner, 770

system tesiing, 691, 701, 703, 723-726

system theory, 227

T&M with ceiling, 674
tabular nomnalization, 331, 344

task dependency diagram, 60

task management, 518

task profile, 580-582

technical alternatives, 159-160

Technical Contracting Inc., 798

technical feasibility, 25

technical specialists, 769

technical staff, 69

technical trainer, 771

technical writer, 771

technology architecture, 116, 130, 133,
140, 150

technology/network diagram, 129

techoology/process matrix, 142

technology surveillance, 772

technology iransfer, 573

temporary job assignment, 90. 95, 101,
102, 151

test case, 692, 702, 711, 713.720, 724

test coordinator, 633

test daea, 311, 732

test data generator (TTHE), 729-731

test design, 693, 725

test driver, 729, 732

test level and test strategy, 705707

test plan, 401, 692

test script, 592, 696, 718

test strategy, 692, 704, 706, 708

test strategy design heuristics, 708

test strategy objectives and problems,
7

test team, 693

testing, 27, 690-732

testing and QA, summary of, 732

testing information flow, 695

testing strategy, 694695, 707, 716

Texas Instruments, 391, 56%

text screen display, 609, 622

thousands of delivered source
Instructions (KDSD), 173

thread of control, 504. 542, 543

tiled window system, 548

time and materials bid (T&W), 674

time-event diagram, 503, 504, 512-514,
520

time origntation of data, 84

top-down analysis, 232, 242

top-down estimates, 179, 180

top-down plan, 182

tap-down testing, 692, 695, 699, 701,
702, TO6, 707,718, T2

top-down testing strategy, 709-710

trade-off analysis, 172

training, 72

transaction analysis, 281, 204

transaction logic, 311

transaction cbiect, 543

transaction-oriented applications, 17,
281

transaction processing systems (TPS),
17. 100, 101, 605

transaction simulator, 732

transaction volume matrix, 393

transform analysis, 280, 295

transform-centered applications, 281

framsition, 492, 494

rriangulation, 87, 92

trigger, 334, 373,374, 512, 557

type 1 error, 530

type 2 error, 691

unary message, 505

undirected search, 48

unit testing, 27, 691, 693, 701, 703,
Ti0-721

universal activities, 28

unstructured interview, 0-91

unstructured problems, 20

user, 67, 122, 217, 631, 744

user aceeptance test, 724

user documentation, 631-634

user invelvement in application
development, 3940

user liagon, 222

useT object, 546

user profile, 583583

user views, 311

user-managed application development,
216, 17

uses for prototyping, 29

utility objects, 503

validation, 28

validity, 95

variation management, 754-755
variation storage, 754

Index 817

vendor, 59, 668, 669

vendor response outling, 670, 675

verification, 28

version management, 753

vertical partitioning, 393

vertical pop-up menu, 599

Vessey, Ios & Conger, Sue, 568

Vessey, Ios, Jarvenpaa, Sirka, &
Tractinsky, Noam, 270

Vienna development method (VDM),
699

virtual function, 540

volurme test, 701

walk-through, 217, 233, 247, 258, 275,
311, 693, 699

Ward, Paul, 568

Ward, Paul & Mellar, Stephan, 567

Wamier diagram, 289

Warmier, I. D., 290

weighted average cost formula, 674

what we know and don’t know from
O0A and 00D, 534

white-box testing, 692, 694, 697, 704,
710,711, 714, 718,721

whole class, 462

whole-part, 489

width of the hierarchy, 284

window(s}h, 590-598, 602, 604, 605

work around, 209

work breakdown, 183

work flow management, 152, 153

work unit, 752

XY University Medical Tracking
System, 799

Yourdon, Edward, 227, 231, 244, 267,
270, 458, 557, 560

Yourdon, BEdward, & Constantine,
Latry, 535, 567

Zachman, John, 125, 126, 127

